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ABSTRACT

The topological analysis of multivariate fields is vital when investigating the relationship between functions. Jacobi
sets, the set of all points at which the gradients of the functions are linearly dependent, are an essential tool for such
analyses, as they extend the notion of critical points from scalar fields to multivariate fields. However, the Jacobi sets
can become very complex, in particular, due to numerical errors and noise. These problems occur in practice, such
as in eddy detection on sea surfaces. Although several methods for simplifying Jacobi sets exist in the literature,
they mainly reduce Jacobi sets visually without adjusting the function values, which is essential for further data
processing. This paper introduces a novel algorithm that changes the values of functions in a 2D bivariate scalar
field, resulting in simplified Jacobi sets. For this, we use a neighborhood graph to identify the Jacobi sets to simplify,
visualize the complexity of the Jacobi set for real-world examples, and compare the results with prior work. The
new approach preserves features better and simplifies the geometry of the Jacobi sets by reducing zigzag patterns.

Keywords

Jacobi set, topological data analysis, bivariate data, topological simplification.

1 INTRODUCTION

Topological analysis methods are widely used, for ex-
ample, in structural mechanics, to investigate the rela-
tionships between physical quantities such as pressure
and temperature. Critical points, in particular, have been
established as essential tools when analyzing scalar data
sets. However, the representation of complex dependen-
cies between individual scalar data sets is often limited.

Jacobi sets have emerged as a central approach for ana-
lyzing bivariate correlations [EH04]. Jacobi sets extend
the concept of critical points from scalar to multivariate
data. The applicability is multi-layered, ranging from
the extraction of fiber surfaces [SN22] to the use as a
fiber surface control polygon [RNSH25], automatic tree
ring detection [MOQ*20], and more [NB13, AAM17,
ISLDF16]. An intuitive interpretation of Jacobi sets is
important here. However, challenges arise when numer-
ical errors or noise increase the complexity of Jacobi
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sets and make it difficult for experts to analyze them
(see Figure 7a). One approach to reducing Jacobi sets’
complexity is simplifying them [SN09]. However, this
simplification only refers to the graphical representation
of the Jacobi sets without changing the function values,
which are essential for further analysis. Smoothing fil-
ters change the function values, but they do so globally,
often losing important structural information [RSH24].
Raith et al. [RSH24] have developed a method that sim-
plifies the Jacobi sets by collapsing cells from connected
components of the Jacobi sets. This approach shows
misinterpretation in the assignment of degenerate cells
in symmetric data. Bhatia et al. [BWN*15] propose a
theoretical approach to simplify Jacobi sets by reducing
the complexity of loops and zigzag patterns.

Based on Raith et al. [RSH24] and the theoretical ap-
proach of Bhatia et al. [BWN*15], we propose a new
method to simplify Jacobi sets of piecewise linear bivari-
ate 2D scalar fields, which adapts the function values.
This new method simplifies the function’s topology by
removing connected components of the Jacobi set and
the geometry of Jacobi sets by reducing zigzag patterns,
thus reducing their complexity. A neighborhood graph
contains additional information (see Figure 5) to identify
the connected components of the Jacobi set and zigzag
patterns to be removed. These are then removed using
an algorithm inspired by loop subdivision.
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The main contribution of this work includes:

* A new algorithm to simplify the Jacobi set topology
by removing connected components of Jacobi sets.

* A new algorithm to simplify the Jacobi set geometry
by removing zigzag patterns.

* An interactive visualization of the neighborhood
graph to analyze and visualize Jacobi set complexity.

We compare the resulting Jacobi sets visually and by us-
ing the metrics of Raith et al. [RSH24] with the original
data and the Collapse Algorithm from Raith et al.

2 RELATED WORK

Heine et al. [HLH*16] give an overview of topology-
based methods in visualization, while He et al.
[HTWL19] focus on multivariate data visualization.

