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ABSTRACT
Instance segmentation models are crucial for precise object detection but often require expensive pixel-wise mask
annotations. This paper studies the impact of combining bounding box and mask annotations in semi-supervised
segmentation. We propose a method that leverages from both types of labeled data within a unified training
framework. Through experiments on YOLO (convolution-based) and DETR (transformer-based) architectures,
we demonstrate that balancing these annotation types significantly enhances performance while reducing labeling
costs, particularly in terms of manual annotation time. Additionally, we evaluate few-shot and zero-shot scenarios,
further highlighting the flexibility and efficiency of our method for budget-constrained segmentation tasks.
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1 INTRODUCTION
Neural networks have become a standard tool for im-
age processing, with the main tasks typically catego-
rized into image classification, object detection, and
segmentation. Image classification involves tagging an
image to indicate whether it contains an object of a par-
ticular type. Object detection extends this by identi-
fying and localizing objects of interest and embedding
them within bounding rectangles. Segmentation, on the
other hand, produces pixel-wise masks, allowing mod-
els to draw the exact boundaries of objects in an im-
age. Training these models typically requires annota-
tions that match the type of predictions they are de-
signed to produce. For example, semantic segmentation
assigns a class label to each pixel in an image, whereas
instance segmentation [15, 16] not only assigns seman-
tic labels, but also distinguishes between individual ob-
jects of the same class, assigning unique instance IDs
[4, 14].

Segmentation models demand significant annotation
effort, with pixel-wise masks being far more time-
consuming to create compared to bounding boxes
or image-level labels. Weakly and semi-supervised
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learning methods aim to alleviate this burden by
utilizing cheaper forms of annotation. However, an
underexplored issue is how changes in the distribution
of bounding box and mask annotations affect model
performance. Given that data distributions can shift
or be imbalanced in real-world scenarios, it is critical
to understand the impact of this imbalance on model
generalization and segmentation quality.

This paper studies how the ratio of weakly labeled data,
namely bounding boxes, impacts the effectiveness of
semi-supervised learning in segmentation tasks. To
this end, we propose a method for training segmen-
tation models by combining images with pixel-wise
masks and bounding box annotations in a single pro-
cedure. We demonstrate that a proper balance between
mask-labeled and bounding box-labeled training data
improves model performance while reducing annota-
tion time. Additionally, we show that the models can
achieve similar performance on datasets with varying
proportions of the two annotation types.

We tested our idea for the convolution-based YOLO
network and for the transformer-based DETR model
(refer to Sec. 3.3 for details). We conclude that the opti-
mal mask-to-box labeled data ratio for training segmen-
tation models is approximately 1:4 . . .1:7.

Finally, we examine two extreme scenarios known as
"few-shot" and "zero-shot" learning [31], when we train
a YOLO segmentation model on a dataset that has only
few mask annotations for each class or even contains
bounding box annotations only (refer to Sec. 4.6).
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2 RELATED WORK
2.1 Instance segmentation
Fully supervised instance segmentation meth-
ods [17, 24, 3, 9, 28] have demonstrated high
performance; however, these approaches require
substantial annotation efforts. The variety of instance
segmentation methods [17, 24, 3, 5, 9, 28] can be cat-
egorized into single-stage, two-stage, and multi-stage
based on the number of stages involved. Two-stage
methods, like Mask R-CNN [17], use a detect-then-
segment approach, starting with object detection
(e.g, Faster R-CNN [33]) followed by segmentation
within each detected box. Single-stage methods,
such as YOLACT [3], inspired by YOLOv3 [32],
and CenterMask [24], aim to balance speed and
accuracy by performing instance segmentation directly.
Multi-stage methods, often using the Transformers
framework [35, 5, 10], support end-to-end seg-
mentation, eliminating the need for non-maximum
suppression and manual anchor box selection. We
chose to work with YOLO and DETR since they are
based on fundamentally different principles (convo-
lutions and transformers, respectively) while being
popular, powerful, and open-source.

