ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN

http://www.wscg.eu WSCG 2025 Proceedings

Learning 2D Triangular Meshes from Images with
Transformers

Maximilian Zéch

Fraunhofer Austria
Research GmbH

Graz University of
Technology, Institute for
Visual Computing

Austria, Graz
maxzoech@icloud.com

Ulrich Krispel

Fraunhofer Austria
Research GmbH

Graz University of
Technology, Institute for
Visual Computing

Austria, Graz
ulrich.krispel@fraunhofer.at

Ursula Augsdorfer

Graz University of
Technology, Institute for
Visual Computing

Austria, Graz
augsdoerfer@tugraz.at

Abstract

In this work, we present a method for learning 2D triangular meshes from images using the Transformer architec-
ture. Creating polygonal representations of 2D surfaces from images has a wide range of applications, e.g. texture
mapping and image segmentation. Current machine learning based methods either rely on deforming template
meshes with fixed topology or require expensive post-processing to extract a planar polygonal mesh. In this paper,
we demonstrate that deep learning can be utilized to directly generate a planar polygonal surface from arbitrary
images without the need for additional input or constraints. Specifically, we show that the attention mechanism
in transformer networks is highly effective in learning a unified representation of vertex positions and their neigh-
borhood relationships. To showcase this, we propose a self-supervised training pipeline that enables end-to-end
learning of meshes directly from images. We apply our approach to various datasets of handwritten letters and

digits, and show that the model is capable of learning meshes with varying genus.

Keywords

polygon mesh generation, machine learning, transformer networks

1 INTRODUCTION

Digital representations of real-world objects are ubig-
uitous in todays world with applications in both indus-
trial engineering and entertainment. Learning represen-
tative and robust features for reconstructing shape from
measurements is therefore an important task, and gains
momentum due to the advancements in sensing devices
and the increasing amount of available data. Such a
representation enables conditional generation of spe-
cific objects, which has been applied with great success
in the image domain — using e.g. Generative Adver-
sarial Networks (GANs) [Goo+14; ACB17; Gul+17;
Kar+18; BDS18] or diffusion models [SD+15; SE19;
HJA20; Rom+22; Nic+22; Sah+22] to generate images.
These methods are inherently tied to the geometric rep-
resentation — regular grids in the case of images. To
learn irregular structures, various geometric representa-
tions are common, especially in the 3D domain: point
clouds [FSG17], implicit functions [Par+19; Mil+20]
and meshes [Wan+18]. While meshes are the promi-
nent representation for rendering and shape processing,
not many works are concerned with direct learning of
such irregular structures.

In contrast to existing work, which consists of multi-
stage procedures with conversions between geometry

http://www.doi.org/10.24132/CSRN.2025-11

representations [GMJ19], we present a novel approach
towards direct regression of irregular geometric repre-
sentations: We train a non-autoregressive Transformer
model to learn to predict the surface of an input shape
as triangular mesh (see Figure 1) from an input image.

Our novel decoder structure directly predicts vertex po-
sitions and a surface matrix, which is similar to an
adjacency matrix, and derives triangle visibility. Un-
like existing work on generating meshes using autore-
gressive transformers to sequentially generate geome-
try [Nas+20; Sid+23; Hao+24], we utilize the permu-
tation invariant structure of transformers directly. Our
approach only requires a single model evaluation dur-
ing inference to generate 2D meshes from an input im-
age. Although the number of vertices is fixed for a net-
work, the genus and thus the number of generated trian-
gle faces vary to provide the most suitable solution for
a given input image.

The paper is structured as follows: In Section 2, we
give an overview over geometry representations and
respective deep learning methods. The approach on
how to build the training pipeline is described in detail
in Section 3; We quantitatively evaluate mesh quality
and qualitatively analyze the generalization capability
in Section 4, and conclude with Section 5.

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

=»
triangulate
' - Vertices V
? predict
visiblity

Surface S

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Figure 1: Our transformer model learns to predict a triangulation given an input image, by predicting a set of
vertices ¥ that are triangulated via Delaunay triangulation. The model furthermore predicts a surface matrix
. containing edge weights. From this matrix, triangle visibility is inferred yielding output shapes of arbitrary
topology. The approach is formulated a self-supervised end-to-end manner using differentiable triangulation and

rasterization.

