
2D B-spline Curve Reconstruction using Convolutional
Auto-Encoders and Distance Fields

Alexander Komar
a.komar@tugraz.at

Saeedeh Barzegar Khalilsaraei
s.barzegarkhalilsaraei@tugraz.at

Ursula Augsdörfer
augsdoerfer@tugraz.at

Institute of Visual Computing, Graz University of Technology, Austria

ABSTRACT
Curve reconstruction is a crucial task in various research domains, including Computer-Aided Design (CAD) and
Reverse Engineering. Recovering a B-spline control polygon from a given set of points representing a curve
remains an active area of study. We introduce a novel approach that leverages a distance field representation of the
curve as input to two neural networks to reconstruct a closed B-spline. One network predicts distance fields to the
control points, while the other estimates distances to the control polygon. Using these outputs, we determine the
connectivity between control points, enabling the reconstruction of the B-spline control polygon. Our method is
evaluated against state-of-the-art machine learning techniques and traditional optimization-based approaches.
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1 INTRODUCTION
The art of reconstructing an object from point data
is an interesting and challenging problem. Curve re-
construction plays a fundamental role in many areas
of geometric modeling, including Computer-Aided De-
sign (CAD), Reverse Engineering, and Shape Analy-
sis. In these applications, obtaining a smooth and ac-
curate parametric representation of a curve from an un-
ordered set of points is essential for downstream tasks
such as surface reconstruction, manufacturing, and dig-
ital modeling. Among various curve representations,
B-splines [2] are particularly desirable due to their flex-
ibility, smoothness, and compact control point repre-
sentation.

It is well known and widely supported simple yet ele-
gant mathematical representation of a smooth curve. A
B-spline curve is defined as follows:

C(t) =
n

∑
i=0

Ni,d(t)Pi, t ∈ [td , tn], (1)

Where Ni,d are the B-spline basis functions of degree d
that is defined on a knot sequence U = {t1, . . . , tn+d+1}
which can be uniform or non-uniform and the control
points are denoted via Pi. For a given knot sequence,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the position and connectivity of the control points Pi
fully describe the shape of the smooth B-spline curve.
However, recovering a B-spline control polygon from a
given set of points remains a challenging task.
By hand this task can be time consuming and tedious,
but automation may lead to unwanted results or low
quality reconstructions. This is especially true in
CAD/CAM where the quality of the representation
of an object is of upmost importance to produce
high-quality goods.
In this paper we propose a method for reconstructing
closed uniform B-spline curves from planar unstruc-
tured curve data using neural networks. The input to
our networks is a Distance Field (DF) of the curve. The
reconstruction of the B-spline representation is split
into two complementary data driven approaches, both
employing convolutional auto-encoders: From the first
one, we learn the DF representing the control point po-
sitions. The second one is used to reconstruct the con-
nectivity of the control points.
The remainder of the paper is structured as follows: In
Section 2 we summarise related work on data driven
Signed Distance Fields (SDF) reconstruction and B-
spline reconstruction. In Section 3 we explain how syn-
thetic data is generated for training. In Section 4 we de-
scribe the two networks used to predict control points
and their connectivity and present a number of results
in section 5. Finally we conclude the paper.

2 RELATED WORK
In this section we describe the related work to our appli-
cation, which represents itself two fold: Neural network
SDF reconstruction and B-spline reconstruction.
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2.1 Neural Network SDF Reconstruction
Since SDFs provide a fixed size input to neural net-
works that can represent almost any shape to a certain
degree, they are commonly used when interfacing with
them. Diverse research was conducted on reconstruc-
tion and processing of such SDFs.

Wang et al. [15] used SDFs and Voxel arrays as in-
put to their convolutional auto encoder extreme learn-
ing machine (CAE-ELM) to learn features of 3D ob-
jects. They trained their network on a subset of Mod-
elNet [16], namely ModelNet10 and ModelNet40 and
compared their performance in classifying the models.

SDFs can also serve as intermediate results, as Zhang
et al. [17] use a learned SDF as surface representation
when reconstructing surfaces from multi-view images.
The researchers use a learned light field to represent the
texture of the reconstructed surface. Marching Cubes is
used for extracting a triangle mesh from the SDF.

