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ABSTRACT

Many computer vision applications, such as panoramic stitching, image morphing, and image registration depend
on precise feature correspondences. While current machine-learning-based methods excel at detecting precise
feature matches, they do not necessarily guarantee visual alignment. This work presents an evolutionary, mesh-
based optimization framework that enhances alignment quality and improves visual coherence as a postprocessing
step for any feature-matching algorithm: The approach employs the well-known enhanced correlation coefficient
(ECC) as a visual error metric, efficiently computed in parallel using the rasterization capabilities of modern
graphics hardware. Given any state-of-the-art feature matcher, the proposed method constructs a Delaunay feature
point mesh and evolutionarily refines the ECC alignment of each generated triangle. This results in a more precise
registration beyond the accuracy of initial feature matches. Extensive evaluation across multiple standard image
datasets confirms the proposed method’s effectiveness, yielding ECC improvements up to 18.3% and ensuring high
visual quality in downstream applications, particularly in challenging image areas with occlusions. For morphing-
based applications, this leads to sharper, smoother transitions between image pairs, minimizing visual artifacts.
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1 INTRODUCTION ary optimization method that refines the positions of
matched feature points within a mesh for visual triangle
alignment. This approach ensures higher visual quality
for downstream tasks, especially in challenging areas
with occlusions, resulting in sharper and smoother
morphing transitions and more robust registration.

Precise feature correspondences and accurate image
alignment are fundamental to numerous computer
vision applications, including panoramic stitch-
ing [Wan24, Hua24], image morphing [Sei23], and
image registration [Dar24, Wan24]. While dense fea-

. This work makes the following contributions:
ture point matches can be used to construct a mesh of

corresponding triangles, effectively representing local
image region alignments, current feature matching
techniques often prioritize matching accuracy over the
coherence of image content between matched points.
This can lead to inconsistencies and suboptimal visual
alignment. To address this, we propose an evolution-
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* Development of an evolutionary algorithm to opti-
mize mesh-based alignment using the enhanced cor-
relation coefficient (ECC) image alignment metric.

* Parallelization of the ECC error norm calculation
through decomposition into multiple summations.

* Efficient GPU-based ECC evaluation of positional
feature point mesh mutations.

We validate our technique through quantitative mea-
surements and qualitative evaluations, demonstrating
its potential to improve visual quality for image stitch-
ing, morphing, and registration. A runtime analysis fur-
ther highlights the efficiency of the proposed approach
as a post-processing step applicable to any state-of-the-
art feature matcher for image pairs.
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2 RELATED WORK

Image alignment and feature matching are cornerstone
tasks in computer vision, with ongoing research con-
tinually pushing the boundaries of performance and ro-
bustness. This section reviews recent advances in these
areas, focusing on deep learning-based feature match-
ing techniques, image alignment strategies, and relevant
evaluation metrics.

Feature Matching

Recent advances in feature matching have shifted from
traditional methods like SIFT [Low04], SURF [Bay06],
and ORB [Rubl11] to deep learning-based approaches,
particularly transformer architectures. Models such
as ASpanFormer [Che22], ECO-TR [Tan22], Light-
Glue [Lin23], and LoFTR [Sun21] have significantly
improved matching accuracy, especially in challenging
scenarios. However, these methods typically prioritize
point-wise accuracy, often overlooking the visual co-
herence of the resulting alignments of image regions
between matched feature points.

Our work addresses this by introducing a post-
processing step that refines feature matches based on
visual coherence of this intermediate image content.

Image Alignment Techniques

Deep learning has significantly advanced image align-
ment, with methods like Deep Image Homography
Estimation [Ngul8], PDC-Net [Hua22], deep implicit
keypoints [Sar20], and recurrent geometric transforma-
tions [Zha21] leveraging convolutional and transformer
networks to achieve improved alignment.

These techniques typically learn global or local para-
metric transformations, while our approach directly op-
timizes individual feature match positions within a pre-
defined mesh for more flexible adjustments and poten-
tially improved visual coherence.

