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ABSTRACT
This paper presents a visual SLAM (simultaneous localization and mapping) system, called Occlusion SLAM,
that uses occluded points—map points that are sometimes visible and sometimes blocked by objects in the fore-
ground—and demonstrates a noticeable improvement in camera motion estimation. Occlusion SLAM is built upon
ORB SLAM2, with an additional segmentation module based on YOLOv8 and the proposed occluded point de-
tection module. The segmentation module creates a binary mask image of the predefined dynamic objects, which
the occlusion detection module uses to identify occluded points, as they are intermittently revealed by the motion
of an object.
Occlusion SLAM was evaluated on highly dynamic datasets, such as the "walking" and "crowd" sequences from
the TUM and Bonn datasets, respectively. Results indicate that the occluded point detection module, combined
with segmentation, achieves significant improvements in absolute trajectory estimation with minimal computa-
tional requirements compared to ORB SLAM2. The method showed its full potential when at least one-fifth of the
map points in a keyframe were identified as occluded points. The experiments also show competitive performance
against other well known methods, such as DS SLAM, Dyna SLAM, RDS SLAM, Crowd SLAM and SG SLAM.

Keywords
Simultaneous localization and mapping (SLAM), Pose estimation, Projection transformation, Occlusion, Semantic
Segmentation, Bundle adjustment.

1 INTRODUCTION
Simultaneous localization and mapping is a problem
where a robot simultaneously localizes itself and
creates a surrounding map of the environment using
a single or multiple sensors. Visual SLAM is a
subdomain of this problem, which uses visual sensors
such as cameras and camera-like sensors. Methods
such as PTAM SLAM [KM07], the ORB SLAM
family [MAMT15, MAT17, CER+21], and RGB-D
SLAM [EHE+12] are some well-known approaches
in visual SLAM systems that, throughout the years,
have gained much popularity. Though these algorithms
work very well in static environments, they fail when
there is a small or significant dynamic presence in the
environment.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

To mitigate the effect of dynamic objects while estimat-
ing the trajectory, the literature is broadly categorized
into two parts. One is a deep learning based method that
uses deep neural network models to detect predefined
dynamic objects [ZWZ+18, LLC+20, YM21, SGM21].
The second is a geometric approach that de-
tects outliers by studying the motion of pix-
els [TLD+13, KKS09, LW10]. There are other
popular methods that use both of the above approaches
such as DS SLAM, DYNA SLAM, YOLOSLAM, SEG
SLAM, etc.
The DS SLAM [YLL+18] and SDF SLAM [CM20]
used SegNet [BKC17] to detect predefined dy-
namic objects and applied the epipolar constraint
to detect dynamic features missed by segmen-
tation. Dyna SLAM [BFCN18] applied MASK
R-CNN [HGDG17] to perform pixel-wise segmen-
tation and further computed the difference between
actual and projected depth to identify anomalous pixels.
YOLOSLAM [WGG+22] used YOLOv4 [BWL20]
for segmentation and a depth-based RANSAC to
eliminate outliers. MISD SLAM [YWC+22] used
YOLACT++ [BZXL22] and calculated the reprojection
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error to detect the other dynamic features. In the work
by Jin et al [JJY+23], they used SparseInt [CWC+22]
to detect dynamic objects and used epipolar constraint
as a geometric model. Crowd SLAM [SGM21] used a
segmentation model YOLOv3 [RF18] and was specifi-
cally trained on human datasets such as Crowdhuman
dataset [SZL+18] so that it could efficiently detect
crowds of people. SG SLAM [CSZZ23] used NCNN
framework based SSD model for segmentation and
further added epipolar constraint to detect the dynamic
features. DYGS SLAM [ZZC+25] used prompt based
segmentation model called and EfficientSAM [YX23]
and used depth projection error for detecting the
dynamic points. Similarly DN SLAM [RZZH24]
used SAM [KMR+23], which is a prompt based
segmentation, for detecting dynamic object.

Figure 1: Illustration of the occlusion property. The
left image shows a static scene with all objects visible,
while the right image demonstrates occlusion, where a
moving object (car) partially obstructs the house, alter-
ing the perceived scene from the viewpoint of the cam-
era.

