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ABSTRACT

Event cameras are novel sensors that provide significant advantages over traditional cameras, such as low latency,
high dynamic range, and reduced motion blur. These properties make them particularly well-suited for 6-DOF pose
estimation tasks in challenging environments. In this paper, we present a novel transformer-based approach for 6-
DOF pose estimation using event camera data. Our method combines a pretrained ResNet50 backbone for feature
extraction with a custom transformer encoder to model the spatial and temporal dependencies inherent in event
data. We demonstrate the effectiveness of our approach on a dataset of real-world event camera images, where we
achieve significant improvements in pose estimation accuracy compared to state-of-the-art methods. Additionally,
our method exhibits robustness to varying lighting conditions, motion blur, and sensor noise, highlighting its
potential for deployment in a wide range of applications, such as robotics, autonomous vehicles, and augmented
reality. Our experimental results showcase the promising capabilities of transformer-based models in leveraging
the unique properties of event cameras for accurate and efficient 6-DOF pose estimation.
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1 INTRODUCTION gence of deep learning has brought a renewed focus
on learning-based approaches. Traditionally dominated
by Convolutional Neural Networks (CNN), learning-
based methods have been successful in various tasks
such as object recognition [6], image classification [19],
and segmentation [1]. These methods have demon-
strated robust feature extraction abilities [12] but re-
quire large amounts of training data and substantial
computational resources. Thus, methods that allevi-
ate the necessity for recomputation, such as transfer
learning and integration, can be more compelling. De-
spite these advancements, both geometric and learning-
based relocalization methods continue to struggle with
factors like illumination changes, blur, and flat images
that make feature extraction challenging. This diffi-
culty is primarily due to the nature of the input im-
ages captured by conventional cameras and used in
these methods. An alternative approach is using event
cameras, also known as neuromorphic cameras. These
sensors respond to local brightness changes and pro-
duce a stream of asynchronous events (discrete pixel-
wise brightness changes) corresponding to scene illu-

Camera pose relocalization, the task of determining
the position and orientation of a camera from an ob-
served scene [27], is a fundamental issue in numer-
ous computer vision applications. These applications
range from autonomous vehicle driving and robotics,
to augmented reality and pedestrian visual positioning.
Conventional relocalization methodologies in computer
vision can be grouped into two primary categories:
(1) geometric-based and (2) learning-based approaches.
Geometric-based strategies [24] predominantly rely on
local feature matching. These methods involve extract-
ing local features from an image, performing a 2D-3D
match with corresponding 3D points, and subsequently
calculating the six-degree-of-freedom camera pose us-
ing Perspective-n-Point algorithms [14]. These tech-
niques, however, are heavily dependent on the accu-
racy of the feature extraction and matching processes,
which can be particularly compromised in conditions
of variable illumination [15]. In contrast, the emer-
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Building on these advantages, Rebecq et al.[28] intro-
duced a method combining IMU and event information
to estimate the six-degree-of-freedom (6DOF) camera
pose. More recently, a method known as SP-LSTM[25]
was developed, employing a VGG16 architecture [31]
trained from scratch with a stochastic gradient descent
algorithm and two stacked spatial LSTM layers. While
this method achieved promising results, it required ex-
tensive training time due to the retraining of the entire
network model with the LSTM layer.

In this paper, we introduce a new method to alleviate the
issues associated with LSTM layers [33] [25]. Our ap-
proach involves a deep learning model that uses trans-
formers instead of CNNs for feature extraction from
event images. We employ a pretrained ResNet50 back-
bone for feature extraction combined with a custom
transformer encoder to model the spatial and tempo-
ral dependencies inherent in event data. Following fea-
ture extraction, these features are aggregated using the
outer product at each image location and pooled us-
ing a bilinear pooling operation [17]. We also incor-
porate advancements in deep learning, employing the
ADAM optimizer [13] along with the ELU activation
function [2]. Through conducting experiments across
multiple datasets, we demonstrate that our method out-
performs state-of-the-art methods, confirming its effec-
tiveness and applicability

2 RELATED WORK

In this section, we delve into the predominant tech-
niques in the field, beginning with an examination of
pose estimation methodologies for conventional cam-
eras, and then moving on to scrutinize the relatively
sparse range of works addressing pose estimation for
event cameras.

