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ABSTRACT 
Achieving high-quality novel view synthesis in 3D Gaussian Splatting (3DGS) often depends on effective point 

primitive management. The underlying Adaptive Density Control (ADC) process addresses this issue by 

automating densification and pruning. Yet, the vanilla 3DGS densification strategy shows key shortcomings. To 

address this issue, in this paper we introduce a novel density control method, which exploits the volumes of inertia 

associated to each Gaussian function to guide the refinement process. Furthermore, we study the effect of both 

traditional Structure from Motion (SfM) and Deep Image Matching (DIM) methods for point cloud initialization. 

Extensive experimental evaluations on the Mip-NeRF 360 dataset demonstrate that our approach surpasses 3DGS 

in reconstruction quality, delivering encouraging performance across diverse scenes. 

Keywords 
Gaussian splatting, real-time rendering, novel view synthesis.  

 

   

   

Ground Truth 3DGS Ours 

Figure 1: Challenges faced by 3DGS: the method fails to render some specific regions, where the related density 

of Gaussians is insufficient, leading to sparse details and blur. By modifying the densification process, the proposed 

approach overcome such shortcomings, delivering accurate reconstructions.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-6 55



1. Introduction 
High-quality Novel View Synthesis (NVS) is a 

fundamental task in computer vision and computer 

graphics, with diverse applications in AR/VR/MR, 

robotics, and cinematography. The objective is to 

generate photorealistic images of a scene from unseen 

viewpoints, given a set of input images with known 

camera parameters.  

Early methods such as Structure-from-Motion 

(SfM) [1] and image-based rendering (IBR) have 

gradually evolved towards more sophisticated neural 

representations. A pivotal breakthrough came with the 

Neural Radiance Fields (NeRF) approach [2], which 

leverages a multi-layer perceptron (MLP) neural 

network to represent scenes as continuous fields of 

color and density. NeRF-based methods optimize 

scene representations using volumetric rendering and 

have demonstrated remarkable image quality, 

capturing intricate lighting and geometric effects. 

However, they suffer from slow training and 

inference, which limits their applicability in real-time 

scenarios [2], [3]. In response to such limitations, 3D 

Gaussian Splatting (3DGS) [4] has emerged as a 

promising alternative. Unlike NeRF’s implicit 

representation via MLPs, 3DGS uses an explicit set of 

3D Gaussian primitives. These Gaussians are 

characterized by position, covariance, opacity, and 

color attributes. Splatting-based rasterization is then 

employed to project Gaussians onto 2D images from 

various angles of view, enabling high-resolution real-

time rendering. Each Gaussian's appearance is 

modeled with anisotropic spherical harmonics 

(SH) [5]. Importantly, 3DGS avoids computationally 

expensive ray marching and point sampling, making it 

well-suited for fast rendering [4]. One of the 

challenges in 3DGS concerns the optimization of the 

Adaptive Density Control (ADC) mechanism [4], 

whose role is to adapt the density of Gaussians to the 

specificity of each image region. In the vanilla 

formulation, this is done by either inserting or pruning 

Gaussian primitives based on gradients and opacity 

thresholds. However, the approach fails in certain 

cases, leading to sparse details and blur (Fig. 1). In this 

paper, we specifically tackle this issue and propose the 

following contributions: 

1. A complementary densification mechanism, that 

automatically identifies over-sized Gaussians based 

on volumetric criteria and facilitates the generation of 

new ones whenever necessary.  

2. An experimental evaluation of two different 

initialization procedures, which include the traditional 

SfM process [1] and a Deep-Image-Matching (DIM) 

framework [6], [7], [8] with SuperPoint [9] as feature 

extractor and LightGlue [10] as feature matcher.   

 

The goal here is to identify the cases for which each 

initialization technique is more appropriate.     

The rest of the paper is organized as follows. Section 2 

reviews the related work on 3D reconstruction 

techniques, and in particular focuses on research 

dedicated to improvements of 3DGS-related 

methodologies. Section 3 recalls the 3DGS 

mathematical model and introduces the related 

notations. The proposed approach is described in 

details in Section 4. The experimental setup and 

evaluation are presented and discussed in Section 5. 

