
Implementation of visual people counting algorithms in
embedded systems

Rudolf, O.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
oskar.rudolf@h-da.de

Hecker, R.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
robert.hecker@
stud.h-da.de

Thißen, M.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
martin.thissen@h-da.de

Sillekens, L.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
laurens.sillekens.h-da.de

Penner, I.
Thermokon

Sensortechnik GmbH
Platanenweg 1

35756, Mittenaar,
Germany

ina.penner@
thermokon.de

Akelbein, J.-P.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
jens-peter.akelbein@

h-da.de

Seyfarth, S.
Thermokon

Sensortechnik GmbH
Platanenweg 1

35756, Mittenaar,
Germany

stefan.seyfarth@
thermokon.de

Hergenröther, E.
Darmstadt University
of Applied Sciences

Schöfferstraße 3
64295, Darmstadt,

Germany
elke.hergenroether@

h-da.de

Abstract
Optimising the efficiency of HVAC systems represents a significant opportunity to reduce energy consumption
in buildings and mitigate greenhouse gas emissions. This research evaluates low-resolution computer vision
algorithms for occupancy detection on resource-constrained embedded systems. Our evaluation focuses specifically
on the feasibility of deploying advanced AI object detection models on low-cost hardware platforms (under =C10)
with varying computational capabilities. We systematically compared 45 different pre-trained object detection
models using the COCO dataset. Among the models evaluated, those with the YOLO backbone proved to be the
most suitable for this task. Quantitative analysis showed that YOLOv5n achieved a favourable balance between
accuracy (AP50 = 0.944; AP50-95 = 0.584), model size (2.6 MB in RKNN format) and inference time. Performance
tests on three embedded platforms - ESP32-CAM (microcontroller), Raspberry Pi Zero 2 W and Luckfox Pico
Mini A (single-board computer) - revealed significant differences in inference speed, with hardware-accelerated
solutions up to 10,000 times faster than software-only implementations. We have verified real-world applicability
using our own ceiling-mounted wide-angle camera dataset. Future work will focus on developing a full hardware
prototype, optimising the training dataset with AI-generated synthetic data, and implementing sensor fusion with
audio signals for a multimodal approach.

Keywords
Occupancy Detection, Computer Vision, YOLO, Embedded systems

1 INTRODUCTION

According to the 2023 Global Status Report of the
International Energy Agency (IEA), buildings make
up a significant global energy balance. For example,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

the German Federal Ministry for Economic Affairs and
Climate Protection (BMWK) buildings in Germany are
responsible for about 35% of total national energy
consumption [Umw24]. This energy consumption
statistic can be partly explained by the inefficiencies
of HVAC systems [Ost+19]. Improving their efficiency
by enabling intelligent and precise control is important
in achieving the European Green Deal’s 2050 goal of
climate neutrality. Reducing electricity and heating
costs benefits companies. Therefore, improving
occupancy detection can play a crucial role in
optimizing HVAC operation, defined as the process of
detecting if a space is occupied. Applications span

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 39



buildings, security systems, energy management, and
analytics. Traditional methods commonly use PIR,
ultrasonic, or near-field radar sensors.
However, recent developments in microprocessor
technology have produced chips that are both compact
and affordable for use with Artificial Intelligence
(AI) in this scenario. This creates an opportunity
to explore whether AI-based methods could provide
alternative solutions for presence detection, especially
with respect to cost-effectiveness and reliability, which
can significantly reduce building energy consumption
[Mun+24]. One promising solution that we want to
focus on in this research is the use of ordinary cameras
in combination with computer vision techniques.
Ongoing improvements in object detection algorithms
allow reliable people and activity detection in a room
and allow HVAC systems to be controlled according to
demand. Moreover, the use of computer vision in smart
buildings is not limited to occupancy detection but can
also enhance security, space utilization, and overall
building management. Techniques like region-based
convolutional neural networks (R-CNN) and YOLO
models (you only look once) are used for real-time
detection of occupancy and activities, achieving high
accuracy rates (up to 99.3%) in identifying multiple
occupant behaviors, such as computer usage and light
adjustments [TWC20], [Li+23].
We want to evaluate the complementary added value of
machine learning object detection methods to traditional
sensor systems in building automation for climate
control. A particular focus lies on practical feasibility:
First, the minimal hardware resource constraints in the
form of computing and memory capacities have to be
identified to ensure a close to real-time performance.
Second, the machine learning models which the
algorithms are based on have to be applicable to the
specific context of being used on a central ceiling
mounted camera with a wide camera lens indoors.
Third, algorithms need to be further optimized and
tailored for application in an embedded system. The
aim is to provide a baseline for further development
of a robust and cost-efficient video-based solution for
occupancy detection that can be integrated into existing
building automation systems and enables significant
energy savings.

