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ABSTRACT
Regions of interest are often labeled in volumetric medical images either for research purposes or for diagnosis and
treatment planning. However, labeling such segments manually is time-consuming and requires medical expertise,
which makes it expensive. We design a novel semi-automatic 3D workflow which allows efficient segmentation-
labeling of volumetric images. To this end, for a given 3D image we first manually label a subset of its 2D
slices using MedSAM (a foundational model for segmenting any 2D medical image) via bounding-box prompting.
Subsequently, we interpolate user-provided prompts for the remaining slices to automatically generate labels for
them. This way, users can process a complete volumetric image while working on only a subset of its slices.
We evaluate our method on the diverse set of medical image datasets from the Medical Segmentation Decathlon
challenge. Our approach significantly reduces the labeling effort, around 67%, while only marginally reducing
the segmentation accuracy compared to applying MedSAM slice-by-slice. Breaking out of the time-consuming
slice-by-slice workflow with only a minor reduction in accuracy is a significant step in streamlining the process of
semi-automatic labeling.
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1 INTRODUCTION
Segmentation of volumetric medical images, such as
Magnetic Resonance Imaging (MRI) and Computer-
aided Tomography (CT), facilitates quantitative analy-
sis for disease diagnosis, pathological assessment, and
surgical planning. In recent years, supervised deep
learning techniques have proven quite successful for
segmenting such volumetric images [17]. However, in
order to achieve high-level of accuracy needed in the
medical imaging domain these techniques demand suf-
ficient amount of labeled training data.

Manual segmentation labeling of volumetric medical
images is a tedious process, which requires the ex-
pertise of a trained medical practitioner making it ex-
pensive. Further, while manual labeling is the gold
standard in terms of accuracy it also introduces inter-
and intra-observer variability, leading to inconsisten-
cies in the data analysis [14, 3]. In comparison, semi-
automatic segmentation labeling combines the preci-
sion and control of manual approach with the speed
and consistency of automated techniques [13]. How-
ever, due to high variability in volumetric medical im-
ages [1], it can be difficult for semi-automatic label-
ing tools to generalize well across different segmenta-

tion tasks. Moreover, even though such tools can go
beyond slice-by-slice processing of volumetric images
[10], thereby reducing the required manual effort, the
effort-to-accuracy trade-off can still be improved sig-
nificantly.

In this work, we address these challenges and propose
a semi-automatic approach which: (i) generalizes well
across a wide range of medical images, (ii) requires sig-
nificantly less effort by breaking away from the slice-
by-slice workflow and (iii) maintains high labeling ac-
curacy. To this end, we leverage the recently intro-
duced foundational model for the task of 2D medical
image segmentation, namely MedSAM [11]. It is in
turn a fine-tuned version of Segment Anything Model
(SAM) [9], which shows surprising zero-shot perfor-
mance for segmenting natural images. However, as
SAM is trained on natural images it tends to struggle
with medical images where boundaries are often softer
in comparison to natural images [11]. While Med-
SAM achieves relatively high accuracy on 2D medi-
cal images, it still requires a slice-by-slice workflow for
segmentation-labeling of 3D volumetric images where
the expert draws a bounding box (prompt for MedSAM)
around the region of interest on every single slice.
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We propose a workflow that breaks this tedious slice-
by-slice labeling procedure and requires significantly
less effort from the experts, refereed to as “3D work-
flow” in the rest of the paper. We achieve this via
novel prompt engineering strategies based on bound-
ing box interpolation. The feasibility of such a work-
flow is shown by achieving accuracy comparable to
state-of-the-art segmentation approaches. Further, we
maintain best effort-to-accuracy trade-off for a variety
of medical image datasets used in the Medical Seg-
mentation Decathlon challenge [1]. In particular, the
bilinear interpolation showed the ability to reduce the
manual prompting input to just 33% with only a minor
reduction in dice-score (DSC) of 0.0175 on average.
For some datasets, including brain tumor, heart, and
liver segmentation, it is even possible to reduce manual
prompting to as low as 9% with only a DSC reduction
of around 0.01.