Finally, Section 6 concludes the paper and opens some 

perspectives of future work. 

 

2. 3D Reconstruction: related work 
Traditional 3D reconstruction methods are based on 

well-established approaches such as Structure from 

Motion (SfM) and Multi-View Stereo 

(MVS) [1], [11]. However, their limitations in terms 

of robustness, efficiency, and scalability make them 

less competitive compared to modern deep learning 

based methods.  

In 2015, Sergey et al. [12] propose a novel approach 

to learn a general similarity function for comparing 

image patches using Convolutional Neural Networks 

(CNNs). Unlike traditional methods that rely on 

handcrafted features like SIFT, the features are here 

learned directly from raw image data. This work has 

made a significant contribution to the field, 

demonstrating how deep learning can surpass 

traditional feature descriptors. 

In [13], Kwang et al. introduce an end-to-end pipeline 

combining keypoint detection, descriptor extraction 

and orientation estimation within a unified pipeline. 

Subsequently, the so-called SuperPoint [9], 

SuperGlue [14] and LightGlue [10] techniques 

propose further optimizations, enhancing the 

computational efficiency while maintaining 

robustness to viewpoint changes, or scale variations. 

The Scene Representation Networks (SRNs) 

introduced by Sitzmann et al. [15] exploits a 

continuous, 3D structure-aware neural scene 

representation that encodes both geometry and 

appearance without explicit 3D supervision. In 2020, 

Mildenhall et al. introduced the NeRF (Neural 

Radiance Fields) model [2]. The method makes it 

possible to generate views of complex scenes by using 

a continuous volumetric scene function and a small set 

of input images. However, the related limitations 

concern the high computational complexity, which 

notably leads to excessively slow training times. More 

recently, in 2023, the 3D Gaussian Splatting (3DGS) 

method has revolutionized the field by proposing an 

efficient 
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model for representing and rendering volumetric data. 

The principle consists in modeling scenes with a set of 

anisotropic Gaussian primitives [4]. Numerous 

applications leveraging 3DGS have been proposed, 

including Gaussian-based avatars for realistic human 

representation [16], [17], [18], autonomous driving for 

efficient scene understanding [19], [20], [21] and 

dynamic scene reconstruction to capture temporal 

changes [22], [23], [24]. Recent advances focus on 

improving its scalability, fidelity, and integration with 

neural radiance fields to enhance the scene 

representation [25]. 

Several studies emphasize the importance of 

addressing fundamental improvements in 3D 

Gaussian Splatting methodologies such as rendering 

quality, efficiency and memory optimization. Yu et al. 

[26] introduce a 3D smoothing filter to regularize the 

frequency of 3D Gaussian primitives and replace the 

2D dilation filter with a 2D Mip filter to address 

aliasing and dilation artifacts, thus improving 

rendering quality and handling out-of-distribution 

issues. Lu et al. [27] propose a hierarchical and region-

aware scene representation by initializing anchor 

points from a sparse voxel grid to guide the 

distribution of local 3D Gaussians. They further 

predict neural Gaussians on-the-fly within the view 

frustum to accommodate varying perspectives and 

distances, enabling robust novel view synthesis.  

 

To overcome the limitations of spherical harmonics in 

modeling specular and anisotropic components, Yang 

et al. [28] introduced anisotropic spherical Gaussians 

and a coarse-to-fine training strategy, significantly 

enhancing the rendering quality for complex surfaces 

without increasing the underlying Gaussian counts. 