2.2 Budget-Efficient Instance Segmenta-
tion

The labeling of pixel-wise masks is considerably
more time-consuming compared to bounding boxes or
image-level labels. For example, as reported in [2],
the time required to annotate full masks in the Pascal
VOC dataset [13] is approximately 6.3 times greater
than that required for bounding box annotations.
Weakly-supervised instance segmentation seeks to
reduce the labeling burden by relying on weaker forms
of supervision, such as image-level labels [22, 29]
or bounding boxes [34, 23, 26, 18], instead of pixel-
perfect masks. In contrast, semi-supervised methods
leverage a combination of labeled and unlabeled data
to enhance model performance [36, 30, 8]. By utilizing
the segmentations learned from fully labeled data,
these methods generate pseudo-instance masks for
the unlabeled data. Recently, weakly semi-supervised
methods [21] and hybrid supervised approaches [7]
have been proposed for budget-efficient instance seg-
mentation. Most papers in weakly and semi-supervised
learning follow the existing data splits and settings in
the benchmark. In contrast, our work goes beyond
these conventional setups by exploring the balance
between different types of training data.

3 METHOD
As mentioned in [2], with a fixed annotation budget, the
number of annotated images depends on the level of su-
pervision selected. Lower levels of supervision allow

for annotating more images because they require less
detailed annotation work, enabling annotators to pro-
cess a larger volume of images within the same time
frame. The key question is how to allocate the bud-
get: should it be spent on fewer images with highly
detailed supervision, such as pixel-wise masks, which
provide precise object boundaries, or on weaker la-
bels, like bounding boxes, which are less detailed but
cover a larger number of images? To address this ques-
tion, we considered different data splits, varying num-
ber of pixel-wise and bounding box labeled images in
the training dataset. First, we analyze these splits based
on two criteria: the cost of the labeling process and the
performance of the model trained on each data split (re-
fer to Sec. 4.3). Second, we conduct a visual analysis
of the model trained with different data splits (refer to
Sec. 4.4).

3.1 Data splits
Following [19], we refer to the complete set of images
that includes instance segmentation annotations (i.e.,
pixel-wise masks and corresponding bounding boxes),
as the full set F, and the set of images having only
bounding box annotations as the weak set W.

To assess the impact of fixing different annotation
budgets, according to [2, 19], we consider different
budget scenarios by varying the number of full labels
|F| ∈ {200,400,800,1464} for Pascal VOC 2012 and
{200,400,800,1475} for Cityscapes [11]. In prior
works [19, 7], the authors studied the only case where
the weak set W consists of all the images that were
not selected for the full set F, i.e. the number of weak
labels is equal to the total size of the training dataset
minus |F|. In contrast, to examine the impact of the
different data splits, we vary the number of weak
labels as follows: {0,1000,3000,5000,10731−|F|}
for Pascal VOC 2012 and {0,1000,2000,2975−|F|}
for Cityscapes.

3.2 Annotation cost
To estimate the labeling cost, we employed the method
described in [2]. Tab. 1 presents the average labeling
time for a single image for the Pascal VOC 2012 and
Cityscapes datasets, respectively.

Label type Pascal VOC 2012 Cityscapes
Bounding box 38.1s/image 127.5s/image

Pixel-wise 239.7s/image 1,387.5s/image

Table 1: The annotation cost (in seconds) for estimation
of heterogeneous labels on the PASCAL VOC 2012 and
Cityscapes datasets from [2, 7]

3.3 Models
YOLOv5 segmentation model. YOLOv5 [20] is a
widely used computer vision model originally designed
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for object detection, known for its state-of-the-art per-
formance on the COCO dataset [27] and its training
and deployment efficiency. It was later extended to in-
clude instance segmentation, resulting in the YOLACT
model [3]. The YOLACT segmentation head is similar
to YOLOv5’s, featuring a modified detection head with
a mask branch and Protonet [3], a small convolution
network for generating prototype masks. The predic-
tion head of the YOLOv5 segmentation model extends
the detection model’s head by including a mask branch
that predicts "mask coefficients", which are combined
with prototype masks to produce the final output mask
for each instance. For more details, see [3].

Based on the implementation of the YOLOv5 architec-
ture, for instance segmentation [20], we modified a one-
stage training procedure to be able to mix bounding box
and mask labeled data in a single batch. See Sec. 3.4 for
more details.