Most of the work discussed so far as well as other
literature have used segmentation models to detect
dynamic objects, and features on the detected objects
have been removed. Next they apply a geometric
approach to detect dynamic features that are missed
through the segmentation. Now, the question arises:
can segmentation alone provide deeper insights into
the presumably static features?
In this work, we propose an approach, where the main
goal is to assign a higher quality to certain selected
points using the results from the segmentation. One
such type of points are occluded points. For example,
as shown in Figure 1, when a car (a dynamic object)
passes in front of a house (a static object), some
portions of the house are occluded by the car. This
indicates that the occluded region remains stationary,
unaffected by the presence of the dynamic object.
In this article, we show that without using motion
consistency module, successful inclusion of such oc-
cluded portions alone can help enhance camera motion
estimation without significantly affecting computation
time.

2 METHODOLOGY
2.1 System Description
Occlusion SLAM is built upon the framework of ORB
SLAM2. Figure 2 shows the modified framework of the
proposed system. With the structure of ORB SLAM2,
two additional modules are introduced, namely the seg-
mentation module and the occlusion point detection
module. First the image from a video sequence is fed
into both feature detection module and segmentation
module. The segmentation module, which uses the
YOLOv8 model, creates a mask the input image for
predefined dynamic objects such as cars and people.

Figure 2: Proposed framework of Occlusion SLAM.
Yellow modules represent newly introduced compo-
nents, orange modules indicate modified components
and white modules remain unchanged from ORB-
SLAM2.

Then, the mask, along with the current image, is used
to extract ORB features from the current image. The
segmentation mask ensures that feature points, located
on the detected dynamic objects are removed. The re-
maining features are further used to create a local map
for each keyframe. This local map and the segmen-
tation mask are used in the occlusion point detection
module to detect the occluded points. After detecting
occluded map points, those points are assigned higher
weight compared to other map points. This weight en-
riches the information of those points, ensuring their
grater importance in any bundle adjustment processes.

2.2 Semantic Segmentation
For detecting dynamic objects, the segmentation
module uses the YOLOv8 [JCQ23] model. With its
shorter inference time and better handling of mo-
tion blur, YOLOv8 is a good choice for real-world
applications. YOLOv8 is trained on the MS COCO
dataset [LMB+14], which includes 80 object classes.
This segmentation module detects predefined dynamic
objects and creates a mask image for them, which
is then merged into a single mask. To ensure that
feature points are not detected at the edges of objects,
an additional morphological operation is performed
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to expand the boundary of the detected objects. The
features outside the segmented area are further used
to create a local map. Additionally, the created map
points are labeled as “STATIC".

2.3 Occlusion point detected module
To check whether a map point of a keyframe, which was
labeled as "STATIC", is occluded or not, a map point is
first projected onto the current frame. If its correspond-
ing feature in the current frame is not visible or, more
precisely, blocked by a segmented mask and later evi-
dent in future frames, then it is considered an occluded
point. Figure 3 shows the detection of occluded point.

Algorithm 1: Pseudocode for detecting occluded
points.

Input : Current Frame (Ft),Key Frame (KFt)
Img = Ft → getImage()
segImg = Ft → getSegmentation()
k = 0
while k < (KFt →Mappoints.size()) do

pMP = KFt →Mappoints[k]
if pMP is valid then

State = pMP→ state()
if State == “OCCLUDED” then

k = k+1
continue

end if
Xw = pMP→ getWorldPose()
x = calculatePro jection(Xw)
Ib = InBound(x, Img)
Is = InSegmentation(x,segImg)
if NOT Ib then

k = k+1
continue

end if
if State == “STAT IC” and (Is) then

pMP→ state() = “BLOCKED”
else if State == “BLOCKED” and NOT (Is)
then

pMP→ weight() = w1
pMP→ state() = “OCCLUDED”

end if
end if
k = k+1

end while

Suppose a map point associated with a keyframe KF t
is Pi

t . To check whether the map point belongs to the
segmented region or not, first the map point Pt

i, with
position Xw in the world coordinate, is projected onto
the current frame. The required projection transforma-
tion is calculated by estimating approximate position
T c

w of the current frame. In our method, we use Itera-
tive PnP algorithm [MUS16], which uses matched map

points between keyframe KF t and current frame Ft , and
estimate the position of the current frame. Equation 1
shows the projection transformation of a map point onto
the current frame, where K is the calibration matrix of
current frame and xi is the projected keypoint on the
current frame represented in homogeneous coordinate
system.

