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ABSTRACT
In recent years, the demand for realistic human avatars has escalated across diverse industries, ranging from gam-
ing and virtual or augmented reality to fashion and healthcare. Creating an accurate, lifelike virtual duplicate of
a human subject requires a precise reconstruction of anthropometric measurements from the real body to the ren-
dered body model. In this paper, we propose a novel pipeline for 3D human body model reconstruction from a
set of two input images. Our method generates metrically accurate virtual human avatars, based on body mea-
surements extracted from an input image. Our approach is capable of parameterizing the generated mesh with
body measurements and yields accurate results. To augment the metrically accurate body meshes, we introduce a
pipeline for generating textured clothes to enhance user virtual experience. As part of our work, we generated a
synthetic dataset that serves as a foundation for further enhancing the training process by extracting anthropomet-
ric measurements from an input photo. This dataset contains over one million files derived from 120,000 virtual
avatars that can extend existing real datasets.
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1 INTRODUCTION
Deep learning excels at solving diverse tasks in com-
puter science, but its effectiveness is based on large
amounts of training data. Although some domains have
abundant data, others, such as X-rays or human images,
face challenges in collection and distribution. This is-
sue can be partially addressed by generating artificial
data to replace missing real samples.

One compelling application of synthetic data lies in the
creation of realistic digital humans. As virtual environ-
ments become more immersive, there is an increasing
demand for lifelike avatars, especially in fields such as
gaming, virtual reality, and film production. These do-
mains require not only photorealistic graphics, but also
anatomically accurate human representations that can
reflect individual user characteristics.

The popularity of movie effects, animations, and video
games continues to grow steadily. Over the past decade,
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significant advancements have been made in terms of
visual realism, largely driven by the enhanced perfor-
mance of graphics cards and computers overall. To-
day, video games and animations boast synthetic en-
vironments that are nearly indistinguishable from re-
ality, complete with sophisticated weather simulations
and lifelike portrayals of natural phenomena.

Central to these immersive experiences are the charac-
ters within them. Thanks to improvements in computer
graphics, there are new ways to deepen the user’s
experience in a virtual environment. One such method
involves integrating a lifelike replica of the user
directly into the game or animation, fostering stronger
emotional connections with the virtual experience.
The cornerstone of creating these realistic virtual
personas lies in accurately visualizing the human
body, including precise body measurements. Anthro-
pometry, as a scientific discipline, offers invaluable
insight to tackle this challenge. However, despite the
potential benefits, there are currently only a few tools
available to generate human body replicas based on
anthropometric measurements, and those available
often suffer from limited versatility and accuracy
[Nguyen2021, Zeng2018]. While an accurate repre-
sentation of the body is crucial, a bare form lacking
clothes, texture, and other details would fail to enhance
the user experience. Incorporating these elements is
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Figure 1: The diagram of our proposed pipeline for creating a virtual avatar of a real person.

essential to enrich the final experience. Therefore, we
introduce a pipeline to create a virtual avatar based on
a real user, as illustrated in Figure 1.

The main contributions of our paper can be sum-
marized as follows:

1. We address the growing demand for realistic human
avatars across diverse industries by establishing a
novel pipeline for generating antropometrically ac-
curate 3D human avatars, based on a set of two input
images.

2. Our method is capable of precisely reconstructing
a 3D body model from a set of 16 body measure-
ments that collectively define the overall shape of
the body. This is achieved by learning the mapping
between body measurements and shape coefficients
of the parameterized human body model.

3. We propose an approach to generate textured cloth-
ing for virtual avatars, thus enhancing the visual re-
alism of body models.

4. We created and shared for research purposes an an-
notated synthetic dataset containing over one mil-
lion files, serving as a valuable resource for aug-
menting real datasets in anthropometric measure-
ment estimation.

2 RELATED WORK
In this section, we closely look at existing works related
to our research. We divided them into several parts,
considering the corresponding areas.

2.1 Parametrized 3D Avatars
Over the last decade, several different models have
been proposed to parameterize the human body. One
of the most popular human body models available
is the Skinned Multi-Person Linear (SMPL) model
[Loper2015]. The base SMPL model is the first one in
the SMPL family. The more advanced models based on
SMPL are SMPL+H [Romero2017], which includes a
fully articulated hand model; SMPL-X [Pavlakos2019],
which further extends the model by introducing face
expressions; and STAR model [Osman2020], which
incorporates pose-corrective deformations dependent
on body shape. The SMPL models are parameterized
with T , β , θ and δ , which correspond to the template
mesh, shape parameters, pose parameters and the soft
tissue control parameter, respectively. The goal of
parametric human body models is to create realistic
human bodies, including the natural deformation of the
body or simulating the plausible motion of soft tissue.
Another motivation was to create a model that can be
quickly rendered without the need for manual inter-
vention and is fully compatible with existing rendering
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engines or graphics tools. The resulting model is easy
to animate or control. For our purposes, we focus on
high-level model definition with an emphasis on the
practical usability for our task.