Diverting from the classical cube lattice Shen et al. [11]
define a SDF on a tetrahedral grid. This representation
is part of their shape synthesis pipeline and is predicted
from a coarse input point cloud or voxel array. Then
the low resolution SDF gets adaptively refined and de-
formed to more closely represent the surface. To extract
a triangle mesh from the SDF the researchers propose
a differentiable marching tetrahedra algorithm. Finally
this triangle mesh gets subdivided to give the high res-
olution mesh.

Shim et al. [12] generate a high resolution SDF from
Gaussian noise in a two step process. First a low reso-
lution SDF is generated from a SDF of Gaussian noise
using denoising diffusion models. Then conditioned on
the output of the first model they generate a high reso-
lution SDF. Finally a mesh is extracted using marching
cubes.

2.2 B-spline Reconstruction
B-spline curves are a widely used curve representation
based on a few connected user-placed points (control
polygon) that control the shape of the curve. A point on
the curve can be found in two ways: by subdividing the
control polygon iteratively using Chaikin’s Algorithm
[6] or by directly evaluating the curve using the control
point positions and basis functions. An overview of 2D
curve reconstruction was given by Ohrhallinger et al.
[9], where the researchers did a state-of-the-art report
on curve reconstruction, where the result is a connected
set of points.

In the following we describe reconstruction algorithms
that output a B-spline representation of the curve.

Komar et al. [8] proposed a evolutionary algorithm,
namely Particle Swarm Optimization (PSO) to recon-
struct polygons and B-splines from a set of connected
points. They show robustness against noise and sparse

sampling. The evolutionary algorithm takes a long time
to produce a result, our neural network takes a few mil-
liseconds to execute.
A neural network reconstruction method was proposed
by Barzegar et al. [1]. The researchers used an incep-
tion network to reconstruct a B-spline control polygon
from a set of points, that describe a curve. The number
of input points was fixed, since resampling a curve is
not costly. The number of control points needed was
chosen by the network and the output consists of the
control point coordinates and a zero padding. In con-
trary to the researchers, we are not explicitly limited in
the number of control points by the network architec-
ture, further we require less training data and epochs to
achieve convergence.
Gao et al. introduced DeepSpline [4], where they re-
constructed curves from images. First, the features of
the image are extracted using VGGNet [13]. Then the
features are fed into a Recurrent Neural Network, that
predicts a control point in each iteration along with a
stopping probability. The researchers proposed a sec-
ond step in the reconstruction in order to optimize the
positions of the control points. Our proposed method
works without this optimization step. The results come
directly from the neural network.
In this paper we introduce a method for reconstructing
closed B-spline curves from a DF. This DF can be di-
rectly computed from a point cloud or connected point
set, circumventing the major research question on con-
necting a set of points resembling a curve [9]. We use
two neural networks that predict control point positions
and control points connectivity respectively. As outputs
we used a DF for both networks. We show how we fair
against state of the art methods and robustness against
noise and unseen data.

3 DATASET GENERATION
To train the proposed model a large dataset of 2D curves
and their corresponding distance fields was needed.
This dataset is constrained to closed, non overlapping
B-spline curves of degree 3.
To generate closed curves with n control points we start
by using polar coordinates and split the unit circle into
n parts and randomly offset the start angle by a random
number in [0,2π/n]. In each part we sample a random
point using an angle and a distance in polar coordinates.
An illustration can be seen in Figure 1.
After the control polygon generation and the B-spline
evaluation the distance field is generated. We chose a
resolution of 64x64 to represent the curve. This was
chosen to be a trade-off between accuracy in represen-
tation and memory on disk and neural network size. Ex-
amples of DFs are shown in Figure 2. Left is the DF of
the limit curve, middle a DF of the corresponding con-
trol points and right a DF of the control polygon.
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Figure 1: Illustration of the generation of a closed
curve. The unit circle is split into 5 parts and a con-
trol point is sampled inside each part using polar coor-
dinates.

Figure 2: Visualization of the input (left) and ground
truth labels for control point positions (middle) and
control polygon connectivity (right) contained in our
dataset.

Using this algorithm we generate 50000 samples as our
dataset using 5 to 20 control points per curve. We use a
80/20 training/testing data split, meaning 40000 curves
are used as training data.