xi = K ∗ (T c
w ∗Xw

i )1:3 . (1)

With a good approximation of the current frame posi-
tion, all the map points of the keyframe are projected
onto the current frame. Initially, the status of the point
Pt

i is changed to “BLOCKED", if its projection falls
within any segmented mask. This means the corre-
sponding feature of the map point in the current frame,
which was suppose to be visible, is blocked by the
segmented objects. Later, in any future frame when
that “BLOCKED" map point is projected onto the cur-
rent frame and lie within image boundary but outside
the mask region, then it is declared “OCCLUDED".
When a map point of a keyframe is declared as a oc-
cluded point, it will be considered as an occluded point
throughout the runtime of the Occlusion SLAM. Algo-
rithm 1 describes the method of detecting the occluded
points. The algorithm takes the Current Frame object
and Keyframe object as input and modifies the weight
of the map points.

2.4 Weighted bundle adjustment
When a map point is visible in a frame at a particular
key point, the difference between the key point’s po-
sition and the actual projection produces re-projection
error. Bundle adjustment is a process of minimizing
the collective re-projection errors to determine the best
position of map points as well as camera frames. To
represent which re-projection error is more important
than others, our method introduces weights of each ob-
servation. When a higher weight, w of a map point
with the position of Xw

j is multiplied with information
matrix of all re-projection errors associated with that
point, it gives more importance to that point in the bun-
dle adjustment process. Equation 2 shows the total re-
projection error.

E = ∑
j
∑

i

[
eT

i j · (w∗Ωi, j) · ei j
]
, (2)

where

ei j = xi j−π
(
T w

i ,Xw
j
)
.

Here, ei j represents re-projection error produced by
point Pj when projected onto the frame Fi with the posi-
tion T w

i , and xi j is the key point on the frame Fi, where
the point Pj is observed; Ωi, j is the information matrix
of the observation. In our method, initial weight of a
map point is w0 = 1.0. After it is detected as an oc-
cluded point, a higher weight is assigned to it; in our
case it is w1 = 3.0 a
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Figure 3: Illustration of the working principle of occluded point detection module. Initially, the key frame creates
map points from a static background. As a dynamic object (person) moves, a certain map point, which is static
(cyan) become blocked (red) due to segmentation. When the (dynamic) object moves further, previously blocked
points may reappear, marking them as occluded (green).

3 RESULTS AND DISCUSSION
Table 1: Comparison of RMSE of absolute trajec-
tory for ORB SLAM2 and Occlusion SLAM on TUM
dataset and Bonn dataset.

Dataset
ORB

SLAM2
Occlusion

SLAM Imp.(%)

walking_xyz 0.8665 0.0152 98.16

walking_static 0.4702 0.0065 98.60

walking_half 0.4310 0.0286 93.35

Crowd 0.8780 0.0177 97.98

Crowd2 1.4830 0.0459 96.90

Crowd3 1.1830 0.0332 97.18

We evaluate Occlusion SLAM with two types of
datasets: the TUM public dataset [SEE+12] and the
BONN RGB-D dataset [PBL+19]. Both datasets have
multiple sequences; in our experiment, we mostly
focused on the datasets with highly dynamic presence,
such as “walking" in the case of TUM and “crowd"
in the BONN datasets, respectively. Initially, we dif-
ferentiate our method with the original system, which
is ORB SLAM2 [MAT17]. Later we did a detailed
comparison of our method with segmentation (without
detecting occluded points). Finally, we compare our
method with several other popular algorithms which
was discussed earlier in section 1. We have also
analyzed computational performance of our method
with and without the occluded point detection module.
The hardware used to evaluate all the methods includes
an AMD Ryzen 7 7700X CPU, an RTX 4080 GPU,
and 32 GB RAM.
The RMSE of the absolute trajectory of both ORB

