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ABSTRACT
Ensemble data refers to a set of simulations or measurements of the same phenomenon conducted under different
settings such as varying control parameters of the simulation. When the data capture changes over time, the
main analysis task is to compare the temporal evolution of the ensemble members.For a global analysis of the
ensemble’s temporal evolution, the data can be embedded in a 2D visual space, where each ensemble member
is visualized by a 2D curve. For the embedding, the dissimilarities of the states of the ensemble members at
different points in time shall be represented by the distances of the respective points in the 2D embedding. This
goal is achieved by minimizing the stress functional of Multidimensional Scaling (MDS). However, direct visual
comparison of the embedded curves can be complicated due to their non-trivial geometry. We propose an algorithm
for the simplification of curve geometries in 2D MDS embeddings of ensemble data, where the target shape of a
selected reference curve can be chosen by the user. We transform the original embedding in a controllable way
consistent with the MDS stress functional. Thus, we improve the comparability of curves representing individual
ensemble members, while minimizing the loss in accuracy of presented data dissimilarities. We perform several
tests demonstrating the benefits of the proposed method, present our findings, and discuss numerical aspects of the
algorithm.
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1 INTRODUCTION

Ensemble data refers to repeated measurements or sim-
ulations under varying initial conditions or parameteri-
zations. A key task in ensemble data analysis is to ex-
plore how ensemble members’ characteristics depend
on the initial setup. Data for each member are often
collected over time, with significant attributes recorded
at each step. Thus, ensemble data are collections of
evolving multidimensional datasets, each tied to spe-
cific initial conditions. Examples include:

• Simulations of physical phenomena such as
weather, climate, blood flow, or medical treatments,
performed under varying initial conditions or
prediction models.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

• Longitudinal cohort studies, for example, in epi-
demiology, healthcare, and demographics.

Ensemble data analysis involves detecting outliers,
identifying qualitatively different regimes, and pre-
dicting critical parameter settings where ensemble
behavior changes. These insights are useful for de-
tecting simulation flaws, planning experiments, and
predicting behavior for unexplored setups. Visualizing
ensemble data is invaluable for these tasks, enabling
comprehensive overviews and clear illustrations of
findings.

Each time step of an ensemble member is represented
by multidimensional data, which must be embedded
in a lower-dimensional (usually 2D) space for visu-
alization. The choice of embedding method depends
on analysis goals, as different algorithms preserve dif-
ferent data characteristics. Multidimensional Scaling
(MDS) [BG05] is a classical approach that represents
similarities between multidimensional samples as dis-
tances in lower-dimensional space. It is ideal when the
primary goal is to examine resemblance and disparity
between objects.

Large ensemble datasets, with dense temporal sam-
pling, can result in high stress values in MDS scatter-
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plots, making visual analysis error-prone. However,
temporal proximity is often more important than com-
paring states at distinct times. To address this, a tem-
poral windowing approach can be applied to the stress
function, emphasizing similarities between temporally
close points. This modification improves the accuracy
of visual analysis for temporally localized behaviors.

In MDS scatterplots, each observation is shown as
a point, and points from consecutive time steps are
connected (e.g., with line segments or spline curves) to
indicate temporal progression. Each ensemble member
is thus represented as a directed polyline or smooth
curve, whose geometry reflects recorded temporal
changes. Comparing ensemble members then becomes
the task of comparing the positions and shapes of their
2D curves in the embedding.

These curves can exhibit complex geometries, such as
flat segments, high-curvature regions, loops, or self-
intersections, which hinder intuitive comparisons. In
many cases, a distinguished reference ensemble mem-
ber serves as a baseline for comparison, such as a me-
dian sample or ground-truth data. Simplifying the ref-
erence curve’s geometry can make comparisons more
intuitive. However, constraining the reference curve’s
shape conflicts with the classical MDS goal of stress
minimization.

We propose an algorithmic approach to modify the
reference curve’s shape controllably. Users can rely
on automatic simplification or sketch the desired ge-
ometry. The stress-minimization procedure then re-
computes the projection while respecting the reference
curve’s constraints. This achieves an interactive trade-
off between preserving temporal similarity and improv-
ing curve comparability. We demonstrate the method’s
effectiveness and discuss its numerical aspects through
several experiments. The source code is available on
GitHub [Lei25].

The remainder of the paper is structured as follows.
First, we discuss relevant terminology and related meth-
ods in Section 2. In Section 3, we extend related meth-
ods to create a framework summarized in Section 3.4.
Experiments with synthetic and real-world data are car-
ried out and discussed in Section 4 where we also
present. Finally, we conclude our paper in Section 5.

Our contributions can be summarized as follows.

