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ABSTRACT

Attribute values in multidimensional datasets often have different measurement units, making data normalization
an essential preprocessing step for visualization algorithms such as multidimensional data projections. However,
existing normalization techniques are often sensitive to noise, rely on specific data models, are computationally ex-
pensive, or have other limitations. The state-of-the-art method for computing optimal scalings of multidimensional
data attributes is based on Lloyd relaxation in a linearly projected space. However, its high computational com-
plexity hinders its applicability to datasets of moderate or large sizes. We overcome this limitation by efficiently
regularizing the distribution of projected samples using integral images. Our method reduces scaling-induced arti-
facts, leading to more reliable multidimensional data analysis. In numerical experiments, we demonstrate that our
approach, generally, outperforms state-of-the-art methods in computation time, scalability, accuracy, and stability.
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1 INTRODUCTION

Visualizations can represent complex, abstract, and
large datasets in a form that can be efficiently per-
ceived, interpreted, and understood by humans. Visual
representations serve both as a means of displaying
and transmitting information and as an essential step
in data mining and analysis pipelines. Consequently,
visualization algorithms are commonly integrated into
many data processing tools.

Data visualization pipelines commonly incorporate
data transformations. Improper transformations may
lead to information loss, distortion, or misleading
interpretations. Therefore, extensive research has been
conducted over decades to analyze the limitations and
applicability of existing visualization methods, develop
advanced data-, domain-, and task-specific approaches,
and propose quality control mechanisms.

In the visualization field, multidimensional data
projections are dimensionality reduction methods
that map the multidimensional data to a, commonly,
two-dimensional visual domain. Since projections
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are generally lossy transformations, a large variety of
projection methods exist, each aiming to optimally
preserve different characteristics of the original mul-
tidimensional data. Understanding the properties of a
given projection method allows for identifying patterns
in the projected layout and relating them to features of
the original multidimensional data.

Basic low-dimensional patterns include clusters and
outliers. The detection of such patterns in a projec-
tion can be hindered by various visualization effects,
such as overplotting [EDO7, MG13, RGE19] and poor
visual contrast. However, even when a pattern is vi-
sually detected, it remains uncertain whether this low-
dimensional feature represents an intrinsic structure of
the multidimensional data or is an artifact introduced
by the applied projection. One potential source of er-
roneous patterns in the projection domain is the scaling
of data attributes.

Attributes of multidimensional data are often differ-
ent in nature, meaning attribute values are provided in
different units and, consequently, have different value
ranges. Since units of measurement can be arbitrar-
ily changed, large absolute values of any attribute can
be rescaled to small values and vice versa. Convert-
ing units, such as from Celsius to Fahrenheit or Kelvin,
constitutes a linear transformation of data attributes.
Thus, the set of values for each attribute is defined up
to an unknown linear mapping.

There are standard approaches for scaling multidimen-
sional data before applying dimensionality reduction
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techniques such as range scaling or whitening. Range
scaling linearly maps the range of attribute values for
each attribute to a common interval such as [0,1] or
[—1,1], thus making values of all attributes compara-
ble in magnitude. This allows for better control over
each dimension’s contribution to the resulting projec-
tion. However, this type of scaling is highly sensitive to
noise and outliers, potentially leading to unstable cal-
culations, especially when projecting temporally vary-
ing data. Whitening normalizes data such that the stan-
dard deviation of each attribute is equal to unity. This
method is less affected by noise and outliers but as-
sumes that all attributes have similar statistical prop-
erties — a restrictive condition. Consequently, applying
whitening to general multidimensional data may intro-
duce projection artifacts.

Recently, Lehmann and Theisel [LT18] proposed a
technique for computing optimal linear scalings of
multidimensional data. Their approach searches for
scalings that result in a projected point layout that
is as regular as possible, ensuring that remaining
detectable structures are inherent to the data rather than
artifacts of attribute scaling. This method employs
the Lloyd relaxation algorithm to construct a target
regularized layout and adapts the scaling coefficients
to approximate the target distribution optimally. While
the method makes no assumptions about data statistics,
it is computationally intensive, and interactive rates are
only achievable through data sampling. Additionally,
it is limited to projections into a two-dimensional
visualization domain.