SLAM2 and Occlusion SLAM is shown in Table 1.
The first three rows show the sequences of TUM
dataset and the latter half shows the comparison for the
BONN dataset. As seen in the table, our method not
only surpasses ORB SLAM2 in every dataset; in some
cases, our method improved accuracy by more than
98%. Figure 4a & 4b show the estimated trajectory and
its error in the “walking_xyz" dataset for both ORB
SLAM2 and Occlusion SLAM.
Table 2 shows the improvement achieved by using
occluded points over segmentation. In the case of the
TUM datasets Occlusion SLAM did not show any
significant enhancement in results; however, for BONN
dataset, results demonstrate considerable amount of
improvement. It has been observed that even though
TUM datasets contains highly dynamic elements such
as walking people, the dynamic subjects in that dataset
do not cover the substantial portion of the environment.
This results in a lower number of occluded points
being generated. On the other hand, the BONN dataset
(particularly in the crowd sequences), the number
of people is significantly higher, leading to a greater
number of points occluded in some keyframes. This
also explains the observed improvement in BONN
dataset.
It has been also discovered that pose estimation can
be significantly affected, if the features are extracted
from moving objects. These objects may include
dynamic objects missed by the segmentation module
or moving objects that are not predefined as dynamic.
However, if an estimation incorporates a sufficient
number of occluded points, it can mitigate the impact
of these falsely classified static points. This effect is
particularly evident in the “crowd2" sequence. As a
quantitative measurement, we have observed that if
the local map of a keyframe contains more than 20%
occluded points, the effect is considerably noticeable.
In this case method showed 63% reduction of RMSE
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(a)

(b)
Figure 4: Comparison of estimated trajectories on the
walking_xyz dataset. (a) ORB SLAM2 shows sig-
nificant deviation from the ground truth. (b) Occlu-
sion SLAM demonstrates a closer alignment with the
ground truth.

value compare to segmentation. Figure 5a and 5b
illustrate the translation error observed in segmentation
as well as Occlusion SLAM for the “crowd2" sequence.

Table 3 presents a comparison between DS
SLAM [YLL+18], DYNA SLAM [BFCN18], RDS
SLAM [YM21], CROWD SLAM [SGM21] and SG
SLAM [CSZZ23].This comparison is made to check
the effectiveness of occluded point detection against
various geometric approaches as those. The results
indicate that, despite our method not yet utilizing any
geometric approach, on which DS SLAM, DYNA
SLAM and SG SLAM rely, to filter out the dynamic
points, it achieves comparatively good results. Our
method outperforms DS SLAM and RDS SLAM in
every sequence. When compared to the DYNA SLAM,
our method is competitive across most of the datasets
except for the “crowd2" sequence. Regarding CROWD
SLAM which used a carefully trained segmentation
model to remove the people from the environment, our
method produces comparable results. It is important
to note that the objective of this comparison is not

Table 2: Comparison of RMSE of absolute trajectory
for segmentation only and Occlusion SLAM on TUM
dataset and Bonn dataset.

Dataset
Seg

(w/o occlusion)
Seg

(w/ occlusion)

walking_xyz 0.0153 0.0152

walking_static 0.0067 0.0065

walking_half 0.0276 0.0286

Crowd 0.0213 0.0177

Crowd2 0.1243 0.0459

Crowd3 0.0405 0.0332

(a)

(b)
Figure 5: Comparison between translation error gen-
erated in crowd2 dataset using (a) only segmentation
(without detecting occluded points) to estimate trajec-
tory and (b) using occluded point detection along with
the segmentation for estimating trajectory.
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Table 3: Comparison of Root Mean Square of ATE for DS SLAM, DYNA SLAM, RDS SLAM, CROWD SLAM,
SG SLAM Occlusion SLAM.