1. We present an algorithmic simplification approach
that allows to modify an ensemble member’s pro-
jection in a 2D embedding obtained with Multidi-
mensional Scaling and re-project the other mem-
bers’ projection with respect to the stress functional.

2. We evaluate our approach on synthetic data and ap-
ply it on the astroid impact ensembles data.

3. We provide an open-source implementation for re-
producibility.

2 RELATED WORK
Ensemble Data. In physics and engineering, ensemble
data are commonly used to study the sensitivity of sim-
ulations to varying control parameters. Over the years,
numerous visual analysis techniques have been pro-
posed, focusing on statistical descriptors [PWB+09b],
uncertainty in weather forecasts [PWB+09a], and iso-
contour similarities in spatio-temporal data [FML16].
Kehrer and Hauser introduced the broader term multi-
faceted data [KH13] to emphasize the complexity of
modern data in terms of dimensionality, structure, for-
mat, and sources.

Dimensionality Reduction. Dimensionality re-
duction (DR) simplifies complex data by creating
low-dimensional representations that preserve essen-
tial characteristics, making data easier to explore,
understand, and visualize. DR is a key preprocessing
step in modern data analysis, with the choice of
method depending on application goals, data type, and
size [VDMPVdH09].

DR techniques are broadly classified into linear and
non-linear methods. Linear methods, such as Principal
Component Analysis (PCA) [AW10] and Star Coordi-
nates [ML19], apply linear transformations. Non-linear
methods, such as t-Distributed Stochastic Neighbor
Embedding (t-SNE) [vdMH08] and Uniform Manifold
Approximation and Projection (UMAP) [MHSG18],
preserve neighborhood relationships. Multidimen-
sional Scaling (MDS) preserves pairwise similarities
or dissimilarities and is computationally efficient com-
pared to techniques such as Diffusion Maps [CL06]
and Laplacian Eigenmaps [BN03]. Consequently,
MDS is well-suited for analyzing similarities in
multidimensional ensemble datasets.

MDS Algorithms. The stress functional measures how
well distances in the MDS embedding represent orig-
inal data dissimilarities, and MDS algorithms aim to
minimize this stress. Minimization is typically itera-
tive, with methods such as the Newton-Raphson ap-
proach [Bro87] and Scaling by Majorizing a Compli-
cated Function (SMACOF) [BG05], the latter offering
fast convergence. Borg et al. [BG05] provide a compre-
hensive overview of MDS algorithms, including vari-
ants for non-metric spaces (where dissimilarities are re-
placed by ranks) and Landmark MDS [LC09], which
processes large datasets by embedding a representative
subset and mapping remaining samples locally. Recent
advances, such as Uncertainty-Aware MDS [HKW23]
and Weighted MDS [MBR16], introduce flexibility by
incorporating uncertainties or assigning weights to pair-
wise dissimilarities, which makes them particularly rel-
evant to this work. We also carried out experiments
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with Lagrange Multipliers [Ber82] and Spring Lay-
outs [FR91], however, none of them could deliver com-
pelling results in reasonable computing time. We still
integrated them as drop-in replacement in the published
source code. For the remainder of the paper, we focus
on SMACOF as this is currently the only method suit-
able for maintaining an interactive approach.

Geometry Simplification. Our approach incorporates
shape regularization of 2D curves. High-frequency fea-
tures can be suppressed using smoothing techniques
like the Savitzky-Golay (Savgol) filter [SG64], where
the window size determines the level of smoothing.
However, smoothing may alter the start and end points
of curves. Alternatively, algorithms like Visvalingam-
Whyatt [VW93] and Douglas-Peucker [DP73] approxi-
mate curve geometry. We adopt the Douglas-Peucker
algorithm for its computational efficiency and high-
quality results. Users can select the simplification strat-
egy and fine-tune parameters (e.g., window size or ep-
silon) to achieve desired results.

3 IMPROVING COMPARABILITY OF
TEMPORAL EVOLUTION IN MDS
PLOTS

In this section, we introduce necessary notations and
definitions used in SMACOF theory, formulate the pro-
posed solution in terms of minimization of weighted
stress functional and discuss various practical aspects
of the algorithm.