DETR segmentation model: DETR (DEtection
TRansformer) is a model developed by Facebook [5, 6]
for object detection, using a transformer-based
encoder-decoder architecture [35] that bypasses
traditional methods like non-maximum suppression
and anchor boxes. In [5], DETR was extended for
instance segmentation tasks by adding a mask head
to the decoder outputs. Training follows a two-step
process: first for object detection, then fine-tuning for
segmentation, which proved to be faster than a one-step
segmentation training.

3.4 Overview of the semi-supervised
training strategy

The standard semi-supervised training procedure con-
sists of two stages: first, training the model on object
detection using the weak set, followed by fine-tuning
on instance segmentation with the full set. This ap-
proach is effective for the DETR model due to its archi-
tecture, but not for the YOLOv5 model. The primary is-
sue is that the detection head must be partially replaced
with the segmentation head, resulting in the removal of
some previously trained model weights and a decrease
in model quality. Thus, for YOLOv5, we modified the
training procedure to allow images with weak and full
annotations to be used in a single batch during segmen-
tation model training.

For the YOLOv5 model, we base our approach on the
PyTorch implementation from the Ultralytics reposi-
tory [20]. Next, we describe the original and modified
training procedures, as well as the training losses for
YOLOv5.

YOLO Loss functions. The overall loss function in
YOLOv5 segmentation model (see [20]) is computed
as a combination of four individual loss components:

Loss = λ1Lcls +λ2Lob j +λ3Lloc +λ3Lmask, (1)

This structure allows individual loss components to be
deactivated while keeping the others. Moreover, it is
possible to disable a single loss component for particu-
lar batch elements during training. This feature is uti-
lized below.

One-stage semi-supervised setup. The original
YOLOv5 training procedure for instance segmentation
consists of the following steps:

• create a dataset that includes both images and labels,
and a dataloader to iterate over it.

• take a batch of images from the dataloader and prop-
agate it through the model

• calculate the loss for the batch and backpropagate
the gradients to adjust the model’s weights.

Since we intend to train a model with mixed full/weak
batch, the initial training procedure was modified:

• as there is no segmentation annotation for the weak
set, we create rectangular masks from the bounding
boxes to preserve dataloader conventions,

• we create an additional dataloader to iterate over the
weak dataset,

• during training, the algorithm iterates over two dat-
aloaders simultaneously and fuses batches from dif-
ferent dataloaders into a single one

• the loss function does not take weak set masks into
account when calculating the Binary Cross-Entropy
loss Lmask.

4 EXPERIMENTS
In this section, we conduct quantitative evaluation of
the instance segmentation models trained with differ-
ent number of pixel-wise labels and bounding box la-
bels. We compare our results to the state-of-the-art
approaches. We also perform a visual analysis of the
model quality for different data splits used for training.

4.1 Datasets
We used Pascal VOC 2012 [13] as the primary dataset
for training our YOLOv5 and DETR segmentation
models. Also, we used Cityscapes [11] only for the
YOLOv5 model since DETR, being transformer-based,
requires a lot of data.

Pascal VOC 2012. Pascal VOC 2012 (hereinafter re-
ferred to as VOC2012) [13] consists of 1464 training,
1449 validation, and 1456 test images including 20 ob-
ject categories for instance segmentation. Additionally,
it includes 9,267 images with only bounding box anno-
tations. We report instance segmentation results with
AP50, AP70, AP75 on the validation set.
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Cityscapes. Cityscapes [11] includes 2975 training,
500 validation, and 1525 test images of urban scenes
with pixel-level annotations for 30 object classes (e.g,
cars, pedestrians). It provides fine and coarse mask an-
notations. We use only the fine data and 8 classes (per-
son, rider, car, truck, bus, train, motorcycle, and bicy-
cle), since instance segmentation isn’t available for the
other classes. We measure the performance by using
AP50 and AP50:95 on the validation set.

