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ABSTRACT

Multilevel image thresholding is a simple and efficient segmentation technique. Thresholding criteria such as
Otsu and Kapur objective functions are extensively used in the literature. They are effective techniques but suffer
from poor computational complexity. Thus, methods such as dynamic programming for exact optimization or
metaheuristic algorithms for approximate optimization are applied to improve runtime. However, most of these
algorithms take the count of thresholds as input. Hence, a novel input-less algorithm that can identify the count
and values of thresholds simultaneously is proposed. The proposed method is then compared to state of the art

methods to assess its efficiency and effectiveness.

Keywords

Multilevel Thresholding, Clustering, Image Segmentation, Dynamic Programming, Minimum error thresholding,

Exact Optimization, Unsupervised Classification

1 INTRODUCTION

Image segmentation is an important task of computer
vision and image processing tasks. It is the task of
partitioning a digital image into a set of objects, where
each pixel of the image is labeled by one of the mem-
bers of this set. Image segmentation is usually applied
in various domains such as analysis of medical images
[RKS™21], analysis of satellite images [RS21] and de-
fect detection in industrial parts [MWSG21].

Various segmentation techniques with different com-
promises have evolved over the years since the dawn
of computer science. One of these is image threshold-
ing. Image thresholding works by segmenting the im-
age pixels with respect to some threshold(s) value(s).
All pixels with an intensity value less than a threshold
belong to a class different from the class(es) of those
pixels with intensity values greater than that threshold.
The speed and simplicity of thresholding comes with
an obvious limitation which is ignoring spatial informa-
tion related to each pixel as it only considers the inten-
sity value of the pixel. It is also limited when applied
to an image with various lighting conditions through-
out the image regions. Therefore, thresholding is used
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more commonly as a pre-processing step in image pro-
cessing applications [ARM?24]. Image thresholding can
be classified into two main categories: bi-level thresh-
olding and multi-level thresholding. Bi-level threshold-
ing segments an image into two segments/classes; typ-
ically an object/foreground and a background. Multi-
level thresholding segments an image to more than two
segments.

Throughout years, different techniques for bi-level
thresholding have been proposed and they were ex-
tended to multilevel thresholding as well. Most of
these thresholding methods follow a common method
of having an evaluation function that assigns a score
to every candidate solution and then finds the best
solution by searching for the one that gives the best
score. Examples of such objective functions include
Otsu’s between-class variance [Ots79], minimum
error thresholding [KI86], Kapur’s entropy [KSW85],
automatic thresholding criterion [YCCO95], general-
ized histogram thresholding [Bar20], Tsallis entropy
[Tsa88], Renyi entropy [SWY97] and fuzzy entropy
[DRD*19]. Therefore, the multilevel thresholding
problem 1is considered an optimization problem.
However, in the case of significantly increasing the
number of thresholds, the runtime grows exponentially,
deeming it non practical [Tubl4]. Recently, meta-
heuristic optimization algorithms have been widely
applied to multilevel thresholding. = Metaheuristic
optimization algorithms are not guaranteed to find an
optimal solution to the subject problem. However, they
make a compromise between reducing the runtime and
maintaining the solution optimality. Meaning that,
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they can reach a suboptimal solution in a much faster
time than an exact method that would reach an optimal
solution but in a longer time [VTM23].

It has been an ongoing trend to experiment on com-
bining metaheuristic optimization algorithm with
different objective function in order to to reach a faster
runtime while keeping a good segmentation quality.
Variants of Whale Optimization algorithm (WOA)
[SG19, ALH21, AIA21, MY22, ABMAA22], Corona
Virus Optimization algorithm [AEMH23, HKHM23],
Chimp Optimization Algorithm [EHR'23] and
Particle Swarm Optimzation (PSO) [Akal3, SL17,
AMRT19, GZB120, NLZ24] are some commonly used
optimization algorithms in multilevel thresholding.

Another direction of research focuses on exploiting the
decomposability property of objective functions. This
leads to the possibility of using the dynamic program-
ming technique. Dynamic programming is an exact op-
timization technique, which means that it does not com-
promise the optimality of the solutions found to execute
faster. Luessi et al. proposed a hybrid technique com-
bining dynamic programming and Otsu’s between class
variance to solve the multilevel thresholding problem
[LESKO06, LESK09]. The same method has been revis-
ited and a full proof of correctness has been provided
by Merzban and Elbayoumi [ME19]. Kurita et al. pro-
posed a dynamic programming approach that utilizes
the minimum error thresholding criterion [KOA92]. Lei
et al. utilized the same dynamic programming frame-
work in conjunction with Masi entropy [LLWY24].