3.1 Notations and Definitions
Let ∆ = {δi j}1≤i, j≤n be a symmetric matrix, whose ele-
ments δi j are pairwise dissimilarities of observations in
an ensemble dataset. The total number of observations
in all ensemble members is n and we assume, that an
ensemble member’s number and temporal position of
each observation can be uniquely deduced from its in-
dex. MDS aims to place a set of points xi ∈Rk, 1 ≤ i ≤
n, so that their pairwise distances di j = ∥xi −x j∥ match
given dissimilarities δi j. Mathematically, the problem
of locating n points X = {xi} can be expressed as min-
imization of following non-negative functional called
stress

σ(X) = ∑
i< j

ωi j (δi j −di j(X))2 , (1)

where ωi j ≥ 0 are some weights. If ωi j = 1, all ob-
servations and all pairwise distances between them are
treated equally. In practice, however, there may exist
a priority reflecting, e.g., uncertainty of measurements,
importance of distinct observations or missing data. In
our setting, observations belonging to a distinctive en-
semble member that we refer to as reference member
play a special role. Therefore, possibility to adjust ωi j
provides a great flexibility in adapting classical MDS
approach to specific problems.

Minimization of stress (1) can be done by an iterative
SMACOF approach. In every iteration, the algorithm
majorizes the stress by a quadratic function and com-
putes its critical point using the linear algebra calcu-
lus. Then, the algorithm results in a series of gradu-
ally refined configurations of X corresponding to non-
increasing values of the stress. We refer the reader
to [BG05] for detailed exposition of the method.

Iterations of the SMACOF algorithm stop, either after a
maximal number of iterations was reached or when the
series of configurations of X converged. Normalized
stress

σ1(X) =

 ∑
i< j

ωi j (δi j −di j(X))2

∑
i< j

ωi jδ
2
i j


1/2

(2)

allows for assessing the quality of intermediate distri-
butions X during iterations as well as of the final result.
Note that normalized stress σ1 differs from raw stress σ

only by a constant factor and a monotone transforma-
tion. Therefore, both functionals share extreme points
and minimization of one is equivalent to minimization
of another. However, σ allows for an efficient mini-
mization using the SMACOF algorithm, while σ1 is in-
dependent of the absolute values of dissimilarities. A
guideline introduced by Kruskal et al. [Kru64] suggests
the following evaluations of the fit goodness depending
on the normalized stress value: perfect for σ1 ≤ 0.025,
excellent for 0.025 < σ1 ≤ 0.05, good for 0.05 < σ1 ≤
0.1, fair for 0.1 < σ1 ≤ 0.2, poor for 0.2 < σ1. Mair et
al. [MBR16] criticized Kruskal’s evaluation, however,
formula for σ1 in their paper differs from the standard
definition.

When dimensionality of the embedding k = 2, solution
X can be visualized as a set of points, so that each
xi is projection of i-th observation from the ensemble
dataset. Projections of observations from the same en-
semble member are usually connected by curves ac-
cording to their temporal order. Throughout this paper,
we use stress (1) to compute 2D MDS projection. When
not specified differently, ω ≡ 1. For evaluation of the
projection quality, we apply normalized stress (2).

3.2 Simplification of the Reference Curve
MDS optimally transforms dissimilarities of multidi-
mensional samples into 2D distances between respec-
tive projected points. Thus, closeness of the projected
points can be interpreted as similarity of the corre-
sponding observations. When projecting evolutionary
data, points representing consequent observations are
usually connected in the projected space, so that an
emerging curve depicts the observed process. Then,
various patterns of the curve geometry like cycles, high-
curvature segments or vanishing tangential vectors can
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be interpreted as periodic behavior, rapid changes or
stationary points of the studied process.

Visualization of time-varying ensemble data results in
a collection of 2D curves, each representing a single
ensemble member or a set of observations. Compar-
ing individual ensemble members between each other
can be a tedious task due to complicated geometries
and relative positions of the corresponding curves. To
mitigate the problem, we propose to simplify the ge-
ometry of a distinguished curve representing what we
call a reference ensemble member (or reference mem-
ber, for short). When the shape of the reference curve
becomes close to a straight line, a circle or an arbitrary
smooth regular curve, other curves can be easier char-
acterized to have similar or distinct shape. Therefore,
visual clustering and outlier detection can be performed
for all ensemble members shown in the projected space
as curves.

Reasons for the selection of a particular reference en-
semble member can be many-fold, e.g., it can be a
ground truth data within a set of simulations, an en-
semble member with the most reliable data, or just the
most simple 2D curve selected by the user. Irrespective
to why a particular ensemble member was chosen, our
task is to transform the curve geometry towards the de-
sired simplified shape and simultaneously preserve ac-
ceptable level of the stress function. I.e., we aim at an
optimal trade-off between comparability of the ensem-
ble members and accuracy of the modified MDS pro-
jection.