2 RELATED WORK

The generation of 2D meshes ("meshing") is a long-
standing problem with many written works on the topic
[Fen+18; Shel2]. These methods typically utilize spe-
cific algorithmic approaches, e.g. spatial search struc-
tures, such as quad-trees, or Delaunay methods. In con-
trast, we demonstrate learning the shape representation
in a fully data driven way using machine learning. Our
method is built on the transformer architecture. We first
give an overview of different geometry representations
that have been proposed for learning shape representa-
tions with transformer. Then, we elaborate on impor-
tant components on which our approach is built.

2.1 Geometry Representation

Regular Structures

Early work [Wu+15; Wu+16; Cho+16] in 3D trans-
former represented shapes as voxels. Voxels generalize
image pixels to the 3D domain, which makes it easy to
adapt models originally devised for images. For exam-
ple, Wu et al. [Wu+16] implemented a GAN [Goo+14]
that uses 3D CNNs to generate shapes. One major
drawback of voxel representations is that they need to
store a regularly sampled dense volume, which makes
them costly to scale.

Irregular Structures

Meshes represent shapes as a set of points and explicit
surface information. Pixel2Mesh [Wan+18] and fol-
low up work [Wen+19] reconstruct a 3D mesh from
RGB images by deforming a template mesh. Later
work extended this approach by modifying the topol-
ogy of a template mesh to generate meshes with vary-
ing genus [Pan+19; BC+22]. Another line of research
is learning multiple disjunct patches that represent a
surface [Gro+18; BH+18]. PolyGen [Nas+20] uses
an autoregressive transformer to generate vertices, and
then connect them to n-gon surfaces using a PointerNet
[VFI15].

http://www.doi.org/10.24132/CSRN.2025-11

104

2.2 Transformers

Transformers are a popular class of transformer mod-
els first introduced in [Vas+17] for machine translation.
Typically, input and output are represented by a se-
quence of tokens which are transformed by the model.
Transformers are not sequential models, therefore, each
token requires an additional positional embedding. The
architecture has been successfully applied to a wide
range of NLP and computer vision tasks. The core of
a transformer model is the scaled dot product attention
which computes a similarity score between the linearly
transformed input tokens Q, K and V and is computed
as:

. OK”
Attention(Q,K,V) = softmax | — |V
Vg

The scaling factor of 1/+/d; provides a normalization
of the dot product with query and key dimension d. In
the case of self attention, query (Q), key (K), and value
(V) are all linear transformations of the latent space.
This allows the architecture to model self-similarity.
When performing cross attention, the query is a lin-
ear transformation of encoded tokens from a different
sequence, while key and value are the same as for self-
attention. Cross attention is used to model the similarity
between two different sequences.

Transformers can be broadly categorized as encoder-
only, decoder-only, and encoder-decoder models.
Encoder-only models such as BERT [Dev+19] or vi-
sion transformer (ViT) [Dos+20] learn a representation
over a set of input tokens. Decoder-only models like
the GPT family of models [Rad+19; Bro+20] generate
tokens in an autoregressive manner, starting from an
input token. Encoder-decoder models use an encoder
to learn a representation from the input sequence to
condition the decoder [Vas+17; Lew+20]. In this paper
we implement an encoder-decoder style model, but use
a non-autoregressive decoder.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

http://www.wscg.eu
Thus, unlike other transformer based mesh generation
frameworks [Nas+20], our model does not need to be
evaluated multiple times at inference time to sequen-
tially generate an output mesh.

2.3 Differentiable Graphics Primitives

During training, differential graphics primitives are
used to formulate an end-to-end pipeline, rasterizing
the predicted mesh.

Differentiable Rendering Rendering is the process of
producing an image from a scene that is composed of
geometry, lights, and cameras. Differentiable rendering
aims to define the gradient of a pixel with respect to
these scene parameters. One can then formulate an op-
timization problem to recover e.g. camera pose, geom-
etry or materials from a rendered image. SoftRasterizer
[Liu+19] approximates the rendering with a probabilis-
tic approach: Probability maps of triangles based on
the signed screen space distance are used to formulate
rasterization in a differentiable manner. For each pixel,
all probability maps are aggregated. As calculating the
distances between all pixels and all triangles would be
prohibitively expensive, only a local neighborhood of k-
nearest triangles is considered for gradient propagation.
A major limitation of this approach is that it does only
support direct illumination. Later works aimed to im-
plement physically-based differentiable path tracing for
more photorealistic results [Li+18; LHJ19; Zha+21],
however, the SoftRasterizer is sufficient for our ap-
proach.

In our approach we will make use of differential ren-
dering to optimize the structure of the predicted planar
mesh during training.