In this paper, we propose an efficient method for
computing linear scalings of multidimensional data
with minimal scaling artifacts. Given a linear pro-
jection, we construct a regularized projected data
distribution using the integral image-based approach
developed by Rave et al. [RML25]. Following the idea
of Lehmann and Theisel [LT18], we compute scaling
coefficients that ensure that the projection layout
closely approximates a regularized distribution. Utiliz-
ing Integral Images (Inlms) for computing regularized
distributions overcomes limitations and significantly
improves the state-of-the-art LloydRelaxer approach
by Lehmann and Theisel [LT18]. Our contributions
can be summarized as follows:

(1) We adapt the InIm-based approach by Rave
et al. [RML25] for computing optimal scalings of
multidimensional data.

(2) We adapt a regularity measure for 2D point distribu-
tions to assess the quality of the resulting projections.

(3) We perform numerical tests comparing our pro-
posed method with the state-of-the-art in terms of
computational efficiency, regularization quality, stabil-
ity within interactive usage scenarios, and scalability
with respect to data size.
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2 RELATED WORK

Multidimensional data projections. Projections are
dimensionality reduction methods aimed at visualizing
data in a low-dimensional domain. However, projec-
tions typically introduce distortions, limiting the re-
liability of analyzing original multidimensional data
through projection layouts. Prominent projection meth-
ods mitigate distortion of specific data characteristics,
making the choice of a suitable projection method de-
pendent on the analysis task.

Linear projection methods are preferred for interac-
tive analysis of large datasets due to their low com-
putational cost and algorithmic simplicity. Principal
Component Analysis [Jol86] maximizes variance along
two orthogonal directions in multidimensional space.
For labeled data, Linear Discriminant Analysis [Fis36,
McL04] optimizes class separation in the projection
domain. Star Coordinates (SC) [Kan00, Kan0O1] en-
able interactive exploration of the entire space of lin-
ear projections, providing insight into the influence of
each data attribute on the projected sample distribu-
tion. However, arbitrary linear projections may severely
distort data structure in the projected view. Lehmann
and Theisel [LT13] proposed Orthographic Star Coor-
dinates, which restrict arbitrary linear projections to or-
thographic ones. Molchanov and Linsen [ML19] re-
laxed the Orthographic Star Coordinates constraints to
improve computational efficiency. The resulting Shape-
Preserving Star Coordinates project multidimensional
spheres as discs. A subsequent study [MHL20] in-
troduced an efficient morphing technique for shape-
preserving SC.

Non-linear projection methods provide greater accu-
racy in reflecting multidimensional data properties but
at the cost of higher computational complexity and
limited scalability. Multidimensional Scaling [BG10]
optimally preserves sample similarities based on
Euclidean distances in the multidimensional domain.
Isomap [TSLOO] employs geodesic distances de-
rived from neighborhood graphs to evaluate sample
similarities. T-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [vdMHOS8] focuses on preserving
local neighborhood relationships, though distances in
the projection domain do not necessarily correspond
to those in the original space. Uniform Manifold Ap-
proximation and Projection (UMAP) [MHSGI18] also
aims at preserving local neighborhoods but manifold
structures, as well.

Pagliosa et al. [PPM*15] introduced the Projection In-
spector, an approach that enables users to explore mul-
tiple projection techniques and visually compare the re-
sulting projected layouts. Sacha et al. [SZS™17] devel-
oped a classification of interactive visualization meth-
ods and systems integrating dimensionality reduction
algorithms.
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Scaling. The selection of a scatterplot’s aspect ratio
can be viewed as an a posteriori scaling of projected
2D data. Fink et al. [FHSW13] proposed selecting the
aspect ratio based on Delaunay triangulation properties.
More recently, Wang et al. [WWF119] constructed a
scatterplot density field using anisotropic kernels and
selected an optimal aspect ratio to optimize the density
field’s properties.