In scalar field topology, essential features of scalar
fields are represented by structures such as contour
trees [CSA03, CSVDP10, VKvOB*97], Reeb graphs
[Ree46], or the Morse-Smale complex [EHZ03]. These
structures enable topological simplification, such
as the removal of topological features in contour
trees [CSVDPO04], the removal of pairs of critical points
in the Morse-Smale complex [BHEP04] or the sim-
plification of critical points on point clouds [LSW09].
Edelsbrunner et al. [ELZ02] introduced persistent
homology to simplify point clouds. Cohen-Steiner et
al. [CSEHO5] extended this to persistence diagrams.

However, it is challenging to apply these methods di-
rectly to multifield data. Singh et al. [SMC*07] ad-
dressed this by partial clustering on high-dimensional
data. Carr and Duke [CD13] developed the Joint Con-
tour Net to generalize contour trees. Chattopadhyay et
al. [CCDG14] and Strodthoff and Jiittler [SJ15] studied
Reeb graphs for multifield data. Tierny and Carr [TC16]
compute the Reeb space of a bivariate piecewise linear
scalar function. Chattopadhyay et al. [CCD*16] further
simplified multivariate data using joint contour networks
and Reeb skeletons.

The focus was less on Jacobi set simplification. An early
work on this is noise reduction in Jacobi sets for time-
varying data by Bremer et al. [BBD*07]. Suthambhara
and Natarajan [SNO9] applied Reeb graphs to simplify
Jacobi sets, while Bhatia et al. [BWN™*15] introduced a
theoretical concept for topological simplification of Ja-
cobi sets, including removing zigzag patterns by cancel-
ing critical point pairs. Meduri et al. [MSN24] simplify
Jacobi sets for time-varying bivariate 2D fields, focusing
on clutter-free visualization of feature traces. Raith et
al. [RSH24] offered an approach by adjusting function
values and collapsing cells into degenerate forms. Han-
dling these degenerated cells is complex, and collapsing
them is very challenging.
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An alternative approach is non-topological smoothing-
based methods. Tong et al. [TLHDO3] split fields
into parts, smoothed each separately and combined
them again. However, the effectiveness is highly filter-
dependent and alters the global function values.

Klotzel et al. [KKZ*22a] take a different approach, in
which Jacobi sets are calculated by local bilinear interpo-
lation. This generalization reduces zigzag patterns and
improves structural clarity, especially at high resolutions.
However, it often creates numerous small loops in noisy
data regions, which can lead to confusing visualizations
due to overlapping line segments. The follow-up work
by Klotzel et al. [KKZ*22b] improved this approach,
but the problems still exist, albeit moderately.

The new method simplifies Jacobi sets by removing
loops through local adjusting of function values, in con-
trast to Raith et al.’s collapsing cells. It also reduces their
complexity by geometrically identifying zigzag patterns
and removing them through local adjusting of function
values, in contrast to Bhatia et al.’s topological removal
of critical point pairs.

3 BACKGROUND

A scalar field is a function f :ID — C, smoothly mapping
from a domain D, which is a compact d-manifold, to a
range C C R (also called codomain). In this paper, we
only consider domains that are subsets of R”. A critical
point p of f is apoint p € D, where the gradient, i.e., the
vector of partial derivatives of f, vanishes: V f(p) = 0.
A bivariate scalar field can be considered as two scalar
fields, f, and g, mapped from the same domain.

A k-simplex o is the convex hull of k+ 1 affinely in-
dependent points Ps = {po,...,px}. 2-simplices are
triangles, 1-simplices are line segments, and 0-simplices
are points. A simplex 7 is a face of a simplex o if
P; C Ps. A simplicial complex is a set of simplices that
are closed under the face relation, and any two simplices’
intersection is either empty or a common face. A piece-
wise linear function assigns a function value to each
0-simplex and extends this to the other simplices using
barycentric interpolation.