Differentiable Surface Triangulation Triangle mesh
optimization and surface remeshing are very well-
studied problems in computational geometry [All+08;
Kha+22; WLH16]. Recent work proposed a soft relax-
ation of the classical Delaunay triangulation [Rak+21],
that jointly optimizes vertex positions and triangle
mesh connectivity. It defines a differentiable contin-
uous triangle inclusion score based on the sigmoid of
the signed distance of the triangle circumcenter to the
so-called reduced Voronoi cells of the triangle vertices.
Voronoi cells are built over only k-nearest neighbors of
a vertex to account for the cubic growth of all possible
triangles. The authors construct a low distortion
parametrization of a 3D surface into 2D patches which
are differentiable using the aforementioned method,
and show results for two different optimization criteria:
triangle size and vector-field alignment.

Our approach utilizes the inclusion score of this ap-
proach in our setup to propagate gradients only to tri-
angles likely to satisfy the Delaunay criterion.

http://www.doi.org/10.24132/CSRN.2025-11

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

3 METHOD

The main goal of this paper is to demonstrate that the
transformer architecture is an effective tool for learning
a latent space representation that simultaneously pre-
dicts vertices and neighborhood information. We con-
struct a triangle mesh via unconstrained Delaunay tri-
angulation of the predicted vertices and use the learned
neighborhood information to determine triangle visibil-
ity; the Delaunay triangulation guides the model to-
wards desirable geometry. During training, meshes are
rendered using a differentiable renderer, and the loss
between the rendered image and target image is mini-
mized. This means that the procedure does not require
any ground-truth mesh data. We will now describe the
mesh representation, model architecture, and training
formulation in greater detail.

3.1 Mesh Representation
The aim is to generate the mesh .#Z = (¥,.%) of a
shape consisting of vertices ¥ = {vy,...,v,} withv; €

R? and triangular faces f; € .# with f; = {vﬁvk,vl}
that approximate the surface of the shape. The model
predicts the set of vertices ¥ and a surface matrix
& =¥ x V¥ that contains a weight entry per edge. This
matrix and a Delaunay criterion is used to obtain %
from the set of all possible triangles #', by first evalu-
ation the delaunay triangulation J@}riag of ¥ and obtain
triangle visibility Fy:

F' =V xVxV (1)
Fiag = { f; € F'| fi is delaunay } 2)
Tt ={fi € F' |51 >0} (3)

F = Fiag N Fsurt 4)

The surface score s?“rf of face f; is defined as the sum
of the edge scores from the surface matrix .:

S?urf _ yvj“ + Yvk,v, +«5ﬂw,vj (5)

In order to make the formulation end-to-end differen-
tiable, we define a continuous face score s; that indi-
cates whether the face f; is part of the mesh or not, We
use the signed distance used for the continuous triangle
inclusion score from Rakotosaona et al. [Rak+21] (see
Section 2.3) as score s;" ¢ to implement the Delaunay
criterion:

. tri S
§; = min <sinag, s?urf> (6)

The idea of the formulation in Equation 6 is that s;riag

guides the model to learn desirable triangles, and s?“rf
conditions the latent representation to describe triangle
visibility.

105

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

MeshTransformer

Vertices

Surface

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Indexed
face set

<

Triangulation
Rasterizer

Figure 2: Training pipeline. Our model predicts a set of vertices " which are triangulated using differentiable
triangulation and a surface matrix .7 that determines triangle visibility. Using differentiable rasterization, an
output image is computed; the final loss is calculated between input and output image.

3.2 Training

During training we use a differentiable rasterizer called
SoftRasterizer [Liu+19] to render the meshes. Sof-
tRasterizer implements differentiable rasterization in
two phases: Rasterization is relaxed as the probability
of a pixel belonging to a triangle, which is implemented
via the sigmoid o of the signed screen distance d which
is scaled by a constant factor y = 10~ for the experi-
ments in this paper. Afterwards, at each pixel position
the probability maps are aggregated. We used the im-
plementation of PyTorch3D [Rav+20] which only com-
putes maps for the k-nearest faces for each pixel. We
use this architecture to first raster probability maps for
faces of .# and perform weighted aggregation using its
corresponding surface score; we implement the aggre-
gation using alpha blending at each pixel position (xy)
over the k-nearest faces.

Sk, (xy _d.x
O) = O < k’;”) & < ” ”) ™

k
Iy =1 _H (1 - O‘k-,(xy)) ®)

We rasterize [at 56 x 56 and bilinearly upsample the
training images I accordingly using bilinear interpola-
tion. Finally, we calculate the silhouette intersection
over union loss from SoftRasterizer as our training loss,
® and & denote element-wise product and sum:

o eI ©)
[Hol-IRI||

3.3 Model Architecture

Our model architecture is closely modeled after the
transformer first introduced by [Vas+17]; we use an
encoder-decoder style architecture. The encoder learns
a feature embedding from the input images. The de-
coder then deforms a set of input points, which are ar-
ranged in a grid, conditioned on the encoded features
from the image.

