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ABSTRACT

It is well-established that more data generally improves Al model performance. However, data collection can be
challenging for certain tasks due to the rarity of occurrences or high costs. These challenges are evident in our
use case, where we apply Al models to a novel approach for visually documenting the musculoskeletal condition
of dogs. Here, abnormalities are marked as colored strokes on a body map of the dog. Since these strokes cor-
respond to distinct muscles or joints, they can be mapped to the textual domain in which large language models
(LLMs) operate. LLMs have recently demonstrated impressive capabilities across a wide range of tasks, including
medical applications, offering promising potential for generating synthetic training data. In this work, we inves-
tigate whether LLMs can effectively generate synthetic visual training data for canine musculoskeletal diagnoses.
For this, we developed a mapping that segments visual documentations into over 200 labeled regions representing
muscles or joints. Using techniques like guided decoding, chain-of-thought reasoning, and few-shot prompting,
we generated 1,000 synthetic visual documentations for patellar luxation (kneecap dislocation) diagnosis, the di-
agnosis for which we have the most real-world data. Our analysis shows that the generated documentations are
sensitive to location and severity of the diagnosis while remaining independent of the dog’s sex. However, they
were also independent of the patient’s weight and age, highlighting some limitations. We further generated 1,000
visual documentations for various other diagnoses to create a binary classification dataset. A model trained solely
on this synthetic data achieved an F1 score of 88% on 70 real-world documentations. These results demonstrate
the potential of LLM-generated synthetic data, which is particularly valuable for addressing data scarcity in rare
diseases or rare instances in general. While our methodology is tailored to the medical domain, the insights and
techniques can be adapted to other fields.
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1 INTRODUCTION possess extensive general knowledge across numerous
domains [Wan24] [Rei24]. This raises a compelling
question: can LLMs be effectively used to generate
synthetic training data for specialized tasks with limited
initial data? Previous studies [Sin24] [Gao23] have
shown that LLMs can successfully generate synthetic
data for tasks they are already familiar with from
their training data. Technically, LLMs can even be
trained entirely on synthetic data generated by another
LLM and still achieve strong performance [Abd24].
However, less is understood about their ability to
create high-quality synthetic data for tasks outside their
training distribution, particularly for highly specialized

The success of artificial intelligence (AI) models in
solving complex tasks often depends on the availability
of large, high-quality datasets. However, in domains
with limited data, the performance of these models is
typically constrained. Large language models (LLMs)
have recently introduced novel capabilities, such as
multitask learning [Rad19] and in-context learning
[Bro20].  State-of-the-art LLMs [Ach23] [Gra24]
[Ani23] [Guo25], trained on large and diverse datasets,
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the full citation on the first page. To copy otherwise, or re- of a novel method [Est24] [Thi24] for visually docu-
publish, to post on servers or to redistribute to lists, requires menting the musculoskeletal condition in dogs. Figure
prior specific permission and/or a fee. 1 presents an example of such documentation. The col-
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Figure 1: An example visual documentation of a dog’s
musculoskeletal condition, diagnosed with patellar lux-
ation (kneecap dislocation) using the method proposed
by Esteve et al. [Est24].

ored strokes indicate abnormalities (e.g., pain or ten-
sion) in a dog’s muscles and joints, detected by a vet-
erinarian through palpation (pressing on specific areas
to identify abnormalities) and documented visually us-
ing a mouse, finger, or digital pen. Specifically, strokes
can be drawn within the dog illustrations in Figure 1
using seven different colors, each representing a dis-
tinct abnormality (e.g., pain or tension). Since these
strokes represent discrete anatomical entities such as
muscles or joints, they can be mapped to correspond-
ing textual descriptions. As LLMs operate in the tex-
tual domain, they can interpret visual documentation
like Figure 1 when mapped to corresponding textual de-
scriptions. However, this requires a sufficiently detailed
mapping. Additionally, with such a mapping, textual
descriptions generated by an LLLM could be linked to
specific regions within the dog illustrations in Figure 1,
with strokes rendered within those regions. As a result,
by generating a list of textual descriptions related to a
specific diagnosis using an LLM, we can create syn-
thetic visual documentations for that diagnosis.