3.1 Jacobi sets

Edelsbrunner and Harer [EHO4] introduced the concept
of the Jacobi set J(f,g) for a pair of functions f and g
defined on a domain ID. The Jacobi set is the collection
of points x € D where the gradients V f(x) and Vg(x)
are linearly dependent:

J(f,g) ={xeD|TIA eR:VFf(x)+AVg(x) =0
or AVf(x)+ Vg(x) =0}
ey
Notably, the critical points of f and g are trivially part of
the Jacobi set. Edelsbrunner and Harer [EH04] demon-

strated that if D is a 2-manifold, J(f,g) typically con-
sists of a collection of smooth, pairwise disjoint curves
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without self-intersections. The connected components
of a Jacobi set are referred to as Jacobi set curves.

An equivalent formulation by Edelsbrunner et
al. [EHNPO4] is that the Jacobi set for two 2D functions
comprises points for which the rank of the Jacobian
matrix (composed from the gradients of f and g) is less
than 2. They also introduced a more general criterion:
The Jacobi set consists of points for which the local
k-measure is 0. Here, k is defined as the magnitude of
the wedge product of the function gradients.

An alternative method for calculating Jacobi sets with-
out using the absolute value was proposed by Raith et
al. [RSH24]. For piecewise linear data, the function
restricted to the interior of each triangle ¢ can be repre-
sented as:

fio(x) = Agx+bg. 2)

Using the Taylor expansion of f|; around xo = 0, it fol-
lows that A = Vf|5(x). Therefore, the determinant of
the Jacobian over a triangle is constant but typically dis-
continuous across adjacent triangles. A Jacobi set in this
context consists of edges between cells with differing
signs of the determinant.

We use this formulation because it provides a geometric
intuition to simplify the Jacobi set. Specifically, fi; can
be interpreted as a linear transformation that maps the
triangle from the domain to the codomain. If the deter-
minant of Ag (the Jacobian) is negative, the image of
the triangle is mirrored, reversing the orientation of its
vertices. We define the sign of the Jacobian determinant
as the orientation of the triangle. According to this ori-
entation, we denote all cells with the same orientation
and are enclosed by Jacobi set curves as Jacobi set com-
ponents. Note that the object’s boundary is treated like a
Jacobi set curve to determine the Jacobi set components.

3.2 Loop Subdivision

Loop [Loo87] introduced loop subdivision as a central
method of computer graphics for refining and smoothing
triangular grids G = (V,C). V is a set of vertices, and
C is a set of triangular cells. The method consists of
3 parts: (1) Each triangle is divided into four smaller
triangles. (2) New positions are calculated for each
vertex v; € V in the grid for existing and new vertices.
The position of the new vertices v/ is determined by a
weighted averaging of the set of all neighbor points of

N (vi):
Y v )

V_,'EL/V(V,')

VézaV,’-‘rﬁ

o the weight factor for the original point v;. § a weight-
ing factor for the neighbor points .4(v;), (3) The pro-
cess is repeated until the desired refinement and smooth-
ing are achieved.

We only use part (2) of the loop subdivision on the exist-
ing vertices in the codomain. As a result, the function
values are adjusted and locally glazed.
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(b) Loop Simplification

Figure 1: Schematic overview of the Loop Method -
Topology Simplification. (a) shows the Jacobi set com-
ponent identified for removal in purple in domain D and
the containing cell in red. The corresponding codomain
C shows the mapped cell in red, the moving point in
orange, and the edges of the neighboring cells dashed
in green. (b) shows the grid after applying the loop sim-
plification. In codomain C’, the neighbors have pulled
the cell’s point towards them, changing its orientation.
This is recognizable in domain D' and codomain C’ by
the absence of a purple Jacobi set.

4 METHOD

The idea is to simplify the Jacobi sets in two parts by re-
moving Jacobi set components in the Topology Simplifi-
cation (Figure 1) and smooth the Jacobi set by removing
the zigzag pattern in the Geometry Simplification (Fig-
ure 2). We were inspired by loop subdivision and called
this new approach the Loop Method accordingly. The
Loop Method does not introduce new points and adjusts
the values of the points in the codomain, which corre-
sponds to the function values. Described is this method
in structured form in Algorithm 1. We begin with an
overview and then describe each component in detail,
ensuring a systematic understanding of the process.