Image thresholding can be considered a special clus-
tering problem. In clustering methods, determining the
appropriate number of clusters or segments suitable for
an input beforehand is not a straightforward problem
[XQZ"16]. In clustering, one solution to this prob-
lem is testing different numbers of clusters and com-
paring them in order to determine which is the most
suitable. However, applying that in multilevel image
thresholding defies the purpose of using thresholding
as a segmentation technique which is simplicity and
speed. Therefore, efficient techniques for determining a
suitable number of classes needed for an image before
or during the thresholding process are crucial.

Hence, this paper proposes a novel method to find a
suitable count of thresholds and to find the values of
these thresholds simultaneously. This novel method
composes a dynamic programming technique that com-
pares different counts of thresholds, with a modified
version of the minimum error threshold method. The
minimum error threshold method was modified in order
for the recurrence used by the dynamic programming
to compare different counts of thresholds. This method
proves efficiency compared to traditional methods that
do not automatically find the count of thresholds, while
giving better or similar results in terms of quality.
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The remaining parts of this paper are structured as fol-
lows. Section 2 illustrates the proposed algorithm and
the algorithms it is compared with, whereas Section 3
presents the experimental results and discussion. Sec-
tion 4 concludes the paper and suggests possible direc-
tions for future research.

2 METHODS

In this section, the modified minimum error threshold-
ing objective function is presented. Moreover, its refor-
mulation as a recurrence relation in order to be used by
dynamic programming is derived. Furthermore, three
techniques to search for globally optimal thresholds for
this objective function are illustrated. These techniques
are exhaustive search, count-known dynamic program-
ming and count-unknown dynamic programming.

2.1 Minimum Error Thresholding (MET)

The method of minimum error thresholding, proposed
by Kittler and Illingworth [KI86], relies on the assump-
tion that each class forms a normal distribution. Then,
a candidate set of thresholds is evaluated based on the
function r defined by Equation (1). The function r is to
be minimized in order to find the best set of thresholds.

n+1
r(Ty,....T,) = 14+2% Zwi*(logcr,-flogwi) (1)
i=1

where
T—1
wi= ), hg) 2)
§=Ti1
T—1
of =Y h(g)*(g—m)? 3)
&=Ti-1
where

Ti-1 %
i = Yoot h(g)*g @
Wi

For n thresholds (0 < T} < T < ... < T, < L), there are
n—+ 1 classes. We assume 7o = 0 and 7, = L = 256
for a grayscale image where L is the maximum intensity
level. h is the normalized histogram of the grayscale in-
put image. It can be seen that minimizing the function r
in Equation (1) is equivalent to minimizing the function
f given by the equation:

n+1
f(T,..\T,) = Zwi*(logci—logwi) (5)
i=1

We can rewrite Equation (5) to be

n+1

[T, ) =Y O(Ti1, T — 1) (6)

i=1
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where Q is the class cost function, given by the equa-
tion:

b

O(a,b) =Y h(g)*(A(a,b,g) — B(a,b,g)) (7)

g=a

a = : * _ M 2
A(a,b,g) =log g;lh(g) (g Y0 h(g) )2 (8)
b
B(a,b,g) =1log ) h(g) )
g=a

2.2 Exhaustive Search Approach

Given a number of thresholds, n, the best n thresholds
of an input image can be found by minimizing the func-
tion r(11,...,T;,T,) given by Equation (1). The tradi-
tional method is to perform exhaustive search over all
the possible values of 7; for every 1 <i < n. However,
the runtime of such an approach grows exponentially as
n increases [Tub14].

2.3 Dynamic Programming count-known
Approach

We show a multi-level thresholding approach based
on MET method and dynamic programming where
the count of thresholds is fed to the algorithm as
an input. This algorithm is inspired by other tech-
niques intertwining dynamic programming with
Otsu’s between class variance [LESK06, ME19] or
Masi entropy [LLWY24].  Algorithm 1 combines
dynamic programming with MET objective function
to solve the multi-level thresholding problem. The
algorithm takes as input the number of thresholds,
N_Thresholds, and outputs the best values of these
thresholds that minimize the minimum error threshold
(MET) criterion.