Lee et al. [29] proposes a learnable masking 

mechanism based on the volume and opacity of 

Gaussians. Hence, Gaussians with small volumes or 

low opacity are identified as redundant and removed 

using binary masks. The GaussianPro approach [30] 

addresses densification challenges related to the 

shortcomings of SfM-based initialization. Here, a 

sophisticated approach progressively propagates 

primitives along estimated planes, guided by patch-

matching techniques and geometric consistency 

criteria. Huang et al. [31]  analyze the correlations 

between rendering errors and Gaussian positions. A 

mathematical estimation of such errors is derived, 

which makes it possible to determine its extrema using 

optimization techniques. Bulò et al. [32] enhances 

3DGS’s ADC mechanism by guiding densification 

using a per-pixel error function instead of positional 

gradients. In addition, the influence of biases in the 

Gaussian cloning process is also addressed. 

  

Figure 2: The 3DGS rendered image with a blurry 

grass region (left) and its corresponding overlay of 

ellipsoids (right). 

However, none of the above methods address the need 

of densification in regions where the Gaussian cloud 

remains excessively sparse. Such a case is illustrated 

in Fig. 2. Here, the grass region presents a relatively 

moderate texture that is rendered in a blurry manner 

by 3DGS (left). The corresponding Ellipsoids (right) 

remain in this case over-sized.  

In this paper we notably identify and tackle this issue 

by introducing a complementary, volume-driven 

Gaussian densification approach. 

 

3. Gaussian splatting: problem statement 
In Gaussian splatting, a 3D scene is represented as a 

collection of N anisotropic 3D Gaussian primitives 

[4], denoted by Γ = {𝛾1, 𝛾2, . . 𝛾𝑁}.  

Each primitive 𝛾𝑖 = (𝜇𝑖, Σ𝑖 , 𝛼𝑖 , 𝑓𝑖) is defined by a 3D 

Gaussian kernel: 

𝐺𝑖(𝑥) = exp (−
1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖)) , (1) 

where 𝜇𝑖 ∈  ℝ3 is represents the Gaussian's center and 

Σ𝑖 ∈  ℝ3×3 its covariance matrix, shaping its spatial 

extent and orientation. To enforce the covariance 

matrix to remain positive semi-definite during the 

optimization process, Σ𝑖  is expressed as: 

Σ𝑖 =  𝑅𝑖𝑆𝑖
2𝑅𝑖

𝑇 (2) 

with 𝑅𝑖 being an orthogonal rotation matrix and 𝑆𝑖 a 

diagonal scale matrix [30]. Each Gaussian is further 

enriched with an opacity factor 𝛼𝑖  ∈  [0,1] and a 

feature vector 𝑓𝑖 ∈  𝑅𝑑, which may include attributes 

such as RGB color or spherical harmonics 

coefficients. 

The 3D Gaussian primitives are rendered using 

splatting-based rasterization. This process involves 

the projection of a 3D Gaussian primitive 𝛾𝑖 from the 

3D world onto the 2D image space using a 

transformation 𝜋: ℝ3 ⟶ ℝ2. To simplify the 

computation, the projection is locally linearized at the 

center 𝜇𝑖 of the Gaussian. In this way, the primitive is 

approximated as a 2D Gaussian 𝐺𝑖
𝜋 in the image space, 

where the mean of the projected Gaussian becomes 

𝜋(𝜇𝑖) ∈  ℝ2, and the 2D 
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covariance matrix of the projected Gaussian is defined 

as: 

 

Σ𝑖
𝜋 = 𝐽𝑖

𝜋Σ𝑖𝐽𝑖
𝜋𝑇

 (3) 

where Σ𝑖
𝜋 represents the covariance matrix in image 

space, and 𝐽𝑖
𝜋 is the Jacobian of the transformation 𝜋, 

evaluated at 𝜇𝑖 [32]. 

 

The color 𝑐(𝑝) of each pixel 𝑝 is determined by 

blending 𝑁 Gaussians Γ = {𝛾1, 𝛾2, . . 𝛾𝑁},  that overlap 

the given pixel. The blending process is defined as: 

 

𝑐(𝑝) =  ∑ 𝑐𝑖𝛼𝑖 ∏(1 − 𝛼𝑗)

𝑖−1

𝑗=1

𝑁

𝑖=1

 (4) 

where 𝛼𝑖 represents the opacity of the Gaussian 𝐺𝑖
𝜋, 

computed as the product between 𝐺𝑖
𝜋(𝑝) and a learned 

opacity parameter associated to 𝛾𝑖  [4]. The color 𝑐𝑖 is 

also a learnable attribute of 𝛾𝑖. The Gaussians 

overlapping at pixel 𝑝 are sorted in ascending order 

based on their depth relative to the current viewpoint 

to ensure proper compositing. Using differentiable 

rendering techniques, all Gaussian attributes, 

including position, shape, color, and opacity, can be 

optimized in an end-to-end manner through training 

view reconstruction [4].  