Method |F| |W| Labeling cost (h) AP50 AP70 AP75
Semi and Weakly supervision

LACI[1] - 10582 112 57.7 33.5 31.2
BoxInst[34] - 10582 112 61.4 - 37.0

BBTP w/CRF[18] - 10582 112 59.1 - 21.9
BBAM[23] - 10582 112 63.7 39.5 31.8

Box2Mask-T[26] - 10582 112 70.8 50.8 44.4
Budget-aware[2] 100 - 6.7 14.9 - -

200 - 13.3 23.7 - -
400 - 26.6 35.5 - -
800 - 53.3 42.9 - -
1464 - 97.5 46.8 - -

Full supervision
Budget-aware[2] 10582 - 704.6 56.4 - -
Mask R-CNN[17] 10582 - 704.6 67.9 50.7 43.5
Center-mask[24] 10582 - 704.6 68.8 53.1 45.9

YOLACT[3] 10582 - 704.6 72.3 56.2 -
Hybrid supervision [7]

Mask-R-CNN 105 10477 117.9 61.8 42.7 35.2
317 10265 129.7 63.5 45.0 38.5
529 10053 141.6 63.9 46.3 39.7
1058 9524 171.2 65.4 48.0 41.6
2116 8446 230.3 66.2 49.4 42.2
5291 5291 408.3 66.9 50.0 43.5

CenterMask 105 10477 117.9 62.2 45.1 38.2
317 10265 129.7 64.2 47.9 41.6
529 10053 141.6 65.3 49.2 42.5
1058 9524 171.2 66.1 50.8 44.6
2116 8446 230.3 66.5 51.6 45.4
5291 5291 408.3 67.2 52.1 45.9

Ours
YOLOv5 200 - 13.3 49.3 34.5 29.6

200 1000 23.9 56.5 40.6 35.0
200 3000 45.1 62.9 44.9 38.8
200 5000 66.2 65.3 46.8 40.2
200 10531 122.7 67.4 50.3 44.4
400 - 26.6 52.9 38.6 34.4
400 1000 37.2 58.1 43.0 37.8
400 3000 58.4 63.8 47.6 41.7
400 5000 79.5 65.9 49.9 44.1
400 10331 136 70.2 52.8 46.5
800 - 53.3 58.1 44.3 39.8
800 1000 63.9 61.7 46.6 41.6
800 3000 85.0 66.5 50.2 44.4
800 5000 106.2 69.0 53.5 47.4
800 9931 158.4 71.6 54.9 48.9
1464 - 97.5 63.6 49.9 44.0
1464 1000 108.1 65.7 51.0 46.1
1464 3000 129.2 68.7 54.0 48.3
1464 5000 150.4 70.0 55.5 50.8
1464 9267 195.6 74.7 58.8 53.3

DETR 400 1000 37.2 37.4 21.0 15.5
400 3000 58.4 46.8 25.8 20.3
400 5000 79.5 50.4 29.5 22.8
400 10331 136 55.9 33.7 36.8
800 1000 63.9 43.6 26.7 21.6
800 3000 85.0 52.8 34.4 27.0
800 5000 106.2 55.5 36.3 30.0
800 9931 158.4 60.9 40.6 34.1
1464 1000 108.1 49.9 33.4 27.8
1464 3000 129.2 56.9 39.5 33.0
1464 5000 150.4 59.4 40.9 33.9
1464 9267 195.6 62.8 44.9 37.8

Table 2: The instance segmentation results for the
VOC2012 validation set. The underlined models il-
lustrate the trade-offs between using the full and weak
datasets. They are visualized on Fig. 2 and Fig. 4.

Method |F| |W| Labeling cost (h) AP50 AP50:95
Semi and Weakly supervision

WSSPS[25] - 2975 105.4 - 17.0
Ubteacher[30] 148 - 57.0 - 16.0

297 - 114.5 - 20.0
595 - 229.3 - 27.1
893 - 344.2 - 28.0

Noisy Boundaries[36] 148 - 57.0 - 17.1
297 - 114.5 - 22.1
595 - 229.3 - 29.0
893 - 344.2 - 32.4
1190 - 458.6 - 33.0

Full supervision
Mask-R-CNN[17] 2975 - 1146.6 59.5 31.5

PANet[28] 2975 - 1146.6 57.1 31.8
Center-mask[24] 2975 - 1146.6 61.7 34.7
Mask2Former[9] 2975 - 1146.6 63.9 38.5

Hybrid supervision[7]
Mask-R-CNN 29 2946 115.5 40.2 19.4

89 2886 136.5 49.6 24.2
148 2827 157.2 51.8 25.8
297 2678 209.3 55.0 28.5
595 2380 313.6 56.8 29.5
1486 1488 625.4 59.2 31.1