As this novel method [Est24] [Thi24] is newly intro-
duced, available data is extremely limited, with only 70
real-world examples. Given that LLMs have reached
or exceeded human-level performance across various
medical benchmarks [Jin21] [Saa24], they present a
promising solution for generating effective synthetic
data in this context. Thus, this work investigates
whether LLMs can effectively generate synthetic data
for canine musculoskeletal diagnosis, despite their
limited prior exposure to this specific domain.

To this end, we developed a mapping between visual
documentations and over 200 labeled anatomical
regions. This mapping enables the LLM to interpret
visual documentations and, when combined with a
rendering approach that mimics human hand-drawing,
which we also developed, it allows the LLM to
generate visual documentations. Using our approach
proposed in this work, which leverages the extensive
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medical knowledge and strong reasoning capabilities
of state-of-the art LLMs, we generated 1,000 synthetic
visual documentations of patellar luxation (kneecap
dislocation) diagnosis, the diagnosis for which we have
the most real-world data. Our analysis showed that
the generated documentations demonstrate faithfulness
and controllability, as they are sensitive to the specified
location and severity of the patellar luxation while
remaining independent of the dog’s sex.

Building on this, we generated an additional 1,000
visual documentations across various other diagnoses,
creating a binary classification dataset to determine
whether a documentation represents a patellar luxation
or not. We chose patellar luxation as our target diag-
nosis because it is the one for which we have the most
real-world data. A classification model trained solely
on this visual synthetic dataset achieved an F1 score of
88% when evaluated on 70 real-world documentations,
demonstrating the effectiveness, faithfulness, and
diversity of the generated data.

While using an LLM to classify visual documentations
directly is a promising alternative to generating syn-
thetic training data, practical constraints must be con-
sidered. In some veterinary practices in Germany, the
computer running the practice management software
is intentionally kept offline to avoid security risks, re-
quiring Al models to run locally. By leveraging syn-
thetic data generation, we distilled the LLM’s medical
knowledge into a classification model that has 8,974
times fewer parameters than the LLM we used but still
achieves strong performance (88% F1 score) while re-
maining suitable for deployment on local hardware.

Our findings underscore the potential of using LLMs to
generate synthetic training data, which is particularly
valuable for rare diseases or other instances where real-
world data is limited. While our approach is tailored to
the medical domain, the techniques and insights can be
extended to other fields.

2 RELATED WORK

Text-Generation Strategies: To generate synthetic
data using an LLM, the model must be provided
with sufficient context. This context is conveyed
through a carefully designed prompt that includes all
relevant information needed to produce accurate and
contextually relevant outputs. Designing such prompts
often requires an explorative process known as prompt
engineering, in which the goal is to iteratively refine
the prompt to elicit the desired response from the
model. Beyond prompt engineering, several advanced
strategies have been developed to enhance the quality
of LLM outputs. Holtzmann et al. [Hol20] introduced
a decoding approach that generates text more closely
resembling human-like writing, improving naturalness
and coherence. Brown et al. [Bro20] pioneered the
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concept of in-context learning, where providing a few
task-specific examples in the prompt enables the LLM
to generalize and respond effectively to similar queries.
While in-context learning achieves strong results,
LLMs often struggle with tasks requiring complex
reasoning. To address this, Wei et al. [Wei22] proposed
the chain-of-thought approach, which breaks down
problems into intermediate reasoning steps. This tech-
nique can be further optimized using self-consistency
[Wan23], where multiple candidate outputs are gener-
ated, and the most consistent answer is selected. As
demonstrated by Nori et al. [Nor23], these strategies
have also been shown to be effective in the medical
domain. While these techniques typically need to be
explicitly programmed or incorporated into the input
prompt, Guo et al. [Guo25] demonstrated that fine-
tuning pre-trained LLMs in a reinforcement learning
environment enables reasoning capabilities to emerge
autonomously, achieving state-of-the-art performance.
However, these advanced strategies come at the cost
of increased computational demand, leading to longer
generation times within fixed compute budgets and a
larger carbon footprint.