2.2 Human Mesh Reconstruction
In recent years, there has been a surge in research fo-
cused on 3D human mesh reconstruction from images
[Choutas2020, Feng2021, Lin2023], driven by the in-
creasing demand for realistic human avatars in various
applications such as virtual reality, games, and health-
care.

Deep learning-based approaches have gained sig-
nificant attention in the field of 3D human mesh
reconstruction due to their ability to learn complex
mappings directly from data. These methods leverage
large-scale datasets of 3D human scans or images
to train neural networks to directly predict 3D mesh
geometry. Convolutional Neural Networks (CNNs)
have been widely employed for 3D mesh reconstruc-
tion from 2D images [Huang2017, Kanazawa2018,
Pavlakos2018, Varol2018]. These methods typically
consist of two stages: feature extraction and mesh
generation. In the feature extraction stage, the CNN
processes the input image to extract high-level features
that capture important visual cues related to human
anatomy. These features are then used as input to
the mesh generation stage, where a decoder network
generates the corresponding 3D mesh geometry.
Nonetheless, the meshes constructed in most of these
methods either lack the underlying skeleton structure
of a human body, therefore it is not trivial to further use
them for animation; or do not use body measurements
to reproduce anthropometrically accurate body models.
The Virtual Caliper [Pujades2019] generates an SMPL
model from input anthropometric measurements; how-
ever, the measurements need to be inserted manually
into the program or calibrated using virtual reality
headset with controllers.

2.3 Body Measurements
Creating a virtual metrically accurate copy of a person
is not a trivial task. However, there is an increasing
demand for this type of technology. One of the many
applications is the virtual dressing room, where a
accurately reproduced body shape is crucial. An-
thropometry is a scientific field that studies various
physical attributes of the human body. While several
analytical methods have been proposed over the years
[Albances2019, Gan2020, Guillo2020, Song2017],
they often lack robustness or suffer from low precision.

In recent years, numerous learning-based approaches
have been proposed to infer anthropometric body
measurements automatically from a visual input
[Gonzalez2021, Yan2020, Yan2021]. The recent

research in this field shows that body measurements
can be effectively estimated from an input image even
using simple CNN-based models.

2.4 Synthetic Human Data
Incorporating synthetic data into neural network train-
ing is a commonly followed strategy to enhance the
available real data and improve the generalizability of
the model. The utilization of synthetic data presents
several advantages in this context. Recognizing the im-
portance of abundant training data for ensuring model
accuracy and reliability, the integration of synthetic
data becomes particularly valuable in scenarios where
data scarcity or logistical challenges impede the acqui-
sition of sufficiently large datasets.

SURREAL [Varol2017] is a wide-ranging dataset that
consists of synthetic data. It includes more than six
million images, including ground truth positions, depth
maps, and segmentation information for each frame. To
represent the person in the image, the dataset uses the
base SMPL model. The generation pipeline consists
of several steps. The first step is to render an SMPL
avatar using random pose and shape parameters. To ob-
tain a random shape, a human subject is randomly se-
lected from the real CAESAR dataset [Robinette2002]
and the corresponding body shape is approximated us-
ing SMPL, while also performing a similar process with
the pose parameters chosen from the motion capture
dataset. Next, a random texture is applied to the avatar.
Finally, images from two viewpoints are rendered with
and without a realistic background.

Evaluation of a CNN model on these datasets showed
that the best results were achieved when the real train-
ing data were enhanced by the synthetically generated
samples. The results suggest that augmenting the train-
ing process using synthetic data improves the resulting
accuracy of the neural network.

SURREACT [Varol2021] shifts the focus toward action
recognition, specifically targeting the challenge of rec-
ognizing human actions from perspectives or points of
view that are not represented in training data. This ap-
proach involves synthesizing human action videos from
various viewpoints to enhance the robustness and gen-
eralization capability of action recognition models.