2 BACKGROUND
2.1 Related work
Recent advances in artificial intelligence have
significantly improved the capabilities of embedded
systems in the realm of real-time object detection in
applications such as autonomous driving [Ngu+24],
intelligent surveillance [SB24], and precision
agriculture [MRP24]. Collectively, these studies
highlight the transformative impact of integrating

AI into embedded systems for near real-time object
detection. Key benefits of employing embedded
systems are low latency, increased processing speed,
and the capacity to function without reliance on
centralized cloud services — an essential factor for
applications that demand short decision-making or
work with sensitive data. However, new challenges
emerge, such as optimizing deep learning models
to fit the constrained computational resources of
embedded devices without compromising accuracy.
Ongoing research focuses on developing and refining
optimization techniques such as pruning, quantization,
knowledge distillation, lightweight models, hardware
acceleration, and energy-efficient algorithms to
overcome these hurdles, thus broadening the scope of
AI applications in embedded systems. However, up to
today, research in the field of embedded deployment
of AI for computer vision is quite limited. Solutions
for running person detection models on embedded
hardware often rely on more powerful hardware such as
the NVIDIA Jetson Nano board ([SC23]) or Raspberry
Pi 4 Model B ([Saf+21]), which do not fit both the
space and budget constraints.

2.2 Hardware constraints
While the overarching research initiative aims to
develop a small encapsulated ceiling-mounted system
with commercial viability, the present study focuses
specifically on benchmarking embedded inference
methods. In order to keep in line with the objective
of developing a low-cost detection unit for integration
within a Building Management System (BMS),
approximately =C100 has been set for the complete
hardware system. Consequently, the processing
hardware should be kept well below this price point,
as more powerful processors tend to increase the
need for additional resources, such as cooling fans.
The hardware cost constraint thus directly affects the
selection of viable processing platforms. They must
provide both sufficient processing resources (clock
speed and memory) to perform AI inference on images
in a reasonable time, as well as come with available
toolchains to deploy the models in the first place.
Two classes of hardware devices that fit our
set constraints are microcontrollers (MCUs) and
single-board computers (SBCs). While the distinction
between both classes is imprecise and varies slightly
between authors, the most important distinction
for our goals is that MCUs usually possess very
limited hardware resources; SBCs generally contain
more Random Access Memory (RAM), Read-Only
Memory (ROM), and computing power. The hardware
capabilities of smaller microcontrollers do not suffice
to run sophisticated machine learning models such
as those required for occupancy detection. However,
stronger MCUs with larger amounts of RAM can

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 40



potentially meet the requirements to run computer
vision models. For our experimentation, we selected
three devices with varying capabilities, reaching from
lower to higher-end performance capabilities: the
ESP32-CAM (MCU), Raspberry Pi Zero 2 W (SBC)
and the Luckfox Pico Mini A (SBC) (see Table 1 for
technical details and Figure 1 for respective device
pictures).

Device RAM CPU Cost Size

ESP32-CAM 4 MB 2x 240 MHz 9.00 =C 55mm×28mm
Raspberry Pi Zero 2 W 512 MB 4x1 GHz ARM 8.00 =C 51mm×21mm
Luckfox Pico Mini A 64 MB 2x1.2 GHz ARM 6.50 =C 42mm×21mm

Table 1: Processing unit details.