Encoder Our encoder is a miniaturized version of
the design proposed for the vision transformer (ViT)
[Dos+20]. The input image is first split into 7 X 7 input
patches of size 4 x 4 pixels which are then flattened

http://www.doi.org/10.24132/CSRN.2025-11

passed to the transformer as tokens. Unlike for the
decoder, the position of the patches in the image is
important to capture the global shape, which is why
we add a learned positional embedding to each of
the tokens. We have experimented with different
positional embedding schemes but found that they
do not outperform learned embeddings and have thus
chosen them for their simplicity.

Decoder Similar to [Yan+18] the decoder deforms
a grid of 9 x 9 points. Like PointNet [Qi+17], the
weights of the feed-forward neural network in the
transformer are shared between all the points (tokens).
The permutation invariant nature of the transformer
allows us to represent the mesh as a set of points
with neighborhood information. We thus do not add
positional embeddings to the inputs of the decoder.
Instead, we only pass the input points through a Fourier
feature mapping [Tan+20], as neural networks have
been shown to have a low frequency bias which makes
it harder to learn fine structures [Rah+19].

The layers (“blocks™) of the decoder follow standard
transformer design: We use cross attention to condi-
tion the vertex position on the features learned by the
encoder. Self attention is used to represent neighbor-
hoods of vertices by making neighboring vertices more
similar in the latent space. Thus, the latent space of
the transformer jointly represents vertex positions and
neighborhood information.

The final layer of the decoder is the geometry head
that transforms the latent representation into the inter-
mediate mesh .# = (¥,.%). In order to compute the
surface matrix ., we perform multi-head (symmetric)
self-attention.

T
lep(QK) (10)
Vi
To guarantee the surface matrix to be symmetric, we
share the weights of the linear transformations of key,
query, and value in the self-attention layer. We then
use a small multi-layer perceptron to merge the multiple
surface matrices of the attention heads into a single one.
We found that using a small neural network instead of
a linear transformation significantly stabilizes training.

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Surface

A

[B, 81, 81]

Vertices

(B, 81, 2]

Geometry Head

A
[B, 81, 256]
|
e |)

Add & Norm €

Pointwise
Network

Add & Norm €
Add & Norm T

[B, 49, 256]
1
(| A

Multi-Head
Attention

?_/

Add & Norm €

t

Multi-Head
Attention

J . T] J

- J

Add & Norm

Multi-Head
Attention

[B, 81, 256]

Pos. Embedding

[B, 49, 256]
Fourier Feature
Extract Patches

Mapping

1

[B, 56, 56, 256] [B, 81, 2]

Figure 3: Model architecture. The encoder (left) en-
codes a sequence of image patches with batchsize B.
The decoder (right) deforms a grid of 9 x 9 points ac-
cording to the encoded image. The latent representation
of the decoder is transformed into a vertex set # and
surface matrix . by the geometry head.

The vertices ¥ are computed by applying the self-
attention matrix and then linearly mapping the vertices
from latent space to R.

T
¥;, = softmax (%%) Vv (11)
¥ = linear (¥},) (12)

The output of the decoder is a set of vertices ¥ and sur-
face information .. From this, a mesh .# = (¥,.%)
can be obtained using the Delaunay triangulation and
determine triangle visibility using ., where the trian-
gle surface score is s >0 (see Equation 5).

i

4 EVALUATION AND RESULTS

In the following section we describe our experiment
setup and qualitative as well as quantitative results, and

http://www.doi.org/10.24132/CSRN.2025-11

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

analyze the transformer attention maps for model inter-
pretability. An example of input and output is given in
Figure 4.

4.1 Experiment Setup

’ Hidden Dims \ 256 ‘
Encoder Blocks 4
Encoder Attention Heads | 4
Encoder MLP Size 256
Decoder Blocks 4
Encoder Decoder Heads | 4
Decoder MLP Size 512

Table 1: Model configuration

We demonstrate our approach by training a Transformer
model to reconstruct shapes from the MNIST dataset
[Den12] of handwritten digits. Our model has 256 hid-
den dimensions with an encoder and decoder that both
have 4 blocks. See Table 1 for the entire model config-
uration. In total, our model has 7.52M parameters.