2.1 Standard methods for pose estimation

The majority of advanced methods for camera pose
estimation have been formulated in the context of
RGB cameras. These can be broadly divided into
two categories: Geometry-based and Learning-based
approaches. ~ Geometry-based approaches typically
operate on the assumption of a pre-existing three-
dimensional environment. Using a set of scene images,
these methodologies [16] often construct a three-
dimensional model employing principles of Structure
from Motion (SfM)[30][9] or Simultaneous Local-
ization and Mapping (SLAM) [23]. A commonality
among these geometric-based approaches is the pivotal
role of feature extraction and matching processes. On
the other hand, learning-based methods are primarily
data-driven and rely heavily on learning algorithms.
The resurgence of the deep learning paradigm has
played a significant role in bolstering the popularity
of this category. With the widespread availability of
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data and rapid progress in computational resources,
many researchers are revisiting traditional computer
vision applications using these learning-based tech-
niques. This paradigm shift has heralded significant
advancements in numerous tasks, with many successful
works emerging as a result. Notable examples include
the impressive results attained in image classification
by models such as ResNet [10] and Inception [32],
superior performance in image segmentation by Long
et al.[18], and substantial advancements in object
detection by Girshick[8] among others. Within the
sphere of camera pose estimation, PoseNet, a method
introduced by Kendall et al. [12], aims to estimate
camera pose from an RGB image. Despite adhering
to a deep learning paradigm, the accuracy of PoseNet
remains relatively lower compared to traditional
methods.

2.2 Event camera pose estimation

Event cameras, known for their low latency, are par-
ticularly adept at facilitating real-time motion analy-
sis and high-speed robotics applications. Each pixel is
processed independently, thus negating the need for a
global exposure time frame [22]. Furthermore, the High
Dynamic Range (HDR) (>120dB) ensures that these
cameras do not succumb to motion blur [29]. Early
work with event cameras leveraged these attributes for
applications such as swift object tracking to control ba-
sic robotic systems [3], steering angle prediction for
self-driving cars [20], and 1-megapixel object detec-
tion [26]. Authors of [21] implemented an on-board
perception system with an event camera for 6DOF pose
tracking of a quadrotor, allowing for pose estimation
during high-speed maneuvers against a known model.
More recently, the method introduced in [7] provided
a direct estimation of the camera’s angular velocity.
Rebecq et al [28] presented a method to merge IMU
data with events for 6DOF camera relocalization. A
more recent deep learning-based method, known as
(SP-LSTM), proposed by[25] estimated 6DOF using a
custom architecture. This architecture combined a pre-
trained ResNet50 backbone for feature extraction with
a custom transformer encoder to model the spatial and
temporal dependencies inherent in event data. Despite
achieving promising results for camera pose estimation,
this method required a significant investment in train-
ing time due to the retraining of the complete network
model. In our work, we build upon these developments
and propose to evaluate a range of CNN architectures
employed for extracting pertinent pose features. We
also suggest a single-layer spatial LSTM, which con-
solidates and condenses the extracted features. Capital-
izing on recent strides made in deep learning, we imple-
ment a NADAM optimizer [5] in tandem with the ELU
activation function [2]. We execute experiments on real
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Figure 1: Image preprocessing from cloud of point to
event images inspired by [7]

and simulated datasets and present results from various
network architectures.

3 PROPOSED METHOD

Our proposed method for 6-DOF pose estimation us-
ing event camera data involves a pipeline that consists
of two primary steps: feature extraction with ResNet50
and temporal dependency modeling with a Transformer
encoder. The details are described below.

3.1 Feature Extraction with ResNet50

In order to convert raw event data into a suitable rep-
resentation for pose estimation, we leverage the feature
extraction capabilities of a ResNet50 [10] convolutional
neural network (CNN) pre-trained on ImageNet [4].

The input to this network is an event image, which is
generated from a sequence of events captured by the
event camera. Given an event sequence, we follow a
similar approach to Nguyen et al. [25] to convert these
sequences into event images I € RF>*W  where H and
W represent the height and width of the image respec-
tively. Each event e is a tuple, represented as:

e= (e, (ex,ey)ep), M

where ¢; is the timestamp of the event, (e,,e,) are the
pixel coordinates, and e, = %1 is the polarity indicating
the direction of brightness change at the corresponding
pixel.