2.4 Dynamic Programming Approach for
threshold count identification

Algorithm 2 is designed to operate without taking the
number of thresholds, N_T hresholds, as input. How-
ever, it finds that number and the values of these thresh-
olds in the same process. This is achievable due to the
fact that the values of the objective function of mini-
mum error thresholding (MET) on different numbers of
thresholds are comparable. The recurrence relation im-
plemented by this algorithm is given by the equation:

J(i,J) = min(Q(i, ), min {Q(.4) + 74, /)}) (10
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Algorithm 1 MET-DP-N Algorithm

1: dp|[N_Thresholds, L] initialized with INF

2: nextN_Thresholds,L)] initialized with — 1

3: forr=0:L—1do

4: dpl0,t] + score(0,1)

5: end for

6: fori=1:N_Thresholds— 1 do

7. for Tj=i+1:(L—1)—N_Thresholds+i do

8: for 7, = T; — 1 down to i do

9: if dpli — 1][Ti] + score[T;][T;] < dpli][T;] then
10: dpli[T}) < dpli — 1)[Ti] +score[Ti][T}
11: next|i][T;] < Ty

12: end if

13: end for

14: end for

15: end for

16: T, «+ —1

17: Best < INF

18: fori=0:L—1do

19: if dp[N_Thresholds — 1][i] + score[i][L— 1] < Best then
20: Best < dp[N_Thresholds — 1][i] + scoreli][L — 1]
21: T, i

22 end if

23: end for

24: Thresholds «+ ||

25: t+ T,

26: Thresholds.push(t)

27: for i = N_Thresholds —2 down to 1 do

28: t < next[i][t]

29: Thresholds.push(r)

30: end for

where J(a,b) is the minimum value of the minimum
error thresholding (MET) in the histogram subregion
[a,b] and Q(a, b) is the error value of the histogram sub-
region [a,b] and is given by Equation (7). Note that the
intensity level k is considered twice in the expression
O(i,k) +J(k, j) instead of just once as in Equations (1)
and (6). That modifies the minimized function to be
the one in Equation (11) instead of Equation (6). This
results in each class being defined as the closed inter-
val [T;_, T;] rather than the half-open interval [T;_,T;),
thus including the upper bound 7; in the class. This
adds a number of samples with intensity 7; to each of
these classes. Hence, the weight, w;, of each class will
increase. Likewise, the standard deviation o; increases
because occurrences of 7; are added to the class, intro-
ducing a new value not previously present. This has
been observed to cause an increase in the expression
w; * (logo; — logw;). This increase reduces the ten-
dency to divide the class, imposing a penalty that dis-
courages some unnecessary splittings.

n+1

(T, ) =Y, O(Ti1,Th)

i=1

Y

Algorithm 2 uses a 2D array mem of size L x L, where
memli][j] stores the best (minimum) score possible for
the histogram region from i to j. This best score may ei-
ther correspond to treating the interval [i, j] as a single
class or to splitting it into multiple classes. Addition-
ally, next is a 1D array of size L, where next[i] stores a
pointer to the next threshold location that, together with
subsequent decisions, achieves the best score stored in
memli][j]. score is assumed to be a 2D array of size
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Algorithm 2 MET-DP Algorithm

: mem|[L][L] initialized with INF
next[L] initialized with — 1
for i =L— 1 down to 0 do
for j=i+1:L—1do

memli, j] < scores|i, j]

nextli] < j

for k =i+1: j-1do

if scoresli][k] + mem[k][j] < memli, j] then
memli, j] < scoresli][k] +mem[k][ j]

10: next[i] < k
11: end if
12: end for
13: end for
14: end for
15: 10
16: Thresholds < |]
17: whilet # —1 do

VRN R

18: t + next[t]
19: T hresholds.push(t)
20: end while

L x L that contains the precomputed values of the class
cost function Q(i, j), defined by Eq. (7) for every i < j.
The loop in lines 3—14 operates by iterating the starting
index i from the end of the histogram at L — 1 down to
0. For each i, the loop iterates over all possible ending
indices j in the range i+ 1 to L — 1. For each window
[#, j], the algorithm considers two possibilities: whether
[£,j] is better treated as a single class, or it is better di-
vided into two classes [i, k] and [k, j] for some i < k < j.
This is implemented by initially setting meml[i][j] to
scoreli][j] where score[i][] is the cost of treating the
region [i, j] as a single class. Next, the algorithm iter-
ates over all possible split points k such that i < k < j,
and evaluates whether splitting the region improves (de-
creases) the cost. In such case, memli|[j] and next|[i]
are updated. Note that mem/k|[j] must have been com-
puted in an earlier iteration since k£ > i and the outer
loop progresses with i decreasing from L — 1 to 0. After
all iterations are complete, the next array can be used
to reconstruct the optimal thresholding: if a class starts
at index u, it ends at index v = next[u], and the process
repeats from v onward.