2.5 Texturing Avatars
Incorporating textures into 3D human avatars is essen-
tial to enhance their visual realism and perceptual fi-
delity in virtual environments. Texturing plays a cru-
cial role in simulating surface details such as skin tone,
clothing patterns, and other intricate features, which are
fundamental for creating lifelike representations of hu-
man characters.
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SMPLitex [Cassas2023] is a tool that creates a texture
map for the SMPL model from an input photo. It ex-
tends generative models for 2D images into the 3D do-
main by establishing pixel-to-surface correspondences
computed from the input image. Initially, a generative
model for complete 3D human appearance is trained,
then fitted into the input image by conditioning the
model to the visible subject parts. In addition to gen-
erating texture from the input image, the framework is
capable of generating texture maps from text prompts.
Nevertheless, the model demands significant hardware
resources, particularly in terms of computational power.
Moreover, the quality of the produced textures may be
lacking in specific instances.

In comparison to SMPLitex, HOOD [Grigorev2023] is
focused on generating dynamic clothes for 3D avatars.
The core functionality of the approach is based on graph
neural networks. A primary limitation of the approach
is its restriction to a single garment per 3D avatar. For
example, while the avatar can wear a shirt, it cannot
simultaneously wear trousers.

3 OUR APPROACH
In this section, we introduce our proposed pipeline for
generating realistic and metrically accurate 3D human
avatars from a set of two input images. Each stage of
the pipeline is described in detail.

3.1 Data Acquisition
As already mentioned, synthetic data have proven to
be beneficial for training neural networks [Varol2017,
Varol2021]. In our work, we also focused on gener-
ating artificial data to improve the training process of
learning-based methods.

For this purpose, we have established a data genera-
tor. Since strategies such as SURREAL [Varol2017]
or SURREACT [Varol2021] come with prepared data
used to generate synthetic outputs, such as textures and
image backgrounds; we followed their work by adjust-
ing the existing SURREACT framework.

Figure 2 depicts an example set for one avatar. The set
consists of twelve images: frontal and lateral images
with a background, frontal and lateral images without a
background, a mesh of the corresponding avatar, and a
set of joints in 3D space. The same pictures are avail-
able for both the T-pose and the A-pose. Moreover,
anthropometric measurements and beta parameters em-
ployed in the construction of each avatar are available.

Subjects used for generation were instanced using ran-
dom parameters for the SMPL model. Therefore, we
have subjects of various shapes that cover the variabil-
ity of plausible human body shapes.

Figure 3 presents a histogram that provides an overview
of the BMI distribution of the avatars generated and the

Figure 2: Example of a set generated with the refer-
enced modified generator.

Figure 3: Overview of BMI values between 15 and 40
in the training portion of the generated dataset.

number of samples for each BMI value. The BMI was
calculated based on the volume of avatar mesh, multi-
plied by the average human body density of 985 kg/m3.

In summary, we have generated over one million files
with a total size of more than 100 GB corresponding
to 120,000 different virtual subjects. The examples of
randomly generated subjects are shown in Figure 4.

3.2 Body Measurements Extraction
To train deep learning models, annotated data is essen-
tial. In our case, this means providing ground truth
labels of anthropometric body measurements for the
generated synthetic human data. To obtain these la-
bels, we use the skeleton-driven annotation pipeline
[Skorvankova2022] on the generated meshes. It uses
the skeleton joint locations to measure specific anthro-
pometric data on the human mesh in a T-pose. Using
this tool, we generate 16 anthropometric measurements
for each subject within the generated synthetic dataset.
Later, we used them as ground truth to evaluate the syn-
thetic data.

We used the generated silhouette images and the cor-
responding measurement labels to train a neural model
to automatically predict body measurements from a set
of two binary images, capturing a human subject from a
frontal and lateral view. Silhouette images were created
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Figure 4: Example of dataset generated with the referenced modified generator, using varied lighting.

from background-free generated images. The proposed
model is described in detail in Section 4.3.

3.3 Anthropometric Avatar Generator
As illustrated in Figure 1, after acquiring anthropomet-
ric measurements by extracting them from an input im-
age or inserting them manually, we want to use them
to parameterize the SMPL model. Therefore, we need
to convert them to SMPL shape parameters. As sug-
gested in previous research [Pujades2019], there could
be a linear relation between body measurements and
shape parameters used by the SMPL model. Therefore,
we have experimented with various types of regression
models, such as linear and polynomial regression.