These event images are then passed through the
ResNet50 network to generate a high-dimensional
feature vector F € RP, where D is the dimension of the
feature space.

3.2 Temporal Dependency Modeling with
Transformer Encoder

Traditional recurrent models like LSTMs or GRUs
are commonly used to model temporal dependencies
in sequence data. However, these models process the
sequence data in a step-by-step manner, making it
challenging to capture long-range dependencies. On
the other hand, the Transformer model, introduced by
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Vaswani et al. [34], can capture such dependencies
more efficiently, without the need for sequential
processing.

We pass the feature vector F' obtained from ResNet50 to
a Transformer encoder. The Transformer encoder gen-
erates a context-aware representation T € RP for each
event image, where each feature not only captures the
information of the corresponding event but also consid-
ers the information from other events in the sequence.

3.3 Pose Estimation

The final step of our pipeline is to estimate the 6-DOF
camera pose from the Transformer outputs. To achieve
this, we use a fully connected (FC) layer as a regressor.

This FC layer maps the context-aware feature represen-
tation T to a 6-DOF camera pose vector P € R”. This
mapping can be represented as:

P=FC(T), 2

where FC(.) denotes the function represented by the
FC layer. The pose vector P consists of three transla-
tion components y,1y,#; and three rotation components
represented in Euler angles 6., 6,, 6,.

This completes our proposed method for 6-DOF pose
estimation using event camera data. In the following
sections, we present experimental evaluations of our
method on a real-world event camera dataset.

4 EXPERIMENTAL SETUP
4.1 Dataset

We validate the effectiveness of our method on the
Event Camera Dataset [22], which is widely used for
evaluating event-based vision algorithms. The dataset
comprises sequences captured using a DVS128 event
camera in various indoor and outdoor environments.
Each sequence in the dataset includes a stream of asyn-
chronous events, accompanied by ground truth 6-DOF
camera poses obtained from a high-accuracy motion-
capture system.

4.2 Training Details

Our model consists of a ResNet50 backbone, a trans-
former encoder, and a fully connected layer. The
ResNet50 model is initialized with weights pre-trained
on ImageNet [4], while the transformer and fully
connected layers are randomly initialized. The model
is trained using the Adam optimizer [13], with an initial
learning rate of 1e —4. The learning rate is reduced by
a factor of 0.1 whenever the validation loss plateaus.
The model is trained for 100 epochs with a batch size
of 32. We use the Mean Squared Error (MSE) loss
between the predicted poses and ground truth poses as
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Figure 2: An overview of our 6DOF pose relocalization method for event cameras . We first create an event
image from stream of events. Then we extract features from the created event image.Once these event images are
generated, they are fed into our feature extraction model, which is built on a ResNet50 architecture pre-trained on
ImageNet. This model extracts high-level spatial features from the event images, providing a robust representation

of the input data. Then the output is passed to a custom transformer encoder.

PoseNet [12]

Bayesian PoseNet [11]

SP-LSTM [25]

Ours

Median Error

Average Error

Median Error

Average Error

Median Error

Average Error

Median Error

Average Error

shapes rotation
shapes translation
box translation
dynamic 6dof
hdr poster

poster translation

0.109m, 7.388°
0.238m, 6.001°
0.193m, 6.977°
0.297m, 9.332°
0.282m, 8.513°

0.266m, 6.516°

0.137m, 8.812°
0.252m, 7.519°
0.212m, 8.184°
0.298m, 11.242°
0.296m, 10.919°

0.282m, 8.066°

0.142m, 9.557°
0.264m, 6.235°
0.190m, 6.636°
0.296m, 8.963°
0.290m, 8.710°

0.264m, 5.459°

0.164m, 11.312°
0.269m, 7.585°
0.213m, 7.995°
0.293m, 11.069°
0.308m, 11.293°

0.274m, 7.232°

0.025m, 2.256°
0.035m, 2.117°
0.036m, 2.195°
0.031m, 2.047°
0.051m, 3.354°

0.036m, 2.074°

0.028m, 2.946°
0.039m, 2.809°
0.042m, 2.486°
0.036m, 2.576°
0.060m, 4.220°

0.041m, 2.564°

0.020m, 1.893°
0.035m, 2.321°
0.032m, 1.977°
0.031m, 1.912°
0.042m, 2.945°

0.038m, 2.145°

0.025m, 2.591°
0.032m, 2.523°
0.041m, 1.825°
0.042m, 2.594°
0.059m, 3.883°

0.040m, 2.415°

Average

0.231m, 7.455°

0.246m, 9.124°

0.241m, 7.593°

0.254m, 9.414°

0.036m, 2.341°

0.041m, 2.934°

0,031m, 2.198°

0.039m, 2.638°

Table 1: Comparison between our method results and the results of PoseNet [12], Bayesian PoseNet [11] and

SP-LSTM [25]. The evaluation is performed using the random split protocol.