Furthermore, during an additional optimization 

process, the ADC mechanism allows the dynamic 

addition and removal of 3D Gaussians to enhance the 

scene representation [4]. 

 

4. Proposed volume-based densification 
The 3DGS construction process requires an 

initialization, which is traditionally achieved with SfM 

techniques. However, such procedures fail to generate 

a sufficient number of 3D points in relatively poorly 

textured regions, such as grass or sand, resulting in 

gaps in the reconstruction. This weak initialization 

affects the ADC mechanism, making it difficult to 

produce reliable 3D Gaussians and leading to 

insufficient scene coverage [30]. To enhance the 

density of the initial point cloud, we have also 

considered as an alternative a DIM technique [6], an 

example is illustrated in Figure 3. While DIM 

improves here the Gaussians’s density when 

compared to SfM, both methods still struggle to 

capture relatively low-textured regions effectively, 

which may penalize the reconstruction quality. To 

address this issue, we introduce a complementary 

mechanism to ADC that goes beyond splitting and 

cloning [4]. The principle consists of refining the 3D 

Gaussian generation process based on a 

supplementary volumetric criterion.  

   

3.a. SfM: 41,069 

points 

3.b. DIM: 

84,492 points 

3.c Part of 

Flowers scene 

Figure 3: Initial point clouds: SfM versus DIM for the 

Flowers scene (Mip-NeRF360 dataset). 

 

  

  

Figure 4: 3D Gaussians undergo gradient-based 

cloning and splitting as in [4], followed by the 

proposed volume-based densification process. 

 

More precisely, for each Gaussian primitive, we 

consider its ellipsoid of inertia, whose axes are aligned 

with the eigenvectors of the Gaussian covariance 

matrix Σ with semi-lengths defined by the 

corresponding eigenvalues  √𝜆1, √𝜆2, √𝜆3.  

During training, we compute the volume of each 

Gaussian ellipsoid. The determinant of Σ is equal to 

the product of its eigenvalues, det(Σ) =  𝜆1𝜆2𝜆3. 

Hence the ellipsoid’s volume can be calculated as:  

𝑉 =
4

3
𝜋√det(Σ) (5) 

If the volume of a given Gaussian ellipsoid 𝑉̃𝑖 is above 

a pre-defined threshold 𝑉𝑡ℎ, then the ellipsoid is 

considered for further densification through a split 

mechanism (Fig. 4).  

Selecting an appropriate threshold is essential for 

achieving a good quality of the rendered images. 

Setting the volume threshold 𝑉𝑡ℎ too low can result in 

the generation of new points in already dense regions. 

On the contrary, a too large value would fail to take    

𝑉𝑡ℎ <  𝑉̃𝑖 

Cloning criteria 

Splitting criteria 

Volume criteria 

𝑉𝑡ℎ >  𝑉̃𝑖 

𝑉𝑡ℎ >  𝑉̃𝑖 
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into account regions that need to be further densified.  