We train our model with the AdamW optimizer with
Ir=10"%, B; = 0.999, and B, = 0.98 for 150 epochs;
training time was roughly 6 hours on an Nvidia A40
GPU. We used a cosine learning rate schedule with
1,500 warmup steps. This means the learning rate is
slowly increased in the beginning, and gets decreased
over time until it reaches zero. We have also experi-
mented with hard resets, where the learning rate gets
repeatedly reduced to zero and is then reset to the orig-
inal learning rate [LH16]. However, hard resets were

-0.25

~0.50

-0.75

-1.00

10

(c) Final triangulation

Figure 4: Given an input image (4a), our method pre-
dicts a set of vertices ¥ and surface information . (4b)
that encodes edge visibility. From this, a mesh (4c) can
be obtained using the Delaunay triangulation.

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

not necessary when we used the non-linear MLP in the
geometry head of the decoder.

4.2 Model Analysis

-1
~1.00-0.75-0.50 -0.25 0.00 025 050 0.75 100

(a) Cross Attention

P
;\t\‘
X

AR
£ %

Block 3

Block 4

(b) Self Attention

Figure 5: Transformers can learn meaningful represen-
tations of meshes; we visualize attention values of one
vertex, the alpha value of the red lines corresponds to
the attention weight. Cross attention (5a) learns the re-
lationship between vertex positions and image patches
while self attention (5b) learns the connectivity of the
shape.

We visualize cross- and self-attention weights to ana-
lyze if the Transformer learns meaningful latent embed-
dings. Figure 5 depicts the attention maps learned in the
final transformer block before the geometry head.

Cross-attention (Figure 5a) shows how a vertex attends
to different parts of the input image. The attention tends
to be strongest for the image patches corresponding to
the location of the vertex. However, there are also many
samples where this is not case. We suspect that the
transformer does not need to learn input patch atten-
tion for every vertex, due to being able to generate this
information from latent space information of other ver-
tices.

http://www.doi.org/10.24132/CSRN.2025-11

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Figure 6: Qualitative examples of input images (top),
corresponding surface matrices (middle) and predicted
output meshes (bottom) of the test set. While reproduc-
ing the shape, the model may sometimes fail to repro-
duce fine details, e.g. the hole in the 6, or the upper
right part of the 4.

The attention map of self-attention (Figure 5b) classi-
fies all possible edges between the vertices as either vis-
ible or invisible. As depicted in the figure, the attention
between two vertices is strongest when they are neigh-
bors. We theorize that self-attention acts as a regular-
ization that forces neighboring vertices to be similar in
latent space. This latent classification map is then used
by the geometry head to classify the visibility.

Some more qualitative examples are shown in Figure 6.
We also investigate the ability of the model to general-
ize to shapes of unseen topologies by predicting meshes
for samples of the EMNIST dataset of letters, see Fig-
ure 7.

4.3 Quantitative Results

We quantitatively evaluate two key aspects of the
model: we determine the model’s capability of faith-
fully reproducing the input via pixel-wise binary
classification of a hard binary rasterization of the
triangulation, and we analyze the generated triangle
quality with a triangle shape metric.

Our model achieves 95.596% pixel accuracy for fore-
ground and background pixels on the unseen MNIST
test dataset. For analyzing triangle quality, we use
the fipape metric [Knu03] from finite element analysis,
which yields 1.0 for equilateral and 0.0 for degenerate
triangles. This metric is not contained in the training
loss formulation. See Figure 8 for the distribution of
this metric over all predicted triangles of the dataset; the
median of this metric is 0.67, both for the training and
the test dataset. On a single NVIDIA A40 GPU, evalu-
ating the model on the MNIST dataset (50,000 samples)
takes around 30 seconds and requires around 6.4 GB

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

http://www.wscg.eu
GPU memory. Using a batch size of 256, this equals
roughly 153ms per batch.

S CONCLUSION

In this paper, we show first results for learning meshes
with arbitrary genus with transformers. Previous meth-
ods either rely on a template mesh, or generate vertices
sequentially which requires to introduce an order of the
vertices. In contrast, our decoder is able to jointly rep-
resent vertex positions and neighborhood information
while being permutation invariant. We developed a self-
supervised training pipeline that learns to predict trian-
gle meshes from input images. Our results show that the
proposed architecture is able to reproduce these shapes,
and is even able to reproduce some shapes with unseen
topology.