PoseNet [12]

Bayesian PoseNet [11]

SP-LSTM [25]

Ours

Median Error

Average Error

Median Error

Average Error

Median Error

Average Error

Median Error

Average Error

shapes rotation
shapes translation

shapes 6dof

0.201m, 12.499°

0.198m, 6.969°

0.320m, 13.733°

0.214m, 13.993°

0.222m, 8.866°

0.330m, 18.801°

0.164m, 12.188°
0.213m, 7.441°

0.326m, 13.296°

0.191m, 14.213°
0.228m, 10.142°

0.329m, 18.594°

0.045m, 5.017°

0.072m, 4.496°

0.078m, 5.524°

0.049m, 11.414°
0.081m, 5.336°

0.095m, 9.532°

0.049, 3.581°
0.064m, 4.685°

0.072m, 5.875°

0.048m, 6.901°
0.071m, 5.384°

0.093m, 7.652°

Average

0.240m, 11.067°

0.255m, 13.887°

0.234m, 10.975°

0.249m, 14.316°

0.065m, 5.012°

0.075m, 8.761°

0.061m, 4.713°

0.070m, 6.645°

Table 2: Comparison between our method results and the results of PoseNet [12], Bayesian PoseNet [11] and

SP-LSTM [25]. The evaluation is performed using the novel split protocol.

our optimization objective. The MSE loss is defined as

follows:
1 ¥ o
L=y LR,

i=1

(©))

where N is the total number of samples in the dataset, P;
is the predicted pose, and Pig[ is the ground truth pose.

S RESULTS AND DISCUSSION

The performance of our model is evaluated in terms
of translation and rotation errors. The translation er-
ror is computed as the Euclidean distance between the

http://www.doi.org/10.24132/CSRN.2025-13

predicted and ground truth translations, while the rota-
tion error is calculated as the angle between the pre-
dicted and ground truth rotations, converted to Euler
angles. Our model achieves competitive results when
compared with state-of-the-art methods on the Event
Camera Dataset, demonstrating its effectiveness in esti-
mating 6-DOF camera poses from event data.

5.0.1 Comparison with state-of-the-art methods

we report the comparison results between our method
explained on the section 3.1 and the state of the art mod-
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Figure 3: Median error of translation for the hdr_poster dataset.

Median Orientation Error for hdr_poster Dataset
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Figure 4: Median error of rotation for the hdr_poster dataset.

els namely PoseNet[12], Bayesian PoseNet [11] and
SP-LSTM[25] using CNN and LSTM.

5.0.2  Results with Random Split

The outcomes highlighted in Table 1 were garnered uti-
lizing a random split methodology. We deployed 6
sequences (shapes rotation, box translation, shapes
translation, dynamic 6dof, hdr poster, poster trans-
lation) for this set of experiments. Across all these
sequences, our model consistently exhibits the least
average and mean errors. It reaches an average me-
dian error of 0.031m and 2.198°in all sequences of the
real dataset, which surpasses the most recent method,
SP-LSTM, that records results of 0.036m and 2.341°,
PoseNet and Bayesian PoseNet outcomes were 0.231m,
7.455°nd 0.241m, 7.593°, respectively.

http://www.doi.org/10.24132/CSRN.2025-13

5.0.3  Results with Novel Split

The comparison outcomes from the novel split, as
delineated in Section 4.1, are presented in Table 2.
The table indicates that the novel split strategy is
more challenging than the random split approach as
all methods reported higher error rates. We employed
three sequences from the shapes scene (shapes ro-
tation, shapes translation, shapes 6dof) for this
particular split. The outcomes obtained through our
method outperform those garnered with state-of-the-art
techniques. We attained an average median error of
0.061m and 4.713°across all sequences of the real
dataset, in comparison to the SP-LSTM method which
resulted in 0.065m, 5.012°. Furthermore, PoseNet
and Bayesian PoseNet reported errors of 0.240m,
11.067°and 0.234m, 10.975°respectively.
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Mean and Standard Deviation of translation error
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Figure 5: Distribution of translation error.