Algorithm 1: Algorithm Overview
Data :2D Bivariate Scalar Field F', Threshold ¢
Result : Updated 2D Bivariate Scalar Field F/
1 NG := ComputeNeighborhoodGraph(F)

2 FC := FindFlippableCells(NG,1) g(i’fl’l"logy
3 F :=LoopSimplification(FC,F) p-

4 NG :=UpdateNeighborhoodGraph(F)

s SC:= FindSpikyCells(NG) Sﬁgle“y

6 F :=ZigZagSimplification(SC,F)

4.1 Overview

The starting point is a given piecewise linear, bivariate
2D scalar field whose Jacobi set is calculated using the
method of Section 3.1. For these, the Jacobi set com-
ponents are determined, and a neighborhood graph is
created that contains additional features to identify the
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(b) Zigzag Simplification

Figure 2: Schematic overview of the Loop Method -
Geometry Simplification. (a) shows the edge of the
Jacobi set (purple) in domain D and a spiky cell striped
in yellow. Cells with a different orientation are red in
domain D) and codomain C. In codomain C, the spiky
cell is also striped yellow, the moving point is orange,
and the neighbors are dashed in green. (b) shows the data
set after applying the zigzag simplification. The Jacobi
set without the spiky cell appears in purple. Codomain
C’ shows how the spiky cell changes its orientation by
moving the cell vertex.

components to be simplified (see Figure 1a). In the
next step, the orientation of the associated cells of these
components is changed in the Loop Simplification (cf.
Figure 1b), and the neighborhood graph is updated ac-
cordingly. The cells of the Jacobi set components are
then identified in this graph, which correspond to a spiky
cell (see Figure 2a). Note that a spiky cell is a cell that
lies on two Jacobi set edges. In the Zigzag Simplification,
the orientation of these cells is adjusted if possible (see
Figure 2b). The detailed algorithms for the individual
steps are explained in more detail below. The focus is
initially on the structure of the neighborhood graph and
the specific extensions. This approach effectively sim-
plifies Jacobi sets by reducing their complexity based on
various structural properties of Jacobi sets.

4.2 Neighborhood Graph

The neighborhood graph is defined as NG = (N, E), with
a set of nodes N where each node k € N corresponds to
a Jacobi set component and a set of edges E where an
edge (k,) € E exists if two nodes share at least one joint
Jacobi set edge. Each node stores additional features,
such as the orientation of a Jacobi set component, to ana-
lyze the complexity of individual Jacobi set components
and visualize these, as in Figure 3. We use the graph to
select Jacobi set components to simplify these.

ComputeNeighborhoodGraph(F) calculated this graph
by calculating Jacobi sets for a given bivariate scalar
field and identifying the Jacobi set components accord-
ingly. To evaluate the complexity of each Jacobi set com-
ponent, we calculated the features described and shown
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Figure 3: The complexity of the Jacobi set components
shows the neighborhood graph, where the features ap-
pear as follows: Node size indicates the number of cells
contained, color represents the orientation, outer circle
saturation visualizes the domain area (A), and inner cir-
cle saturation shows the codomain area (AC). The shape
of an ellipse represents the ratio of perimeter to area in
the domain, and the number of spikes symbolizes the
spikiness. The edges show the neighborhood, and the
thickness shows the joint Jacobi set edges ratio to the
component’s total number of Jacobi set edges.

in Figure 3. Here, spikiness - measures the proportion
of spiky cells. Note UpdateNeighborhoodGraph(F) up-
dates the graph about possible changes in the field.

The primary purpose of these features is to identify Ja-
cobi set components for simplification. FindFlippable-
Cells(NG, t) identifies components that are to be re-
moved. To do this, the hypervolume HV = A A€, a
combination of the areas in domain and codomain, is
calculated. If components are below a threshold ¢, their
cells are summarized in a list and returned. In addition,
FindSpikyCells(NG) identifies spiky cells of all nodes in
the neighborhood graph and returns them to a list.