2 RELATED WORK
In the field of volumetric image segmentation there
are three overarching approaches. Namely manual
segmentation, semi-automatic segmentation, and
automatic segmentation.

2.1 Manual and Semi-automatic Segmen-
tation

Many different manual and semi-automatic tools are
usually combined in a single segmentation application.
The landscape of segmentation applications includes
free-to-use software, and commercial software. Among
free-to-use software, options include ITK-SNAP1 [21],
MITK2 [18], 3D-Slicer3 [4], and VISIAN4 [10]. A
commercial alternative is Encord5 [6]. Popular man-
ual segmentation tools that these applications include
are simple pixel brushes and outlining tools. Semi-
automatic segmentation tools, which reduce manual ef-
fort, combine user input with various automated algo-
rithms, such as region-growing, thresholding, dilation
and erosion, or even more complex learning-based ap-
proaches.

2.2 Promptable Segmentation Using Deep
Learning

Recently, the Segment Anything Model (SAM) intro-
duced by Meta has emerged as a powerful segmenta-
tion approach for images in wild. However, despite
good zero-shot performance on natural images, mul-
tiple studies have found the zero-shot performance on

1 http://www.itksnap.org/
2 https://www.mitk.org/
3 https://www.slicer.org
4 https://visian.org.
5 https://encord.com/

medical images to be generally lower than state of the
art deep learning models and varying a lot depend-
ing on the dataset [12, 7, 15]. To improve SAM’s
performance on medical images, various fine-tuning
and adaptation approaches have been proposed. Med-
SAM [11] fine-tunes SAM’s image encoder and prompt
decoder using over 1 million medical image masks
and applies specific preprocessing for different image
types. SAM-Med2D [2], an enhanced version of SAM
with adapter layers, is fine-tuned with a very large
dataset of 2D medical images and segmentation masks
[20], yet shows lower dice scores than other methods.
SAM-Med3D [16] extensively modifies SAM for 3D
images, trained from scratch for improved segmenta-
tion quality, without comparison to advanced models.
3DSAM-adapter [5], tailored for 3D images, reuses and
adapts SAM’s components, showing superior perfor-
mance on most datasets compared to SAM and other
benchmarks. The idea of promptable segmentation has
also been transferred to other deep learning approaches
which are not based on SAM. One example is the
One-Prompt Segmentation [19], which combines the
strengths of one-shot methods and prompting. Addi-
tionally, Ma et al. [11] suggest a promptable version of
nnU-Net [8] and use it as a benchmark for MedSAM.
The promptable nnU-Net works by encoding a bound-
ing box prompt in a binary bask and using this mask as
a second image channel during training of and inferenc-
ing with the nnU-Net. We discuss how this promptable
version of nnU-Net differs from SAM and MedSAM in
the supplementary material.

3 METHOD
3.1 Segmentation-Labeling of Any Volu-

metric Medical Image
Segment Anything Model (SAM): It is a foundation
model for promptable segmentation which is trained on
more than a billion segmentation masks for 2D natu-
ral images. It consists of three main parts: the image
encoder, the prompt encoder, and the mask decoder.
The image encoder is a pre-trained ViT (vision trans-
former) which generates the image embedding. The
generation of the embedding only has to be done once
per image and can then be continuously reused for
multiple prompts. The prompt encoder process input
prompts provided in the form of: points (foreground
and background), a bounding box, text, or a preex-
isting segmentation mask to be refined. To compute
the resulting segmentation mask, the mask decoder in-
terprets the image embedding (with the optionally in-
cluded preexisting mask embedding) and the prompt
encodings. The resource-intensive image encoding task
requires a high performance GPU in order to run effi-
ciently. On the other hand, the lightweight prompt en-
coder and mask decoder can run even on a web browser
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using a consumer-grade CPU. It implies that given a
GPU server, users can interactively use SAM on a web
browser via consumer-grade machines.