Image Alignment Metrics

A variety of metrics exist for evaluating image simi-
larity, each with trade-offs between sensitivity to im-
age variations and computational efficiency. Tradi-
tional metrics like Sum of Squared Differences (SSD)
and Normalized Cross-Correlation (NCC) offer simple
pixel-wise comparisons but can be sensitive to illumi-
nation and viewpoint changes [Bro92]. The Enhanced
Correlation Coefficient (ECC) provides greater robust-
ness to such variations, making it well-suited for im-
age registration tasks [Eva08]. Structural Similarity In-
dex (SSIM) [Wan04] incorporates structural informa-
tion, potentially capturing subtle misalignments that af-
fect visual coherence. While Peak Signal-to-Noise Ra-
tio (PSNR) is commonly used for image quality assess-
ment, it may be less sensitive to misalignments.
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Deep learning-based metrics, such as perceptual
loss [Joh16] and LPIPS [Zhal8], offer potential advan-
tages in capturing perceptual similarity and handling
complex transformations. However, these methods
generally come with a higher computational cost.

Our approach prioritizes ECC as the optimization ob-
jective due to its established robustness for image align-
ment and suitability for parallel computation on GPUs.
This choice allows to effectively refine feature matches
while maintaining computational efficiency.

3 METHOD

To optimize the visual alignment of two images, a set of
dense feature point correspondences is first computed
using any state-of-the-art feature matcher. These corre-
spondences are then used to construct a robust and con-
sistent mesh of corresponding Delaunay triangles. The
visual alignment of each triangle pair is evaluated using
the ECC error norm. This section details the proposed
algorithm, beginning with the evolutionary optimiza-
tion process employed to refine the mesh alignment.
The GPU-accelerated implementation of the ECC error
norm calculation is then elaborated, which forms the
basis for the efficiency of the approach.

Optimization Algorithm

This section describes the optimization algorithm em-
ployed to refine the alignment of a mesh constructed
from feature point correspondences across n images.

First, a consistent set of feature points P is computed
across all n images, ensuring that the number of points
is consistent (|Py| = |P1| = -+ = |P,—1|), with P; repre-
senting the positions of each point p € P in image I;.
For the case of two images, this can be achieved using
any state-of-the-art feature matcher, such as those dis-
cussed in Section 2.

Following Delaunay triangulation, Py is triangulated to
form a mesh T, which serves as a common basis for all
other sets of feature points P; with i > 0. This ensures
that each triangle r € T shares the same vertex feature
points p € P across all images. For instance, if triangle
1Y € T is defined by vertices {p“, p®, p°}, where p°, p°,
and p°¢ € P, then in each image J;, the corresponding
triangle 10 € T; will have vertices {p?, p?, p¢}, with p¢,
pP, and p§ € P.

The optimization of the entire mesh proceeds accord-
ing to the procedure outlined in Algorithm 1. For each
feature point p{ € P, a random positional adjustment
within a radius r is calculated. This adjustment is re-
ferred to as a mutation M/ for p/. Each mutation M/
affects the triangles Tp j € T; for which p{ is a vertex.

Note that this mutation does not influence the feature
point positions in any other image.
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If the average ECC of all triangles 1, € Tp j after apply-

ing mutation Mij is higher than the average ECC before

the mutation, then Mij is considered to improve the im-

/. In the case of two

age alignment and is applied to p;

images, the ECC is calculated for each pair of corre-

sponding triangles {tp_; ,tp_/}. If n > 2, the ECC is cal-
0 P

culated pairwise between I; and all other images.

To optimize the total mesh 7', these mutations are ap-
plied to each image consecutively. For each p{ €Ph,
a set of m mutations is calculated. If the best muta-
tion Mp,s in terms of ECC improvement exceeds the
ECC of the original feature point position p?, then it is
applied and overrides p{ . This process is performed it-
eratively, with each iteration involving the mutation of
each image. After each iteration, the radius r decays by
a factor of d € [0; 1] to ensure convergence. The proce-
dure continues until the total ECC improvement across
all images falls below a predefined threshold 7.

To prevent mesh degeneration, the radius r is limited to
ensure that a point p cannot move outside its enclosing
triangles. Therefore, the minimum distance between p
and its opposing edges is determined before each muta-
tion, and r is adjusted accordingly, as illustrated in Fig-
ure 1 (a). To reduce runtime overhead, triangles con-
nected to each feature point are precomputed.

