ISSN 2464-4617 (print) Computer Science Research Notes - CSRN
ISSN 2464-4625 (online) http://www.wscg.eu WSCG 2025 Proceedings

Refining Gaussian Splatting:
A Volumetric Densification Approach

Mohamed ABDUL GAFOOR Marius PREDA Titus ZAHARIA

Laboratoire SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris
9 Rue Charles Fourier 91000, Courcouronnes, France

mohamed.abdul_gafoor@telecom- marius.preda@telecom- titus.zaharia@telecom-
sudparis.eu sudparis.eu sudparis.eu
ABSTRACT

Achieving high-quality novel view synthesis in 3D Gaussian Splatting (3DGS) often depends on effective point
primitive management. The underlying Adaptive Density Control (ADC) process addresses this issue by
automating densification and pruning. Yet, the vanilla 3DGS densification strategy shows key shortcomings. To
address this issue, in this paper we introduce a novel density control method, which exploits the volumes of inertia
associated to each Gaussian function to guide the refinement process. Furthermore, we study the effect of both
traditional Structure from Motion (SfM) and Deep Image Matching (DIM) methods for point cloud initialization.
Extensive experimental evaluations on the Mip-NeRF 360 dataset demonstrate that our approach surpasses 3DGS
in reconstruction quality, delivering encouraging performance across diverse scenes.
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Ground Truth 3DGS Ours

Figure 1: Challenges faced by 3DGS: the method fails to render some specific regions, where the related density
of Gaussians is insufficient, leading to sparse details and blur. By modifying the densification process, the proposed
approach overcome such shortcomings, delivering accurate reconstructions.
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1. Introduction

High-quality Novel View Synthesis (NVS) is a
fundamental task in computer vision and computer
graphics, with diverse applications in AR/VR/MR,
robotics, and cinematography. The objective is to
generate photorealistic images of a scene from unseen
viewpoints, given a set of input images with known
camera parameters.

Early methods such as Structure-from-Motion
(SfM) [1] and image-based rendering (IBR) have
gradually evolved towards more sophisticated neural
representations. A pivotal breakthrough came with the
Neural Radiance Fields (NeRF) approach [2], which
leverages a multi-layer perceptron (MLP) neural
network to represent scenes as continuous fields of
color and density. NeRF-based methods optimize
scene representations using volumetric rendering and
have demonstrated remarkable image quality,
capturing intricate lighting and geometric effects.
However, they suffer from slow training and
inference, which limits their applicability in real-time
scenarios [2], [3]. In response to such limitations, 3D
Gaussian Splatting (3DGS) [4] has emerged as a
promising alternative. Unlike NeRF’s implicit
representation via MLPs, 3DGS uses an explicit set of
3D Gaussian primitives. These Gaussians are
characterized by position, covariance, opacity, and
color attributes. Splatting-based rasterization is then
employed to project Gaussians onto 2D images from
various angles of view, enabling high-resolution real-
time rendering. Each Gaussian's appearance is
modeled with anisotropic spherical harmonics
(SH) [5]. Importantly, 3DGS avoids computationally
expensive ray marching and point sampling, making it
well-suited for fast rendering [4]. One of the
challenges in 3DGS concerns the optimization of the
Adaptive Density Control (ADC) mechanism [4],
whose role is to adapt the density of Gaussians to the
specificity of each image region. In the vanilla
formulation, this is done by either inserting or pruning
Gaussian primitives based on gradients and opacity
thresholds. However, the approach fails in certain
cases, leading to sparse details and blur (Fig. 1). In this
paper, we specifically tackle this issue and propose the
following contributions:

1. A complementary densification mechanism, that
automatically identifies over-sized Gaussians based
on volumetric criteria and facilitates the generation of
new ones whenever necessary.

2. An experimental evaluation of two different
initialization procedures, which include the traditional
SfM process [1] and a Deep-Image-Matching (DIM)
framework [6], [7], [8] with SuperPoint [9] as feature
extractor and LightGlue [10] as feature matcher.
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The goal here is to identify the cases for which each
initialization technique is more appropriate.