In contrast to both the ESP32-CAM and the Raspberry
Pi Zero 2 W, the Luckfox Pico Mini A also provides
hardware acceleration for neural network computations
through a dedicated neural processing unit (NPU)
for machine learning applications (up to 0.5 trillion
operations per second on Int8 data). Even though all
of the presented devices do have some sort of operating
system, it is important to note that the RTOS on the
ESP32-CAM is much more rudimentary than the Linux
variants on the Raspberry or Luckfox devices, which
adds a layer of complexity to the implementation of
neural network pipelines.

Figure 1: (A) ESP32-CAM; (B) Raspberry Pi Pico 2 W;
(C) Luckfox Pico Mini A. The images were taken from
the manufacturers product websites .

3 MODEL SELECTION
Deep learning methods, particularly deep convolutional
neural networks (CNNs), have proven to be a reliable
method for use in object detection, offering high
precision and robustness even under challenging
conditions such as varying lighting [HMT22].
Ensuring valid model predictions requires both the
availability of suitable training data and the selection
of an optimal model architecture. Before implementing
and optimizing a detection algorithm for occupancy
monitoring in a restricted hardware environment, we
structured the approach to model selection in several
stages.
First, suitable public data sources, the Commons
Objects in Context (COCO) dataset [Lin+14] and
the WiseNET dataset gathered by Marroquin et
al. [MDN19] were identified to help with model

preselection. Next, we aimed to evaluate multiple
trained models on the gathered data, comparing their
performance in terms of accuracy and inference speed
while also accounting for computational resource
efficiency in terms of processing and memory usage.
Finally, to assess the real-world applicability of the
selected model, we conduct controlled experiments
using our own lab data that reflect our specific use
case — a ceiling-mounted, wide-angle camera setup
for comprehensive room coverage.

3.1 Data
Obtaining application-specific training data can be
a major challenge in research due to its inherently
sensitive nature. Large-scale video data collection
is often impractical for ethical, legal, and logistical
reasons. Given these limitations, we decided to
leverage already publicly available pretrained models
and a large-scale image dataset as a starting point to
reduce the need for expensive and time-consuming data
collection on a large scale for training. The overall key
criteria to select a suitable dataset included diversity
in perspectives and scenarios, consistent annotation
standards, dataset size, and practical relevance, e. g. the
presence of human beings. We decided to use the COCO
dataset for its extensive collection of images including
people, all of which are already annotated and divided
into training, test, and validation sets. Conveniently,
there are also already numerous pretrained models and
frameworks for their use available for object detection
based on the COCO dataset, which makes them easily
comparable.
To further improve the model performance through
application of transfer learning, additional data was
collected. Recordings of nine participants in groups
of two to four people were obtained to augment the
contextual data of the already pre-trained models and
to refine their predictions according to our use case.
The laboratory environment included office furniture
and a central ceiling-mounted camera view. To
allow comparisons between camera types, we used a
3860×2160 resolution camera with a 120° lens and a
1920×1080 resolution camera with a 180° lens. Each
group of participants was recorded multiple times with
different movement instructions and furniture settings
(e.g., one large conference table versus several smaller
tables). Because successive frames had too little
difference and would artificially increase the dataset
without introducing additional diversity, we limited the
video data to one frame per second. In the final dataset,
consisting of N = 28 frames, each person was then
manually labeled with rectangular bounding boxes.

3.2 Model comparison
To identify the most suitable model architecture for
our application, we evaluated 45 different object

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 41



detection models using TensorFlow as the backend
[Mar+15]. The evaluation included architectures from
the ResNet (50, 101, 152 with different resolutions),
YOLO (up to version 8), MobileNet (v1 and v2), and
EfficientDet (d0-d7) families. The three key criteria
for comparison included model size, inference time,
and average precision (AP). The AP metric summarizes
the relationship between precision (P = Tp

Tp+Fp
) and

recall (R = Tp

Tp+Fn
) by computing a weighted average of

precision across different recall levels, where the weight
corresponds to the increase in recall between thresholds
(APn =

∑
n((Rn − Rn−1) ∗ Pn)). For determining

valid detections, we adopted a standard approach for
object detection tasks, using a fixed Intersection over
Union (IoU) threshold of 50%.