GPU-Accelerated ECC as Error Norm

The optimization algorithm described in Section 3 in-
volves numerous ECC calculations. This section details
the GPU-accelerated and parallelized implementation
of the ECC error norm computation, which significantly
enhances the efficiency of the optimization process.

To facilitate parallelization, the ECC error norm is ex-
pressed as a series of sums:
nxy — £y

V/ (nx — ££)- (nyy — 99)

—

Egcc(,Y)

. (D

This representation allows the ECC computation to
be encapsulated as a tuple (£,,Xx,yy,Xy,n), compris-
ing six accumulators, collectively referred to as the
preECC. This approach is inspired by the recommen-
dations of Chan et al. [Cha83] for combining samples
in variance calculations. By employing this analysis,
the ECC computation is fully parallelized through
the use of multiple independent preECCs, which are
combined in a final, single-threaded step.

This parallelized ECC computation is then employed
to evaluate whether a change in the position of a fea-
ture point p improves the alignment of the triangles T},
of which p is a vertex, as described in Section 3. Us-
ing GPU instancing, all triangles T}, can be rendered
m times in a single draw call. The standard rendering
pipeline, including both vertex and fragment stages, is
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Algorithm 1: Optimize Mesh Alignment

Input : Matched feature point positions
P=A{Py,P,...,P,_1} for n images,
Mesh triangles T,
Iteration termination criteria ¢,
Maximum mutation radius r,
Mutation radius decay d,
Mutation instance count m,
ECC for a set of triangles
Output: Optimized feature point positions P*
P* <+ P {Initialize best mutation set}
7' < r {Initialize maximum mutation radius}
E’ < —1 {Initialize previous cumulative ECC}
Eipp < 1 {Initialize previous ECC improvement}
while E;,,, >t do
E+0
for all imagesi=0ton—1do
for all points p € P’ do
T,«{teT|pct}
Generate m random mutations within 7'
M < mutate(Ty,m,r")
Mpes < argmaxye(o1,..m—1} (ECC(My))
if ECC(Mpey) > ECC(T),) then
Apply mutation to point p:
P P+ Mpey
E «+— E+ECC(Mpes)
else
E «— E+ECC(T,)
end if
end for
end for
¥ <+ ¥ x d {Apply radius decay}
Eimp < % —1
E' +—E
end while
return P* {Return optimized feature points}

utilized for error evaluation. Instead of rendering pix-
els to a framebuffer, the ECC is computed directly to
assess alignment quality. The framebuffer size is set to
match the input image dimensions, and multi-sampling
is omitted, as testing indicated no practical benefits.

Implementation — Vertex Stage

* Source and target positions of feature points are
passed as vertex attributes.

e The vertex undergoing mutation is offset to a
pseudo-random position within a circle of radius r,
centered around its current position. The random
seed is derived from the instance identifier and a
global seed provided as a uniform variable.

* The first instance position remains unchanged to in-
clude the original feature point in the evaluation.
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* The radius r is constrained to prevent mesh degen-
eration, ensuring that p does not move outside the
triangle spanned by 7).

v

(b) Mutation instances

(a) Radius computation

Figure 1: Feature point mutation: (a) Maximum mutation
radius r defined by the closest opposing edge (blue).
(b) Evaluating three mutations and the original position.

Implementation — Fragment Stage

In the fragment stage, both images are sampled using
the feature point’s positions (passed from the vertex
shader as texture coordinates), and the preECC of the
current fragment is computed by accumulating values
from each color channel. A global buffer of size m-6
stores the six preECC values per instance. These local
preECC values are added to six global counters for the
corresponding instances using synchronized atomic add
operations to handle parallel fragment processing.

Unsigned integer arithmetic is used instead of floating-
point arithmetic to avoid rounding errors and ensure de-
terministic preECC values, regardless of fragment addi-
tion order. For images with a color depth of 256, integer
operations suffice without additional quantization.

To address potential overflow issues with 32-bit in-
tegers for large triangles, values are scaled by right-
shifting them by max(0, [log, (V)] — 32) bits, where V
is the worst-case maximum value:

V=(d-1)>2c(n—1)A, 2)

where ¢ is the number of color channels and A is the
total triangle area. This scaling is reversed in floating-
point arithmetic during the final ECC computation.