The rest of the paper is organized as follows. Section 2
reviews the related work on 3D reconstruction
techniques, and in particular focuses on research

dedicated to improvements of 3DGS-related
methodologies.  Section3  recalls the 3DGS
mathematical model and introduces the related

notations. The proposed approach is described in
details in Section 4. The experimental setup and
evaluation are presented and discussed in Section 5.
Finally, Section 6 concludes the paper and opens some
perspectives of future work.

2. 3D Reconstruction: related work
Traditional 3D reconstruction methods are based on
well-established approaches such as Structure from
Motion (SfM) and Multi-View Stereo
(MVS) [1], [11]. However, their limitations in terms
of robustness, efficiency, and scalability make them
less competitive compared to modern deep learning
based methods.

In 2015, Sergey et al. [12] propose a novel approach
to learn a general similarity function for comparing
image patches using Convolutional Neural Networks
(CNNSs). Unlike traditional methods that rely on
handcrafted features like SIFT, the features are here
learned directly from raw image data. This work has
made a significant contribution to the field,
demonstrating how deep learning can surpass
traditional feature descriptors.

In [13], Kwang et al. introduce an end-to-end pipeline
combining keypoint detection, descriptor extraction
and orientation estimation within a unified pipeline.

Subsequently,  the  so-called  SuperPoint [9],
SuperGlue [14] and LightGlue [10] techniques
propose further optimizations, enhancing the
computational  efficiency  while  maintaining

robustness to viewpoint changes, or scale variations.

The Scene Representation Networks (SRNs)
introduced by Sitzmann et al. [15] exploits a
continuous, 3D structure-aware  neural  scene
representation that encodes both geometry and
appearance without explicit 3D supervision. In 2020,
Mildenhall et al. introduced the NeRF (Neural
Radiance Fields) model [2]. The method makes it
possible to generate views of complex scenes by using
a continuous volumetric scene function and a small set
of input images. However, the related limitations
concern the high computational complexity, which
notably leads to excessively slow training times. More
recently, in 2023, the 3D Gaussian Splatting (3DGS)
method has revolutionized the field by proposing an
efficient
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model for representing and rendering volumetric data.
The principle consists in modeling scenes with a set of
anisotropic  Gaussian  primitives [4]. Numerous
applications leveraging 3DGS have been proposed,
including Gaussian-based avatars for realistic human
representation [16], [17], [18], autonomous driving for
efficient scene understanding [19], [20], [21] and
dynamic scene reconstruction to capture temporal
changes [22], [23], [24]. Recent advances focus on
improving its scalability, fidelity, and integration with
neural radiance fields to enhance the scene
representation [25].

Several studies emphasize the importance of
addressing  fundamental improvements in 3D
Gaussian Splatting methodologies such as rendering
quality, efficiency and memory optimization. Yu et al.
[26] introduce a 3D smoothing filter to regularize the
frequency of 3D Gaussian primitives and replace the
2D dilation filter with a 2D Mip filter to address
aliasing and dilation artifacts, thus improving
rendering quality and handling out-of-distribution
issues. Lu et al. [27] propose a hierarchical and region-
aware scene representation by initializing anchor
points from a sparse voxel grid to guide the
distribution of local 3D Gaussians. They further
predict neural Gaussians on-the-fly within the view
frustum to accommodate varying perspectives and
distances, enabling robust novel view synthesis.

To overcome the limitations of spherical harmonics in
modeling specular and anisotropic components, Yang
et al. [28] introduced anisotropic spherical Gaussians
and a coarse-to-fine training strategy, significantly
enhancing the rendering quality for complex surfaces
without increasing the underlying Gaussian counts.
Lee et al. [29] proposes a learnable masking
mechanism based on the volume and opacity of
Gaussians. Hence, Gaussians with small volumes or
low opacity are identified as redundant and removed
using binary masks. The GaussianPro approach [30]
addresses densification challenges related to the
shortcomings of SfM-based initialization. Here, a
sophisticated approach progressively propagates
primitives along estimated planes, guided by patch-
matching techniques and geometric consistency
criteria. Huang et al. [31] analyze the correlations
between rendering errors and Gaussian positions. A
mathematical estimation of such errors is derived,
which makes it possible to determine its extrema using
optimization techniques. Buld et al. [32] enhances
3DGS’s ADC mechanism by guiding densification
using a per-pixel error function instead of positional
gradients. In addition, the influence of biases in the
Gaussian cloning process is also addressed.
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Figure 2: The 3DGS rendered image with a blurry
grass region (left) and its corresponding overlay of
ellipsoids (right).