3 EXPERIMENTAL RESULTS

This section describes the experimental setup followed
by the evaluation metrics used for quality and effi-
ciency. Then, results and their interpretations are pre-
sented. We compare our proposed method MET_DP
with MET_DP_N and Otsu_DP.

3.1 Setup

The tested algorithms were implemented in Python 3.
An i7-10750H CPU and 16GB of RAM on a Microsoft
Windows 10 operating system were used. A group of 8
standard images was used for testing and visual analy-
sis. These images are retrieved from Berkeley Segmen-
tation Data Set BSDS500 [AMFM11] and USC SIPI
Image database according to Tab. 1.
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Image | Source Name

1 BSDS500 | test/2018.jpg

2 USC SIPI 4.1.05 (House)

3 BSDS500 | test/223060

4 BSDS500 | test/28083.jpg

5 USC SIPI | 4.2.06 (Sailboat on lake)
6 BSDS500 | test/106005.jpg

7 Standard lighthouse.bmp

8 BSDS500 | test/250047.jpg

Table 1: Sources of the used test images

3.2 Metrics

The segmentation quality is assessed using structural
similarity index (SSIM), and peak signal-to-noise ratio
(PSNR). An algorithm efficiency is evaluated by mea-
suring the CPU time taken by it. For comparing be-
tween the quality of automatic detection of the count of
thresholds, the SSIM and PSNR values are inspected.
Moreover, visual inspection of the histogram and seg-
mented images is performed.

3.3 Quality

The first two approaches, were run on counts of thresh-
olds ranging from 1 to 5 inclusively. The third ap-
proach, as explained, doesn’t take the thresholds count
as an input, but finds the suitable count while it is run-
ning. Thus, we show the result of the third approach
only on the corresponding found count of thresholds
and "N/A’ is written for all other counts of thresholds.

Tables 2 to 5 summarize the results of running the three
approaches on the eight test images. Table 2 shows the
obtained values of thresholds for each of the three ap-
proaches, together with the objective function value ob-
tained. As explained earlier, the first algorithm utilizes
Otsu objective function while the other two utilize the
MET objective function. Thus, the fitness values ob-
tained by the first algorithm and the other two can’t be
compared together. Table 4 shows the obtained SSIM
values.

Table 3 shows the obtained PSNR values. At im-
age 1, the value obtained by MET_DP is the highest
among the five results of MET_DP_N and higher than
all of Otsu_DP_N. Moreover, in Otsu_DP_N, the high-
est PSNR value happens at the count of 4, which sug-
gests that even with Otsu, which is a different crite-
rion from MET, the count of thresholds of 4 turns out
to give the best segmentation quality. At all other im-
ages (except 1 and 2), PSNR values of Otsu_DP_N in-
crease with the increase of N as a higher number of
thresholds allow for more segmentation levels, which
results in less difference between the original and seg-
mented image which makes PSNR generally higher.
The same pattern can be observed with PSNR values
of MET _DP_N results.

Figures 1 and 2 shows a visualization of these results
for the 8 test images. It can be seen that the identified
classes had various variances and weights. There were
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Figuré 1: From .top to bottom: the original image (on the left), the segmented image (on the middle) and its
corresponding histogram (on the right) of test images 1, 2, 3, 4& 5. The threshold positions are highlighted by
vertical red lines. The shown results are based on count and values of thresholds produced by the third approach
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# | N | Otsu_DP_N Fitness MET _DP_N Fitness MET_DP Fitness
1|1 134 6633.9316 141 6.0781 N/A N/A

2 | 58155 7221.4748 141 231 5.9632 N/A N/A

3 | 58150242 7612.1279 16 141 231 5.9333 N/A N/A

4 | 51129204 242 7861.4903 16 141 211 231 5.9220 16 141 211 231 5.9220

5 | 51129204242 243 8075.5199 16 141 211 231 255 5.9220 N/A N/A
211 148 1666.4725 167 5.2082 N/A N/A

2 | 97 156 1980.8985 181 196 4.6701 N/A N/A

3 | 97152188 2178.6707 181 196 218 4.6587 N/A N/A

4 | 97152188 189 2333.3539 | 94 148 180 196 4.6158 N/A N/A

5 | 97 152187 188 189 2483.0315 | 94 148 180 196 218 4.6043 94 148 180 196 218 4.6043
311 126 3620.1978 134 5.8479 N/A N/A