Since the primary goal of this research stage was to
select a model architecture rather than implement it on
embedded hardware, we conducted our evaluations on
an upscaled system using Nvidia A5000 GPUs with 32
GB RAM. This approach helped to avoid compatibility
issues and minimized time spent adapting each model
to embedded environments. To make sure to create a
comparable basis for evaluation, we used the pre-trained
weights based on the same COCO data subset for all
models without further fine-tuning.

Lastly, beyond the quantitative metrics, we also
considered the models’ compatibility with the target
hardware platform to ensure feasibility for future
deployment. Although newer architectures - such as
YOLOv9 and beyond - have demonstrated marginally
better performance in recent benchmarks [Jeg+], we
excluded them from our evaluation. This decision was
based on practical limitations, as vendor support for
these newer models is limited, and custom porting them
to microcontroller-compatible formats would have been
too time-consuming and costly.

Figure 2: Comparison of inference time for occupancy
detection vs. AP50 grouped by different pretrained
architecture model families using an upscaled system.

The evaluation results (comp. Figure 2) indicate
a dominant performance of network architectures
explicitly from the YOLO-CNN model family. In

particular, versions 5 and 8 in the smallest model variant
(“nano”) showed a particularly good balance between
inference time, resource requirements, object detection
rate, and also hardware compatibility compared to other
models. As the training data is different from the
application context, we also investigated the extent of
distortion sensitivity of each model by additionally
performing various common image augmentations, e.g.
edge smoothing, brightness changes, image scaling, and
grayscale conversion (see Figure 3). We could not
find any significant differences in inference time of
augmented vs. non-augmented images, as well as no
difference in between any of the augmentation types.

Figure 3: Augmentation example with a picture taken
from the COCO-dataset.

3.3 Field evaluation
Given the limitations of using non-context-specific
data for model training, it is crucial to evaluate the
generalizability of pretrained models when actually
deployed in real-world environments. Specifically,
wide-angle lenses introduce significant distortions that
may affect the performance of object detection systems
trained on datasets with minimal distortion. To address
this challenge, we applied the pretrained models to a
centered ceiling-mounted wide-angle camera to assess
its ability to adapt to these lens-induced distortions and
to the specific top-down perspective (see Figure 4).

Figure 4: Example prediction of model YOLOv5n in a
live lab recording with a wide-angle camera lens.

Even though the overall metrics reached reasonably
high values (e.g.AP50 = 0.944; AP50-95 = 0.584 with

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 42



the pretrained model architecture YOLOv5n [Joc20]),
it was not possible to reliably return the exact room
occupancy at each given moment (see Figure 4).
This discrepancy could be mitigated by smoothing
the average detection over multiple frames within a
given time window (e.g. 5 seconds) to help improve
consistency, but implementing this logic in an embedded
system would result in a significant slowdown due to the
use of multiple inferences. This places a lot of strain
on the system’s workload, especially because real-time
applications typically are designed to simultaneously
manage additional sensor data as well.

3.4 Transfer Learning
To further refine the most effective model (YOLOv5nu),
the Ultralytics framework was utilized, which provides
a user-friendly high-level interface for tasks such as
object detection, segmentation, classification, and pose
estimation specifically for YOLO models. The dataset
was not augmented, as the framework applies geometric,
color space and flipping augmentations by default. The
default hyperparameters were not adjusted and can be
found in the Ultralytics documentation [Ult23].
Transfer learning helped to further improve the
YOLOv5nu detection results from 78% AP50 and 64%
AP50-95 to about 99.5% and 94.8% on the training
dataset respectively. However, the transferability of
this relearned model to a real-time environment still
needs fine-tuning. Initial attempts to apply it to the
test dataset showed signs of overfitting (leading to no
improvement compared to the initial pretrained model).
Unfortunately, despite changed room configurations
within the recording, the collected data context
(background, floor) is still too narrow in variance to
investigate the impact of training the models solely
from context-near images with initial random weights
(training from scratch).

4 APPLY TO EMBEDDED SYSTEMS
Based on the model evaluation results, we have decided
to implement occupancy detection using the YOLOv5nu
architecture. This architecture is considered as
“nano”-size as it has a relatively low number of weights
totaling around 1.9 million parameters, which can be
stored in less than 8 MB of memory in Float32 format.