Scaling multidimensional data is a crucial preprocess-
ing step, as an improper choice can significantly impact
analysis and is difficult to compensate for, even with an
appropriate projection method. Common approaches
include mapping each attribute’s range to a fixed inter-
val or whitening the data. Lehmann and Theisel [LT18]
recently proposed a general, model-free approach for
computing scaling coefficients. They employed the
Lloyd relaxation algorithm to construct a regularized
version of the projected layout, selecting the optimal
scaling to approximate a uniform distribution, see Sec-
tion 3.3 for details.

Uniformity of sampling and distributions is a key char-
acteristic of many mathematical algorithms. For ex-
ample, quasi-Monte Carlo methods for numerical inte-
gration and optimization rely on uniformity in pseudo-
random sequences. Machicao et al. [MNM™'21] re-
cently evaluated the quality of such generators using a
Markov-chain approach. Ong et al. [OKO12] studied
uniformity in 2D point distributions, identifying three
types of uniformity measures: discrepancy, point-to-
point, and volumetric uniformity. They reviewed seven
existing methods and proposed a novel approach based
on potential energy analogies. In our study, we apply
this measure to evaluate the quality of computed scal-
ing by assessing the regularity of resulting projection
distributions, see Section 3.2 for details.

Various approaches address density regularization in
data visualization applications. Scatterplot occlusion
reduction can be achieved using image-based ap-
proaches, such as pixel mapping [RGE19], or smooth
interactive transformations of the scatterplot domain
using Inlms, as proposed by Rave et al. [RML25]. We
adapt the latter approach for efficient computation of
regularized layouts, discussed in detail in Section 3.3.

Inlms represent precomputed sums of rasterized 2D
density functions over rectangular domains. Originally
introduced by Crow [Cro84] and later by Viola and
Jones [VJ02] for object detection in image analysis,
InIms were applied by Rave et al. [RML25] to assess
imbalance in discrete density distributions over scatter-
plot domains. At each discrete location, a displacement
vector is computed, mapping the spatial domain accord-
ingly. Iterative application of this transformation con-
verges to a nearly uniform density distribution of pro-
jected samples.
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3 FOUNDATIONS

In this section, we introduce the necessary notations
and provide essential background information on the
methods and concepts that form the foundation of our
proposed approach, i.e., scaling in linear multidimen-
sional data projections (Section 3.1), uniformity mea-
sures of 2D distributions (Section 3.2), and regular-
ization of projection outcome (Section 3.3). For easy
reference, we adopt the notations from Lehmann and
Theisel [LT18] whenever possible.

3.1 Scaling in Linear Projections

Let n be the dimensionality of the data space and m the
number of data points. The j-th point in the data space

is represented as a vector d; = (d;1,...,d;,)", and the
entire multidimensional dataset can be expressed as an
nx mmatrix D= (dy,...,dy).

Any linear projection operator mapping R” to R? can be
represented by a 2 x n matrix A = (ay,...,a,). The pro-
jection of a data point d; is given by p; = A -d;, where
the set of projected samples forms the 2 x m matrix P.
Linear normalization of data attributes involves a com-
bination of scaling and translation operations. As noted
by Lehmann and Theisel [LT18], translating multidi-
mensional data attributes does not alter the relative po-
sitions of the projected samples P. Consequently, trans-
lation has no effect on data patterns in the projection
domain. Therefore, we restrict our discussion to pure
scaling operations and use the terms normalization and
scaling interchangeably.

Scaling coefficients are represented by an n-
dimensional vector k = (ki,...,k,). It is often
convenient to express scaling as a diagonal matrix
K = diag(k), where the scaling coefficients appear
along the diagonal. The projection of the multidi-
mensional dataset D using the linear operator A after
applying scaling coefficients k is given by:

P=A-K-D. (1)

SC represent the projection matrix A as a system of
n vectors, each corresponding to a column of A and,
thus, to a specific data attribute. SC allow users to in-
teractively manipulate these vectors, steering elements
of the projection matrix in real-time. The updated ma-
trix is then used to re-project the dataset D, enabling
users to explore the space of linear projection operators
in relation to the configuration space of projections P.