However, while the method is able to represent meshes
with varying topology, it also still has some notewor-
thy limitations. First of all, given that the vertices are
generated all at once rather than sequentially, the num-
ber of vertices is always fixed. This is a natural trade
off when using a non-sequential architecture. As the
surface matrix maps the complete graph of all vertex
connections which scales quadratically with the num-
ber of vertices. An important line of future research is
to efficiently scaling the approach up to larger meshes.
This could be accomplished by applying attention hier-
archically and locally akin to convolutions in CNNs; an
architecture like this would leverage the local nature of
topology information to be more scalable. Furthermore,
we aim to extend our approach to 3D, which would en-
able a wide range of applications such as single view re-

Figure 7: Images from the EMNIST dataset of letters
contain shapes of topologies that are not present in the
MNIST digits dataset; the model was trained on the dig-
its. It shows the ability to reproduce the shapes of X and
A quite faithfully, while in some cases the reconstruc-
tion misses parts of the shape, as shown with the letters
fand H.

http://www.doi.org/10.24132/CSRN.2025-11

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

MNIST train MNIST test

8000

6000

4000

triangle count

2000

Figure 8: We evaluate the triangle shape metric fpqpe
for all triangles in the training (left) and test (right)
dataset. The distribution shows a trend towards more
equilaterally shaped triangles.

construction or generative modeling. A possible exten-
sion would involve generating a Delaunay triangulation
in 3D space and subsequently classifying tetrahedra as
either inside or outside based on the vertex-to-vertex
weights encoded within the surface matrix. While the
model is very flexible, currently no guarantees about
the generated geometry are given; another avenue for
future work would be to guarantee certain geometric
properties like manifoldness in the approach.

We believe this work is an important first step towards
building models that can learn to directly predict
meshes with arbitrary topology.

REFERENCES

[ACB17] Martin Arjovsky, Soumith Chintala, and
Léon Bottou. “Wasserstein Generative
Adversarial Networks”. In: Proceedings
of the 34th International Conference on
Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings
of Machine Learning Research. PMLR,

Aug. 2017, pp. 214-223.

Pierre Alliez et al. “Recent Advances
in Remeshing of Surfaces”. In: Shape
Analysis and Structuring. Ed. by Leila
De Floriani and Michela Spagnuolo.
Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 53-82. ISBN:
978-3-540-33265-7.

Tarek Ben Charrada et al. “TopoNet:
Topology Learning for 3D Reconstruction
of Objects of Arbitrary Genus”. In:
Computer Graphics Forum 41.6 (2022),
pp- 336-347.

Andrew Brock, Jeff Donahue, and Karen
Simonyan. “Large Scale GAN Train-
ing for High Fidelity Natural Image
Synthesis”. In: CoRR (2018).

[All+08]

[BC+22]

[BDS18]

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

[BH+18]

[Bro+20]

[Cho+16]

[Denl2]

[Dev+19]

[Dos+20]

[Fen+18]

[FSG17]

[GMJ19]

[Goo+14]

[Gro+18]

http://www.doi.org/10.24132/CSRN.2025-11

http://www.wscg.eu

Heli Ben-Hamu et al. “Multi-Chart Gener-
ative Surface Modeling”. In: ACM Trans-
actions on Graphics (TOG) 37.6 (2018),
pp. 1-15.

Tom Brown et al. “Language Models are
Few-Shot Learners”. In: Advances in Neu-
ral Information Processing Systems. Ed.
by H. Larochelle et al. Vol. 33. Curran As-
sociates, Inc., 2020, pp. 1877-1901.

Christopher B Choy et al. “3D-R2N2: A
Unified Approach for Single and Multi-
view 3D Object Reconstruction”. In: Com-
puter Vision—-ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part
VIII 14. Springer. 2016, pp. 628—644.

Li Deng. “The mnist database of handwrit-
ten digit images for machine learning re-
search”. In: IEEE Signal Processing Mag-
azine 29.6 (2012), pp. 141-142.

Jacob Devlin et al. “BERT: Pre-training of
Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of
the 2019 Conference of the North Ameri-
can Chapter of the Association for Com-
putational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Associ-
ation for Computational Linguistics, June
2019, pp. 4171-4186.

Alexey Dosovitskiy et al. “An Image is
Worth 16x16 Words: Transformers for Im-
age Recognition at Scale”. In: (2020).

Leman Feng et al. “Curved optimal delau-
nay triangulation”. In: ACM Trans. Graph.
37.4 (July 2018). 1sSN: 0730-0301.

Haoqgiang Fan, Hao Su, and Leonidas
Guibas. “A Point Set Generation Network
for 3D Object Reconstruction from a
Single Image”. In: (2017), pp. 605-613.