CenterMask 29 2946 115.5 39.9 18.7
89 2886 136.5 51.8 26.7

148 2827 157.2 54.0 27.4
297 2678 209.3 56.1 30.5
595 2380 313.6 57.9 32.1
1486 1488 625.4 61.4 34.0

Ours
YOLOv5 200 - 77.1 35.3 19.4

200 1000 112.5 49.8 27.3
200 2000 147.9 53.2 29.6
200 2775 175.4 54.1 30.0
400 - 154.2 43.6 24.0
400 1000 189.6 52.0 29.6
400 2000 225 55.2 31.8
400 2575 245.4 55.3 31.6
800 - 308.3 47.6 27.5
800 1000 343.8 54.3 31.7
800 2000 379.2 55.7 32.7
1475 - 568.5 53.5 31.4
1475 1000 603.9 55.0 33.0
1475 1500 621.6 56.0 33.3
2975 - 1146.6 56.5 33.8

Table 3: The instance segmentation results for the
Cityscapes validation set. The underlined models il-
lustrate the trade-offs between using the full and weak
datasets. They are visualized on Fig. 3.

4.2 Training procedure
We use both YOLOv5 and DETR segmentation
models with backbones pretrained on the ImageNet
dataset [12] as is common practice. Model performance
is measured using the mean average precision (AP)
across the available classes. Our source code is avail-
able in https://github.com/OneMagicKey/
optimal-annotation-mix.

YOLO. The YOLOv5 segmentation model was trained
using a batch size of 16 and the SGD optimizer. We
used an image size of 512 for VOC2012 and 1024 for
Cityscapes, default augmentations, and a scheduler pro-
vided by [20]. The underlining is explained in Sec. 4.4.

DETR. We use DETR with ResNet-50 backbone for
our experiments. The default image size was set to
800 pixels, with a maximum size of 1333 pixels. We
used the AdamW optimizer and augmentations from
the original repository [6]. We train DETR accord-
ing to the original procedure described in [5]. First,
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Figure 1: Evaluation of instance segmentation results from different methods. (a) is results on the VOC2012
dataset, (b) is results on the Cityscapes dataset. The number in the model name indicates the size of F dataset used
for training

we train the model using only boxes. Then, we freeze
all weights and train only the mask head. During the
bounding box phase, the model was trained with a batch
size of 10, while the mask phase uses a batch size of 3.
We use the publicly available PyTorch implementation
from [6].

4.3 Experimental results
YOLOv5 and DETR models are evaluated according
to two criteria: their performance (the higher, the bet-
ter), and the cost of the labeling process (the lower,
the better). The labeling cost is calculated based on
the statistics presented in Tab. 1. We report our re-
sults against weakly-supervised [25, 1, 34, 18, 23, 26],
semi-supervised [30, 36], hybrid-supervised [7], and
fully supervised [17, 28, 24, 9, 3] methods. The results
are listed in Tabs. 2 and 3. The columns represent the
method name, the number of fully labeled images (|F|),

the number of weakly labeled images (|W|), the label-
ing cost (in hours), and the instance segmentation per-
formance metrics. We show that our semi-supervised
setup, which balances fully labeled and weakly labeled
images, outperforms state-of-the-art approaches at a
comparable or reduced labeling cost.

The overall results are shown in Fig. 1 (a) and Fig. 1 (b).
For clarity, we grouped our models trained on the same
size of the F dataset in Fig. 1. To differentiate models
trained on different data splits, we include the number
of full (F) and weak (W) images in the model name. If
the model name ends with the number of full images
only, it represents a group of models with the same F
set but varying W sets. For example, YOLO-400/5000
refers to a model trained with |F| = 400 and |W| =
5000, while YOLO-400 represents a group of models
such as YOLO-400/0, YOLO-400/1000, ... , YOLO-
400/10331.
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(a)

(b)

(c)
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input image ground truth 200/10k 400/5k 800/3k 1464/0
Figure 2: Visualizations of instance segmentation results on the VOC2012 validation set for different |F|/|W| data
splits using the YOLO model. The values in the column headers represent the sizes of the F and W datasets used
for model training. The numbers within the images represent the confidence scores for each segmented instance.