Fine-tuning and Adaptation for Medical Images:

Since SAM struggles with medical images [12, 7, 15]
various approaches for fine-tuning and adaptation have
been proposed. One popular fine-tuning approach is
MedSAM [11], for which the image encoder and mask
decoder were fine-tuned using over 1.5 million medi-
cal image segmentation masks encompassing a variety
of medical imaging scenarios. The prompt encoder re-
mains unchanged from SAM. The fine-tuning dataset
includes both 2D and 3D medical images and different
kinds of structures, such as organs and tumors. During
fine-tuning, only bounding box prompts were used. In
addition to the fine-tuned model, MedSAM also uses
specific pre-processing for the medical images.

3D Workflow for Segmentation-Labeling:

A typical labeling workflow for applying a 2D prompt-
able model, such as MedSAM (or SAM), to volumetric
medical images is by operating on a slice-by-slice
basis. In the proposed 3D workflow, the user should no
longer have to provide a prompt for every single slice
of the volumetric image. Instead, from sparse user-
provided prompts we estimate the rest of the prompts
via prompt-interpolation strategies. Further, since
bounding box prompts generally achieve better results
than point prompts [12, 15, 11], we only consider
that and leave experimentation with other prompts for
future work. An overview of our workflow is depicted
in Fig. 1. Moreover, our workflow can be implemented
in a client-server fashion wherein clients/users can
access the system via a web browser, see Fig. 2.

3.2 Prompt Engineering
Nearest-neighbor Interpolation:

A straightforward way to estimate additional bounding
box prompts is via extending the same user-provided
bounding box for a given slice to its n neighbors. By
propagating the prompt to 1 neighboring slice (on both
sides), we already reduce the prompting-effort by 66%
since a single prompt is now used for 3 slices instead
of just 1 slice. However, we can extend this idea even
further by increasing the value of n. For example, for
n = 5, a single prompt is used for 11 slices, reducing
the prompting-effort by more than 90%. Obviously, this
comes with a trade-off wherein the further we extend a
user-provided prompt the greater is the inaccuracy of
the output labels for the propagated prompts.

Bilinear Interpolation:

This limitation can be mitigated to an extent by lin-
early interpolating bounding box boundaries instead of
naively using the same bounding box for the neighbor-
ing slices. To this end, two bounding boxes at the edges
of a slice-interval are provided by the user. The bound-
ing boxes between the two inputs are then generated in
the following manner. A bounding box Bs on a slice
with index s ∈ N is defined by two points (xmin

s ,ymin
s )

and (xmax
s ,ymax

s ). Let the interpolation interval go from
slice a ∈ N to slice b ∈ N. The bounding boxes Ba and
Bb on slices a and b are provided by the user. For a slice
with index i ∈ N with a < i < b, we calculate xmax

i as:

xmax
i =

(
i−a
b−a

)
· xmax

b +

(
1− i−a

b−a

)
· xmax

a (1)

ymax
i , xmin

i , and ymin
i are calculated similarly.

While the bilinearly interpolated prompts can better
capture structures which are aligned diagonally to
the slicing direction (see Fig. 3c), highly irregu-
lar structures are still hard to capture. Thus, the
trade-off between reducing effort and the accuracy
of bounding-box prompts still exists. Nevertheless,
bilinear interpolation achieves better trade-off than the
nearest-neighbor interpolation, especially for larger
propagation distances (see Sec. 4.1).

4 EVALUATION
We compare our 3D workflow against the following
approaches: SAM [9], MedSAM [11], and SAM-
Med3D (and SAM-Med3D-turbo) [16]. Using SAM
and MedSAM we simulate the normal slice-by-slice
workflow, where the model is prompted with a bound-
ing box on every single slice. SAM-Med3D and
SAM-Med3D-turbo, on the other hand, constitute
an alternate workflow for directly segmenting 3D
volumetric images based on point prompts. For this,
we provide ten 3D point prompts to the pre-trained
models.