In addition, in order to adjust the standard deviation of 

the resulting splitted Gaussians, we calculate the 

condition number [33], defined as the ratio between 

the largest and the smallest eigenvalues of Σ: 

𝜅(Σ) =  
𝜆𝑚𝑎𝑥(Σ)

𝜆𝑚𝑖𝑛(Σ)
 (6) 

The condition number provides a measure of the 

degree of elongation of the considered Gaussians. For 

isotropic Gaussians (i.e., equal eigenvalues), its value 

equals 1. In contrast, anisotropic Gaussians, which 

present an elongated shape towards a large dominant 

direction, present a large condition number. During 

the splitting process, the eigenvalues of each newly 

generated Gaussian are adjusted as described in the 

following equation:  

∀ 𝑖 ∈ {1, 2, 3},    𝜆′𝑖 =  
𝜆𝑖

𝜅(Σ)
 (7) 

In the isotropic case, the size of the resulting ellipsoids 

does not change after split. In contrast, for the 

anisotropic one, the size is divided by the condition 

number (while their orientations and global aspect 

ratio are preserved). Similarly, to the cloning and 

splitting operation in the native 3DGS approach, the 

volume-based densification is applied iteratively 

every 100 iterations. 

The proposed method makes it possible to densify 

sparsely-represented regions, where high volume 

ellipsoids of elongated aspect ratios may appear. By 

considering all relevant eigenvalues in the 

densification procedure, it ensures a comprehensive 

representation of the Gaussian spread in all directions. 

5. Experimental evaluation 
In our experiments, we have considered various 

samples from Mip-NeRF 360 [34], Tanks and 

Temples [35], and Deep Blending [36] datasets. For 

Mip-NeRF 360, we have included all scenes, 

comprising five outdoor scenes and four indoor 

scenes. From the Tanks and Temples dataset, we have 

selected two specific scenes: Dr. Johnson and 

Playroom. Similarly, for Deep Blending, we focused 

on two datasets: Truck and Train.  

To evaluate performances, we have retained the three 

metrics usually considered in the state of the art: peak 

signal-to-noise ratio (PSNR), structural similarity 

index (SSIM), and the perceptual metric LPIPS [37].  

We have adopted the original Gaussian Splatting 

implementation available in the GitHub repository 

(https://github.com/graphdeco-inria/gaussian-

splatting) and extended it with the proposed volume-

based densification procedure.  All experiments have 

been run on a NVIDIA RTX 2080 GPU.  

In our experiments, we found that the majority of 

ellipsoids have small volumes, with a rapid drop of the 

relative frequency of appearance as the volume 

increases. Fig. 5 illustrates the volume’s histogram for 

the MiP-NeRF 360 dataset. We have collected volume 

data by running 3DGS [4] on the scenes at iterations 

4000, 8000, and 12000 to generate a histogram plot, 

providing a means to visualize the volume of large 

ellipsoids. To balance efficiency and visual quality, 

we set a threshold of 0.03, as indicated in the inset 

(Fig. 5). Let us note that more than 99.78% of the 

ellipsoids’ volumes fall below this threshold. So, this 

choice helps to densify solely the remaining large 

ellipsoids. However, this procedure can significantly 

enhance the quality of the rendered images, as 

illustrated in the example presented in Fig. 6. Here, in 

the grass region the ellipsoids generated by the 3DGS 

approach are excessively over-sized and consequently 

yield blurry images. By applying the volumetric-based 

densification procedure this limitation is overcome.  

 

 

Figure 5: Histogram of the overall volume distribution 

for the Mip-NeRF 360 dataset, sampled at 4000, 8000, 

and 12000 iterations.  

 

  

  
3DGS with volumetric 

densification (threshold = 0.03) 
Original 3DGS with no 

volumetric densification 

Figure 6: Effect of the volumetric densification 

(threshold 𝑉𝑡ℎ = 0.03). 
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Dataset SSIM  PSNR  LPIPS  Gaussian 

(million) 

Gaussian 

(million) 

Train 

 (min) 

Train 

 (min) 