2 | 71146 3999.0115 17 134 5.8278 17 134 5.8278

3 | 59126186 4233.7851 17 134 255 5.8278 N/A N/A

4 | 864128 186 4391.7945 17 134 252 255 5.8293 N/A N/A

5 | 84386142 194 4496.7901 17 134 252 253 255 5.8304 N/A N/A
411 133 1703.2676 139 5.1999 N/A N/A

2 | 87145 1925.9237 139 249 5.1659 N/A N/A

3 | 87137186 2027.6683 143210249 5.1607 N/A N/A

4 | 6694 140 190 2116.7351 41 143 210 249 5.1585 N/A N/A

5 | 6694 140 186 254 2201.2226 | 48 100 139 210 249 5.1569 48 100 139 210 249 5.1569
511 125 3682.4636 125 5.6422 N/A N/A

2 | 83153 3976.7739 | 89134 5.6277 N/A N/A

3 | 71134187 4154.1965 89 145 211 5.6243 96 145 211 5.6244

4 | 4986142 187 4262.0726 | 389 145211 5.6247 N/A N/A

5 | 4984 140 185224 4357.7471 3489145211 5.6250 N/A N/A
6|1 143 2308.9727 | 63 5.8227 N/A N/A

2 | 86162 2976.0846 | 70 151 5.7158 N/A N/A

3 | 83144203 3161.7949 | 70 151 251 5.6971 N/A N/A

4 | 83144 203 255 3291.5089 | 70 151 175251 5.6899 70 151 175 251 5.6899

5 | 83144203 254 255 3398.6151 70 151 175 249 251 5.6959 N/A N/A
711 133 2025.3460 186 5.6125 N/A N/A

2 199166 2595.9818 103 167 5.6014 N/A N/A

3 | 67106169 2716.4402 | 2799 167 5.5981 N/A N/A

4 | 63103158207 2816.6491 92799 167 5.5976 112799 167 5.5977

5 | 6396132173207 2876.3495 | 492799 167 5.5978 N/A N/A
81 |96 2336.5958 | 96 5.4530 N/A N/A

2 | 41109 2619.4860 | 2588 5.4035 N/A N/A

3 | 3690152 2813.1837 | 2588249 5.3959 25 88 250 5.3960

4 | 3684139 183 2891.7222 | 2588249 250 5.3969 N/A N/A

5 | 134286139183 2958.1230 | 25 88 244 246 249 5.3977 N/A N/A

Table 2: Output of the three approaches. The first column contains the test image number. The second column

contains the number of thresholds used

classes with big weights (many pixels belonging to the
class) and small variances such as the last class at his-
togram 1, the fourth class at histogram 2 and the first
class at histogram 3. Moreover, there were classes with
small weights and variances such as the fourth class at
histogram 1, the last two classes at histogram 2, the last
class at histogram 4 and the first two classes ath his-
togram 7. Regardless, most of these classes follow the
bell-curve shape of a normal distribution, as by the core
assumption of the MET method [KI86].

3.4 Efficiency

Table 5 shows the CPU time taken by each algorithm on
each test image on each count of thresholds. It can be
seen that the CPU time taken by MET_DP algorithm

http://www.doi.org/10.24132/JWSCG.2025-9

is longer than that taken by one run on one count of
thresholds by either of the Otsu_DP_N or MET_DP_N
methods. However and as previously stated in Sec-
tion 2.4, the DP_MET method does not take the count
of thresholds as input. Therefore, we assume that the
correct count of thresholds for all of our test images
is , for simplicity, between 1 and 5. Hence, the way
to compare DP_MET with each of Otsu_DP_N and
MET_DP_N is to compare the CPU time of DP_MET
with the total CPU time of the five runs of Otsu_DP_N
or MET_DP_N. Hence, we can see that MET_DP runs
in much less time than the total runtime of the 5 runs of
either Otsu_DP_N or MET_DP_N on each test image.
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igue 2: From top to bottom: the original image (on the left), the segmented image (on the middle) and its

corresponding histogram (on the right) of test images 6, 7& 8. The threshold positions are highlighted by vertical
red lines. The shown results are based on count and values of thresholds produced by the third approach