4.1 Experimental Setup
For our experiments we adopt the data pre-processing
and normalization method which MedSAM was trained
with [11]. To evaluate SAM, we use the most power-
ful ViT-H image encoder version, while MedSAM is
based on the smaller ViT-B image encoder [11]. For
both the nearest-neighbor and the bilinear interpola-
tion techniques we simulate various amounts of user
input. This corresponds to varying interpolation inter-
vals and different propagation distances. Specifically,
we simulate interpolation intervals of lengths 2, 4, 6,
8, and 10 slices (excluding the top and bottom slices
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(a) Manual labels (b) New prompts (c) Suggested labels (d) Ground truth

Figure 1: Overview of our 3D workflow: (a) A subset of slices are labeled manually using MedSAM via bounding box prompts
for segmenting out the structure of Spleen. (b) The initial user-provided prompts are interpolated to create new prompts for
intermediate slices. (c) The generated prompts are used to create new labels for intermediate slices. Note, how the suggested
labels are quite similar to the to the ground truth (d) for a smooth structure, such as the Spleen.

which are used as input for the interpolation) – for bi-
linear, and propagation distances of 1 to 5 slices (both
above and below the input slice) – for nearest-neighbor.
This results in approximately 33%, 20%, 14%, 11%,
and 9% user prompts for both the interpolation strate-
gies respectively. Additionally, to avoid interpolating
between the usually small edge bounding boxes of a
structure, we ensure that at least two interpolation in-
tervals and at least two propagation inputs are used.
For the SAM-Med3D and SAM-Med3D-turbo bench-
marks, we use the available evaluation script, with 10
point prompts. The first point prompt is a random point
from the foreground region. The following points are
iteratively placed in a random position within the error
region [16].

4.2 Dataset Description
In order to better match the common real world appli-
cation scenario of semi-automatically segmenting one
structure at a time while viewing one image modal-
ity at a time, we converted the Medical Segmentation
Decathlon dataset [1] to this scenario as follows. As
the brain tumor segmentations include different sub-
classes of the tumor, we combine them all to a single
class. We use the FLAIR-MRI channel, as FLAIR is
commonly used for tumor segmentation and produces
good contrast, and disregard the other channels. The
liver segmentation include the healthy liver and small
tumors within the liver. We combine the classes to re-
sult in one class for the whole liver. The hippocampus
segmentations are split into anterior and posterior hip-
pocampus. We combine both classes to result in one
segmentation for the whole hippocampus. Similarly,
prostate segmentation are split into the peripheral zone
and the transition zone. We again combine them to one
class of the whole prostate. Additionally, we choose the
T2-MRI channel and disregard the ADC-MRI channel.
The pancreas segmentations include one class for the
healthy pancreas and one class for small tumors. We
combine the classes into one class of the whole pan-
creas. The hepatic tumor dataset includes one class

for hepatic vessels and one class for tumors. As the
hepatic vessels are many small disconnected structures
which are entirely distinct from the tumor, we choose
the tumor class and disregard the non-optimal vessel
class. All other datasets already have a single chan-
nel and single foreground segmentation class and re-
main unchanged. Overall, even with our simplification
to a single image channel and a single foreground seg-
mentation class, the Medical Segmentation Decathlon
datasets remain a diverse set of volumetric medical im-
age segmentation tasks.

4.3 Quantitative Results
The quantitative results of our experiments are pre-
sented in Tab. 1. Note, that the results of both SAM and
MedSAM are upper-bound baselines, since both meth-
ods are prompted with a ground truth bounding box. In
contrast the proposed method uses bounding box inter-
polation to achieve similar accuracy. Some key obser-
vations are as follows. Firstly, the difference in using
SAM vs. MedSAM is significant showing the efficacy
of MedSAM for medical images. Secondly, the alter-
nate 3D workflow using point prompts and the 3D mod-
els SAM-Med3D and SAM-Med3D-turbo, while ar-
guably requiring less user effort, is not competitive with
regards to accuracy. This also remains true when com-
paring it to our prompt engineering methods instead
of the slice-by-slice workflow using SAM or Med-
SAM. Even when using only 9% of user prompts, both
the nearest-neighbor- and bilinear- interpolation outper-
form SAM-Med3D and SAM-Med3D-turbo. The only
exceptions are brain-tumor and heart segmentation.
Our interpolation-based approach is obviously less
accurate than applying MedSAM slice-by-slice. How-
ever, the labeling quality, especially for 33% user
prompts, is only slightly worse than the slice-by-slice
approach using MedSAM and still outperforms the
case of using SAM instead (see Tab. 1). For both
our interpolation techniques we see a relatively even
reduction in segmentation quality as the amount of user
prompts is reduced. Between the two we see superior
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Figure 2: Flow diagram of the client-server architecture. The image is made accessible to both the user machine and the GPU
server. The GPU server handles image normalization and generates image embeddings for user machine to download and cache
( 1 to 3 ). The segmentation labeling ( 1 to 8 ) starts when the user confirms segmentation slices ( 1 ) using the segmentation
tools. Confirmed slices are input for prompt engineering ( 2 ) which creates system prompts ( 3 ). These prompts are encoded
and combined with corresponding image embeddings provided by the GPU server to generate new segmentation suggestions
( 4 to 7 ). The user checks and corrects these suggestions ( 8 ) thereby obtaining the final ( ) output.