3.2 Uniformity Measure

Visual analysis of projected data aids in understanding
the characteristics and structure of multidimensional
data. Identifying patterns in the projection domain,
such as clusters and outliers, is a key aspect of data
analysis. Some projections provide more insight than
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others. To compare the quality of different projections
in this regard, it is necessary to numerically evaluate
how structured or structure-free a given projection lay-
out is.

Ong et al. [OKO12] proposed a physics-based approach
for characterizing the uniformity of 2D sample distri-
butions. In this method, samples in the 2D projection
domain are treated as particles in a repulsive force field.
The potential energy of the system reaches its minimum
when particles are as evenly distributed as possible, re-
sulting in a uniform distribution. The potential energy
between a pair of particles, separated by a distance r;;,
is modeled as p;j =0 /(0 — rl-zj), where @ is a constant.
The global uniformity measure is then defined as

11y 2
%';ZZ“@—HJ' @

Here, g nearest neighbors of each sample are consid-
ered, and @ is selected based on the typical distance be-
tween uniformly distributed points. Ong et al. [OKO12]
suggested ® = 3m~! for m points sampled in a unit
square. However, our numerical tests confirm that Q
is not invariant to the choice of ¢ under this ®. We,
therefore, correct this by setting @ = 3gm ™2, ensuring
consistent scaling of Q. This corrected ® is used in our
numerical experiments in Section 5.

Structures detectable in the projection domain can be
imprints of intrinsic structures of the original multidi-
mensional data or artifacts of improper scaling and pro-
jection. To enhance data analysis reliability, artificial
patterns caused by improper scaling should be elimi-
nated. Lehmann and Theisel [LT18] proposed that such
artifacts vanish when adjusting vector k. The most
uniform projected distribution, achieved by optimizing
scaling coefficients for a given projection operator A,
provides the most reliable structures for analysis. Thus,
we seek k that maximizes the uniformity measure:

k* =argmax Q(A-K-D). 3)
K

We denote diagonal matrix of optimal scaling coeffi-
cients K* = diag(k*) and the most uniform samples’
distribution with respect to all possible scalings.

3.3 Regularization

While directly solving problem (3) numerically is pos-
sible, e.g., via iterative maximization, evaluating the
measure Q requires computing nearest neighbors. The
complexity of this approach is &' (mlogm), making in-
teractive rates unattainable for large m.

Lehmann and Theisel [LT18] avoided explicit evalua-
tion of Q. Since Q is maximized for uniform distribu-
tions in the 2D projection domain, they proposed regu-
larizing P using the Lloyd relaxation algorithm [L1006]
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and determining the scaling k* that makes P as close as
possible to the regularized distribution. In other words,
maximizing the quality measure is achieved by approx-
imating a point distribution for which Q is maximal.
Their iterative algorithm follows these steps: First, con-
struct the Voronoi diagram [Aur91] of the 2D point set
P using the Fortune algorithm [For86, For04]. Second,
compute the centroids of the Voronoi cells, denoted as
C. Then, update the current scaling k such that P ap-
proximates C. These steps are repeated until conver-
gence.

The approach by Lehmann and Theisel has several
limitations. First, its complexity is & (n.m2), which
is higher than direct optimization of Q in Equa-
tion (2). This issue was mitigated by uniform data
sampling [LT18]. Second, Lloyd relaxation is only
guaranteed to converge in 1D or 2D domains [SG86],
restricting its generalizability. Additionally, numerical
instabilities may arise due to duplicate points, requiring
special handling. Finally, the regularity of the resulting
projected distribution was not evaluated, leaving it
unclear how close Q can be brought to its optimal
value, Q*.

Recently, Rave et al. [RML25] proposed an efficient
regularization technique using Inlms. For a given
2D sample distribution, a rasterized density function
is computed by summing isotropic kernel functions
centered at sample positions. Then, eight InIlms are
computed by summing density values over rectangular
areas, rotating around each pixel in 45° increments.
This set of Inlms provides integral density distribution
information, which is then used to compute a deforma-
tion field that moves the sample distribution toward a
more regular state. The mapping is applied iteratively,
with density field and InIm computations repeated until
a stable configuration is reached.