4.1 Algorithm Optimizations
Once suitable networks were identified, optimizations
were explored to further reduce the resource
requirements for embedded computing. This involved
quantization (converting Float datatype to Integer
datatype) and reducing model parameters (pruning).
While quantization resulted in a model size reduction of
approximately 75% with minimal impact on prediction
quality, pruning of model parameters - achieved by

adjusting the number of convolution filters of the YOLO
model by 50% lead to notable decrease in recognition
performance. Tests conducted on a compact Linux
microcontroller development board with a Rockchip
RV1103 chip (Luckfox Pico Mini) showed average
inference times of around 800 milliseconds per image
at an image resolution of 640 x 640 pixels.

4.2 Deployment in embedded devices
Executing inference on these models on embedded
hardware poses certain challenges related to the
limited board memory and computational resources
on the devices. Addressing these challenges is
highly dependent on the specific device being used,
often requiring different frameworks and runtime
environments to be used for different devices. The
table 2 provides a concise overview of the deployment
formats and toolchains for three representative
embedded platforms.

ESP32-CAM RPi Zero 2 W LuckFox Pico Mini A

Toolchain TFLite Micro / ESP-DL TFLite / ONNX RT RKNN TK / TFLite
Offline Conversion Yes Optional Yes (to RKNN)
Quantization Support INT8 only INT8, Float32 INT4/8/16 (RKNN)
Deployment Effort High Medium Low-Medium

Table 2: Model deployment overview. For a more
detailed overview refer to documentations provided by
the vendors.

For executing machine learning models on
microcontrollers such as the ESP32-CAM we
used TensorFlow Lite Micro [Dav+21] (TFLM). TFLM
accounts for the reduced capabilities of MCUs e.g. by
only supporting a subset of all defined TensorFlow
operations or by not creating any dynamic memory
allocations for its calculations. TFLM requires a model
that is stored in the specialized TensorFlow Lite file
format, requiring conversion of a TensorFlow model
into this form. The YOLOv5 toolkit already offers a
conversion path to export the internally used PyTorch
models into the TensorFlow and TensorFlow Lite
formats. To keep the size of the model weights within
the 4 megabytes of available flash memory on the
ESP32-CAM, model weights had to be quantized to
Int8 format. This quantization only minimally degraded
the detection performance, resulting in reductions of
at most two percentage points of the AP50 object
detection metric at a resolution of 512 × 512 pixels.
Setting up and invoking the inference process of TFLM
was accomplished through a custom C++ program.

For the Raspberry Pi Zero 2 W, the default
Debian-based Raspberry Pi OS contains a Python
runtime environment, meaning that the Python
dependencies for YOLOv5n could be installed directly
and run without any modifications to any existing
model files. The Luckfox Pico Mini also runs a
Linux-based operating system, although by default not

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 43



shipping a Python runtime environment. Due to this,
running model inference through the YOLOv5n Python
toolkit is not easily possible, further complicated by the
significantly smaller RAM of the Luckfox Pico Mini
(64 MB) compared to the Raspberry Pi Zero 2 W (512
MB). In order to efficiently run model inference using
the hardware acceleration of the NPU, the manufacturer
Luckfox maintains its custom “RKNN” solution.
Similar to TensorFlow Lite Micro, it expects model
weights to be provided in a specialized file format,
requiring conversion from YOLOv5n’s PyTorch format
to ONNX and finally into the RKNN format. To invoke
the RKNN runtime, Luckfox provides example C++
code for YOLOv5n models, although the code had to
be tweaked to ensure compatibility with the modified
YOLOv5n variants with reduced class count.

4.3 Inference performance
Performance measurements were made based on
the different implementations on the three hardware
devices. Inference was performed on ten input images
randomly selected from the COCO dataset. To
determine the effect of image size on execution speed,
different image resolutions were tested, ranging from
128 × 128 to 512 × 512 pixels with a step of 32 pixels.
Figure 5 shows the average inference time for a single
model created on the three hardware devices, averaged
over all ten input images. Note that except for the
input layer, the original YOLOv5nu architecture with
1.9 million parameters has not been changed. The RAM
requirements for holding pixel information increased
quadratically with the number of pixels. As expected,
performance metrics improved with increasing image
size, with AP50 values ranging from AP50 ≈ .394 at
128 × 128 pixels up to AP ≈ .442 at 512 × 512 pixels.
Quantizing the weights from float32 to int8 did not
significantly affect any of the performance metrics.