Without loss of generality, we assume that {xi}1≤i≤l
are the MDS projections of the observations belong-
ing to the reference member. Then, the curve passing
through these points should be simplified. In our work,
we consider two possible scenarios: First, the given ge-
ometry may be automatically simplified by a geometric
algorithm or, second, a desired simple geometry can be
manually sketched by the user in the projected space.
In the former case, one may apply the Douglas-Peucker
algorithm [DP73], which regularizes a given polyline
while keeping its end points. In the latter case, the user
interactively sketches a 2D curve, which ideally repre-
sents a smooth approximation to the reference curve in
the MDS projection layout. Alternatively, the user may
place a number of control points, which will be used to
reconstruct a cubic-spline curve.

Let c stand for a curve either generated by the automatic
approach or specified by the user. Our task is to force
{xi}1≤i≤l to be placed along c, while preserving the
pairwise distances as good as possible. Therefore, we
run an optimization procedure, which minimizes func-
tional

σ
ref(X) = ∑

1≤i, j≤l
ω

ref
i j (δi j −di j(X))2 , (3)

for {xi}1≤i≤l ⊂ c. For constraining positions of
points along the reference curve, we use a continuous
parametrization of c and Sequential Least-Squares
Programming algorithm [Kra88]. During optimization,
we ensure that temporal dimension remains consistent
with the curve parametrization, i.e., points correspond-
ing to later time moments get assigned higher values of
the curve parameter. We also fix x1 to the start of c.

Here, we may use the flexibility of the weighted MDS
method by utilizing ω ref

i j . For example, instead of set-
ting ω ref

i j ≡ 1, one may choose higher values of ω ref
i j for

smaller values of |i− j|, which would mean that sim-
ilarities between close timesteps more strongly affect
the placement of points along c. Thus, weighted MDS
allows, in particular, for balancing local versus global
similarities in the temporal dimension.

Quality of the fitting the reference points on c can
be evaluated by means of normalized stress σ ref

1 con-
structed for σ ref by analogy with Expression (2). De-
pending on the geometry of the specified c, minimiza-
tion procedure can result in an unacceptable high value
of σ ref

1 , meaning that the introduced distortion is too
high. In such case, we report σ ref

1 to the user and let
them decide, whether to continue with the current ref-
erence curve or repeat computation for new c. As soon
as the placement of the reference points along the refer-
ence curve is accepted, we proceed with the next phase
of the proposed algorithm.

3.3 Data Reprojection and Optimal
Weight

Let {qi}1≤i≤l be the solution to the minimization of
stress (3). Our test is now to modify the weighted MDS
stress function (1) so that the optimal configuration of
the reference points would approach {qi} while keep-
ing the stress value low. We achieve this goal in two
steps. First, we redefine distances between reference
observations as follows:

δ
∗
i j =

{
∥qi −q j∥ for 1 ≤ i, j ≤ l,
δi j otherwise,

(4)

i.e., we replace the actual dissimilarities between refer-
ence observations by the 2D distances between desired
projections on the reference curve c. Second, we set

ω
∗
i j =

{
ω for 1 ≤ i, j ≤ l,
ωi j otherwise,
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Figure 1: Numerical experiments for the evaluation of stress convergence and optimal weight. (a) Experiment
showing the typical stress evolution for both σ1 and σ

re f
1 depending on ω . The target curve was t(x) = 0 in this

case. (b) Experiment showing the optimal ω for a given stress tolerance τ . A proportional relationship can be
observed between ω and the ratio n/l, where n is the number of time steps of the entire ensemble and l is the
number of time steps of the reference curve.

where ω ≫ maxωi j is some constant. Putting all to-
gether, we look for a configuration of projected points
minimizing following stress functional

s(X) = ∑
i< j

ω
∗
i j
(
δ
∗
i j −di j(X)

)2 (5)

= ω ∑
1≤i< j≤l

(∥qi −q j∥−di j)
2 +

∑
i< j

i>l or j>l

ωi j (δi j −di j)
2 .

An efficient solution to the presented minimization
problem can be obtained by the SMACOF method.
The role of factor ω is to weigh the constraint of
the reference: For small ω , stress function s remains
very close to stress σ given by Expression (1); the
larger ω is, the more contribution positions of the
reference points make to stress (5), thus, the more their
placement resembles the relative positions of {qi}.
To find the optimal value of the weighting factor ω , we
inspect the behavior of normalized stress σ1 (2) and re-
spective normalization σ ref

1 evaluated for the sequence
of solutions as ω increases. While σ ref

1 monotonically
decreases, σ1 may increase due to growing distortion
with respect to the original MDS projection. There-
fore, placement of the reference points approaches their
desired configuration along c at the cost of dropping
accuracy as ω grows. Monitoring both stress func-
tionals σ ref

1 and σ1, the user determines such value of
the weight, for which both errors lie within acceptable
ranges, or restarts the procedure with newly defined ref-
erence shape c. The typical evolution of the stress func-
tionals is depicted in Figure 1a. Although the weighting
factor ω could be chosen directly by the user, it is dif-
ficult to determine its effect on the stress functionals.
Instead, we rather propose to find an optimal ω for a

tolerated error τ , i.e., a percentage of the stress of the
initial MDS projection (σ init