The algorithm by Rave et al. [RML25] enables efficient
parallel implementation on the GPU with complexity
O (m), as demonstrated in Section 5.3. In our work, we
apply Inlms-based regularization to the projected sam-
ple distribution, replacing the Voronoi centroids C with
the resulting distribution. The optimal scaling k* is then
computed using the steepest descent method. Details
are presented in Section 4.

4 EFFICIENT REGULARIZATION-
BASED NORMALIZATION

Projections map multidimensional data into a low-
dimensional visual domain. When used for data
analysis, projections should be both informative and
reliable. Informative projections provide insights into
the multidimensional data structure. A comprehensive
exploration of multidimensional data typically requires
examining a large set of projections, such as those
presented in data tours [Asi85, FT74, CBCHOS5].
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Identifying a minimal subset of the most informative
projections remains an active research area [LT16].

Projection reliability pertains to the interpretability of
patterns in the projected data, ensuring they accurately
reflect structures in the original multidimensional
space. Misleading patterns can emerge due to improper
data scaling, which can distort relationships and create
artifacts. The goal of the proposed method is to
eliminate such scaling artifacts, thereby enhancing the
reliability of the resulting projection.

In the context of Equation (1), a projection P of data
D is reliable when the projection operator A is chosen
to maximize the preservation of meaningful structures,
while the scaling matrix K (or equivalently, the scal-
ing vector K) is selected to minimize artificial patterns.
Since choosing an appropriate projection operator A is
beyond the scope of this paper, we assume it is fixed.
The optimal scaling K* is the one that suppresses arti-
ficial patterns, ensuring that P is as uniform as possi-
ble. Various measures can assess the uniformity of P,
including measure Q defined in Equation (2).

We optimize the scaling vector k using the steepest de-
scent method, assuming a fixed projection operator A.
The optimization objective is to bring P as close as pos-
sible to a regularized counterpart R. That is, we seek
scaling coefficients k* such that P closely approximates
R. Following the approach in [LT18], we use our regu-
larization R instead of Voronoi centroids.

Construction of R follows the method developed by
Rave et al. [RML25]. Several practical optimizations
were introduced by integrating the regularization pro-
cedure with the adjustment of scaling coefficients using
the steepest descent method. The full algorithm is de-
scribed below:
1. Given a linear projection operator A, initialize the
scaling coefficients ko: If A has been modified in-
teractively (e.g., using SC), the previously optimized
scaling coefficients can be reused. Otherwise, stan-
dard normalization techniques (such as range scal-
ing or whitening, see Section 1) provide the initial
values.
Compute the projection P of the multidimensional
dataset D according to Formula (1) using the current
scaling coefficients.
. Regularize P using the Inlm-based approach by
Rave et al. [RML25]. The steps for computing R
are as follows:

(a) Construct arasterized density field by convolving
a Gaussian kernel with the sample distribution P
and store as a texture.

(b) Compute eight InIms for each texel of the density
texture.

(c) Calculate the deformation field by evaluating the
eight Inlms for each texel.
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(d) Map all samples to their new positions by moving
them in the direction of the deformation vectors.

(e) Repeat the process until a stable configuration R
is achieved.

Our experiments indicate that recomputing R every
s steps suffices, which further reduces computation
time (see Section 5.1). Thus, the computed regu-
larization from one iteration can be reused s times.
Moreover, our numerical tests also show that using a
relatively low-resolution texture has a negligible ef-
fect on the final result while significantly reducing
computation time (see Section 5.3).

. Optimize the scaling coefficients k using the steep-
est descent method. The updated coefficients can
be immediately applied to recompute the projection
layout P, effectively restarting the optimization pro-
cess from step 2. The iterations of the steepest de-
scent method terminate when changes in k become
negligible or when the maximum number of itera-
tions is reached.