Figure 5: Inference times with YOLOv5n variant (1.9M
Parameters) on the hardware devices.
There are noticeable differences in runtime between the
devices. For smaller image sizes, the ESP32-CAM

took several seconds to process a frame. Larger
resolutions resulted in inference times of up to three
minutes per image; resolutions upwards of 480 × 480
pixels required more memory than was available on the
device, making inference impossible. The Raspberry Pi
Zero 2 W exhibited more unstable average runtimes,
which are to be attributed to measurement error of
the used timing routine and not to actual significant
runtime differences between images. Aside from
these inaccuracies, the Raspberry Pi Zero 2 W was
able to process at least one image per second, being
significantly faster than the ESP32-CAM. The Luckfox
Pico Mini achieves the lowest runtimes of all devices
through usage of its hardware acceleration, which
would even allow real-time processing of video data.
In general, these experiments illustrate the significant
differences in neural network inference performance
among embedded devices of similar size and price
point. Although object detection models can be run
on powerful microcontrollers like the ESP32-CAM, the
inference is too slow for most use cases. Single-board
computers with hardware acceleration can execute
models 10,000 times faster without being significantly
larger or more expensive.

5 CONCLUSIONS
In accordance with the findings of this study, recent
research supports the efficacy of YOLO-based models
for real-time occupancy detection within embedded
Building Management Systems (BMS) [Ver+23].
Further, as demonstrated in the study by [Zha+24],
YOLOv8x demonstrated the highest level of accuracy
in tests of lecture-room occupancy, with predictions
within approximately ≈6.7% of the ground truth energy
usage. This result indicates that YOLOv8x outperforms
SSD and Faster R-CNN. In the field of embedded
applications [Saf+21] have reported the deployment of
YOLOv5s on a Raspberry Pi 4 (2 GB RAM) utilising
TensorFlow Lite, achieving a reported accuracy rate of
over over 90% accuracy, ≈100 ms inference time per
frame (≈10 FPS), and a compact 14 MB model size
(≈7.25M parameters). In a similar manner, [Mon+22]
fine-tuned a YOLOv3 model on a Raspberry Pi using
transfer learning, achieving a mean absolute error
(MAE) of 1.23 people in two classroom settings.

5.1 Implications
Our research demonstrates the feasibility of
implementing a low-cost, video-based embedded
sensor system for occupancy detection in modern
building automation.Recent advancements in the
market provide fast and reliable hardware solutions
that can complement or even replace existing systems.
Given the increasing global demand for energy, such
technologies are expected to play a crucial role in future

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 44



smart home systems, especially in office buildings. Our
findings indicate that machine learning models trained
on non-contextual data can be applied to some extent.
As usability improves and costs continue to decrease,
the adoption of smart building technologies is likely
to accelerate. This, in turn, could encourage more
companies to invest in automated systems for HVAC
optimization, ultimately contributing to greater energy
efficiency and supporting global efforts to combat
climate change.

5.2 Limitations
The development and implementation of the presented
systems are subject to several technical limitations.
A key restriction is the insufficient availability of
representative training data. While the YOLO
model architecture with pre-trained weights on the
extensive COCO data already ensures a reliable and
resource-saving object detection method, it still needs to
be refined to our application-specific context to further
increase its reliability. As the transfer learning analysis
showed promising results, we are currently working on
an adapted model to specifically detect people from a
ceiling-mounted camera and collecting custom data to
reinforce this approach.

The use of wide-angle cameras is recommended in
our use case to ensure that the entire room is covered
by the field of view. This adds another layer of
difficulty to occupancy detection. We either have
to retrain the models or try to reduce the distortion
mathematically. For the first approach, Datasets
such as the COHI dataset [BAV23] could help by
providing annotated fisheye imagery for training and
evaluation. For the latter approach, we could use
different model, commonly used in calibration tools
like OpenCV and MATLAB to account for radial
(e.g., barrel, pincushion) and tangential (e.g., skew
due to misalignment) distortions using polynomial
coefficients. Instead of distortion-free images,
modern object detection approaches increasingly
adapt to distortion directly through methods such
as distortion-aware augmentation, network-level
adaptation and custom bounding-box representations.