LLM-Generated Synthetic Data: As highlighted by
Long et al. [Lon24], two challenges commonly arise
when generating synthetic data using LLMs: faith-
fulness and diversity. Faithfulness refers to the logi-
cal and grammatical coherence of the generated data,
along with ensuring it remains free of factual errors
or inaccurate labels [Lon24]. Long et al. [Lon24]
note that maintaining faithfulness becomes increasingly
difficult when generating long, complex, or domain-
specific data. All of these characteristics are present in
our scenario, making it particularly challenging. There-
fore, ensuring faithfulness requires a carefully designed
data generation process paired with thorough evaluation
methods. Data diversity refers to the variation in gen-
erated data, such as differences in text length or writ-
ing style. Long et al. [Lon24] observe that uncon-
trolled data generation often results in repetitive and
monotonous outputs, which could reduce its effective-
ness as training data in our context. Consequently, it
is crucial to apply strategies that address the issue of
monotonous data generation while preserving faithful-
ness. A third key factor relevant to our use case is con-
trollability in synthetic data generation. Specifically,
since our goal is to generate synthetic data for specific
diagnoses given a patient’s metadata (e.g. age, sex, and
weight), a high degree of controllability is essential. In
alignment with Liu et al.’s [Liu24] recommendation for
future research — "Future research should focus on de-
veloping new advanced techniques [...] that can con-
trol and manipulate specific attributes of the generated
data, enabling the creation of diverse and customizable
synthetic datasets" — our work explores this challenge
within the context of canine musculoskeletal diagnosis.

http://www.doi.org/10.24132/CSRN.2025-3

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

3 VISUAL DOCUMENTATIONS

In this section, we would like to provide further detail
to the visual documentations shown in Figure 1. Di-
agnosing a dog’s physical health after injuries, surg-
eries, or other conditions affecting movement typically
involves a physical examination, including palpation,
which is the process of feeling or pressing on specific
areas of the dog’s body to detect abnormalities such as
pain, swelling, or muscle tension. The found abnor-
malities are often recorded as written notes. However,
the novel approach by Esteve et al. [Est24] [Thi24] al-
lows to document such abnormalities visually using a
mouse, finger, or digital pen. This allows for a faster
examination, which is especially helpful when dogs in
pain are less likely to cooperate. Each visual documen-
tation follows a consistent format: the left-side dog rep-
resents a face-up (supine) view, while the right-side dog
represents a face-down (prone) view. These views are
symmetrically mirrored, meaning that strokes on the
right side of the left dog correspond to the left side
of the actual physical dog. In the visual documenta-
tion proposed by Esteve et al. [Est24], abnormalities
are represented as strokes in seven distinct colors, each
corresponding to different conditions such as pain or
tension. Since these strokes are associated to discrete
anatomical entities such as muscles or joints, they can
be mapped to corresponding textual descriptions. When
strokes within a visual documentation like Figure 1 are
mapped to corresponding textual descriptions, they can
be interpreted by LLMs, as LLMs operate in the textual
domain. However, this requires a sufficiently detailed
mapping. Additionally, such a mapping allows to link
textual descriptions generated by an LLM to specific
regions within the dog illustrations in Figure 1. Within
those regions, strokes could be rendered to create a vi-
sual documentation based on textual descriptions gen-
erated by an LLM. For this process to work, the gener-
ated textual descriptions of abnormalities must be spe-
cific enough to be linked to discrete anatomical enti-
ties, such as muscles or joints, and include information
about the specific condition, such as pain or tension.
This ensures that the right color is chosen and that the
abnormality is rendered in the correct location. As a re-
sult, by generating a list of such textual descriptions for
a specific diagnosis using an LLM, we would be able to
create synthetic visual documentations for that diagno-
sis. In the following section, we present our method for
generating textual descriptions of abnormalities using
an LLM and transforming them into visual documenta-
tions through a mapping and rendering process.

4 METHOD

4.1 Discretizing Visual Documentations

A novel method introduced by Esteve et al. [Est24]
[Thi24] enables veterinarians to visually document a
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dog’s musculoskeletal condition, as illustrated in Fig-
ure 1. These visual documentations resemble sketches
composed of numerous strokes, making it challenging
for large language models (LLMs) to directly generate
or interpret them. To overcome this limitation, we de-
veloped a mapping that separates the visual documenta-
tion into 214 distinct regions. Each region is assigned a
unique index and label, linking individual strokes to the
corresponding textual descriptions of muscles, muscle
groups, or joints. These regions are either rectangular
or circular in shape, with most being rectangular. A
combination of both shapes is used to maximize cov-
erage within the visual documentation while ensuring
that regions proportionally represent muscles or joints.
Circular regions are used to represent important small
soft tissue structures or muscle origins. Examples of
corresponding lines in rectangular regions and circles
in circular regions can be seen in Figure 2. Similarly to
the regions, the seven possible abnormality conditions,
such as pain or tension, are each assigned an index and
a corresponding textual description. Using this map-
ping of regions and conditions, textual descriptions can
be assigned a corresponding color and region in the vi-
sual documentation. However, to add strokes to a visual
representation, a rendering process is required. Using
the region and condition indices, this process renders
strokes in the designated region with the correspond-
ing color within the visual documentation. This allows
textual descriptions generated by an LLM to be trans-
formed into a visual documentation. Our developed
rendering process is described in Section 4.2.