Scenes 
M

ip
-N

eR
F

 3
6
0
 

3DGS Ours 3DGS Ours 3DGS Ours 3DGS Ours 3DGS Ours 

0.69 0.69 23.56 23.50 0.29 0.26 2.37 3.25 42.3 69.2 Flowers 

0.60 0.59 22.45 22.16 0.36 0.33 3.22 3.42 58.6 81.0 Tree-hill 

0.72 0.75 24.89 24.97 0.27 0.22 3.41 3.45 74.6 83.4 Bicycle 

0.85 0.85 27.06 27.21 0.13 0.12 3.41 3.41 76.1 79.5 Garden 

0.94 0.95 32.97 33.53 0.18 0.15 0.96 2.51 33.0 73.6 Bonsai 

0.90 0.91 29.01 29.21 0.21 0.19 1.08 1.27 41.5 48.8 Counter 

0.91 0.92 32.09 32.65 0.22 0.19 0.92 1.19 40.6 49.8 Room 

0.93 0.93 31.00 31.13 0.12 0.12 1.47 1.67 59.9 69.8 Kitchen 

0.77 0.74 26.61 25.96 0.23 0.23 3.43 3.57 62.3 87.3 Stump 

Tanks 

and 

Temples 

0.86 0.87 24.53 24.95 0.16 0.12 1.94 3.41 27.1 73.7 Truck 

0.58 0.57 16.60 16.47 0.40 0.38 0.97 3.15 32.3 78.9 Train 

Deep 

Blending 

0.86 0.85 27.83 27.70 0.31 0.29 2.35 3.35 57.3 86.9 Playroom 

0.74 0.74 20.76 20.65 0.44 0.44 1.77 1.93 49.8 55.5 Dr.Johnson 

Table 1: Average results of three trials for both 3D Gaussian Splatting and proposed method (DIM initialization).  
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Figure 7: Qualitative comparison on MiP-NeRF 360 dataset.
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 Ground Truth 3DGS Ours 

T
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T
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Figure 8: Qualitative comparison on Tanks and Temples dataset.  

 Ground Truth  3DGS Ours 

D
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h
n
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o
m

 

   

Figure 9: Qualitative comparison on Deep Blending dataset.

 

To manage computational resources, we have imposed 

a ceiling on the number of points generated during 

training, capping this value at 3,4 millions. This limit 

can be adjusted as needed, providing flexibility in 

handling different datasets. We have also restricted the 

number of images in each scene to a maximum value 

of 200 to avoid memory-related issues. Although the 

MiP-NeRF 360 dataset features image resolutions in 

the 2K, 3K and 5K ranges, we have opted for relatively 

homogeneous resolutions, ranging from 1237×822 to 

1555×1039 pixels. In this way, we avoid out of 

memory issues. To this purpose, we have down-

sampled the original images by ×2 or ×4 factors 

whenever necessary. In the same time, this makes it 

possible to define a unique volumetric threshold for all 

images considered, since the volume measure is not 

scale invariant. During training, we utilized the Adam 

optimizer with learning rates adopted from the 3DGS 

paper [4]. Additionally, for each scene in the dataset 

we run the algorithm three times and take the average 

values of PSNR, SSIM and LPIPS. The same 

procedure has been applied for the baseline 3DGS 

method that we have considered with the default 

configurations.  

Table 1 presents a quantitative comparison between 

our method and the baseline 3DGS technique across 

the three datasets retained. A DIM initialization has 

been applied here as well as in all examples illustrated 

in Fig. 7 to 9. Our approach consistently achieves 

lower LPIPS scores, indicating better perceptual 

quality and closer resemblance to the ground truth. It 

also performs competitively in PSNR and, to a lesser 

extent, SSIM improvements can be observed. 

Concerning the number of Gaussians of the 

representation, our approach slightly augments it, 

since the method is specifically designed to this 

purpose. However, the increase remains reasonable, 

with a global average of 30.33% on the whole test 

dataset retained. Despite this augmentation, the 

method continues to deliver performance suited for  
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real-time rendering applications for all the scenes in 

our dataset.  

Figures 7, 8 and 9 present some results from the Mip-

NeRF360, Tanks and Temples and Deep Blending 

datasets. The Bicycle, Bonsai and Flowers scenes in 

Fig. 7 demonstrate that our approach produces results 

significantly closer to the ground truth, with enhanced 

texture fidelity. In contrast, 3DGS introduces 

noticeable artifacts, particularly in ground regions 

(highlighted in red), where textures appear smoothed 

out or distorted. Our method effectively reconstructs 

fine details, preserving the texture and greatly 

improving realism. Likewise, in the Train scene (Fig. 