However, none of the above methods address the need
of densification in regions where the Gaussian cloud
remains excessively sparse. Such a case is illustrated
in Fig. 2. Here, the grass region presents a relatively
moderate texture that is rendered in a blurry manner
by 3DGS (left). The corresponding Ellipsoids (right)
remain in this case over-sized.

In this paper we notably identify and tackle this issue
by introducing a complementary, volume-driven
Gaussian densification approach.

3. Gaussian splatting: problem statement
In Gaussian splatting, a 3D scene is represented as a
collection of N anisotropic 3D Gaussian primitives
[4], denoted by I' = {y4,V2,.- ¥~}

Each primitive y; = (u;, Z;, a;, f;) is defined by a 3D
Gaussian kernel:

1
Gi(x) = exp (— G u) I (x - m)) , (D

where u; € R3 is represents the Gaussian's center and
%; € R3*3 its covariance matrix, shaping its spatial
extent and orientation. To enforce the covariance
matrix to remain positive semi-definite during the
optimization process, Z; is expressed as:

% = RSPRT )

with R; being an orthogonal rotation matrix and S; a
diagonal scale matrix [30]. Each Gaussian is further
enriched with an opacity factor «; € [0,1] and a
feature vector f; € R%, which may include attributes
such as RGB color or spherical harmonics
coefficients.

The 3D Gaussian primitives are rendered using
splatting-based rasterization. This process involves
the projection of a 3D Gaussian primitive y; from the
3D world onto the 2D image space using a
transformation m: R3® — R2. To simplify the
computation, the projection is locally linearized at the
center u; of the Gaussian. In this way, the primitive is
approximated as a 2D Gaussian G[* in the image space,
where the mean of the projected Gaussian becomes
m(u;) € R?, and the 2D
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covariance matrix of the projected Gaussian is defined
as:

IS K 3)

where ;™ represents the covariance matrix in image
space, and JT* is the Jacobian of the transformation ,
evaluated at y; [32].

The color c(p) of each pixel p is determined by
blending N Gaussians T’ = {y1,v2,..¥n}, that overlap
the given pixel. The blending process is defined as:

= Y] (-a)
j=1

(4)
i=1
where «; represents the opacity of the Gaussian G,
computed as the product between G (p) and a learned
opacity parameter associated to y; [4]. The color c; is
also a learnable attribute of y;. The Gaussians
overlapping at pixel p are sorted in ascending order
based on their depth relative to the current viewpoint
to ensure proper compositing. Using differentiable
rendering techniques, all Gaussian attributes,
including position, shape, color, and opacity, can be
optimized in an end-to-end manner through training
view reconstruction [4].

Furthermore, during an additional optimization
process, the ADC mechanism allows the dynamic
addition and removal of 3D Gaussians to enhance the
scene representation [4].

4. Proposed volume-based densification
The 3DGS construction process requires an
initialization, which is traditionally achieved with SfM
techniques. However, such procedures fail to generate
a sufficient number of 3D points in relatively poorly
textured regions, such as grass or sand, resulting in
gaps in the reconstruction. This weak initialization
affects the ADC mechanism, making it difficult to
produce reliable 3D Gaussians and leading to
insufficient scene coverage [30]. To enhance the
density of the initial point cloud, we have also
considered as an alternative a DIM technique [6], an
example is illustrated in Figure 3. While DIM
improves here the Gaussians’s density when
compared to SfM, both methods still struggle to
capture relatively low-textured regions effectively,
which may penalize the reconstruction quality. To
address this issue, we introduce a complementary
mechanism to ADC that goes beyond splitting and
cloning [4]. The principle consists of refining the 3D
Gaussian  generation  process based on a
supplementary volumetric criterion.
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3.a. SfM: 41,069
points

Figure 3: Initial point clouds: SfM versus DIM for the
Flowers scene (Mip-NeRF360 dataset).