Firstly, it is vital to understand that the foundation for
training any model is an extensive training dataset. Ac-
cordingly, the input parameters for each avatar have
been generated together with other previously refer-
enced output data. Throughout our work, we use SMPL
models with 10 shape parameters, since they are suffi-
cient to create a plausible human model.

In this way, we created a dataset with a total of 120,000
data pairs. One pair consists of a set of anthropometric
measurements and the ground truth SMPL shape pa-
rameters.

3.4 Augmenting Avatar Meshes
After successfully obtaining the user’s body measure-
ments and translating them into SMPL parameters, al-
lowing us to generate a body mesh using the SMPL
model, we still need to enhance the model by adding
colors, textures, and clothing to fully engage users in a
virtual environment.

3.4.1 Clothes Generator
Considering the limitations highlighted in SMPLitex
and HOOD, we opted to introduce an alternative ap-
proach for straightforward avatar texturing and garment
creation, utilizing Blender 1 as the cornerstone of our
pipeline.

We employ procedural materials supported by Blender
for skin texture generation. This method offers several
benefits, including the ability to easily adjust the skin
tone, thereby enabling us to maintain a wide range of
variability.

We explored two approaches to creating clothes for 3D
avatars, one of which is the sewing method. This tech-
nique simulates sewing by creating a plane adjusted
to the avatar’s dimensions, cutting out sleeves and a
head opening, and extruding it to cover the body. The
front and back planes remain connected by edges at
the seams, acting as springs that pull them together.
Blender’s built-in cloth simulation then enables dy-
namic interactions. Although effective, this method
struggles to generalize to avatars with varying waist cir-
cumferences, potentially leaving gaps at the sides. Scal-
ing the planes to match body volume helps, but does not
fully ensure a perfect fit.

Our second approach, the extruding method, addresses
the limitations of the sewing technique. Here, specific
face indices of the SMPL model are extruded to form
clothing. Since all SMPL models share the same face
indices regardless of shape or gender, we can pre-define
selections for different types of clothing. The selected
faces are duplicated, upscaled, and simulated as cloth,

1 www.blender.org
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Figure 5: Result of textured avatars with clothes created using extruding method.

ensuring that the clothes conform to the avatar’s body
shape. This method simplifies extending the range of
supported clothing. Figure 5 illustrates avatars dressed
using this approach.

3.4.2 Adding Textures
We described the process of creating clothes for vir-
tual avatars. However, clothes require the application
of textures to make them more realistic. Many different
databases store various materials that we can use for
clothes generation in Blender. We have decided to use
BlenderKit 2, specifically some of the included proce-
dural materials, as it is straightforward to further adjust
their color and properties.

4 EXPERIMENTS AND EVALUATION
Here, we describe the conducted experiments and eval-
uate the proposed approaches.

4.1 Real Data
While there is a lack of available labeled datasets suit-
able for evaluating our pipeline, a real dataset anno-
tated with ground truth body measurements has been
published in a recent study [Ruiz2022]. The BodyM
dataset consists of frontal and lateral silhouette images
of real human subjects. A total of 8,978 samples were

2 www.blenderkit.com

created by capturing 2,505 subjects, with 16 body mea-
surements annotated for each subject. Although the im-
age data captures real humans, the measurement anno-
tations were obtained not manually, but by fitting 3D
body scans to a mesh and measuring it virtually.

Unfortunately, this dataset has several disadvantages.
Most importantly, the authors do not provide any def-
initions of how the measurements were calculated or
the exact locations of the landmarks used to extract the
measurements on the human body. They provide only
labels for individual measurements. Additionally, the
original RGB images of participants are not available
due to privacy reasons.

Another drawback is the size of the dataset. It includes
6,134 training samples, consisting of frontal and lateral
silhouette images, which may not represent a sufficient
number of samples to train a neural network to gener-
alize well on unseen examples. The remaining images
in the dataset are divided into test set A (TestA) and test
set B (TestB). Test set A contains images captured in a
laboratory environment, avoiding issues such as various
camera angles and inaccurate foreground segmentation.
In contrast, test set B is captured in a home-like envi-
ronment with various camera settings.

Based on these shortcomings, we decided to further ex-
tend this dataset for training purposes using syntheti-
cally generated data.
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Training data Test data MAE (cm) ↓ mAP@5 (%) ↑ Batch size
Real TestB 3.379 78.68 32

Synthetic + Real TestB 3.114 80.75 32
Real TestB 3.325 79.26 64

Synthetic + Real TestB 3.176 80.28 64

Table 1: Test results of the base model showing the mean absolute error (MAE) in cm, mean average precision
(mAP) at the 5 cm threshold, and the size of the used batch.