1 ), the choice of which we
leave to the user, as it is specific to the data and task at
hand. To find the optimal ω for a given τ , we search the
ω ∈ R≥1 for which the condition sω = τ ·σ init

1 is satis-
fied. We achieve that by performing a binary search on
the alternative bound integer domain {1, . . . ,θ} where
θ is some high numerical value. In our experiments,
θ = 103 was sufficient. Depending on the data set, tar-
get curve, and the value of τ , the tolerance may never
be reached, leading to an "infinite" ω . As consequence,
the reference member will be deformed to the target
curve while the rest of the ensemble remains mostly un-
changed in the projection.

3.4 Algorithm
Summarizing the exposition of the last two subsections,
the proposed algorithm can be described as follows:

1. In the 2D MDS projection (stress σ init
1 ) of time-

varying ensemble data, select a reference member.

2. Define a shape of the reference curve by running an
automatic procedure or sketching the curve manu-
ally.

3. Compute optimal placement of the reference points
along the reference curve by minimizing stress (3).
Improve c if the goodness of fit is unsatisfactory.

4. Update dissimilarity matrix ∆ according to Equa-
tion (4).

5. Compute a series of solutions minimizing stress (5)
with varying weight ω using the SMACOF
approach.
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6. Determine an optimal solution, for which both qual-
ity measures σ1 and σ ref

1 are acceptable. Here, the
user may specify a tolerance τ (or acceptable error
τ ·σ init

1 ), for which the optimal ω is computed. Al-
ternatively, the user may specify a value for ω .

3.5 Implementation Notes
The simplest geometry of reference curve c is a straight
line. In this particular case, minimization of func-
tional (3) is equivalent to computing 1D MDS projec-
tion for the set of reference observations {xi}1≤i≤l .

Usually, the MDS minimization routine is repeated with
a number of randomized starting configurations in order
to deal with the problem of local minima. We observed
that the best solution (obtained with SMACOF) may
have properties undesired for the interpretation of the
temporal evolution of ensemble members. I.e., individ-
ual time steps may not follow a smooth curve. To avoid
these artifacts, we compute the initial embedding using
the method presented by Wickelmaier et al. [Wic03],
which better preserves smooth curves in the embedding.
As a trade-off, the stress may not be minimal. To find
the optimal ω , however, we are required to start with
minimal stress to guarantee a monotonously increasing
sequence of stress values in order to apply the binary
search. Further optimizing this initial embedding using
SMACOF then minimizes the stress while better pre-
serving smooth curves than when using random initial-
izations. This optimized initial embedding can also be
used to start iterations of the SMACOF algorithm in
Step 5 of the proposed method. Though, several op-
timization runs are required to determine the optimal
value for weight ω . The overall complexity of the pre-
sented method remains comparable to a single compu-
tation of MDS projection.

The proposed algorithm can be easily adapted to the
situation when several ensemble members are selected
as reference and, respectively, several distinct curves
are specified. In this case, Expression (3) should be
adapted accordingly. Detailed description is left beyond
the scope of this paper.

4 RESULTS
In this section, we apply our approach to both an il-
lustrative data set and a real world data set and report
our findings. For a demonstration of how the algorithm
could be implemented and how our results were gener-
ated, we refer to the accompanying video.

4.1 Illustrative Example
To understand the effect of our approach and especially
how the simplification of the reference member affects
the other ensemble members in the embedding, we de-
fine a set of three functions that contains

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0

2

4

6

8

y

f1(x) = x
f2(x) = x2

f3(x) = x3 + 0.2x2 + 1
t1(x) = 0x2

t2(x) = 2x2

t3(x) = 4x2

t4(x) = 8x2

Figure 2: The illustrative dataset we use for our experi-
ments. The dataset contains three 2D-curves, i.e., a lin-
ear function ( f1, blue), a quadratic function that serves
as references ( f2, dashed orange) and a cubic function
( f3, green). Additionally, we depict the target curves
(t1, t2, t3, t4) used for our experiments.

1. a linear function: f1(x) = x,

2. a quadratic function: f2(x) = x2, and

3. a cubic function: f3(x) = x3 +0.2x+1.