4.2 Rendering Visual Documentations

Using the mapping introduced in the previous section,
textual descriptions can be assigned a corresponding
color and region index. For rendering, each abnormal-
ity requires a region index (one of 214) and a con-
dition index (one of 7). Given a list of <region
index, condition index> pairs, we first deter-
mine whether the corresponding region is circular or
rectangular in shape. Based on this, we apply one of
the following two rendering approaches. The color is
chosen according to the condition index. Examples of
both lines and circles are shown in Figure 2.

Lines. For rectangular regions, we first determine the
start point s and end point e based on the primary ori-
entation of the region’s contour. These points are then
randomly shifted in both the x- and y-direction within a
range of [—5,5] pixels, resulting in the adjusted start
point § and end point é. Using this pair of adjusted
points, a hand-drawn mimicked line is rendered using
the algorithm proposed by Meraj et al. [Mer08].

Circles. For circular regions, we render a hand-drawn
mimicked circle using a custom implementation. The
process begins by identifying the center point ¢ and ra-
dius 7 of the circular region. Next, eight control points
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Synthetic Text Documentation

{
"palpation_findings": [

{"region": "67R", "condition": "tension"},
{"region": "87R", "condition": "pain"},
{"region": "79L", "condition": "joint_chronic"},
{"region": "37R", "condition": "tension"},
]

}

v

Rendering

Figure 2: Illustration of how the textual <region
index, condition index> pairs are trans-

formed into visual representations, allowing LLMs to
generate structured visual documentations.

are obtained evenly distributed along the circumference
of the circle. These control points are then each shifted
by a random value within the range of [—0.15r, 0.157]
pixels in both the x- and y-direction. The shifted points
form a polygon, which is rendered as a filled shape to
create a hand-drawn mimicked circle.

4.3 Metadata Knowledge Base

In our initial attempts to generate synthetic data using
less specific prompts, we encountered limitations where
the LLM (Llama 3 70B Instruct model [Gra24]) con-
sistently produced a narrow range of outputs for pa-
tient metadata, such as only five different dog breeds
and ages limited to 3 or 4 years. However, since our
primary goal is to generate visual documentation as
training data, we decided to simplify the task for the
LLM. Instead of asking it to generate both the syn-
thetic documentation and metadata for each dog, we
decided to provide the metadata as input, allowing the
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LLM to focus solely on creating the documentation.
This approach not only reduces the task complexity
but also ensures the creation of a balanced synthetic
dataset with respect to patient metadata. To achieve
this, we extracted a canine metadata knowledge base
from Wikipedia, which includes 149 dog breeds along
with gender-specific information on life expectancy,
minimum weight, and maximum weight. This knowl-
edge base enables us to uniformly sample synthetic pa-
tient metadata, including breed, age, sex, and weight.
For each synthetic documentation generated, we incor-
porate newly sampled metadata into the LLM prompt.
This way, we can systematically generate balanced and
diverse synthetic data.

4.4 Generating Textual Documentations

Our main objective of generating complex and domain-
specific synthetic data presents a significant challenge,
as it is difficult to reliably elicit such outputs from
LLMs. Through a series of controlled experiments, we
developed a well-structured prompt to reliably guide
the LLM in generating the intended synthetic data. In
total, the prompt contains 1,500 words or 13,918 char-
acters. The prompt is structured into the following six
components:

1. Task Definition and Background: We begin by
stating the task and providing brief background in-
formation on how the data is typically collected
(through palpation by a veterinarian).