Georgia Gkioxari, Jitendra Malik, and
Justin Johnson. “Mesh R-CNN”. In:
(2019), pp. 9784-9794.

Tan Goodfellow et al. “Generative Adver-
sarial Nets”. In: Advances in Neural In-
formation Processing Systems. Ed. by Z.
Ghahramani et al. Vol. 27. Curran Asso-
ciates, Inc., 2014.

Thibault Groueix et al. “AtlasNet: A
Papier-Maché Approach to Learning 3D
Surface Generation”. In: Proceedings
IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2018.

110

[Gul+17]

[Hao+24]

[HIJA20]

[Kar+18]

[Kha+22]

[Knu03]

[Lew+20]

[LH16]

[LHI19]

[Li+18]

[Liu+19]

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Ishaan Gulrajani et al. “Improved Training
of Wasserstein GANs”. In: Proceedings of
the 31st International Conference on Neu-
ral Information Processing Systems. 2017,
pp. 5769-5779.

Zekun Hao et al. Meshtron: High-Fidelity,
Artist-Like 3D Mesh Generation at Scale.
2024. arXiv: 2412 .09548 [cs.GR].

Jonathan Ho, Ajay Jain, and Pieter
Abbeel. “Denoising Diffusion Proba-
bilistic Models”. In: Advances in Neural
Information Processing Systems. Vol. 33.

2020, pp. 6840—6851.

Tero Karras et al. “Progressive Growing
of GANs for Improved Quality, Stability,
and Variation”. In: International Confer-
ence on Learning Representations. 2018.

Dawar Khan et al. “Surface Remeshing: A
Systematic Literature Review of Methods
and Research Directions”. In: I[EEE Trans-
actions on Visualization and Computer
Graphics 28.3 (2022), pp. 1680-1713.

Patrick M. Knupp. “Algebraic mesh
quality metrics for unstructured initial
meshes”. In: Finite Elements in Analysis
and Design 39.3 (2003), pp. 217-241.

Mike Lewis et al. “BART: Denois-
ing Sequence-to-Sequence Pre-training
for Natural Language Generation,
Translation, and Comprehension”. In:
Proceedings of the 58th Annual Meeting
of the Association for Computational
Linguistics. Online: Association for
Computational Linguistics, July 2020,
pp- 7871-7880.

Ilya Loshchilov and Frank Hutter.
“SGDR: Stochastic Gradient Descent
with Warm Restarts”. In: (2016).

Guillaume Loubet, Nicolas Holzschuch,
and Wenzel Jakob. “Reparameterizing
Discontinuous Integrands for Differen-
tiable Rendering”. In: ACM Transactions
on Graphics (TOG) 38.6 (2019), pp. 1-14.

Tzu-Mao Li et al. “Differentiable Monte
Carlo Ray Tracing through Edge Sam-
pling”. In: ACM Transactions on Graphics
(TOG) 37.6 (2018), pp. 1-11.

Shichen Liu et al. “Soft Rasterizer: A
Differentiable Renderer for Image-Based
3D Reasoning”. In: Proceedings of the
IEEE/CVF International Conference on
Computer Vision (ICCV) (Oct. 2019),
pp. 7708-7717.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

[Mil+20]

[Nas+20]

[Nic+22]

[Pan+19]

[Par+19]

[Qi+17]

[Rad+19]

[Rah+19]

[Rak+21]

[Rav+20]

[Rom+22]

http://www.wscg.eu

Ben Mildenhall et al. “NeRF: Rep-
resenting Scenes as Neural Radiance
Fields for View Synthesis”. In: European
Conference on Computer Vision. 2020,
pp. 405-421.

Charlie Nash et al. “PolyGen: An Au-
toregressive Generative Model of 3D
Meshes”. In: Proceedings of the 37th
International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti
Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, July 2020,
pp. 7220-7229.

Alex Nichol et al. “GLIDE: Towards Pho-
torealistic Image Generation and Editing
withText-Guided Diffusion Models”. In:
(2022), pp. 16784—16804.

Junyi Pan et al. “Deep Mesh Reconstruc-
tion from Single RGB Imagesvia Topol-
ogy Modification Networks”. In: (2019),
pp. 9964-9973.

Jeong Joon Park et al. “DeepSDF:
Learning Continuous Signed Distance
Functionsfor Shape Representation”. In:
(2019), pp. 165-174.

Charles R. Qi et al. “PointNet: Deep
Learning on Point Sets for 3D Classifica-
tion and Segmentation”. In: Proceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
2017, pp. 652-660.