(a) Ground truth boxes (b) Nearest Neighbor (c) Bilinear

Figure 3: Hippocampus volumes rendered in 3D with slice-wise bounding boxes. White bounding boxes are user-provided
(simulated from ground truth) and red bounding boxes are estimated via (b) nearest-neighbor interpolation and (c) bilinear
interpolation respectively.

labeling quality for the bilinear interpolation, with an
improvement in DSC of around 0.01.

4.4 Qualitative Results
To further qualitatively analyze the accuracy of nearest-
neighbor- vs. bilinear- interpolation we present ex-
amples for hippocampus and spleen segmentation in
Fig. 4. The shown cases are the same used for show-
ing slice-wise bounding boxes in Fig. 3. First of all, we
observe that the slice-by-slice application of MedSAM
(see Sec. 4.3) is quite close to the ground truth segmen-

tation (see Sec. 4.3). Thus, the result only requires mi-
nor manual clean up. The nearest-neighbor interpola-
tion approach, as expected, results in edgy segmenta-
tion where the chunks of slices sharing the same bound-
ing box prompts are clearly visible (see Sec. 4.3). These
chunks become even more obvious when using a larger
interpolation interval. In comparison, the bilinear inter-
polation results in smoother segmentation boundaries.
However, for larger interpolation intervals the quality
in this case also degrades significantly (see Fig. 5a).
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Table 1: Dice-score (DSC) achieved by bilinear- and nearest-neighbor- interpolation of MedSAM [11] prompts compared
to applying SAM [9] and MedSAM slice-by-slice (using ground-truth bounding box prompts), and SAM-Med3D and SAM-
Med3D-turbo [16] prompted with ten 3D point prompts. All applied to the Medical Segmentation Decathlon dataset [1]. For
both the interpolation techniques, user input was simulated on a varying percentage of slices. The best approach in terms of
accuracy is marked in green and the next best in blue.

Brain T. Heart Liver Hippoca. Prostate Lung T. Pancreas Hepatic T. Spleen Colon T. Average
MedSAM 0.830 0.846 0.955 0.822 0.903 0.792 0.822 0.7820 0.949 0.783 0.848
SAM 0.756 0.839 0.907 0.778 0.903 0.804 0.749 0.764 0.935 0.735 0.817
SAM-Med3D-turbo 0.863 0.878 0.876 0.118 0.661 0.739 0.659 0.492 0.817 0.508 0.661
SAM-Med3D 0.760 0.692 0.849 0.357 0.434 0.470 0.365 0.494 0.759 0.380 0.556
Nearest-neighbor
33% user prompts 0.828 0.843 0.953 0.782 0.874 0.769 0.799 0.745 0.929 0.724 0.825
20% user prompts 0.824 0.839 0.949 0.728 0.840 0.759 0.771 0.727 0.901 0.701 0.804
14% user prompts 0.817 0.833 0.945 0.676 0.814 0.750 0.745 0.716 0.871 0.692 0.786
11% user prompts 0.812 0.826 0.941 0.618 0.793 0.743 0.718 0.711 0.854 0.689 0.770
9% user prompts 0.804 0.822 0.935 0.586 0.785 0.741 0.698 0.706 0.830 0.688 0.759
Bilinear
33% user prompts 0.830 0.843 0.955 0.808 0.870 0.781 0.804 0.752 0.938 0.729 0.831
20% user prompts 0.829 0.842 0.953 0.790 0.836 0.777 0.774 0.733 0.917 0.707 0.816
14% user prompts 0.827 0.841 0.951 0.770 0.783 0.768 0.742 0.716 0.886 0.684 0.797
11% user prompts 0.823 0.840 0.948 0.749 0.747 0.769 0.708 0.704 0.860 0.679 0.783
9% user prompts 0.820 0.838 0.944 0.717 0.738 0.764 0.670 0.696 0.827 0.678 0.769