2. Condition Descriptions: We list all seven possible
conditions, including their indices and descriptions.

3. Region Descriptions: We provide a detailed list
of 214 regions, including their indices and descrip-
tions.

4. Example Documentations: We include four
real-world patellar luxation documentations (grades
1-4), mapped to text using the mapping described in
Section 4.1. The number of palpated abnormalities
in these examples ranges from 9 to 51.

5. Instruction Set: We specify key constraints to en-
sure high-quality, relevant synthetic data, such as:

e “Each region can only have one abnormality
(condition).”

e “Abnormalities are either present or absent, not
mild or severe.”

6. Dynamically Sampled Patient Metadata: At the
end of the prompt, we append sampled textual meta-
data about the patient (see Section 4.3). This is the
only dynamic component of the prompt.
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In the following, we highlight key properties of our data
generation approach using this prompt.

Few-Shot In-Context Learning. Initially, we observed
that the generated documentations sometimes did not
align with the expected style and wording. For instance,
instead of specifying individual muscles, the model oc-
casionally generated ambiguous regions, such as the
"right hindlimb", which are too vague to be mapped to
one of our 214 predefined regions. Moreover, a sin-
gle abnormality was sometimes assigned multiple con-
ditions (e.g., pain and tension simultaneously), compli-
cating the process of separating them into distinct ab-
normalities during post-processing. To address these is-
sues, we incorporated four real-world visual documen-
tations into the prompt. These documentations were
converted to text using the mapping introduced in Sec-
tion 4.1, providing the model with concrete examples
of the desired output format.

Control of Specific Attributes. As outlined in Sec-
tion 4.3, we constructed a canine metadata knowledge
base. Before generating a synthetic documentation, we
randomly sample a patient’s metadata from this knowl-
edge base and incorporate it into the prompt. This meta-
data includes details such as the dog’s breed, age, sex,
and weight, allowing us to create a balanced and diverse
synthetic dataset.

JSON-formatted Responses. As it is challenging to
elicit outputs from LLMs in a standardized format that
can be programmatically processed, we applied guided
decoding [Wil23, Don24] to ensure that the LLM gen-
erates outputs as valid JSON objects, which can be pro-
cessed to generate visual documentations as shown in
Section 4.2. Guided decoding [Wil23, Don24] enables
precise control over an LLM’s output by dynamically
restricting the possible next tokens at each generation
step based on a predefined structure, such as a JSON
schema or a regular expression.

Chain-of-Thought Reasoning. Chain-of-thought rea-
soning has been shown to improve the performance
of LLMs, either explicitly by instructing them to rea-
son step-by-step within the prompt [Wei22] or implic-
itly through newer reasoning models such as DeepSeek
R1 [Guo25]. Guided decoding, however, can constrain
the reasoning abilities of LLMs [Tam24]. To mitigate
this, we divide the generation process into three distinct
steps, leveraging the benefits of both approaches. This
also simplifies the task compared to generating a syn-
thetic documentation as a JSON object in a single pass.
The required JSON object includes the patient’s meta-
data and a list of palpated abnormalities based on the
given diagnosis. Generating this in one step would re-
quire the LM to simultaneously reason about plausible
musculoskeletal anomalies and recall the corresponding
region and condition indices from 214 distinct regions
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and seven condition types. The three distinct steps are
described below.

4.4.1 Freeform Generation

During the first step, using the prompt shown above,
the LLM generates freeform text, initially reasoning
about how a synthetic documentation for a given pa-
tient (metadata and diagnosis) should be structured, and
then producing the synthetic documentation as a result
of this reasoning.

4.4.2 JSON Object Conversion

Once the reasoning pass is complete, we extract the
generated freeform synthetic documentation using
a reasoning delimiter (e.g., </think> in the case
of DeepSeek R1). For explicitly instructed chain-
of-thought reasoning, we recommend instructing the
LLM to enclose its reasoning within <think> and
</think> delimiters. This ensures compatibility
with our implementation, even for non-reasoning mod-
els. We then apply guided decoding [Wil23] [Don24],
as discussed earlier, to convert the extracted freeform
documentation into a standardized, typed JSON object.
To achieve this, we needed two components: a defined
schema for the desired JSON object format and a
prompt instructing the model to convert the given input
text into a JSON object that adheres to this schema.
Our defined schema includes all metadata (breed, age,
sex, and weight) as well as a list of strings called palpa-
tion_findings, which will later be rendered as strokes in
the visual documentations (see Figure 2). The prompt
provides brief background information about the given
input text and instructs the model to convert it into
a valid JSON object according to the given schema.
The prompt consists of 59 words, two of which are
placeholders for the extracted freeform documentation
and the expected JSON output schema, which can be
dynamically replaced. For each extracted freeform
documentation, this prompt is dynamically filled, and
a JSON object is generated using guided decoding
[Don24], which ensures that the LLM generates only
tokens that form a valid JSON object according to our
defined schema.