Comparison with state-of-the-art. For VOC2012, our
semi-supervised model YOLO-1464/9267 surpasses
the fully supervised methods Mask R-CNN [17],
CenterMask [24], and YOLACT [3] by 8.1, 5.7, and
2.6 in AP70, respectively, while reducing labeling costs
by 3.5 times. Similarly, under the same labeling cost,
YOLO-800/5000 outperforms the weakly supervised
methods LACI [1], BBAM [23], and Box2Mask_T [26]
by 20, 14, and 2.7 in AP70, respectively. Furthermore,
it also outperforms Hybrid Mask R-CNN [7] and
CenterMask [7] across all data splits, while being
cheaper to label.
In the Cityscapes dataset, our YOLO-200/1000 model
outperforms WSSPS [25], Ubteacher-297/0 [30], and
Noisy Boundaries-297/0 [36] by 10.3, 7.3, and 5.2 in
AP50:95, while maintaining the same labeling cost.
Additionally, our YOLO-1475/1500 model achieves
33.3 AP50:95, nearly matching the performance of the
fully supervised CenterMask [24] (34.7) and outper-
forming both PANet [28] (31.8) and Mask R-CNN [17]
(31.5), while reducing labeling costs by half.
Notably, DETR performs significantly worse than
YOLO. We attribute this to the nature of DETR as a
transformer-based model, which generally requires

more training data compared to convolution-based
models like YOLO. In addition, DETR struggles
to detect small objects and requires higher training
resolutions (800 pixels versus YOLO’s 512 pixels).

Search for optimal training data split. We begin by
analyzing the performance of various YOLO models on
the VOC2012 dataset. As shown in Fig. 1 (a), splits
with |W|= 0 (the leftmost points on all YOLO graphs)
are suboptimal as there are YOLO models with the
same annotation cost but better AP70 scores. A similar
observation applies to models where |W|= 10731−|F|
(the rightmost points on all YOLO graphs). Edge cases
like YOLO-200/0 and YOLO-1464/9267 (the leftmost
and rightmost points on their respective graphs) are ex-
cluded, as they lack meaningful comparability. The best
AP70 results, for fixed annotation costs, are achieved
with the models YOLO-400/5000 (the 4th point from
the left on the YOLO-400 graph) and YOLO-800/5000
(the 4th point from the left on the YOLO-800 graph).
From this analysis, we conclude that

Observation 1. Extreme training data splits, where the
absolute majority is either F or W, are not optimal in
terms of labeling cost and performance.
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(a)

(b)

(c)

input image ground truth 200/2775 400/2k 800/1k 1475/0
Figure 3: Visualizations of instance segmentation results on the Cityscapes validation set for different |F|/|W| data
splits using the YOLO model. The numbers in the column headers represent the sizes of the F and W datasets used
for model training. The numbers within the images represent the confidence scores for each segmented instance.

For the DETR model, the same principle holds true.
The highest AP70 scores for fixed annotation costs
are achieved by DETR-800/3000 and DETR-800/5000
models, corresponding to the second and third points
from the left on the DETR-800 graph, respectively.
This indicates that the most effective |F|/|W| splits in
terms of the annotation cost are the "middle" ones,
thereby confirming Observation 1.

Similar observations apply to the YOLO model trained
on Cityscapes dataset. In Fig. 1 (b), for every model
with |W| = 0 (except YOLO-200/0), alternative mod-
els achieve the same AP50:95 scores at lower annota-
tion costs. Additionally, the YOLO-2975/0 model has
twice the annotation cost of YOLO-1475/1500, despite
achieving an equal AP50:95 score. Notably, the YOLO-
800/2000 model achieves almost the same AP50:95
score as YOLO-1475/1500 at about half the annotation
cost.

We complete this subsection with two natural remarks,
that follow from Tabs. 2 and 3:

Observation 2. Even with a small |F|, the model
achieves competitive results, provided that |W| is large
enough. Refer to Sec. 4.6 for a discussion of extreme
cases.

Observation 3. Larger sizes of the set W result in better
performance for any given size of F; in other words,
increasing the weakly labeled set improves box quality
and enhances AP for the masks. Similarly, larger sizes
of the set F lead to better performance regardless of the
size of W.

4.4 Visual data split analysis
This section focuses on the visual analysis of the model
output. By examining how models trained on different
splits of the training data perform on specific images,
we can identify trade-offs in mask quality, detection ac-
curacy, and class assignment.