4.3 Loop Simplification

Algorithm 2: Loop Simplification

Data :2D Bivariate Scalar Field F, Flippable Cells FC
Result : Updated 2D Bivariate Scalar Field F

1 while FC # 0 do

2 foreach cell c € FC do
ec := CountEdgesToFlippableCells(FC,c¢)
if ec # 3 then
cv := MoveCellVertexToNeighbors(F,c)
F :=UpdateField(F,cv)
if CelllsFlipped(c) or

CellAreaRemainsSame(F,cv) then
8 FC:=FC\{c}
L FC := FC\ SameOrientation(F,c)

10 FC:=FCU
FlippedCellPointNeighbors(F,cv)

N S B W

Based on the cell list created in FindFlippable-
Cells(NG,t), the function values are adjusted as
described in Algorithm 2. A greedy algorithm is used
to identify the edge cells to shrink the regions to be
simplified starting from the edge. We only want to
change the grid minimally. Therefore, we determine the
vertex of a cell that could change its orientation with
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Length of Jacobi sets # of Jacobi set components JSC reduced by Total Time in ms

Data set Original Coll. Loop Original  Coll. Loop Coll. Loop Coll. Loop
Data Algo. Method Data Algo. Method Algo. Method Algo. Method
Cylinder Flow 92.46 44.06 38.29 679 17 14  9750% 97.94% 211.07 333.07
Red Sea 1251.41 645.09 622.46 7362 780 667 89.41%  90.94% 519.83 549.10
Hurricane Isabel 915064 393343 380280 43838 2657 1884 93.94% 95.70% 5461.20 754691
Tensile Bar A 1382.95 615.60 609.81 817 19 35 97.67%  95.72% 58.74 70.73
Tensile Bar B 1476.09 767.15 674.87 800 50 38  93.75%  95.25% 60.81 55.81
Tensile Bar C 1503.17 675.68 616.66 883 18 22 97.96%  97.51% 54.38 57.23
Tensile Bar D 963.47 465.58 458.36 519 40 32 9229%  93.83% 85.82 170.09
Tensile Bar E 1004.65 535.38 555.37 490 38 35 9224%  92.86% 52.47 89.22
Tensile Bar F 791.89 478.77 472.82 329 24 27 9271%  91.79% 36.44 67.63
Tensile Bar G 815.44 514.54 503.39 326 36 28 88.96% 91.41% 38.17 68.68
Tensile Bar H 782.77 447.89 455.48 322 28 48  91.30% 85.09% 48.42 94.02

Table 1: Comparison of the Jacobi set simplification by the Loop Method and the Collapse Algorithm from Raith et
al. [RSH24] with the original data. The measures from Raith et al. [RSH24] are used for all data sets, with the best

values in bold. JSC is short for Jacobi set components.

minimal effort. To do this, we test which points of the
cell are not surrounded by its neighbor points in the
codomain and select the point from these points whose
distance to the most distant neighbor is the greatest
(cf. Figure la). The point position in the codomain is
recalculated according to Equation 3 and thus adjusts
the function values (cf. Figure 1). This process is
visualized in Figure 1. Then, it is checked whether
an adjustment could change the cell orientation. If
this is the case, this cell and all its neighbors with the
same orientation are removed from the FC list. If the
orientation of the neighbor cells also changes, they
are added to the FC list. If a cell’s orientation cannot
be changed, it is also removed from the FC list. This
algorithm allows for removing Jacobi set components
with minimally invasive adjustments to the function
values and simplifying the Jacobi set’s topology.