Acquiring new real-world training data with subjects in
an office environment involves considerable planning
and cost. Among other difficulties, compliant
participants need to be mobilized and office buildings
need to be rented or reserved. The use of generative
AI models for synthetic data generation could be
a promising solution to partially address the small
amount of accessible data in the office application
context needed for transfer learning. Through targeted
prompting, additional images with a variety of scenarios
can easily be generated automatically, thus diversifying
the training base. In addition to self-collected and

open-sourced real-life datasets, generative AI models
can further increase the amount of training data
by generating synthetic images in different office
environments with a variable number of people within
a very short time. Studies were able to show that the
integration of synthetic data can significantly improve
the accuracy of object recognition models, especially
when few real images are available [Lu+23], [Fra+24].
Parameters such as lighting or the design of the office
building can also be precisely controlled via the input
prompt, which supports the development of robust
recognition models. Advances in generative models
are leading to a steady improvement in the quality
of synthetic images, so that they are visually almost
indistinguishable from real images. Given the possible
benefits of this technology, our research group is
currently working on ways to utilize synthetic data to
further enhance custom models for occupancy detecion
from a ceiling-mounted perspektive.

5.3 Further Research
In future research, we aim to integrate all our
findings into a prototype and further enhance the
models’ accuracy by incorporating more live data and
AI-generated images. This approach will allow us
to refine the system and improve its performance,
ultimately providing a more robust and reliable solution
for the target applications.
Another way to automatically capture room occupancy
is sensor fusion. Sensor fusion is a multimodal
approach that combines different types of sensors,
e. g. audio and visual data. This approach helps to
improve the occupancy detection system even further
by compensating errors of a single sensor technology,
and thus increase the robustness of the people count.
In addition, as soon as we can confidently predict
occupancy in a room, it would be possible to integrate
occupancy information with lighting control or security
systems. However, sensor fusion introduces additional
challenges, such as increased overhead and complex
resource management. We aim to address these hurdles
and implement a computationally efficient sensor fusion
method at the feature and decision level under the
constraints of available resources in an embedded
system.

6 ACKNOWLEDGMENTS
The authors thank the Federal Ministry for Economic
Affairs and Climate Action (BMWK, Germany) for
financial support of this research project.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 45



REFERENCES
[BAV23] Zarema Balgabekova, Muslim Alaran, and

Hüseyin Atakan Varol. “A Data-Centric Approach
for Object Recognition in Hemispherical Camera Im-
ages”. In: (May 2023). doi: 10.36227/techrxiv.
23016185.v1.

[Dav+21] Robert David et al. “TensorFlow Lite Micro:
Embedded Machine Learning for TinyML Systems”.
In: Proceedings of Machine Learning and Systems. Ed.
by A. Smola, A. Dimakis, and I. Stoica. Vol. 3. 2021,
pp. 800–811.

[Fra+24] J. Frank et al. “A Representative Study on Hu-
man Detection of Artificially Generated Media Across
Countries”. In: 2024 IEEE Symposium on Security and
Privacy. 2024, pp. 55–73.

[HMT22] Khaled Ben Abbes Hassen, José J. M.
Machado, and João Manuel R. S. Tavares. “Convo-
lutional Neural Networks and Heuristic Methods for
Crowd Counting: A Systematic Review”. In: Sensors
22.14 (2022), p. 5286. doi: 10.3390/s22145286.

[Jeg+] Nidhal Jegham et al. “YOLO Evolution: A Com-
prehensive Benchmark and Architectural Review of
YOLOv12, YOLO11, and Their Previous Versions”.
In: Yolo11, and Their Previous Versions ().

[Joc20] Glenn Jocher. Ultralytics YOLOv5. 2020. doi:
10.5281/zenodo.3908559.

[Li+23] Kangting Li et al. “A study on multiple occu-
pant behavior detection based on computer vision tech-
nique”. In: Building Simulation 2023. Vol. 18. IBPSA.
2023, pp. 676–680.