S RESULTS

We conducted numerical experiments using the Wine
and Communities datasets from the UCI Machine
Learning Repository [DG19], as well as the Swiss Roll
dataset [vdMPvdHO09]. The numerical experiments
presented in this section were performed on a PC
equipped with an Intel Core i17-13620H CPU and
an NVIDIA GeForce RTX 4070 Laptop GPU. To
construct the discretized density field, we used textures
of varying sizes with a truncated Gaussian kernel
function of size 13 x 13 pixels. Effects of varying
kernel size were presented by Rave et al. [RML25].
We implemented the Lloyd algorithm as described
in [RLW™11] and used the Eigen library [GJ™10] for
linear algebra operations. Parallel computations were
performed using OpenGL and CUDA [NVF20].

5.1 Computation Times and Uniformity

We compared the proposed approach with the state-
of-the-art method by Lehmann and Theisel [LT18]
by conducting a series of tests with varying pa-
rameters. The texture size was set to values from
{128, 256,512, 1024} for the proposed method and
from {128,256,512,1024,2048,4096} for Lloyd-
Relaxer. The number of steepest descent iterations
was chosen from the set {20, 40, 60, 80, 100}, and
the step size was set to multiples of 0.1 within the
interval [0.1, 1.0]. We recomputed R every s =1,...,5
iterations. For each combination of parameters, we
recorded the execution time of each algorithm as well
as the uniformity measure Q.

Results for the Communities and Wine datasets are pre-
sented in Figure 1. For the former, the proposed method
shows a noticeable improvement in achieving higher
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Figure 1: Computation times and uniformity Q of our
approach for a set of parameter configurations (blue) in
comparison to the state-of-the-art (red): (a) Communi-
ties dataset, (b) Wine dataset, (c) zoomed-in version of

(b).

uniformity values Q for most parameter combinations
while maintaining comparable computational timings
(see Figure la). For the latter, the choice of param-
eters has a greater impact on the measured character-
istics. However, the proposed method achieves inter-
active rates for any parameter combination (Figure 1b)
and significantly higher Q values in most cases (Fig-
ure 1c). When computing the uniformity measure Q,
we considered all pairs of samples, i.e., ¢ = m.

5.2 Stability

The primary application scenario for both Lloyd-
Relaxer and the proposed method involves linear
projections, potentially encoded in SC, for interactive
exploration of multidimensional data. When the user
interacts with the SC axes, i.e., modifies the linear pro-
jection operator, scaling coefficients are recalculated to
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eliminate artificial patterns in the projection domain.
However, if the scaling coefficients change too dra-
matically, the projection layout undergoes significant
distortions, hindering consistent data exploration.

In our next set of experiments, we compare the stability
of the evolution of scaling coefficients computed by the
two methods. Starting from a radial SC layout for the
Wine dataset, we moved one axis along a circular tra-
jectory (without changing its length) or, alternatively,
along a lemniscate trajectory (where both length and
orientation change):

x(t) = cost/(1+sin’1),
y(t) = 0.2 +sint - cost /(1 +sin’r),

where ¢ € [0,27x]. The positions of the other SC axes
remained unchanged. Along the moving axis path, we
recorded changes in the projected sample distances.
Figure 2 presents detailed results for the movement of
the SC axis corresponding to attribute 13, as well as
aggregated data for all moving axes. In all tests, the
changes caused by the proposed optimization procedure
were (often substantially) smaller than or equal to those
produced by LloydRelaxer.

Figure 3 summarizes the change of the scaling coef-
ficients and the uniformity measure in the same tests.
The uniformity measure Q reached higher values with
the proposed algorithm while requiring smaller adjust-
ments to the scaling coefficients. Thus, our approach
ensures smoother behavior of the projected samples and
higher uniformity when the user interactively explores
the space of linear projection operators.

5.3 Scalability

The key difference between the proposed method and
the LloydRelaxer approach lies in the regularization al-
gorithm. Experiments presented in Figure 1 show that
the proposed approach results in a higher uniformity
measure while maintaining comparable execution times
for small datasets. Next, we examine the scalability of
both approaches with respect to data size.

Lehmann and Theisel stated that the complexity
of the regularization algorithm used in [LT18] was
O (mlogm). However, the implementation by Rong et
al. [RLW*11] allows for &'(m) complexity, which is
numerically confirmed by our experiment presented in
Figure 4a. Results for the Inlm-based regularization
are also shown in Figure 4b. Although both methods
exhibit linear complexity in m, the latter algorithm
achieves lower execution times.