8), our method shows an improvement in the ground 

region and mountain areas compared to 3DGS. 

Similarly, in the Playroom scene (Fig. 9), our method 

faithfully reconstructs the carpet areas, where texture 

details are over-smoothed by 3DGS. Another 

interesting feature of the proposed method concerns its 

ability to preserve directional image structures. This 

can be observed in the Counter scene (Fig. 7), where 

3DGS completely eliminates an edge that is present on 

the floor pavement, whereas our method accurately 

preserves it. Similarly, in the Truck scene (Fig. 8) we 

can see edge information is preserved in the building 

structure. Maintaining sharp object edges is crucial for 

ensuring realistic reconstructions that can be useful for 

applications like AR/VR. Finally, in the case of the Dr. 

Johnson scene (Fig. 9), we do not observe any 

significant improvement, which is consistent with the 

metric reported in Table 1. 

 

In a second stage, we have analyzed the impact of the 

initialization approach on the global performances. 

Table 2 presents the LPIPS values obtained by 

comparing the two different initialization strategies 

considered (SfM and DIM), when combined with both 

the baseline 3DGS and the proposed method across all 

scenes. The results indicate that, in a general manner, 

the proposed method achieves lower LPIPS values for 

both SfM and DIM, demonstrating here again its 

capacity of achieving a superior perceptual quality. 

The SfM-based initialization performs better in a 

majority of cases. However, it fails in the case of 

Flowers, Truck, and Bicycle scenes, where DIM-

based initialization yields better results. This behavior 

can be explained by the fact that the DIM-based 

initialization is particularly effective for dense, 

repetitive textures such as sand or grass. Overall, both 

DIM+Ours and SfM+Ours demonstrate promising 

performance, highlighting the effectiveness of the 

proposed volume-based densification method across 

different initialization strategies. 

 

Scenes Strategies 

SfM + 

3DGS 

DIM + 

3DGS 

SfM + 

Ours 

DIM + 

Ours 

Bicycle 0.246 0.272 0.230 0.226 

Flowers 0.289 0.288 0.27 0.255 

Bonsai 0.145 0.177 0.128 0.153 

Garden 0.153 0.128 0.101 0.118 

Room 0.172 0.219 0.161 0.194 

Kitchen 0.096 0.119 0.094 0.118 

Truck 0.354 0.161 0.359 0.115 

Treehill 0.305 0.359 0.287 0.331 

Stump 0.214 0.225 0.208 0.224 

Playroom 0.247 0.304 0.234 0.289 

Dr.Johnson 0.44 0.449 0.439 0.451 

Counter 0.183 0.206 0.175 0.194 

Table 2: The effect of different initialization strategies 

(LPIPS scores). 

 

6. Conclusions and perspectives  
In this paper, we revisit the densification mechanism 

involved in the 3D Gaussian Splatting method. Our 

key observation is that the densification mechanism 

proposed by Kerbl et al. [4] does not effectively 

densify regions with relatively low point densities. As 

a result, the generated ellipsoids tend to be oversized, 

leading to artifacts such as blurred regions. To address 

this limitation, our complimentary method introduces 

additional points based on a volumetric criterion, 

resulting in more accurate densification. Our approach 

performs especially well on the MiP-NeRF 360 

dataset, with notable improvements in perceptual 

LPIPS scores. While our method leverages the volume 

of inertia with a fixed threshold of 0.03 to guide 

densification, this static parameter may not optimally 

adapt to scene geometries or levels of detail beyond 

the considered dataset. 

 

A promising future direction will concern the 

extension of the proposed densification method to 

dynamic scenes, where ellipsoids distributions 

continuously evolve over time. Incorporating volume-

based densification criteria and leveraging temporal 

information from consecutive frames can provide 

more accurate representations for such dynamic 

scenes. This extension would significantly enhance 

the applicability of our approach to real-time 

rendering and dynamic scene reconstruction tasks. 
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