From each function fi, i ∈ {1,2,3} we generate a 2D
curve ci = {p j}1≤ j≤n with n being the number of time
steps, and p j = (d( j), fi(d( j))) with 1 ≤ j ≤ n and
d( j) = 2 · (( j − 1)/(n − 1))− 1, simply mapping the
time step to the domain [−1,1]
The resulting curves are depicted in Figure 2. Here, we
choose function f2 to be our reference and represent it
(here and in the following) as dashed line.
Optimal Weight In order to estimate the optimal
weighting factor ω for a given stress tolerance τ , we
consider (5) again in more detail. Let n be the number
of time steps of the ensemble and l be the number of
time steps of the reference run, then we define ρ = n/l
to be the ratio of all optimized distances and the ones
that are affected by ω . We extended the illustrative
data set described above by adding curves defined by
functions of the form fi(x) = xi +(−1)i · i in order to
obtain certain ratios ρ = n/l. As target curve we chose
t(x) = 0. We also define different levels of acceptable
stress τ and find the optimal ω as described above. In
Figure 1b, we plot the resulting ω over the ratio rho
and observe a proportional relationship. The same
experiment was conducted for another target shape,
i.e., t(x) = 8x2 the result of which is identical. We
conclude that the target shape has no effect on the
relationship of ω and ρ .
Effect of Number of Time Steps Our experiments
show that the number of time steps per ensemble mem-
ber has no impact on any of the considered stress func-
tionals, given the ratio of number of time steps between
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the members remains the same. A down-sampling of
the temporal domain by a constant factor hence has no
impact on the optimal weighting factor ω , as long as
the number of time steps can still reasonably represent
the structure of the data.

Effect of Number of Ensemble Members Again, con-
sider a variation in the number of ensemble members or,
in other words, a change of ratio ρ . Figure 1a shows the
resulting σ1 and σ ref

1 stress depending on the weighting
factor ω for different ratios. We observe that in order
to minimize σ ref

1 stress for higher values of ρ , a higher
value has to be chosen for ω . At the same time, the σ1
stress is preserved better. This meets our expectations
as the number of distances that have to be preserved be-
tween the runs that are competing against the reference
curve’s distances in the optimization procedure is much
higher.

Effect of Difference from the Original Curve To an-
alyze the effect that an increasing stress has on the
weight, we set our target curve to be a quadratic func-
tion of the form f (x) = αx2, depicted in Figure 2. We
apply our method for α set to 0, 2, 4, and 8. Figure 1a
shows the resulting stresses for α = 0, i.e., t(x) = 0.
For other values of α , i.e., an increased stress between
original reference and target curve, the evolution is very
similar, however the initial σ1 stress is already much
higher, increasing more rapidly when increasing when
increasing α . Analogously, the σ ref

1 stress starts with
higher value but decreases faster. The stress (or α) has,
however, no effect on the optimal weighting factor ω .

Effect of Weight In summary, increasing the weighting
factor ω leads to a decrease of σ ref

1 as weighted MDS
preserves the respective distances more than the un-
weighted distances. At the same time, σ1 is increased.
Fig 1a shows that effect by example of our illustrative
data set and the target curve that was set to t(x) = 0.
We repeated the same experiment for all target curves
described above (cf. Figure 2) and observed the same
behavior. The resulting stresses for σ ref

1 and σ1 were
all strictly monotonously decreasing and increasing, re-
spectively. To understand how the stresses realize in
the actual embeddings, we observe two different target
curves, t(x) = 0 and t(x) = 8x2 for different ω , depicted
in Figure 3.

Typical Stress Evolution The SMACOF method guar-
antees a strictly monotonously decreasing sequence of
the optimized stress (cf. Equation (5)). The σ ref

1 stress is
implicitly optimized as well and will end up minimized
after convergence of SMACOF, however, may fluctuate
during the process. The same is true for original MDS
stress which, instead, ends up increased since already
the replacement of original distances (cf. Equation (4))
introduces higher stress which is further increased in
the optimization. For an illustration of the stress func-

tionals during optimization, we refer to the accompany-
ing video.

4.2 Deep Water Asteroid Impact Data Set
We also applied the approach on real-world data, i.e.,
the Deep Water Asteroid Impact Ensemble [GP17].
This data set contains 7 simulation runs initialized with
different parameter configurations for the asteroid’s
size, incoming angle and height of the airburst, if any.
The initial embedding is depicted in Figure 4a, where
the start of the temporal evolution of the reference
curve is depicted as square in the plot. We then applied
the automatic simplification procedure by means of
Douglas-Peuckert. The epsilon parameter was set to
0.05 and the resulting control points were used to fit
a cubic spline, depicted as gray curve. The result of
our approach, ω set to 50, is depicted in Figure 4b.
The reference run is transformed to the target shape.
Interestingly, the temporal evolution of the other
ensemble members’ curves remains mostly unchanged.
The stress between the original and the target reference
curve is low enough to maintain the global structure.