3.b. DIM:
84,492 points

3.c Part of
Flowers scene
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Figure 4: 3D Gaussians undergo gradient-based
cloning and splitting as in [4], followed by the
proposed volume-based densification process.
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More precisely, for each Gaussian primitive, we
consider its ellipsoid of inertia, whose axes are aligned
with the eigenvectors of the Gaussian covariance
matrix X with semi-lengths defined by the

corresponding eigenvalues /1;, \/2;, \/2s.

During training, we compute the volume of each
Gaussian ellipsoid. The determinant of X is equal to
the product of its eigenvalues, det(Z) = A;4,15.
Hence the ellipsoid’s volume can be calculated as:

V = S /de® ®)

If the volume of a given Gaussian ellipsoid ¥; is above
a pre-defined threshold V;,, then the ellipsoid is
considered for further densification through a split
mechanism (Fig. 4).

Selecting an appropriate threshold is essential for
achieving a good quality of the rendered images.
Setting the volume threshold V;;, too low can result in
the generation of new points in already dense regions.
On the contrary, a too large value would fail to take
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into account regions that need to be further densified.

In addition, in order to adjust the standard deviation of
the resulting splitted Gaussians, we calculate the
condition number [33], defined as the ratio between
the largest and the smallest eigenvalues of X:

2"n'l,ax Z
<(E) = A—((Z)) ©)

The condition number provides a measure of the
degree of elongation of the considered Gaussians. For
isotropic Gaussians (i.e., equal eigenvalues), its value
equals 1. In contrast, anisotropic Gaussians, which
present an elongated shape towards a large dominant
direction, present a large condition number. During
the splitting process, the eigenvalues of each newly
generated Gaussian are adjusted as described in the
following equation:

A;
P} )

In the isotropic case, the size of the resulting ellipsoids
does not change after split. In contrast, for the
anisotropic one, the size is divided by the condition
number (while their orientations and global aspect
ratio are preserved). Similarly, to the cloning and
splitting operation in the native 3DGS approach, the
volume-based densification is applied iteratively
every 100 iterations.

The proposed method makes it possible to densify
sparsely-represented regions, where high volume
ellipsoids of elongated aspect ratios may appear. By
considering all relevant eigenvalues in the
densification procedure, it ensures a comprehensive
representation of the Gaussian spread in all directions.

vie{1,2,3}, A;=

5. Experimental evaluation

In our experiments, we have considered various
samples from Mip-NeRF 360 [34], Tanks and
Temples [35], and Deep Blending [36] datasets. For
Mip-NeRF 360, we have included all scenes,
comprising five outdoor scenes and four indoor
scenes. From the Tanks and Temples dataset, we have
selected two specific scenes: Dr. Johnson and
Playroom. Similarly, for Deep Blending, we focused
on two datasets: Truck and Train.

To evaluate performances, we have retained the three
metrics usually considered in the state of the art: peak
signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and the perceptual metric LPIPS [37].

We have adopted the original Gaussian Splatting
implementation available in the GitHub repository
(https://github.com/graphdeco-inria/gaussian-
splatting) and extended it with the proposed volume-
based densification procedure. All experiments have
been run on a NVIDIA RTX 2080 GPU.
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In our experiments, we found that the majority of
ellipsoids have small volumes, with a rapid drop of the
relative frequency of appearance as the volume
increases. Fig. 5 illustrates the volume’s histogram for
the MiP-NeRF 360 dataset. We have collected volume
data by running 3DGS [4] on the scenes at iterations
4000, 8000, and 12000 to generate a histogram plot,
providing a means to visualize the volume of large
ellipsoids. To balance efficiency and visual quality,
we set a threshold of 0.03, as indicated in the inset
(Fig. 5). Let us note that more than 99.78% of the
ellipsoids’ volumes fall below this threshold. So, this
choice helps to densify solely the remaining large
ellipsoids. However, this procedure can significantly
enhance the quality of the rendered images, as
illustrated in the example presented in Fig. 6. Here, in
the grass region the ellipsoids generated by the 3DGS
approach are excessively over-sized and consequently
yield blurry images. By applying the volumetric-based
densification procedure this limitation is overcome.

1e6 Volume Distribution for Iterations 4000, 8000, and 12000

Volume Distribution for Rerations 4000, 8000, and 12000

Our choice of thresheld volume (0.03)

0.02 0.04 0.06 0.08 0.10
Volume

Figure 5: Histogram of the overall volume distribution
for the Mip-NeRF 360 dataset, sampled at 4000, 8000,
and 12000 iterations.