[Lin+14] Tsung-Yi Lin et al. “Microsoft COCO: Com-
mon Objects in Context”. In: CoRR abs/1405.0312
(2014).

[Lu+23] Zeyu Lu et al. “Seeing is not always believ-
ing: Benchmarking human and model perception of
ai-generated images”. In: Advances in Neural Informa-
tion Processing Systems 36 (2023), pp. 25435–25447.

[MDN19] Roberto Marroquin, Julien Dubois, and
Christophe Nicolle. “WiseNET: An indoor multi-
camera multi-space dataset with contextual infor-
mation and annotations for people detection and
tracking”. In: Data in Brief 27 (2019), p. 104654. doi:
10.1016/j.dib.2019.104654.

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. 2015.

[Mon+22] Lorenzo Monti et al. “Edge-based transfer
learning for classroom occupancy detection in a smart
campus context”. In: Sensors 22.10 (2022), p. 3692.

[Mun+24] Balakumar Muniandi et al. “AI-Driven En-
ergy Management Systems for Smart Buildings”. In:
Power System Technology 48.1 (2024), p. 280. doi:
10.52783/pst.280.

[MRP24] Canicius Mwitta, Glen C. Rains, and Eric
Prostko. “Evaluation of Inference Performance of Deep
Learning Models for Real-Time Weed Detection in an
Embedded Computer”. In: Sensors 24.2 (2024), p. 514.
doi: 10.3390/s24020514.

[Ngu+24] H. Nguyen et al. “Accurate Real-time Detec-
tion of Vehicles and Pedestrians on Edge Device with
Scaled-YOLOv4 and TOPST AI”. In: 2024 24th Inter-
national Conference on Control, Automation and Sys-
tems (ICCAS). 2024, pp. 1293–1298. doi: 10.23919/
ICCAS63016.2024.10773348.

[Ost+19] M. Ostadijafari et al. “Smart Building Energy
Management using Nonlinear Economic Model Pre-
dictive Control”. In: 2019 IEEE Power & Energy So-
ciety General Meeting (PESGM). 2019, pp. 1–5. doi:
10.1109/PESGM40551.2019.8973669.

[Saf+21] Ali Saffari et al. “Battery-free camera occu-
pancy detection system”. In: Proceedings of the 5th
international workshop on embedded and mobile deep
learning. 2021, pp. 13–18.

[SB24] Anıl Sezgin and Aytuğ Boyacı. “Advancements in
Object Detection for Unmanned Aerial Vehicles: Ap-
plications, Challenges, and Future Perspectives”. In:
2024 12th International Symposium on Digital Foren-
sics and Security (ISDFS). 2024, pp. 1–6. doi: 10.
1109/ISDFS60797.2024.10527339.

[SC23] Tsu-Chuan Shen and Edward T.-H. Chu. “Edge-
Computing-Based People-Counting System for Ele-
vators Using MobileNet-Single-Stage Object Detec-
tion”. In: Future Internet 15.10 (2023), p. 337. doi:
10.3390/fi15100337..

[TWC20] Paige Wenbin Tien, Shuangyu Wei, and John
Calautit. “A computer vision-based occupancy and
equipment usage detection approach for reducing
building energy demand”. In: Energies 14.1 (2020),
p. 156.

[Ult23] Ultralytics. Configuration - Ultralytics YOLO
Docs. 2023. url: https :// docs . ultralytics .
com/usage/cfg/.

[Umw24] Umweltbundesamt. Energiesparende
Gebäude. 2024. url: https : / / www .
umweltbundesamt.de/themen/klima-energie/
energiesparen/energiesparende-gebaeude.

[Ver+23] V. M. Vergara et al. “Comparing Deep Learn-
ing Performance for Aircraft Detection in Satellite Im-
agery”. In: NAECON 2023 - IEEE National Aerospace
and Electronics Conference. 2023, pp. 86–91. doi:
10.1109/NAECON58068.2023.10366019.

[Zha+24] Wuxia Zhang et al. “Deep learning models for
vision-based occupancy detection in high occupancy
buildings”. In: Journal of Building Engineering 98
(2024), p. 111355.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 
http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-4 46