(a) Nearest-nbr. (b) Bilinear (c) MedSAM on all (d) Ground truth

Figure 4: Hippocampus and Spleen segmentations generated with different methods, all using MedSAM, compared to ground
truth. In all images the individual voxels are quite visible due to low resolution (1 voxel per mm) compared to the size of the
hippocampus (∼ 37mm in length). For both nearest-neighbor and bilinear interpolation case we use only 33% of groud-truth
bounding boxes. Note the (disconnected) chunks resulting from nearest-neighbor interpolation and the loss of fine details but
preservation of overall shape resulting from bilinear interpolation.

5 DISCUSSION

We make use of MedSAM based per-slice approach
along with novel prompt engineering for our 3D work-
flow. Alternatively, one can directly apply 3D based
segment anything model like SAM-Med3D. However,
evaluating it on existing datasets reveals a notable de-
ficiency in segmentation quality, likely caused by the
small amount of user input given to the model. Al-
though the further fine-tuned version, SAM-Med3D-
turbo, shows some improvement, it fails to compete
effectively in more than two datasets, specifically the
brain tumor and heart datasets. This highlights the crit-

ical balance between minimizing user input and main-
taining segmentation quality. It remains to be seen if
further fine-tuning or architectural enhancements could
make these 3D models more competitive.

In contrast, our approach, leveraging MedSAM cou-
pled with the presented prompt engineering methods,
strikes a more advantageous balance. However, fine
details can sometimes be lost, a limitation not unique
to our approach but inherent to MedSAM, even in its
slice-by-slice application. Improving MedSAM or po-
tentially replacing it with another 2D model, such as
SAM-Med2D [20], could be viable solutions.
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(a) 9% (b) 14% (c) 33% (d) 100%

Figure 5: Visualization of how the segmentation-labeling quality improves for Hippocampus and Spleen as the amount of
ground-truth bounding box is increased from 9% to 33% in case of bilinear interpolation. Note how similar are the results using
just 33% ground-truth boxes in comparison to 100% especially for Spleen.

While we have presented an extensive evaluation of
the proposed prompt engineering methods, the 3D
workflow as such has not been tested with actual
users. However, with the presented prompt engineering
methods we have laid out the necessary foundation
for implementing such a workflow in any medical
image segmentation application. Further, our linear
interpolation strategy might not perform well for
structures changing abruptly across slices.

6 CONCLUSION
We present a semi-automatic segmentation-labeling
approach for volumetric images that works for a wide
variety of medical imaging scenarios and breaks away
from the traditional slice-by-slice labeling workflow.
Our approach, is based on promptable segmentation for
2D medical images using MedSAM. To this end, we
design a 3D workflow that requires significantly less
effort from experts compared to manually prompting
MedSAM on every slice. As part of our design
choice we evaluate two different prompt propagation
strategies namely nearest-neighbor- and bilinear-
interpolation. In particular, the bilinear interpolation
showed the ability to reduce the manual prompting
input to 33% with only a minor reduction in DSC
(0.0175) on average. The early stage of SAM-based
models for medical image segmentation leaves room
for future improvement, and the subjective evaluation
of the proposed 3D workflow remains as future work.
Furthermore, our approach can benefit from integrating
learning-based adaptive interpolation techniques.
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