4.4 Zigzag Simplification

Algorithm 3: Zigzag Simplification
Data :2D Bivariate Scalar Field F, Spiky Cells SC
Result : Updated 2D Bivariate Scalar Field F
1 while SC # 0 do
2 foreach cell c € SC do
3 cv := MoveCellVertexToNeighbors(F,c)
4 if FlippedCellPointNeighbors(F,cv) =0
then
SC :=SC\ {c}
else
F :=UpdateField(F,cv)
if CelllsFlipped(c) or
CellAreaRemainsSame(F,cv) then
| SC:=SC\{c}

® N S wm
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The orientation is adjusted to remove zigzag patterns
based on the list of spiky cells identified in FindSpiky-
Cells(NG). Algorithm 3 first identifies the vertex for each
cell from the SC list that could change its orientation
with minimal changes in the function values. This vertex
is selected similarly to loop simplification by checking
the neighbors in the codomain. We use Equation 3 to
calculate the new position of the vertex in the codomain.
The algorithm then checks whether the neighbor cells
would also change their orientation. In this case, the
function values in the bivariate field F are not adjusted.
The function values are adjusted if the neighbor cells
do not change their orientation (cf. Figure 2b). In both
cases, the cell is removed from the SC list. The cell
is also removed from the list SC if the area remains
constant. This algorithm simplifies the geometry of the
Jacobi set and, accordingly, its complexity.

S RESULTS

To evaluate the performance of the new Loop Method,
we compare it with the Collapse Algorithm from Raith
et al. [RSH24] and the original data. We limit ourselves
to the Collapse Algorithm because the approach of Bha-
tia et al. [BWN*15] is only a theoretical concept without
implementation, and other algorithms in the literature
do not simplify the Jacobi sets by adjusting the func-
tion values. We consider the Collapse Algorithm variant
A, which achieved the best results in Raith et al. We
use data sets representing common application exam-
ples to analyze bivariate 2D data. First, we compare
the complete Loop Method with the pure Loop Method
- topology simplification of Algorithm 1 and the origi-
nal data and show the effect on the individual function
values. We then examine the scalability of the Loop
Method with large data sets. Finally, we consider the
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(a) Original Data

(d) Cutout 1 (e) Cutout 2
Figure 4: Comparison of the Jacobi sets of the Loop Method - Topology Simplification with those of the complete
Loop Method and the original data for the cylinder flow (178 702 cells) with threshold # = 0.0001 from Raith et al.

Cutout 1 (coords. (-1.12, -1.06) - (0.13, -0.4)) and cutout 2 (coords. (0.4, -1.97) - (1.65, -1.3)) show more details.

(f) Cutout 1 (g) Cutout 2 (h) Cutout 1 (i) Cutout 2

problematic symmetric tensile bar collections of Raith
et al. The results of the comparison metrics of Raith et
al., including a time analysis, are shown in Table 1. We
use the same thresholds from Raith et al. to establish
comparability with the Collapse Algorithm.

In all figures, the coloring in the domain represents the
orientation of the cells in the codomain, and the satu-
ration visualizes AC. The tests were performed on a
MacBook Pro with Apple M1 Max and 64 GB RAM.

5.1 Data sets

We evaluate the approaches using four well-established
data sets from the literature, briefly introduced in this
section: the Cylinder Flow, the Red Sea data set, the
Hurricane Isabel data set, and the Tensile Bar collection.
These data sets come from different application areas
where bivariate data analysis is essential.

The Cylinder Flow was constructed by Jung et
al. [JTZ93] and represents a synthetic velocity vector
field defined on a regular 2D grid. It is publicly available
via ETH Ziirich [CGL]. The grid was triangulated, and
the velocity components u and v were examined in the
last time step. The Red Sea data set is known from the
SciVis Contest 2020 [ZSYH14, ZKGH19, HLB*18].
We triangulate the grid and consider temperature and
Okubo-Weiss criterion for the layer at height 0 with
time step 1. We use the Hurricane Isabel data set
known from the SciVis Contest 2004 [Uni, KKZ*22a].
For the analysis, we consider the layer at height 50
at time step 30 to analyze the two scalar variables,
pressure, and temperature, on the triangulated grid.
The tensile bar collection comprises well-studied data
sets from structural mechanics [ZS18]. Similar to the
literature, we analyze a single layer of the data sets with
triangulated grids. The 3D tensor is mapped to a 2D
tensor from which the principal invariants / are derived,
i.e. the coefficients of the characteristic polynomial:
I =tu(T)=A+ A and I, = det(T) = A, - A, where
tr(T) is the trace and det(T) is the determinant of the
tensor T for the eigenvalues A. A description of these
tensors can be found in Holzapfel’s textbook [Hol00].
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Figure 5: Neighborhood graphs for (a) the original data,
(b) the Collapse Algorithm from Raith et al. [RSH24],
and (c) the complete Loop Method for the cylinder flow.