Figure 6: Structure of our base CNN model for anthro-
pometric measurements estimation.

4.2 Synthetic Data
As mentioned before, we extended the BodyM dataset
with synthetic data to improve the capabilities of a con-
volutional neural network that estimates anthropomet-
ric measurements from input images. To evaluate the
benefit of the synthetic data, we provide test results us-
ing exclusively real training data vs. adding synthetic
data to the training set.

In order to mix the synthetic data with the real train-
ing samples, we need to unify them. We resize all im-
ages to the same dimensions. Both the synthetic im-
ages and the images from the BodyM dataset have 16
measurements each; however, the measurements differ
between the two sets. The intersection of these two
sets includes the following 10 parameters: 1. chest cir-
cumference, 2. waist circumference, 3. bicep circum-
ference, 4. thigh circumference, 5. arm length, 6. leg
length, 7. calf length, 8. wrist circumference, 9. shoul-
der width, 10. height.

4.3 Body Measurements Estimator
Figure 6 illustrates the structure of the convolutional
neural network that we propose for the estimation of
body measurements. The network is based on two
ResNet18 blocks [He2016] to maintain a general struc-
ture and avoid any concerns about modifications for
demonstration purposes. We aim to keep the struc-
ture of the neural network as general as possible. The
network processes two silhouette images (front and
side views) as inputs. These images are processed by
ResNet18, concatenated, and then passed through three
dense layers. Finally, the network produces a set of 10
output measurements.

We used real data and a mixture of real and synthetic
data as training datasets. The mixed training dataset
contains 6,134 real images, which we augmented with
an equal amount of synthetic data to preserve balance
between the two sets. For evaluation, we exclusively
used the test set B (TestB) from the BodyM dataset,
considering its higher image variability compared to the
test set A. Test set B also contains various camera set-
tings while capturing human subjects.

We conducted experiments with two distinct networks.
While the first model (marked as base model) takes
only two silhouette images as input, the second model
(marked as height-driven model) also includes a per-
son’s overall height as an additional parameter (as il-
lustrated in Figure 7). This approach sets the scale of
the input images, considering that the test images may
be captured by various cameras with different parame-
ters and positioned at varying distances from the human
subject. We consider a person’s height a basic param-
eter that most people are aware of; thus, it should not
require any additional measuring. Both models were
implemented in the PyTorch framework. The mean ab-
solute error loss function was used in both cases.

Figure 7: Structure of our height-driven CNN model for
anthropometric measurements estimation.

In Table 1, we observe that adding synthetic data to the
training process enhanced the capabilities of the body
measurement estimator. Additionally, we provide per-
measurement metrics (Table 2), including the mean ab-
solute error (MAE) in centimeters and the mean abso-
lute percentage error (MAPE). Moreover, incorporating
information on the height of a person further improved
accuracy substantially, as demonstrated in Table 3. Fi-
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Body measurements Real data Synthetic + Real data
MAE (cm) ↓ MAPE (%) ↓ MAE (cm) ↓ MAPE (%) ↓

chest circumference 4.876 4.799 4.432 4.340
waist circumference 5.586 6.223 5.035 5.819
bicep circumference 1.888 6.119 1.723 5.596
thigh circumference 3.276 6.106 2.786 5.063
arm length 2.434 5.116 2.508 5.272
leg length 3.804 5.045 3.774 5.011
calf length 1.993 5.263 2.119 5.613
wrist circumference 1.006 6.277 0.836 4.991
shoulder width 1.642 4.629 1.455 4.129
height 6.743 4.056 6.468 3.883
mean 3.325 5.363 3.114 4.972

Table 2: Performance comparison of the base model trained on real data only versus a model trained on a mixture
of real and synthetic data. For consistency, the real-data model used a batch size of 64, and the mixed-data model
used a batch size of 32. Mean absolute error (MAE) and mean absolute percentage error (MAPE) are reported.

nally, Table 4 compares the per-measurement errors of
both proposed models trained on a mixture of real and
synthetic data. The evaluation metrics are shown for the
model trained for 40 epochs, since additional training
iterations did not substantially improve the final error.

Training data MAE (cm) ↓ mAP@5 (%) ↑
Real 2.085 90.64

Synthetic + Real 1.888 92.86

Table 3: Test results of the updated height-driven model
showing the mean absolute error (MAE) in cm and
mean average precision (mAP) at the 5 cm threshold.
Batch size was set to 32 samples.