4 NEURAL NETWORK B-SPLINE RE-
CONSTRUCTION

The basic idea of the algorithm is that a curve can be
well represented by a distance field. It can also be cal-
culated straightforward from a point cloud or connected
points of said curve. From this DF of the curve one neu-
ral network predicts a DF of the control points the other
a DF to the control polygon. From the first neural net-
work output we reconstruct the control point positions
and using the second neural network output we finally
reconstruct the connectivity between these points. We
explain each step of the process with more details in the
following.

4.1 Neural Network for DF reconstruc-
tion

A general visualization of the network structure can be
seen in Figure 3. The basic architecture is based on U-
Net [10], where skip layers are introduced before each
MaxPool layer. The number of filters per layer also in-
creases going left to right until the latent dimension is
reached. Starting from 32 in the first convolution block
to 64 in the second and finally 128 in the 3rd, 4th and
5th block. The number of filters in the decoder stays at
128 until the last convolution block at the right, where it

Figure 3: Overview of the network architecture. Top
displays the network with the skip layers. Layers in
green are only used for network B, which reconstructs
a DF to the control polygon. Bottom is a detailed view
of the convolution setup.

changes to 64 and finally 1 in the last layer. All activa-
tion functions are set to Rectified Linear Units (ReLU)
We use two specialized networks to reconstruct the B-
spline curve. Input and output of these networks are
64x64 DFs. The input for both networks is a DF to the
curve to reconstruct. Network A reconstructs a DF to
the control points of the curve. To achieve this it uses all
blue layers in Figure 3 and it omits the green layers and
the skip connection to them. Network B reconstructs
a DF to the control polygon of the curve. It uses all
layers displayed in Figure 3 to achieve this goal. Both
networks are trained on a 80/20 train/test split and for
400 epochs using the Adam [7] optimizer. The Mean
Squared Error (MSE) was used as the loss function.

4.2 Control Polygon Reconstruction
Taking the output of network A we extract the control
point positions from the DF. This is done using a 3x3
minimum filter and comparing the result to the original.
The minimum filter works by replacing the current dis-
tance value by the minimum in the 3x3 neighborhood.
If the minimum filtered DF matches the original DF a
new minimum was found. Examples can be found in
Figure 4.
To reconstruct the connectivity of the control points the
output of network B is used in the following way. Start-
ing from any control point reconstructed previously, we
look for the edge to another control point with the low-
est average error to the DF. This is calculated by march-
ing along the edge and interpolating the DF to get the
distance at precisely the current point. Finally the dis-
tances are averaged to give an error score to the edge.
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Figure 4: Approximated control points. Left is the pre-
dicted distance field to the control points with the esti-
mated positions. Right is the true distance field.

Figure 5: Reconstructed edges. Left is the recon-
structed distance field and the reconstructed edges.
Right is the ground truth distance field to the control
polygon.

Figure 6: Visualization of the skeleton of the input dis-
tance field to the curve.

Having found the edge with the lowest error score, we
insert the edge into the control polygon and continue
with the point it ends at. A visualization of the recon-
structed edges can be seen in Figure 5.

This straightforward algorithm works well, but tends to
introduce edges that cross the limit curve because of in-
accuracies in the DF. We counter steer this by adding an
additional check. First, we calculate the skeleton of our
input DF. This is done by using the metric by Gagvani
and Silver [3], where the researchers check if each po-
sition is part of the skeleton by calculating the mean of
the distances in the 8-neighborhood and checking if the
distance at the current position is greater than the neigh-
boring average plus some margin T P. More precisely:
MNTp+T P<DTp where MNTp is the average distance
in the 8-neighborhood of point p, DTp is the distance at
point p. We empirically set the value T P = 0.002. An
example skeleton can be seen in Figure 6

After the calculation of the skeleton each candidate
edge is checked if it intersects the skeleton. If an in-
tersection is found the edge is skipped.

5 RESULTS
In this section we show reconstruction results of our
method. First we show reconstructions of random sam-
ples of the dataset. Then we show the performance
on curves with more than 20 control points and noisy
curves. Finally we compare our results to state-of-the-
art algorithms. All networks were trained on a system
with a AMD Ryzen 9 8945H with 16GB of RAM and
a Nvidia RTX 4060 with 8GB of VRAM. No augmen-
tation of the training data was used. Training was split
into batches of 5000 curves to not overshoot the mem-
ory limit of the GPU.

Figure 7 displays a set of reconstructed curves from
the dataset. Looking at the examples, the reconstructed
curves closely resemble the target curves. Example b)
has a particular spike in the control polygon at the bot-
tom right, which the networks could not reconstruct,
since the two control points framing the spike are close
together and could not be distinguished.