(b) velocity component v
Figure 6: Shows the effects of the Loop Method (right)
on the function values of the original data (left) using
isolines. The color corresponds to the codomain values.

5.2 Comparison Topology and Geometry
Simplification

Using the cylinder flow, we examine the effect of the
topology simplification and the geometry simplifica-
tion applied to it, corresponding to the complete Loop
Method. We compare these results with the original
data in Figure 4 and see in Figures 4d and 4f that Jacobi
sets are simplified, and in Figures 4e and 4i, the zigzag
patterns are also removed. For the comparison with the
Loop Method - topology simplification, we additionally
calculate the length of the Jacobi set (43.84) and the
number of the Jacobi set components (14). Compared
to the results from Table 1, the geometry simplifica-
tion reduces the length of the Jacobi sets by a further
12.66%. Compared to the Collapse Algorithm, the Loop
Method - topology simplification reduces the Jacobi sets
more, and the complete Loop Method can even show a
significantly reduced length of the Jacobi set.
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(b) Loop Method

Figure 7: Comparison of the Red Sea (498 002 cells) between the Jacobi sets of the original data (a) and the simplified
Jacobi sets after applying the Loop Method for threshold # = 0.0001 (b) with the corresponding neighborhood
graphs. The simplification effects in detail can be seen in cutout (coords. (24.5, 30.7) - (26.0, 32.4).

(a) Original Data
Figure 8: Comparison of the Jacobi sets (a) before and
(b) after the simplification for Hurricane Isabel (498 002
cells) with the threshold ¢ = 200 from Raith et al.

(b) Loop Method

If we look at the neighborhood graphs of the Jacobi set
components in Figure 5, we see that the additional prop-
erties of the components are easy to recognize. Some
properties can already be recognized in the original data
(Figure 5a), although this is made more difficult by the
mass of the nodes. The comparison between the Col-
lapse Algorithm (Figure 5b) and the Loop Method (Fig-
ure 5c) shows that the Jacobi sets can still be reduced. In
particular, the spikiness decreases significantly, further
simplifying the Jacobi set’s complexity.

Finally, we look at the effects of simplifying Jacobi sets
on the function values in Figure 6. The separate function
values are visualized using isolines before applying the
Loop Method (left) and after (right). Only the white
isoline with the value O shows minimal changes, which
shows that the function values are only slightly adjusted.

5.3 Evaluation of the Results

Figure 7 compares the Loop Method with the original
data for more complex data sets like the Red Sea. In
Figure 7a, it can be seen how numerous small Jacobi set
components complicate the analysis. In Figure 7b, the
Loop Method considerably reduces these. The results
in Table 1 confirmed this simplification. The Hurri-
cane Isabel data set achieves a similar result in Figure 8.
The original data in Figure 8a show many Jacobi set
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components. Compared to the simplified Jacobi sets
in Figure 8b, it is evident that the Jacobi sets and the
small components are reduced. Table 1 also shows this
effect, and for the Collapse Algorithm, an additional
simplification of the Jacobi set components by 29.09%
is achieved and reduces the length by 3.32%.