Mean and Standard Deviation of orientation error
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Figure 6: Distribution of rotation error.

‘We should note that in the novel split strategy, the test-
ing set comprises the final 30% of the event images.
This means that we lack the "neighborhood" relation-
ship between the training and testing images. Con-
versely, in the random split, the testing images could
be in close proximity to the training images since the
images are randomly chosen from the entire sequence
for training/testing.

One of the key advantages of our method is its ability
to capture long-range dependencies in the event data
using the Transformer encoder, which contributes to
the improved performance. We also observe that the

http://www.doi.org/10.24132/CSRN.2025-13

ResNet50 backbone plays a crucial role in extracting
relevant spatial features from the event data. This is
evidenced by the model’s robustness against rapid mo-
tion and high-dynamic-range scenes, which are typi-
cally challenging for traditional frame-based vision al-
gorithms. In future work, we aim to further improve the
model’s performance by investigating other feature ex-
traction backbones and transformer architectures, and
by exploring data augmentation techniques tailored to
event data.
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6 CONCLUSION

In this work, we presented a novel method for 6-DOF
pose estimation using event camera data, combining a
pretrained ResNet50 for feature extraction with a cus-
tom transformer encoder for capturing the inherent spa-
tial and temporal dependencies. Our method provides
an efficient way to handle the non-sequential changes
in the scene that are common in event data. Through
comprehensive experiments, we demonstrated that our
method outperforms the current state-of-the-art tech-
niques in both random and novel split strategies. De-
spite the success of our method, there are still oppor-
tunities for further improvement. For future work, we
aim to explore additional ways of enhancing the trans-
former’s capability to better capture the complexity of
the spatial-temporal event data.

7 REFERENCES

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation.
IEEE transactions on pattern analysis and ma-

chine intelligence, 39(12):2481-2495, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and
Sepp Hochreiter. Fast and accurate deep net-
work learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

Jorg Conradt, Matthew Cook, Raphael Berner,
Patrick Lichtsteiner, Rodney J Douglas, and Tobi
Delbruck. A pencil balancing robot using a pair
of aer dynamic vision sensors. In 2009 IEEE In-
ternational Symposium on Circuits and Systems,
pages 781-784. IEEE, 2009.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li,
Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE con-
ference on computer vision and pattern recogni-
tion, pages 248-255. Ieee, 2009.

Timothy Dozat. Incorporating nesterov momen-
tum into adam. 2016.

(2]

(3]

(4]

(5]
[6] Andreas Eitel, Jost Tobias Springenberg, Luciano
Spinello, Martin Riedmiller, and Wolfram Bur-
gard. Multimodal deep learning for robust rgb-d
object recognition. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems (IROS), pages 681-687. IEEE, 2015.

Guillermo Gallego and Davide Scaramuzza. Ac-
curate angular velocity estimation with an event
camera. IEEE Robotics and Automation Letters,
2(2):632-639, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. Rich feature hierarchies for ac-

curate object detection and semantic segmenta-

tion. In Proceedings of the IEEE conference on

(7]

(8]

http://www.doi.org/10.24132/CSRN.2025-13

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

computer vision and pattern recognition, pages
580-587, 2014.

Xian-Feng Han, Hamid Laga, and Mohammed
Bennamoun. Image-based 3d object reconstruc-
tion: State-of-the-art and trends in the deep learn-
ing era. [EEE transactions on pattern analy-
sis and machine intelligence, 43(5):1578-1604,
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
7707178, 2016.

Alex Kendall and Roberto Cipolla. Modelling
uncertainty in deep learning for camera relocal-
ization. In 2016 IEEE international conference
on Robotics and Automation (ICRA), pages 4762—
4769. IEEE, 2016.

Alex Kendall, Matthew Grimes, and Roberto
Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 2938-2946, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vincent Lepetit, Francesc Moreno-Noguer, and
Pascal Fua. Epnp: An accurate o (n) solution to
the pnp problem. International journal of com-
puter vision, 81(2):155-166, 2009.