4.4 Avatar Generation
We tested several machine learning models for the pur-
pose of learning the mapping between the set of explicit
body measurements and the SMPL shape parameters.

As seen in Table 6, we managed to achieve the best re-
sults using fourth-degree polynomial regression. Aside
from polynomial regression, good results were also
achieved using a random forest regressor with 200 esti-
mators and a k-nearest neighbors model with 10 neigh-
bors. We have performed experiments with different
neural network benchmark architectures, but the accu-
racy did not outperform the models mentioned.

Our final model is based on second-degree polynomial
regression and can take up to 16 input anthropomet-
ric measurements and produce the corresponding 10
SMPL shape parameters.

We performed two experiments. In the first (as shown
in Table 5), we predict the SMPL shape parameters us-
ing five basic anthropometric measurements as follows:
1. height, 2. chest circumference, 3. inside leg height,
4. shoulder breadth, 5. waist circumference.

In the second experiment (shown in Table 6), we uti-
lized a total of 16 available measurements. As depicted
in the tables, polynomial regression outperforms other
models when using all measurements, while random
forest performs better when using only the basic sub-
set of measurements.

5 CONCLUSIONS
In this paper, we develop a pipeline to obtain a metri-
cally accurate 3D human avatar from frontal and lateral
input images to address the demand for realistic virtual
avatars in various applications. We have shown that we
are capable of creating highly accurate virtual bodies
based on input silhouette images.
As part of our pipeline, we designed a tool to effectively
map explicit body measurements extracted from an in-
put image to SMPL shape parameters to define the body
shape of an SMPL mesh. Based on our experiments, we
assume that the relationship between the SMPL shape
parameters and the anthropometric body measurements
is quadratic. Additionally, we propose two distinct ap-
proaches to augment the virtual bodies with clothing
and textures to enhance the visual experience. To im-
prove visual realism, we extract the original color of the
clothes by segmenting the input RGB image.
Our contributions also include the acquisition of a
large-scale dataset of synthetic human bodies, includ-
ing rendered images and 3D meshes annotated with a
set of the most commonly used body measurements.
We have experimented with estimating the body mea-
surements from exclusively visual inputs and incorpo-
rating explicit prior knowledge of the person’s height
along with the input images. Although the accuracy of
our system is already relatively high using just the vi-
sual inputs, this can be an issue when capturing human
subjects in different scenes, using various camera set-
tings, and varying the distance of the camera from the
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Body measurements Base model Height-driven model
MAE (cm) ↓ MAPE (%) ↓ MAE (cm) ↓ MAPE (%) ↓

chest circumference 4.432 4.340 3.627 3.666
waist circumference 5.035 5.819 3.812 4.420
bicep circumference 1.723 5.596 1.367 4.520
thigh circumference 2.786 5.063 2.213 3.993
arm length 2.508 5.272 1.079 2.246
leg length 3.774 5.011 1.518 1.962
calf length 2.119 5.613 1.549 4.065
wrist circumference 0.836 4.991 0.660 3.955
shoulder width 1.455 4.129 1.167 3.399
MAE (cm) 2.741 1.888
mAP@5 (%) 84.56 92.86

Table 4: Test results of the base model and the height-driven model. Both models are trained on a mixture of real
and synthetic data. Mean absolute error (MAE) and mean absolute percentage error (MAPE) are reported.

Metric Pol. regression (4th) Random Forest K-Neighbors
Mean squared error (betas) 0.5352 0.0930 0.1015
Mean absolute error (betas) 0.5340 0.1178 0.1184

Table 5: Test results of estimating SMPL shape parameters from basic body measurements.

Metric Pol. regression (4th) Random Forest K-Neighbors
Mean squared error (betas) 0.0004 0.0539 0.0618
Mean absolute error (betas) 0.0088 0.0873 0.0922

Table 6: Test results of estimating SMPL shape parameters from all body measurements.

captured subject. To include an indication of the scale,
we suggest explicitly passing the person’s height as an
additional input to the network, since it is an easily ac-
quirerable parameter, usually known to the subject.

In deployment, another potential workaround could be
to determine the scale of the synthetically generated im-
ages by measuring the ratio between the ground truth
height of the person and the pixel distance within the
image area corresponding to the same stature. The ob-
tained scale could then be utilized to rescale real input
images based on the person’s height to address the is-
sues related to varying camera distances by matching
the scale of the synthetic training images.
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