Dataset DS
SLAM

DYNA
SLAM

RDS
SLAM

CROWD
SLAM

SG
SLAM

Occlusion
SLAM

walking_xyz 0.0487 0.0155 0.0671 0.0221 0.0176 0.0151

walking_static 0.0066 0.0065 0.0102 0.0073 0.0082 0.0065

walking_half 0.0329 0.0265 0.0124 0.0352 0.0349 0.0286

Crowd 0.1255 0.0204 0.0414 0.0184 0.0264 0.0177

Crowd2 0.1065 0.0393 0.0437 0.0300 0.0808 0.0459

Crowd3 0.0450 0.0414 0.0432 0.0360 0.1060 0.0332

to demonstrate the superiority of occlusion point
detection module compared to other methods that use
motion consistency modules. Instead the goal is to
highlight the importance of including the occluded
points in bundle adjustment process. We expect that
the proposed module can serve as an anchor for a
motion consistency module. In cases where a motion
consistency module fails to detect a dynamic point,
this method can help reduce the impact of false static
points and provide greater robustness in the trajectory
estimation process.
The average computation time for each frame is shown
in Table 4. These results illustrate total computation
time after applying segmentation, without and with
occluded point detection module. It is evident from
the results that the only bottleneck of our method is
the segmentation module, as occluded point detection
module requires only 2-5 ms per frame across datasets.
The accuracy of the proposed module can be further
improved by increasing the number of iterations in the
IterativePNP algorithm; however, doing so would also
raise the computational cost of the occlusion detection
module.
However, Occlusion SLAM may face challenges in
certain situations. First, as Occlusion SLAM depends
only on the segmented mask and starts by assuming
every feature outside the segmented region as static,
it will certainly fail if features are extracted from
the objects which are not identified as dynamic by
segmentation. For example, Figure 6 shows the
extracted features from a moving box. In this case,
trajectory estimation gets badly affected by the features
on the moving box. Furthermore if a dynamic point
is classified as an occluded point, it can produce a
negative impact on the estimated trajectory.
Secondly, as mentioned above, if the number of
occluded points is insufficient, then they will not
contribute significantly towards an improvement of the
estimation. Finally, if an object that is not predefined

Table 4: Comparison of time (ms) performance be-
tween ORB SLAM2 , segmentation with occluded
point detection module and segmentation with occluded
point detection module.

Dataset ORB
SLAM2

Seg
(without

occlusion)

Seg
(with

occlusion)

walking_xyz 15.74 23.58 28.02

walking_static 18.12 23.15 28.48

walking_half 15.83 24.09 26.67

Crowd 19.92 19.05 25.61

Crowd2 13.03 18.62 21.25

Crowd3 15.13 21.06 24.49

as dynamic (such as a box) remains static for a long
duration and does contribute to generating occluded
points, it can disrupt the estimation if the object later
becomes dynamic.

4 CONCLUSION
In this article we propose a method for detecting an oc-
cluded point and utilizing it for better estimation in vi-
sual SLAM. This method, named Occlusion SLAM, is
based upon the framework of the ORB SLAM2, with
the additional segmentation module and occluded point
detection module. As a segmentation model, we use
a faster and more accurate version of YOLO, called
YOLOv8. The mask created by the segmentation mod-
ule is used in the occluded point detection module.
An evaluation over TUM and Bonn datasets has shown
that our choice of segmentation model and preferential
treatment of the occluded points produces more than
98% improvement in trajectory estimation over ORB

78

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.33, No-1-2, 2025

http://www.doi.org/10.24132/JWSCG.2025-8



Figure 6: Extracted features on a moving box not iden-
tified as dynamic, leading to degraded trajectory esti-
mation in Occlusion SLAM.

SLAM2. Results also reveal, that if a keyframe has
enough occluded points, it can significantly reduce the
overall error in both motion only bundle adjustment,
and local bundle adjustment. Our method also shows
competitive results, when compared with various other
substitute methods such as DS SLAM, DYNA SLAM,
RDS SLAM, CROWD SLAM and SG SLAM. Further-
more, the computational analysis revealed a required
processing time of only 2-5ms per frame.
As future extension, this method could be further en-
hanced by integrating various geometric modules along
with our proposed occlusion module, to ensure that oc-
clusion properties are applied exclusively to genuine
static points. This is expected to remedy a disruptive
limitation that may arise through any false occlusion
interpretation as mentioned earlier. Additionally, dur-
ing experiments, we observed that no existing dataset
provides an effective scope of occlusion detection. In
a parallel work, we intend to create a dataset sequence
specifically designed to give such scope in ample mea-
sure.
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