Figure 8 shows examples with a higher number of con-
trol points. Even though the examples contain some
added complexity and the network has not seen such ex-
amples, it is still able to reconstruct the general shape of
the curve is some cases. The example at the bottom dis-
plays a limitation of the reconstruction with more con-
trol points. With some examples the reconstruction fails
to include a part of the curve.

Figure 9 shows noisy examples fed into our pipeline.
The input DF is directly calculated on the noisy limit
curve data. As can be seen in the visualizations, where
the noise is still low (standard deviation σ = 0.2, with
a bounding box diagonal of 90.5) the reconstruction is
still reasonable. Increasing the noise the network pre-
dicting control point positions estimates too many con-
trol points. An extreme case of this phenomenon is
shown at the bottom of Figure 9.

Since our proposed network is rather deep we show an
ablation study in Figure 10. In our opinion the graphs
support the deeper architecture as is displayed in Figure
3. Network B is a ore close call, but the larger network
(Figure 10 (c)) has a lower loss value at the end of the
training.

Comparing error metrics with state-of-the-art methods,
we can say our reconstruction performance is similar
to InceptCurves [1] and DeepSpline [4]. Although the
researchers behind InceptCurves were also able to re-
construct open curves, their mean squared error gener-
ally is in the ballpark 10−2, similar to our reconstruc-
tions. SwarmCurves performs better than our results,
as can be seen in Figure 11. The execution times differ
by multiple magnitues. Our method took 0.91s to exe-
cute, SwarmCurves took 873.98s. The researchers were
also able to reconstruct open curves and non-parametric
curves with their method.
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(a) predicted 18 control points, truth has 20, MAE limit curve: 0.04

(b) predicted 10 control points, truth has 10, MAE limit curve: 0.0383

(c) predicted 11 control points, truth has 11, MAE limit curve: 0.087

(d) predicted 16 control points, truth has 16, MAE limit curve: 0.045

(e) predicted 15 control points, truth has 15, MAE limit curve: 0.0436
Figure 7: Visualization of results from the dataset. From left to right: input DF and extracted skeleton, predicted
control points with predicted DF to control points, reconstructed edges and DF to control edges, comparison of
reconstructed curve in blue and target curve in red and comparison of reconstructed control polygon in blue and
target control polygon in red.

6 DISCUSSION AND FUTURE WORK
We proposed a pipeline for reconstructing closed B-
spline curves from a distance field. Our pipeline con-
sists of two convolutional auto-encoders each special-
ized to learn a specific task in the reconstruction. Net-
work A learns to predict control point positions. The
output is a DF to the control points. Network B learns
to predict the connectivity of the control points. the out-
put is again a DF to the control polygon.

Using the information in the output of network A we are
able to approximate the control point positions by using

a minimum filter. Using the information from network
B we can greedily connect our approximated control
points to reconstruct the control polygon of the curve.

We showed that our pipeline is robust to some noise,
even though our training data did not contain noise.
More extreme noise starts to reduce the quality of re-
construction drastically. Especially network A seems
to struggle with noise. This would require a de-noising
preprocessing. In future work we will further increase
the robustness against noise, by looking into denoising
autoencoders [14].
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(a) predicted 19 cps, truth has 25, MAE: 0.034

(b) predicted 20 cps, truth has 23, MAE: 0.0217

(c) predicted 19 cps, truth has 25, MAE: 0.0405
Figure 8: Examples with a higher number of control
points, which the network has not seen during training.
Left is the predicted DF to the control points, middle
is the reconstructed curve in blue and the target curve
in red and right is the reconstructed control polygon in
blue and the target control polygon in red. The caption
states the predicted and true number of control points
and the Mean Absolute Error (MAE).

Further, we evaluated the performance of our pipeline
on more complex data. We fed the network a curve,
constructed with more control points than our training
data. The results show that the network can still recon-
struct more complex data, although it will try to use less
control points.

For future work we would like to extend this method to
3-dimensional curves and shapes. Being able to recon-
struct the DF to the control mesh edges would greatly
reduce the work required to reconstruct the connectiv-
ity of the control mesh. For this task an extension to
the network architecture might be needed, for example
using more sophisticated skip connections like the ones
proposed by Huang et al. [5].
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