To facilitate this analysis, we selected models trained on
different data splits that achieved identical AP scores.

These models, underlined in Tabs. 2 and 3, illustrate
the trade-offs between using the full and weak datasets.

Fig. 2 showcases instance segmentation results for five
representative images from the VOC2012 dataset, pro-
duced by the YOLO model. The results are displayed
for four selected models with similar AP70 scores. We
highlight the following observations:

Observation 4. Models with identical AP70 scores
produce visually similar segmentations, especially for
large, easily detected objects (see Fig. 2 (a)).

Observation 5. Training with more weak examples im-
proves a model’s ability to locate and classify objects
(see Fig. 2 (b, c)) For instance, if there are classes that
are visually or semantically similar, such as horses and
sled dogs, or sheep and horse heads, a model trained
on a dataset with a larger W will make fewer errors in
determining the class of an object.

Observation 6. A larger size of the F set is expected to
result in better mask quality (see Fig. 2 (d)).

Observation 7. The "middle" 800/3K |F|/|W| split ap-
pears to be the optimal choice visually, as it strikes
a balance between mask quality (Observation 6) and
class identification (Observation 5). See Fig. 2 (e).

Fig. 3 presents the instance segmentation masks pro-
duced by the YOLO model trained on the Cityscapes
dataset. Compared to VOC2012, Cityscapes is a more
homogeneous dataset than VOC2012, with high-quality
images and only 7 instance categories, which implies
that the produced masks are visually similar for the
|F|/|W| splits with close AP scores (for instance, see
Fig. 3 (b, c)). This confirms Observation 4. For the
same reason, examples in the Cityscapes validation
dataset that could illustrate Observations 5-7 are rare.
In particular, see Fig. 3 (a) which illustrates Observa-
tion 5.

Finally, Fig. 4 shows the instance segmentation masks
obtained by the DETR model trained on the VOC2012
dataset. The results of our experiments verified most of
the observations. While limited training data prevents
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(a)

(b)

(c)

input image ground truth 400/10k 800/3k 1464/1000
Figure 4: Visualizations of instance segmentation results on the VOC2012 validation set for different |F|/|W| data
splits using the DETR model. The numbers in the column headers represent the sizes of the F and W datasets used
for model training. The numbers within the images represent the confidence scores for each segmented instance.

confirming all observations, no contradictions were
noted. In particular, Fig. 4 (a) illustrates that the
produced instance segmentation masks are similar,
aligning with Observation 4, while Fig. 4 (b) supports
Observation 5.

4.5 Heuristic formula for an |F|/|W| ratio
to maintain the AP score

In this section, we present a heuristic formula to deter-
mine the |F|/|W| training data ratio curve for the models
with the same AP score. This formula is derived from
the underlined experiments in Tabs. 2 and 3.

Remark 1. As |F| decreases and |W| increases, the val-
ues |W| and |F + W| differ slightly.

Using this observation, we propose the following:

Assertion 1. Let φ0 represent the maximum num-
ber of F images used in the experiments, and let
τ ∈ (0,1). Models trained with the following quantities
of |F|/|W|/|F + W| annotations achieve approximately
equal AP scores:

|F|(τ) = τφ0, |W|(τ) = c(τ)
τ

φ0,

(|F+W|)(τ) = (τ +
c(τ)

τ
)φ0,

(2)

where
c(τ)

τ
−−→
τ→1

0 (3)

and c(τ)≈ k (4)

otherwise. Here k is a positive constant.

Remark 2. The validity of this formula near the extreme
values of 0 and 1 of the parameter τ is not relevant for
practical tasks.