Alec Radford et al. “Language Models
are Unsupervised Multitask Learners”. In:
(2019).

Nasim Rahaman et al. “On the Spectral
Bias of Neural Networks”. In: (2019),
pp- 5301-5310.

Marie-Julie Rakotosaona et al. “Differ-
entiable Surface Triangulation”. In: ACM
Trans. Graph. (2021).

Nikhila Ravi et al. “Accelerating 3D Deep
Learning with PyTorch3D”. In: (2020).

Robin Rombach et al. “High-Resolution
Image Synthesis With Latent Diffu-
sion Models”. In: Proceedings of the
IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
June 2022, pp. 10684—-10695.

http://www.doi.org/10.24132/CSRN.2025-11

111

[Sah+22]

[SD+15]

[SE19]

[Shel2]

[Sid+23]

[Tan+20]

[Vas+17]

[VFI15]

[Wan+18]

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Chitwan Saharia et al. “Photorealistic
Text-to-Image Diffusion Models with
Deep Language Understanding”. In:
Advances in Neural Information Pro-
cessing Systems. Ed. by S. Koyejo et al.
Vol. 35. Curran Associates, Inc., 2022,
pp- 36479-36494.

Jascha Sohl-Dickstein et al. “Deep Unsu-
pervised Learning using Nonequilibrium
Thermodynamics”. In: Proceedings of
the 32nd International Conference on
Machine Learning. Ed. by Francis Bach
and David Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 2256-
2265.

Yang Song and Stefano Ermon. “Genera-
tive Modeling by Estimating Gradients of
the Data Distribution”. In: Proceedings of
the 33rd International Conference on Neu-
ral Information Processing Systems. 2019,
pp- 11918-11930.

Jonathan Richard Shewchuk. “Unstruc-
tured mesh generation”. In: Combinatorial
Scientific Computing 12.257 (2012), p. 2.

Yawar Siddiqui et al. “MeshGPT: Gen-
erating Triangle Meshes with Decoder-
Only Transformers”. In: arXiv preprint
arXiv:2311.15475 (2023).

Matthew Tancik et al. “Fourier Features
Let Networks Learn High Frequency
Functions in Low Dimensional Domains”.
In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle
et al. Vol. 33. Curran Associates, Inc.,
2020, pp. 7537-7547.

Ashish Vaswani et al. “Attention is All
you Need”. In: Advances in Neural In-
formation Processing Systems. Ed. by L
Guyon et al. Vol. 30. Curran Associates,
Inc., 2017.

Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. “Pointer Networks”.
In: Proceedings of the 28th Interna-
tional Conference on Neural Information
Processing Systems-Volume 2. 2015,
pp- 2692-2700.

Nanyang Wang et al. “Pixel2Mesh: Gener-
ating 3D Mesh Models from Single RGB
Images”. In: ECCV (2018), pp. 52-67.

ISSN 2464-4617 (print) Computer Science Research Notes - CSRN
ISSN 2464-4625 (online) http://www.wscg.eu WSCG 2025 Proceedings

[Wen+19] Chao Wen et al. “Pixel2Mesh++: Multi-
View 3D Mesh Generation via Deforma-
tion”. In: Proceedings of the IEEE/CVF
international conference on computer vi-
sion. 2019, pp. 1042-1051.

[WLH16] Thomas Wiemann, Kai Lingemann,
and Joachim Hertzberg. “Optimizing
Triangle Mesh Reconstructions of Planar
Environments”. In: IFAC-PapersOnLine
49.15 (2016). 9th IFAC Symposium on
Intelligent Autonomous Vehicles I[AV
2016, pp. 218-223. 1SSN: 2405-8963.

[Wu+15] Zhirong Wu et al. “3D ShapeNets: A Deep
Representation for Volumetric Shapes”.
In: CVPR (2015).

[Wu+16] Jiajun Wu et al. “Learning a Probabilistic
Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling”. In:
Advances in Neural Information Process-
ing Systems. Ed. by D. Lee et al. Vol. 29.
Curran Associates, Inc., 2016.

[Yan+18] Yaoqing Yang et al. “FoldingNet: Point
Cloud Auto-encoder via Deep Grid Defor-
mation”. In: Computer Vision and Pattern
Recognition Conference (2018), pp. 206—
215.

[Zha+21] Cheng Zhang et al. “Path-Space Differen-
tiable Rendering”. In: ACM Transactions
on Graphics (TOG) 40.4 (2021), pp. 1-15.

http://www.doi.org/10.24132/CSRN.2025-11 112