4.4.3 Discretizing Abnormalities

Now that the synthetic documentation has been con-
verted into a JSON object, one final step remains
before it can be rendered as a visual documentation
(see Section 4.2). The abnormalities stored in the
palpation_findings list within the JSON object are
still in freeform text. However, to allow rendering,
these must be mapped to discrete region and condition
indices, as illustrated in Figure 2. To achieve this,
we incorporated a list of all 214 distinct regions,
each represented as a <region index, region
label> pair, as well as all seven <condition
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index, condition label> pairs into a new
prompt. At the end of the prompt, we instruct the
LLM to determine the region and condition index that
best matches a given abnormality description. The
prompt also contains a placeholder for the abnormality
description at the end, which can be dynamically filled.
Furthermore, we defined a schema with two fields:
one for the region and one for the condition. The
region field is constrained by a regular expression,
allowing only one of the 214 valid region indices,
while the condition field is defined as an enumerated
type with seven possible values corresponding to the
condition indices. Using this schema and prompt, we
apply guided decoding [Wil23] to ensure that the LLM
generates only valid region and condition indices.
This approach enables us to systematically convert all
freeform abnormalities into their corresponding region
and condition indices.

4.5 Generation Setup

To generate synthetic text documentations, we used the
DeepSeek R1 Distill Llama 70B model [Guo25] with
AWQ quantization [Lin24] to accommodate our limited
computational resources (1x NVIDIA RTX 6000 Ada
GPU). Since dynamic inputs were added at the end for
all three used prompts, we used prefix caching [Jha23]
to improve generation efficiency. Following Guo et
al. [Guo25], we set the generation temperature to 0.6
and applied a top-p threshold [Hol20] of 0.95. The
generation temperature controls the randomness of the
model’s outputs, with lower values (closer to 0) making
outputs more deterministic and higher values (closer to
1) increasing diversity. The top-p threshold [Hol20]
controls output diversity by restricting token selection
to the most probable ones until their cumulative proba-
bility reaches p (0.95 in our case), reducing randomness
while maintaining coherence. Using this configuration
and the three-step setup described in the previous sec-
tion, we generated 1,000 synthetic documentations for
the diagnosis of patellar luxation (kneecap dislocation),
a condition for which we have the most real-world data.

S RESULTS

After generating 1,000 visual documentations for the
patellar luxation diagnosis, we aimed to evaluate their
faithfulness, diversity, and controllability. While man-
ual assessment by domain experts would be the ideal
approach, it is both labor-intensive and cost-prohibitive,
particularly when scaling to larger volumes of gener-
ated documentations or extending to additional diag-
noses. To overcome this challenge, we developed al-
ternative measures to analyze the generated data. These
measures allow to evaluate across different diagnoses
and larger datasets with minimal additional effort. Cru-
cially, they were designed in collaboration with do-
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main experts (veterinarians) to ensure their relevance
and helpfulness.