A compute shader with m threads processes the global
preECC counters to compute the final ECC. This ap-
proach enables the evaluation of m mutations and the
identification of the optimal feature point adjustment in
just two draw calls: one for rendering and one for the
compute shader. The evaluation of multiple color chan-
nels is achieved by concatenating the channels into a
single vector. For alignment against multiple targets,
the source vector X is repeated, and target values ¥ are
concatenated accordingly. The initial ECC value is ex-
pected to be positive, as the input mesh is pre-aligned.

To balance computational efficiency and hardware
compatibility, the number of instances m can either
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remain constant based on the number of compute units
of the hardware or dynamically scaled according to the
area influenced by the current feature point:

m =m— 3)

where r is the decaying mutation radius per iteration,
r* is the capped mutation radius based on its enclosing
triangles, and m is the global instance meta parameter.

All geometry data is stored on the GPU throughout
the process, with updates applied only when a feature
point’s position is improved, ensuring efficient memory
management and processing.

4 EVALUATION

This section presents a comprehensive evaluation of
the proposed optimization technique, encompassing pa-
rameter exploration, benchmarking, and visual anal-
ysis. All experiments were conducted on a system
equipped with an Intel i9-14900K CPU and an NVIDIA
GeForce RTX 4070 SUPER GPU. As most feature
matchers primarily support pairwise image correspon-
dences, this evaluation focuses on optimizing feature
matches between two images (i.e. n = 2).

Datasets

The evaluation is conducted across three distinct
datasets to ensure a comprehensive assessment of the
proposed optimization technique:

* Oxford [MikO5]: This dataset comprises image se-
quences with five different changes in imaging con-
ditions: viewpoint changes, scale changes, image
blur, JPEG compression, and illumination. Each
test sequence contains six images with gradual ge-
ometric or photometric transformations at a medium
resolution (approximately 800 x 640 pixels). Two
scenes (zoom and rotation transformations) were ex-
cluded from the evaluation due to insufficient initial
feature points provided by the feature matchers.

 ETH3D [Schl17]: A dataset designed for bench-
marking and evaluating stereo and multi-view
stereo algorithms. It includes high-resolution
images of indoor and outdoor scenes, ranging from
structured, man-made environments to natural,
unstructured settings. The evaluation included 13
scenes consisting of between 14 and 76 images.

* Custom EGO-VC Dataset: This dataset consists of
three scenes (two outdoor and one indoor) captured
using a DJI Air 2S drone, incorporating varying de-
grees of camera movement, including both small
and large changes in camera position and angle. Two
of these scenes were used as training data for meta
parameter optimization (see Section 4).

For the pairwise evaluation presented in Section 4, each
sequence is divided into pairs of consecutive images.
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Metrics

The effectiveness of the proposed optimization is quan-
tified using the ECC metric, calculated as the average
ECC value across all triangles within the mesh. This
metric serves to evaluate alignment quality across dif-
ferent datasets and feature matchers, reflecting the im-
provement achieved through mesh optimization.

Meta Parameters

To optimize the performance of the mesh optimiza-
tion algorithm (detailed in Section 3), a comprehensive
meta parameter analysis was conducted using a training
dataset comprising one indoor and one outdoor scene.
This section presents the results of this analysis, exam-
ining the influence of the key meta parameters m, r, and
d on both runtime and final mesh quality, as measured
by ECC improvement. Figure 2 visualizes the perfor-
mance of various parameter combinations, plotting av-
erage runtime against average ECC improvement. The
optimization process was terminated when the relative
ECC improvement per iteration fell below 0.5% (ter-
mination threshold # = 0.005). The parameter m was
dynamically scaled based on Equation (3).

While the majority of configurations yielded similar fi-
nal ECC values, increasing the number of mutation in-
stances m per iteration resulted in slightly improved
ECC, albeit with a proportional increase in runtime.
Beyond m = 256, the gains in ECC were negligible
compared to the added computational cost. The initial
mutation radius r exhibited the most significant impact
on alignment quality. Larger radii (up to r = 10) sub-
stantially improved convergence without affecting run-
time. However, an unbounded radius (r = inf) led to
premature and poor convergence. A decaying radius
(d < 1.0) further enhanced convergence, particularly
for smaller numbers of instances. A 50% decay rate
(d =0.5) consistently produced the best ECC improve-
ments across all m values.
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Figure 2: Meta parameter measurements.