4.3 Complexity and Limitations
Table 1: Summary of Algorithmic Worst-Case Com-
plexities. n and nref are the number of time steps of the
ensemble and reference run, respectively. d is the di-
mensionality of the projection, k and k′ are the number
of iterations needed for the respective steps.

Algorithm Worst-Case Complexity
Douglas-Peucker O(n2)
SLSQP O(n3

ref × k)
SMACOF (MDS) O(n2d × k′)

The algorithmic complexities of the individual steps
can be seen in Table 1. When we assume that nref ≪ n
d ≪ n, k ≪ n and k′ ≪ n hold, the total complexity can
be summarized as O(n2), however, the selection of al-
gorithms for the steps was made in favor of interactivity
of the implementation, where runtime is more relevant
than complexity.

The runtime of the proposed algorithm depends on the
input data, as well as the choices made by the user.
Both finding the parameterization of the reference curve
(cf. (3)) and minimizing the stress functional using
SMACOF (cf. (5)) are iterative methods that stop after a
certain amount of iterations is reached (we choose 100
throughout all experiments) or the delta of two consec-
utive stresses falls below a threshold (10−5 in our case).
For that reason, it is not trivial to estimate a general
runtime of our approach. However, we demonstrate the
runtimes of the individual steps in the accompanying
video.

Regarding the applicability of our approach, we want
to discuss the following limitations. First, our approach
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Figure 3: Depiction of our approach applied on synthetic data and different target curves t(x) (see Figure 2) for the
reference run (dashed orange curve), and different weights ω . The number of time steps is 20. The horizontal and
vertical axes represent the first and second principal component, respectively.
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Figure 4: Depiction of our approach applied to the Deep Water Asteroid Impact Ensemble [LHFL19]. (a) Classical
2D MDS and simplified target curve (gray) for the reference member (dashed orange curve), obtained by automatic
geometry simplification. (b) Embedding achieved using our approach with ω set to 50. The horizontal and vertical
axes represent the first and second principal component, respectively.

should only be used, if the intrinsic dimensionality of
the data is two or larger. Otherwise, a 1D MDS embed-
ding with time as horizontal axis should be preferred.
When the simplified curve is quite different from the
original, e.g., because of how the user sketched the
curve, the start point may detach from the original po-
sition, even though we fix its position. One possible
explanation could be, that the higher weighted intra-
reference distances are pulling it away. Two special

cases may render sketching a simplified curve difficult,
that is (1) if an ensemble member has a periodic evo-
lution and hence will be projected to a repeated cycle
that overlaps with itself and (2) if an ensemble mem-
ber happens to be static, i.e., will be projected to a sin-
gle point. In these cases, high reference stress will be
induced. Lastly, the simplified curve is drawn in the
low-dimensional space from which we derive the dis-
tances by which we replace the original reference curve
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distances. It may be more optimal to allow for geomet-
ric simplification in high-dimensional space, which we
leave beyond the scope of this paper.

5 CONCLUSION AND FUTURE
WORK

In this paper, we proposed an algorithmic approach for
modifying the shape of a reference curve in 2D MDS
embeddings with the goal of geometric simplification.
In a controllable way, accuracy of the embedding is
traded for comparability between members and the ref-
erence. The reference curve can be modified by the user
using an automatic approach or by sketching a curve
in the low-dimensional embedding. The approach was
evaluated with synthetic data and applied on the deep
water asteroid impact ensemble data set. This could
demonstrate the geometric simplification of the refer-
ence run compared to the projection obtained by clas-
sical MDS. In the future, we want to extend the ap-
proach to multiple reference members. Additionally,
we want to impose additional constraints such as ap-
plying higher weights to better preserve the temporal
domain and analyze the induced trade-off between ac-
curacy and comparability.

6 ACKNOWLEDGMENTS
This work was funded by Deutsche Forschungsgemein-
schaft (DFG) grants LI 1530/28-1 – 468824876 and
MO 3050/2-3 – 360330772.

REFERENCES
[AW10] Hervé Abdi and Lynne J Williams. Principal
component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433–459, 2010.

[Ber82] Dimitri P Bertsekas. Constrained optimiza-
tion and Lagrange multiplier methods. Academic press,
1982.

[BG05] Ingwer Borg and Patrick J. F. Groenen. Mod-
ern Multidimensional Scaling: Theory and Applica-
tions. Springer Science & Business Media, 2005.

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian
eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396,
2003.

[Bro87] Michael Browne. The young-householder al-
gorithm and the least squares multidimensional scaling
of squared distances. Journal of Classification, 4:175–
190, 1987.

[CL06] Ronald R Coifman and Stéphane Lafon. Dif-
fusion maps. Applied and Computational Harmonic
Analysis, 21(1):5–30, 2006.