Original 3DGS with no
volumetric densification

3DGS with volumetric
densification (threshold = 0.03)

Figure 6: Effect of the volumetric densification
(threshold V;;, = 0.03).
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Dataset SSIM PSNR LPIPS Gaussian | Gaussian Train Train Scenes
(million) | (million) (min) (min)
3DGS | Ours | 3DGS Ours 3DGS | Ours 3DGS Ours 3DGS Ours
0.69 0.69 23.56 23.50 0.29 0.26 2.37 3.25 42.3 69.2 Flowers
0.60 0.59 22.45 22.16 0.36 0.33 | 3.22 3.42 58.6 81.0 Tree-hill
3 0.72 0.75 | 24.89 24.97 0.27 0.22 341 3.45 74.6 83.4 Bicycle
; 0.85 0.85 | 27.06 27.21 0.13 0.12 341 341 76.1 79.5 Garden
%I’ 0.94 0.95 | 3297 33.53 0.18 0.15 | 0.96 251 33.0 73.6 Bonsali
'§ 0.90 0.91 29.01 29.21 0.21 0.19 1.08 1.27 415 48.8 Counter
0.91 0.92 32.09 32.65 0.22 0.19 | 0.92 1.19 40.6 49.8 Room
0.93 0.93 | 31.00 31.13 0.12 0.12 1.47 1.67 59.9 69.8 Kitchen
0.77 0.74 | 26.61 25.96 0.23 0.23 | 343 3.57 62.3 87.3 Stump
Tanks 0.86 0.87 24.53 24.95 0.16 0.12 1.94 341 27.1 73.7 Truck
Te?:gles 0.58 0.57 16.60 16.47 0.40 0.38 | 0.97 3.15 32.3 78.9 Train
Deep 0.86 0.85 | 27.83 271.70 0.31 0.29 2.35 3.35 57.3 86.9 Playroom
Blending =52 074 | 2076 | 2065 | 044 | 044 | 1.7 1.93 498 | 555 Dr.Johnson

Table 1: Average results of three trials for both 3D Gaussian Splatting and proposed method (DIM initialization).

Ground Truth 3DGS Ours

Bicycle

Bonsai

Counter

Flowers
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Figure 8: Qualitative comparison on Tanks and Temples dataset.
Ground Truth

Dr.Johnson

Playroom

3DGS

Figure 9: Qualitative comparison on Deep Blending dataset.

To manage computational resources, we have imposed
a ceiling on the number of points generated during
training, capping this value at 3,4 millions. This limit
can be adjusted as needed, providing flexibility in
handling different datasets. We have also restricted the
number of images in each scene to a maximum value
of 200 to avoid memory-related issues. Although the
MiP-NeRF 360 dataset features image resolutions in
the 2K, 3K and 5K ranges, we have opted for relatively
homogeneous resolutions, ranging from 1237x822 to
1555%1039 pixels. In this way, we avoid out of
memory issues. To this purpose, we have down-
sampled the original images by x2 or x4 factors
whenever necessary. In the same time, this makes it
possible to define a unique volumetric threshold for all
images considered, since the volume measure is not
scale invariant. During training, we utilized the Adam
optimizer with learning rates adopted from the 3DGS
paper [4]. Additionally, for each scene in the dataset
we run the algorithm three times and take the average
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values of PSNR, SSIM and LPIPS. The same
procedure has been applied for the baseline 3DGS
method that we have considered with the default
configurations.

Table 1 presents a quantitative comparison between
our method and the baseline 3DGS technique across
the three datasets retained. A DIM initialization has
been applied here as well as in all examples illustrated
in Fig. 7 to 9. Our approach consistently achieves
lower LPIPS scores, indicating better perceptual
quality and closer resemblance to the ground truth. It
also performs competitively in PSNR and, to a lesser
extent, SSIM improvements can be observed.
Concerning the number of Gaussians of the
representation, our approach slightly augments it,
since the method is specifically designed to this
purpose. However, the increase remains reasonable,
with a global average of 30.33% on the whole test
dataset retained. Despite this augmentation, the
method continues to deliver performance suited for
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real-time rendering applications for all the scenes in
our dataset.