Based on these observations, the following meta pa-
rameters were selected for all subsequent evaluations:
m =256,r=10,and d =0.5.
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Quantitative Results

Table 1 presents the quantitative analysis of the
achieved ECC improvement across different matching
algorithms and datasets. For each combination of
algorithm and dataset, the ECC image alignment is
compared with and without the proposed optimization
step. The total row provides the weighted average for
each dataset based on scene sizes.

The proposed method consistently improves ECC val-
ues for all evaluated combinations of scenes and match-
ing algorithms. The improvements range from 2.355%
for ASpanFormer on the Oxford dataset to 12.912%
for LoFTR on the ETH3D dataset. This highlights
the significant impact of the post-processing step, par-
ticularly for cases with initially poor image alignment
(i.e. ECC < 0.8), where the refinement contributes most
substantially to enhancing visual coherence.

Qualitative Results

The visual impact of the proposed optimization tech-
nique on image alignment is illustrated in Figure 3.
In these heatmaps, areas with low ECC alignment
are represented with ‘hotter’ colors than regions with
better alignment. Many unoptimized feature match-
ing results exhibit weaknesses in properly aligning
intricate, detailed structures, particularly those with
repeated patterns and those encountering occlusions
and parallaxes. By applying the proposed optimization
post-processing, the majority of image regions demon-
strate improved ECC alignment. For morphing-based
applications, this translates to smoother transitions and
blending in these challenging image regions.

Figure 4 further highlights the algorithm’s ability to op-
timize visual alignment across diverse scene types and
feature matchers. The optimization process effectively
reduces or partially eliminates visual misalignments,
enhancing the overall sharpness of the morphed images.

- -.l

Figure 3: ECC heatmap with (right) and without (left)
optimization, along with morphing-based RGB visualization.
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Dataset ASp?gfz(;]rmer E([Zng;I]‘R ng[gltlg]lue L[(s)anz'Il‘]R
Mean ECC with (right) and without (left) optimization
Bikes 0.990 0.992 0.989 0.991 0.975 0.989 0.991 0.993
Graf 0.955 0.970 0.848 0.986 0.940 0.987 0.826 0.906
Leuven 0.960 0.971 0.968 0.979 0.946 0.977 0.957 0.972
T Trees 0.883 0.930 0.856 0.887 0.796 0.881 0.869 0.924
‘a E UBC 0.837 0.890 0.868 0.889 0.798 0.859 0.861 0.900
©=  wal 0.961 0.968 0.933 0.966 0.898 0.968 0.941 0.960
Total 0.934 0.956 0.910 0.950 0.892 0.944 0.909 0.944
+2.355% +4.396% +5.830% +3.850%
Courtyard 0.761 0.842 0.760 0.847 0.816 0.904 0.682 0.801
Delivery 0.827 0.870 0.884 0.934 0.820 0.903 0.818 0.879
Electro 0.567 0.658 0.709 0.788 0.591 0.702 0.533 0.659
Facade 0.757 0.848 0.757 0.839 0.821 0.894 0.685 0.812
Kicker 0.743 0.821 0.673 0.753 0.769 0.870 0.640 0.757
Meaow 0.925 0.954 0.748 0.776 0.886 0.926 0.822 0.873
A Office 0.838 0.891 0.515 0.563 0.758 0.834 0.770 0.834
E = Pipes 0.694 0.783 0.806 0.885 0.638 0.743 0.672 0.777
E % Playground 0.647 0.743 0.679 0.788 0.616 0.728 0.585 0.725
Relief 0.888 0.921 0911 0.952 0.852 0.915 0.883 0.930
Relief_2 0.893 0.926 0.915 0.954 0.860 0.916 0.880 0.925
Terrace 0.828 0.894 0.812 0.889 0.820 0.907 0.790 0.878
Terrains 0.871 0.920 0.882 0.935 0.841 0.915 0.856 0.914
Total 0.776 0.844 0.780 0.848 0.777 0.860 0.728 0.822
+8.763% +8.718% +10.682% +12.912%
Farmland* 0.920 0.949 0.889 0.936 0.860 0.923 0.919 0.951
L>) Livingroom* | 0.947 0.964 0.760 0.795 0.864 0.910 0.942 0.965
o Nature Walk | 0.844 0.895 0.781 0.858 0.799 0.870 0.840 0.895
8 Total 0.907 0.938 0.787 0.839 0.840 0.898 0.902 0.938
+3.418% +6.607% +6.905% +3.991%

Table 1: ECC improvement across datasets and methods. *Farmland and livingroom were used for meta parameter training.