[DP73] David H Douglas and Thomas K Peucker. Al-
gorithms for the reduction of the number of points re-
quired to represent a digitized line or its caricature.
Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, 10(2):112–
122, 1973.

[FML16] Alexey Fofonov, Vladimir Molchanov, and
Lars Linsen. Visual analysis of multi-run spatio-
temporal simulations using isocontour similarity for
projected views. IEEE Transactions on Visualiza-
tion and Computer Graphics, 22(8):2037–2050, Au-
gust 2016.

[FR91] Thomas M. J. Fruchterman and Edward M.
Reingold. Graph drawing by force-directed placement.
Software: Practice and Experience, 21(11):1129–1164,
1991.

[GP17] Galen R. Gisler and John M. Patchett. Deep
water impact ensemble data set. Technical Report LA-
UR-17-21595, Los Alamos National Laboratory, 2017.

[HKW23] David Hägele, Tim Krake, and Daniel
Weiskopf. Uncertainty-aware multidimensional scal-
ing. IEEE Transactions on Visualization and Computer
Graphics, 29(1):23–32, 2023.

[KH13] Johannes Kehrer and Helwig Hauser. Visu-
alization and visual analysis of multifaceted scientific
data: A survey. IEEE Transactions on Visualization
and Computer Graphics, 19:495–513, 03 2013.

[Kra88] Dieter Kraft. A software package for sequen-
tial quadratic programming. Technical Report DFVLR-
FB 88-28, Deutsche Forschungs- und Versuchsanstalt
fÃ¼r Luft- und Raumfahrt (DFVLR), KÃ¶ln, Ger-
many, 1988.

[Kru64] Joseph B Kruskal. Multidimensional scaling
by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[LC09] Seunghak Lee and Seungjin Choi. Landmark
MDS ensemble. Pattern Recognition, 42(9):2045–
2053, 2009.

[Lei25] Simon Leistikow. https://github.com/
sleistikow/simplified_embeddings, 2025.

[LHFL19] Simon Leistikow, Karim Huesmann,
Alexey Fofonov, and Lars Linsen. Aggregated
ensemble views for deep water asteroid impact simu-
lations. IEEE Computer Graphics and Applications,
40(1):72–81, 2019.

[MBR16] Patrick Mair, Ingwer Borg, and Thomas
Rusch. Goodness-of-fit assessment in multidimen-
sional scaling and unfolding. Multivariate Behavioral
Research, 51(6):772–789, 2016.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-14 137



[MHSG18] Leland McInnes, John Healy, Nathaniel
Saul, and Lukas Großberger. UMAP: Uniform man-
ifold approximation and projection. Journal of Open
Source Software, 3(29):861, 2018.

[ML19] Vladimir Molchanov and Lars Linsen. Shape-
preserving star coordinates. IEEE Transactions on Vi-
sualization and Computer Graphics, 25(1):449–458,
2019.

[PWB+09a] Kristin Potter, Andrew Wilson, Peer-
Timo Bremer, Dean Williams, Charles Doutriaux, Vale-
rio Pascucci, and Chris Johhson. Visualization of uncer-
tainty and ensemble data: Exploration of climate mod-
eling and weather forecast data with integrated ViSUS-
CDAT systems. Journal of Physics: Conference Series,
180(1):012089, July 2009.

[PWB+09b] Kristin Potter, Andrew Wilson, Peer-
Timo Bremer, Dean Williams, Charles Doutriaux, Va-
lerio Pascucci, and Chris R. Johnson. Ensemble-Vis: A
framework for the statistical visualization of ensemble
data. In 2009 IEEE International Conference on Data
Mining Workshops, pages 233–240, 2009.

[SG64] Abraham Savitzky and M. J. E. Golay.
Smoothing and differentiation of data by simpli-
fied least squares procedures. Analytical Chemistry,
36(8):1627–1639, July 1964.

[vdMH08] Laurens van der Maaten and Geoffrey E.
Hinton. Visualizing high-dimensional data using
t-SNE. Journal of Machine Learning Research,
9(11):2579–2605, 2008.

[VDMPVdH09] Laurens Van Der Maaten, Eric
Postma, and Jaap Van den Herik. Dimensionality
reduction: A comparative review. Journal of Machine
Learning Research, 10:66–71, 2009.

[VW93] Maheswari Visvalingam and James D Whyatt.
Line generalisation by repeated elimination of points.
The Cartographic Journal, 30(1):46–51, 1993.

[Wic03] Florian Wickelmaier. An introduction to
MDS. Sound Quality Research Unit, Aalborg Univer-
sity, Denmark, 46(5):1–26, 2003.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-14 138