The tensile bar collection in Figure 9 also shows interest-
ing results. These data sets are symmetric, which poses
a particular challenge. Here, the Collapse Algorithm can
simplify the Jacobi sets considerably, but the symme-
try of the data is impaired (cf. Figure 9h). The loss of
symmetry can be seen both in the Jacobi sets themselves
and in the color representation of the data set. Let us
compare the original data with the simplified Jacobi sets
of the Loop Method. The Jacobi sets can be consider-
ably simplified, as in Figures 9d and 9f. It shows that
the symmetry is well preserved, as in Figure 9i. The
Collapse Algorithm cannot map this symmetry correctly.
Table 1 shows that the Collapse Algorithm and the Loop
Method significantly reduce the Jacobi set components.
The Loop Method reduces the length of the Jacobi sets
the most, but the components are usually higher than
those of the Collapse Algorithm. As a result, Jacobi set
components are less reduced, but they are still 93% with
increased quality.

5.4 Time Analysis

In Table 1, the total time for the Loop Method is less
than 0.6 in 10 data sets. Only the time of Hurricane
Isabel is above 7.5 s, although the Red Sea has the same
cell number. This indicates that total time is not directly
dependent on cell number but on the number of Jacobi
set components in the original data. Table 1 also shows
this dependency for the Collapse Algorithm. Comparing
the total time of both algorithms shows that the Loop
Method takes on average 50% more time than the Col-
lapse Algorithm. One reason could be that the Loop
Method consists of two parts, and the neighborhood
graph has to be created or updated several times.
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Figure 9: Comparison of the simplified Jacobi sets of the Loop Method with those of the Collapse Algorithm from
[RSH24] and the original data for all tensile bars (22360 - 36336 cells). Thresholds for simplification from Raith et
al.: t = 0.001 for tensile bar A-C, D, F, and H, ¢t = 0.01 for Tensile Bar D, and r = 0.0001 for Tensile Bar G.

5.5 Discussion

Overall, the new Loop Method in Figure 4 features are
well preserved, and in Figure 6, the adjustments are
locally limited. This simplifies the Jacobi set compo-
nents by an average of 93% and reduces the length of
the Jacobi sets by an average of 50%. Compared to
the Collapse Algorithm, the Loop Method can simplify
the Jacobi sets according to the components by up to
29.09% and reduce the length of the Jacobi sets by up
to 13.09%. Besides, it is shown that the Loop Method
simplifies Jacobi sets for data sets with symmetry qual-
itatively better and preserves the symmetry in contrast
to the Collapse Algorithm, but requires 50% more time
on average. This is because the focus was, first and fore-
most, on the quality of the Jacobi sets to use the Loop
Method as a preprocessing step. The potential for accel-
eration is there to achieve a similar time requirement.

6 CONCLUSION AND FUTURE WORK

This paper presented the new Loop Method for sim-
plifying Jacobi sets for bivariate 2D scalar fields on
unstructured 2D triangular grids. This method simplifies
the Jacobi sets by locally adjusting the function values.
First, simplify the topology by removing Jacobi set com-
ponents before simplifying the geometry by removing
zigzag patterns. These regions are identified using a
neighborhood graph containing additional Jacobi set
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features, such as spikiness. We developed an interac-
tive visualization of neighborhood graphs and used it
in the visual analysis. The Loop Method reduces the
Jacobi set components on average by 93% compared to
the original data, and compared to the Collapse Algo-
rithm, the Jacobi set components are simplified by up
to 29.09% and reduces the spikiness, which reduces the
length of the Jacobi sets by up to 13.09%. Besides, this
new method significantly improves the quality of Jacobi
sets in symmetric tensile bars.

Due to the higher quality of the Jacobi sets, the next step
is a detailed evaluation with domain experts to check
the robustness. A next step could also be to speed up
the algorithm by splitting the Jacobi set components
into spatially separated areas for parallel processing.
Automatic threshold generation, such as an adaptive
selection strategy based on the statistical properties of
the data set, to identify the Jacobi set components to
be simplified is also an important next step. Another
step would be generalizing 3D data sets, especially for
trivariate 3D scalar fields. Since the Jacobi sets also
divide the space into different components in the 3D
case. However, this generalization is not trivial and
requires further investigation to evaluate its impact on
the overall model. Finally, it could be a worthwhile
goal to investigate and visualize the uncertainty of a
simplified Jacobi set, especially for the codomain.
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