£ {

LS 3 PENGLER

(a) Grand Living Room - LightGlue (b) Delivery - LightGlue
(¢) Farmland - ECO-TR (d) Farmland - ECO-TR

Figure 4: Visual comparison with (right) and without (left) optimization. Selected areas from different datasets before and
after applying the proposed optimization technique. Each image shows the intermediate morph when aligning two images.

Runtime scale input images, resulting in multiple resolutions per
dataset. To exclude exceptionally fast executions due
to poor matches and early termination, we filtered out
image pairs with fewer than 200 matches or an initial
ECC below 0.7. A moving average with a window size
of 10 was applied to smooth the scatter plot.

Figure 5 illustrates the relationship between the num-
ber of matched feature points and execution time across
different image resolutions. Data points are colored by
resolution, with darker shades representing higher res-
olutions. Note that some feature matchers internally

http://www.doi.org/10.24132/CSRN.2025-8 80
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Figure 5: Runtime across resolutions and point densities.

As expected, execution time generally increases with
both image resolution and the number of initially
matched feature points. For the lowest resolution
(640 x 480 pixels), optimization time ranges from 1.8
seconds for 250 points to 2.3 seconds for a maximum
of 3000 points, with 2.1 seconds for an average of
2200 points. At 1024 x 1024 resolution, optimization
takes 3.2 — 3.8 seconds (for 4000 — 6000 matches) and
averages 3.5 seconds for approximately 5100 points.

The post-processing time represents a significant over-
head compared to the initial feature matching time.
Across the evaluated scenes, this overhead is at least
112%. For instance, with image pairs at 1280 x 853 res-
olution, ECO-TR detects an average of 3649 matches
in approximately 4.0 seconds, which are then refined
in 4.5 seconds, achieving a 9.87% ECC improvement.
For LoFTR, which detects an average of 944 matches in
0.16 seconds at 640 x 480 resolution, the optimization
takes 2.2 seconds, resulting in an 18.3% ECC improve-
ment at a runtime overhead of 1375%. For latency-
insensitive applications that require high alignment ac-
curacy, such as medical image registration, this trade-
off between ECC improvement and the additional com-
putational cost may be justified.

Limitations

Despite the improvements achieved, our method still
faces limitations in regions with deficient input geome-
try. These challenging scenarios include areas with sig-
nificant parallaxes, sparse feature matches, and image
elements visible in only one image of the pair. As il-
lustrated in the bottom section of Figure 3, some visual
misalignments could not be unresolved. Furthermore,
optimizing one region can sometimes negatively impact
the alignment of adjacent areas, as shown in Figure 4c.

S CONCLUSION

This work presented a novel method for optimizing
the visual alignment of image pairs. Our approach
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leverages an evolutionary algorithm for positionally
adjusting a mesh of feature matches, using the ECC
as the evaluation criterion, and is specifically designed
for efficient parallel computation on GPUs. The
evaluation demonstrated a significant improvement
in ECC, with average improvements reaching up to
9.87% — 18.3% across the tested datasets. Visual
comparisons of morphed images further confirm the
effectiveness of our method, revealing a reduction in
artifacts and increased sharpness after optimization.
While our method achieves substantial improvements,
optimization may be less effective for regions with
deficient input geometry, such as significant parallaxes,
sparse feature matches, or image elements visible
in only one view. Future work includes an extendes
evaluation framework for multi-image alignment
(i.e., n > 2). Additionally, investigating alternative
optimization strategies, such as gradient descent, and
exploring alternative image similarity metrics, such as
SSIM, PSNR, LPIPS and other machine learning-based
loss functions, offers potential for further enhancing
alignment quality and computational efficiency.
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