Reducing the texture size for the Inlm-based approach
to 256 x 256 significantly improves computation speed.
Further reductions in texture size have little effect on
execution time but lead to a noticeable drop in accu-
racy. Additionally, texture sizes below 256 x 256 are
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Figure 2: Stability (average sample distances) of our approach (blue) compared to the state-of-the-art (red). The
Wine dataset is projected with a linear operator corresponding to a standard radial layout of SC. When the SC axis

corresponding to attribute 13 is moved along a circular p
the average samples’ distances are recorded. Summary of
in Figures 2b and 2d.

not supported by the implementation of the algorithm
in Rong et al. [RLW™11].

5.4 Case Study

We applied the proposed normalization of data
attributes to the Swiss Roll dataset [vdMPvdHO09]. Fig-
ure 5 compares the classical linear projections with the
results obtained using LloydRelaxer and the proposed
approach for three different SC configurations.

The projection layout shown in Figure 5i may seem
counterintuitive. Our method searches for a scaling that
produces the most uniform sample distribution in the
projection domain. However, the distribution in Fig-
ure 5i exhibits a highly structured pattern. Despite this,
the uniformity measure is very high, with Q = 0.95, dif-
fering only slightly from Q = 0.949 computed for the
projection in Figure Sh. Although the local sample den-
sity along the spiral curve is high, the samples remain
well spread on the global scale. Moreover, this struc-
tured pattern is intrinsic to the artificial dataset, making
its presence in the projection not only expected, but also
desirable.

6 CONCLUSION

We presented a method for computing scalings
of multidimensional data where scaling artifacts are

http://www.doi.org/10.24132/JWSCG.2025-5 49

ath (Figures 2a) or lemniscate (Figures 2c¢), changes in
similar tests when moving other SC axes are presented

minimized. The proposed technique enhances the state-
of-the-art approach by Lehmann and Theisel [LT18] in
multiple aspects. First, interactive rates are achieved
for significantly larger datasets. No down-sampling is
required, and the scalability of the proposed algorithm
is superior to that of the existing method. Second,
the novel approach achieves higher values of the
uniformity measure Q. In this work, we corrected the
uniformity measure proposed by Ong et al. [OKO12],
making it invariant to the number of nearest neighbors
considered. Third, numerical instabilities related to
duplicate points in the dataset are avoided. As a result,
scaling coefficients — and consequently, the projection
layout — evolve more smoothly during user interactions
with SC. Several application cases are shown in the
accompanying video. The proposed approach is cur-
rently applied to linear projection operators. In future
work, we will generalize the algorithm to non-linear
dimensionality reduction methods.

7 ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG) grants MO 3050/2-3 — 360330772
and CRC 1450 —431460824.



ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Dataset: Wine, Curve: Circle

Journal of WSCG
http://www.wscg.eu

Vol.33, No-1-2, 2025

Dataset: Wine, Curve: Circle

: — Eigilxslarized ) 0.8 %% ﬁ é? %l% ?%, é? @? ?é '?% %% %-% @% %%
g0 | i : R R B =
L ﬁ i i éé WL g i — teries
6 7 8 9

1 2 3 4 5 10 11 12 13

Attribute

(a)

Dataset: Wine, Curve: Lemniscate

1 2 3 4 5 6 7 8 9 10 1 12 13
Attribute

(b)

Dataset: Wine, Curve: Lemniscate

—— Regularized 0.8 = %' &1 =] &
5| | (TR ERRESHEN LY
@ : . : ’ i : T !
5§20 P ‘ 1| o6 - i : ;
%15 . : ! . g !
g1 : : £
s | i : g 04
T A B
s ! ! : A T T A | I
“osi1 g | . é o é [ ! '
: . i ! : ‘ : i —— Regularized
0.0 i& N .i.& PR ‘é & .Ll. 15 4 .L& J.é i 0.0 — Loyd
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 1 12 13
Attribute Attribute
(©) (d
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