Figures 7, 8 and 9 present some results from the Mip-
NeRF360, Tanks and Temples and Deep Blending
datasets. The Bicycle, Bonsai and Flowers scenes in
Fig. 7 demonstrate that our approach produces results
significantly closer to the ground truth, with enhanced
texture fidelity. In contrast, 3DGS introduces
noticeable artifacts, particularly in ground regions
(highlighted in red), where textures appear smoothed
out or distorted. Our method effectively reconstructs
fine details, preserving the texture and greatly
improving realism. Likewise, in the Train scene (Fig.
8), our method shows an improvement in the ground
region and mountain areas compared to 3DGS.
Similarly, in the Playroom scene (Fig. 9), our method
faithfully reconstructs the carpet areas, where texture
details are over-smoothed by 3DGS. Another
interesting feature of the proposed method concerns its
ability to preserve directional image structures. This
can be observed in the Counter scene (Fig. 7), where
3DGS completely eliminates an edge that is present on
the floor pavement, whereas our method accurately
preserves it. Similarly, in the Truck scene (Fig. 8) we
can see edge information is preserved in the building
structure. Maintaining sharp object edges is crucial for
ensuring realistic reconstructions that can be useful for
applications like AR/VR. Finally, in the case of the Dr.
Johnson scene (Fig.9), we do not observe any
significant improvement, which is consistent with the
metric reported in Table 1.

In a second stage, we have analyzed the impact of the
initialization approach on the global performances.
Table 2 presents the LPIPS values obtained by
comparing the two different initialization strategies
considered (SfM and DIM), when combined with both
the baseline 3DGS and the proposed method across all
scenes. The results indicate that, in a general manner,
the proposed method achieves lower LPIPS values for
both SfM and DIM, demonstrating here again its
capacity of achieving a superior perceptual quality.
The SfM-based initialization performs better in a
majority of cases. However, it fails in the case of
Flowers, Truck, and Bicycle scenes, where DIM-
based initialization yields better results. This behavior
can be explained by the fact that the DIM-based
initialization is particularly effective for dense,
repetitive textures such as sand or grass. Overall, both
DIM+Ours and SfM+Ours demonstrate promising
performance, highlighting the effectiveness of the
proposed volume-based densification method across
different initialization strategies.
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Scenes Strategies

SfM + DIM + SfM + DIM +

3DGS 3DGS Ours Ours
Bicycle 0.246 0.272 0.230 0.226
Flowers 0.289 0.288 0.27 0.255
Bonsai 0.145 0.177 0.128 0.153
Garden 0.153 0.128 0.101 0.118
Room 0.172 0.219 0.161 0.194
Kitchen 0.096 0.119 0.094 0.118
Truck 0.354 0.161 0.359 0.115
Treehill 0.305 0.359 0.287 0.331
Stump 0.214 0.225 0.208 0.224
Playroom 0.247 0.304 0.234 0.289
Dr.Johnson | 0.44 0.449 0.439 0.451
Counter 0.183 0.206 0.175 0.194

Table 2: The effect of different initialization strategies
(LPIPS scores).

6. Conclusions and perspectives

In this paper, we revisit the densification mechanism
involved in the 3D Gaussian Splatting method. Our
key observation is that the densification mechanism
proposed by Kerbl et al. [4] does not effectively
densify regions with relatively low point densities. As
a result, the generated ellipsoids tend to be oversized,
leading to artifacts such as blurred regions. To address
this limitation, our complimentary method introduces
additional points based on a volumetric criterion,
resulting in more accurate densification. Our approach
performs especially well on the MiP-NeRF 360
dataset, with notable improvements in perceptual
LPIPS scores. While our method leverages the volume
of inertia with a fixed threshold of 0.03 to guide
densification, this static parameter may not optimally
adapt to scene geometries or levels of detail beyond
the considered dataset.

A promising future direction will concern the
extension of the proposed densification method to
dynamic scenes, where ellipsoids distributions
continuously evolve over time. Incorporating volume-
based densification criteria and leveraging temporal
information from consecutive frames can provide
more accurate representations for such dynamic
scenes. This extension would significantly enhance
the applicability of our approach to real-time
rendering and dynamic scene reconstruction tasks.
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