For instance, using Tab. 2, the constants from Asser-
tion 1 are φ0 = 1464,k = 1, the |F|/|W| equiscore law
can be approximated by the hyperbola

|W|(|F|) = φ 2
0

|F| (5)

This equation holds as long as |F| is not close to 0 or
φ0, according to Remark 2 (see Fig. 5a). From Eq. (3),
hyperbola (5) fails to converge to the experimental point
(1464,0) at τ = 1, as c(τ) is not constant near τ = 1.
Similarly, for Tab. 3, the constants are φ0 = 1475,k =
1/3. In this case, the |F|/|W| equiscore law approxi-
mates the hyperbola

|W|(|F|) = φ 2
0

3|F| (6)

This remains valid as long as |F| is not near 0 and φ0,
per Remark 2 (see Fig. 5b). The experimental point
(200,2775) aligns with an AP score of 30.0, which is
lower than the equiscore parameter of 31.5. Therefore,
the experimental point with |F| = 200 and score 31.5
should be closer to the hyperbola (6).
Assertion 1 also applies to the DETR model, with the
constants being φ0 = 1464 and k = 3/2, which aligns
with the data in Tab. 2. This means that the |F|/|W|
equiscore law is approximately described by the hyper-
bola

|W|(|F|) = 3
2

φ 2
0

|F| (7)

as long as |F| is not close to 0 and φ0, consistent with
Remark 2 (see Fig. 5c).

4.6 Few-shot and zero-shot
In this section, we investigated few-shot and zero-shot
setups for the YOLO model. We did not test these
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Figure 5: The equiscore hyperbolas for different
|F|/|W| splits which illustrates Assertion 1.

approaches on DETR because of its poor performance
with small F datasets.

Few-shot instance segmentation aims to accurately seg-
ment instances of a given object category using only
a few annotated examples for model training, which is
useful when collecting a large annotated dataset is im-
practical. In contrast, zero-shot instance segmentation
targets segmenting object categories the model hasn’t
seen during training, relying on auxiliary information
about unseen classes for accurate segmentation.

Pretrain aeroplane cow bird boat sheep dog horse cat all
ImageNet 49.1 55.4 47.0 29.1 42.8 67.5 16.8 62.8 46.3

Cityscapes-seg 56.1 58.4 62.2 29.7 48.1 72.4 37.0 76.4 55.0
YOLO-1464/9267 64.6 71.5 75.4 51.7 61.4 84.1 69.2 87.6 70.6

Table 4: The AP70 results across 8 classes of the
VOC2012 validation set for different few-shot training
setups. YOLO models achieve decent results, demon-
strating the potential of few-shot learning when exten-
sive training data is unavailable

Few-shot learning. To evaluate the few-shot capabili-
ties of the YOLO model, we implemented the follow-
ing pipeline. First, we take the best model trained on
the Cityscapes dataset. Second, we select images from
the VOC2012 dataset that include only specific classes
(aeroplane, cow, bird, boat, sheep, dog, horse, and cat),
which are not present in the Cityscapes. Finally, we
used 17 images containing 24 object masks (3 per class)
as the F set, with the remaining images assigned to
the W. We fine-tune the model for 20k iterations us-
ing the semi-supervised training procedure discussed
in Sec. 3.4 (see Sec. 4.2 for training details). For com-

parison, the pipeline was also tested on YOLO with an
ImageNet pretrained backbone, omitting the Cityscapes
training step. We take the best YOLO model we trained
in Sec. 4.2 as the baseline. We present our results
in Tab. 4 and some visualizations in Fig. 6. The first two
lines in Tab. 4 correspond to our few-shot experiments.
Although the baseline YOLO model significantly out-
performs both few-shot models in overall AP70 (46.3
for ImageNet-based and 55 for Cityscapes-seg-based
versus 70.6 for the baseline), they still achieve decent
results, demonstrating the potential of few-shot learn-
ing when extensive training data is unavailable.

Figure 6: Visualization of few-shot results on the
VOC2012 validation set, Cityscapes-seg pretrain.

Failure cases: zero-shot learning. The model showed
poor performance in zero-shot learning. Although Pro-
tonet (see Sec. 3.3 and [3]) is able to learn some im-
age features, fails to combine them effectively without
training.

5 CONCLUSION

In this study, we explored the effectiveness of combin-
ing mask and bounding box annotations in training in-
stance segmentation models using YOLOv5 and DETR
architectures. Our experiments confirmed that a bal-
anced mix of these annotation types can yield high-
quality segmentation results while reducing the overall
annotation cost. By leveraging semi-supervised learn-
ing strategies, we can achieve high-quality results with
fewer annotated samples, making this approach highly
efficient for practical applications. Additionally, our
investigation into few-shot and zero-shot learning re-
vealed that a minimal number of segmentation anno-
tations can train a model with reasonable quality, but
relying only on bounding boxes is insufficient.
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