4 CONCLUSION

In this paper, a novel, exact and input-less multilevel
thresholding method was proposed. The proposed
method was compared against other recent and stan-
dard methods. It was able to determine the number of
thresholds correctly. Moreover, it could reach values
of these thresholds comparable to other methods.
Additionally, comparing the runtime of the proposed
method to others, it reaches the appropriate count and
values of thresholds faster than the other methods.
Furthermore, the proposed method is an exact and
optimal method. Exploring the performance of thresh-
olding criteria other than MET in conjunction with the
proposed dynamic programming framework is one of
our future works. Also, how the objective function of
minimum error thresholding may be tuned to different
types of images or problem domains is to be examined.
In addition, extending the experimental analysis to a
larger and more diverse image dataset is planned to
better assess the robustness of the method. Finally, a
thorough study to analyze where the proposed method

http://www.doi.org/10.24132/JWSCG.2025-9 89

achieves good results and where it does not is to be
carried out.
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Image | N | Otsu_DP_N| MET_DP_N| MET_DP Image | N | Otsu_DP_N| MET_DP_N | MET_DP
1 1 | 17.514 17.488 N/A 1 1 | 0.615 0.606 N/A
2 | 20471 18.633 N/A 2 | 0.754 0.604 N/A
3 ]21.653 20.457 N/A 3 1 0.729 0.705 N/A
4 | 24434 21.256 21.256 4 | 0.770 0.720 0.720
5 | 24.432 21.256 N/A 5 | 0.769 0.720 N/A
2 1 | 21.475 21.129 N/A 2 1 |0.733 0.719 N/A
2 | 26271 21.099 N/A 2 | 0.788 0.709 N/A
3 | 26.618 21.140 N/A 3 | 0.745 0.711 N/A
4 126379 28.277 N/A 4 | 0.718 0.815 N/A
5 | 26.160 28.494 28.494 5 | 0.736 0.817 0.817
3 1 | 18.894 18.863 N/A 3 1 | 0.600 0.586 N/A
2 | 21.293 19.931 19.931 2 | 0.720 0.643 0.643
3 | 23.667 19.931 N/A 3 | 0.744 0.643 N/A
4 | 23.862 19.940 N/A 4 | 0.750 0.643 N/A
5 | 25.707 19.940 N/A 5 | 0.805 0.643 N/A
4 1 | 21.244 21.222 N/A 4 1 | 0.590 0.583 N/A
2 | 23.883 21.614 N/A 2 | 0.699 0.588 N/A
3 | 25.430 22.016 N/A 3 | 0.699 0.586 N/A
4 | 27.811 23.193 N/A 4 |1 0.770 0.621 N/A
5 | 28.107 27.311 27.311 5 | 0.767 0.758 0.758
5 1 | 20.266 20.266 N/A 5 1 | 0.627 0.627 N/A
2 | 23.003 22.393 N/A 2 | 0.727 0.723 N/A
3 | 25.142 24.792 24.465 3 1 0.730 0.736 0.726
4 | 26.396 24.793 N/A 4 10.779 0.736 N/A
5 | 26.748 24.793 N/A 5 | 0.772 0.736 N/A
6 1 | 17.952 15.386 N/A 6 1 | 0.622 0.628 N/A
2 | 22.303 21.827 N/A 2 | 0.717 0.714 N/A
3 | 24.637 22.460 N/A 3 1 0.739 0.713 N/A
4 | 24.637 24.064 24.064 4 | 0.739 0.719 0.719
5 | 24.887 24.118 N/A 5 | 0.736 0.720 N/A
7 1 | 18.830 17.436 N/A 7 1 | 0.504 0.524 N/A
2 | 23.562 23.510 N/A 2 | 0.667 0.654 N/A
3 | 25.131 23.909 N/A 3 1 0.789 0.679 N/A
4 | 26.348 23.910 23911 4 | 0.810 0.679 0.679
5 | 28.225 23.910 N/A 5 | 0.834 0.679 N/A
8 1 | 20.025 20.025 N/A 8 1 | 0.668 0.668 N/A
2 | 22.444 21.596 N/A 2 | 0.807 0.787 N/A
3 | 25.266 21.939 21.931 3 | 0.867 0.789 0.789
4 | 26597 21.939 N/A 4 | 0.881 0.789 N/A
5 | 26974 21.978 N/A 5 | 0.887 0.790 N/A
Table 3: PSNR values Table 4: SSIM values
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