Ming Li, Ruizhi Chen, Xuan Liao, Bingxuan
Guo, Weilong Zhang, and Ge Guo. A precise in-
door visual positioning approach using a built im-
age feature database and single user image from
smartphone cameras. Remote Sensing, 12(5):869,
2020.

Ming Li, Jiangying Qin, Deren Li, Ruizhi Chen,
Xuan Liao, and Bingxuan Guo. Vnlstm-posenet:
A novel deep convnet for real-time 6-dof cam-
era relocalization in urban streets. Geo-spatial
Information Science, 24(3):422-437, 2021.

Tsung-Yu Lin, Aruni RoyChowdhury, and
Subhransu Maji. Bilinear cnn models for fine-
grained visual recognition. In Proceedings of the
IEEE international conference on computer vi-
sion, pages 1449-1457, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Dar-
rell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition,
pages 3431-3440, 2015.

Dhruv Mahajan, Ross Girshick, Vignesh Ra-
manathan, Kaiming He, Manohar Paluri, Yix-
uan Li, Ashwin Bharambe, and Laurens Van



ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

http://www.wscg.eu

Der Maaten. Exploring the limits of weakly super-
vised pretraining. In Proceedings of the European
conference on computer vision (ECCV), pages
181-196, 2018.

Ana I Maqueda, Antonio Loquercio, Guillermo
Gallego, Narciso Garcia, and Davide Scaramuzza.
Event-based vision meets deep learning on steer-
ing prediction for self-driving cars. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5419-5427, 2018.

Elias Mueggler, Basil Huber, and Davide Scara-
muzza. Event-based, 6-dof pose tracking for
high-speed maneuvers. In 2014 IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems, pages 2761-2768. IEEE, 2014.

Elias Mueggler, Henri Rebecq, Guillermo Gal-
lego, Tobi Delbruck, and Davide Scaramuzza.
The event-camera dataset and simulator: Event-
based data for pose estimation, visual odometry,
and slam. The International Journal of Robotics
Research, 36(2):142-149, 2017.

Raul Mur-Artal, Jose Maria Martinez Montiel,
and Juan D Tardos. Orb-slam: a versatile and ac-
curate monocular slam system. IEEE transactions
on robotics, 31(5):1147-1163, 2015.

Raul Mur-Artal and Juan D Tardés. Orb-slam2:
An open-source slam system for monocular,

stereo, and rgb-d cameras. IEEE transactions
on robotics, 33(5):1255-1262, 2017.

Anh Nguyen, Thanh-Toan Do, Darwin G Cald-
well, and Nikos G Tsagarakis. Real-time 6dof
pose relocalization for event cameras with stacked
spatial 1stm networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 0-0, 2019.

Etienne Perot, Pierre de Tournemire, Davide Nitti,
Jonathan Masci, and Amos Sironi. Learning to
detect objects with a 1 megapixel event camera.
Advances in Neural Information Processing Sys-

tems, 33:16639-16652, 2020.

Chao Qu, Shreyas S Shivakumar, Ian D Miller,
and Camillo J Taylor. Dsol: A fast di-
rect sparse odometry scheme. arXiv preprint
arXiv:2203.08182, 2022.

Henri Rebecq, Timo Horstschaefer, and Davide
Scaramuzza. Real-time visual-inertial odometry
for event cameras using keyframe-based nonlinear
optimization. 2017.

Henri Rebecq, René Ranftl, Vladlen Koltun, and
Davide Scaramuzza. High speed and high dy-
namic range video with an event camera. IEEE
transactions on pattern analysis and machine in-
telligence, 43(6):1964-1980, 2019.

Torsten Sattler, Bastian Leibe, and Leif Kobbelt.

http://www.doi.org/10.24132/CSRN.2025-13

128

(31]

(32]

(33]

[34]

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Efficient & effective prioritized matching for
large-scale image-based localization. /IEEE trans-
actions on pattern analysis and machine intelli-
gence, 39(9):1744-1756, 2016.

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556,
2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1-9, 2015.

Ahmed Tabia, Fabien Bonardi, and Samia
Bouchafa. Deep learning for pose estimation from
event camera. In 2022 International Conference
on Digital Image Computing: Techniques and
Applications (DICTA), pages 1-7. IEEE, 2022.
Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
F.ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information
processing systems, 30, 2017.