5.1 Awareness of Severity and Position

We first developed a measure to easily observe the over-
all distribution of visual strokes for the generated syn-
thetic documentations. Specifically, we counted the fre-
quency of strokes across all regions and the frequency
of conditions within specific regions. Using this data,
we created a bubble chart visualization to provide an in-
tuitive overview of the structure of the generated data.
Examples of these visualizations are shown in Figure
3, where we compared the distribution of strokes based
on the location of the patellar luxation (left, bilateral,
right). The location information was passed to the LLM
as part of the input prompt. To interpret the visualiza-
tion and the visual documentations accurately, it is im-
portant to note that in each visual documentation, the
dog on the left represents the face-up view (supine),
while the dog on the right represents the face-down
view (prone). These views are symmetrically mirrored,
meaning strokes on the right side of the left dog corre-
spond to the left side of the actual physical dog. Using
this approach, we found that the LLM successfully gen-
erated synthetic visual documentations that accurately
reflect the location of the patellar luxation, as shown
in Figure 3. We extended this strategy to evaluate the
severity of patellar luxation (grades 1-4). A full com-
parison across all grades is provided in the appendix
(Figure 10), while Figure 4 highlights key differences
between grades 1 and 4. These comparisons illustrate
that higher grades of patellar luxation correspond to
an increased number of strokes (abnormalities) gener-
ated by the LLM. The average number of abnormalities
for each grade of patellar luxation is as follows: 11.52
for grade 1, 13.4 for grade 2, 15.22 for grade 3, and
16.95 for grade 4. This trend is particularly evident
when comparing grade 1 to grade 4 patellar luxations
(see Figure 4). Notably, healthy dogs typically have
few or no abnormalities, indicating that the LLM effec-
tively incorporated grade-specific information into the
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Figure 3: The size of an individual bubble indicates the relative frequency of strokes in the corresponding region.
The colors within the bubble indicate the relative frequency of a condition (e.g. pain) in the respective region. As
can be seen, the LLM is able to generate synthetic documentations of a patellar luxation that represent the given
positional information (left, bilateral, and right).

synthetic visual documentations. Additionally, regional
shifts in abnormalities can be observed, particularly in
the knee joints. For instance, in grade 1, most abnor-
malities are colored red, indicating acute inflammation,
whereas in grade 4, they are predominantly black, sig-
nifying chronic joint damage.

5.2 Impact of Controllable Attributes

After analyzing diagnosis-specific attributes in the pre-
vious section, we extended our investigation to assess
how the metadata attributes — age, sex, and weight —
provided in the input prompt influence the generated
data. Our approach for analyzing each attribute is de-
tailed below.

Age. To analyze the impact of age, we first examined
the age distribution across all 1,000 generated docu-
mentations. We then divided the documentations into
three approximately equal-sized bins: the first bin in-
cluded ages 1-5 years, the second spanned ages 6-9
years, and the third covered ages 10-20 years. Using
the same evaluation method described in Section 5.1,
we evaluated the generated data for each bin. The bub-
ble charts for all three age bins, as well as the average
number of abnormalities, are nearly identical, suggest-
ing that age does not significantly influence the gener-
ation of synthetic documentations. However, based on
our veterinary experience, older dogs tend to have more
abnormalities than younger dogs, highlighting a limita-
tion of the generated documentations. For complete-
ness, the bubble charts for all age bins are presented in
the appendix (Figure 7).

Sex. Since sex was categorized as either male or fe-
male, analyzing its impact on stroke distribution was
straightforward. However, similar to the age attribute,
no differences were observed in the bubble charts or the
average number of abnormalities between genders. The
results are presented in the appendix (Figure 8).

Weight.  Since weight varies significantly across
breeds, we decided to create breed-specific weight
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bins. For this, we first calculated the weight range (R)
for each breed as:

R = Winax — Wiin ;

where Wiax and Wy, represent the maximum and min-
imum weights for the breed, respectively, as derived
from our metadata knowledge base (see Section 4.3).
Next, we divided the range (R) into three equal inter-
vals to determine the interval size (S):

S==
3

Using S, we defined three weight bins for each breed as
follows:

Low : [Wmim |—Wmin + S-I )
Medium : [[Wiin + ST, [Win + 25]]
High : ([Win + 257, Wnax]

We labeled these bins as low, medium, and high. Again,
no clear patterns were observed in the corresponding
bubble charts. However, the average number of abnor-
malities was one higher in the high and low bins com-
pared to the medium bin. Additionally, abnormalities
were more frequent in the knee joint and thigh muscles
for the heavier bin, though this trend was not consistent
across all bins. It is important to note that the minimum
and maximum weight data, sourced from Wikipedia,
do not account for conditions such as over- or under-
weight. Considering such factors could strengthen the
observed trends and potentially reveal clear patterns.
The bubble charts for the three weight bins are shown
in the appendix (Figure 9).

As shown in Figures 7, 8, and 9, the metadata attributes
— age, sex, and weight — do not appear to significantly
influence the generation of synthetic documentations.
While the absence of bias concerning a dog’s sex is
desirable, we expected both age and weight to have a
greater impact based on practical veterinary experience.
For weight, we identified a potential limitation that may
prevent it from having a more significant impact on the
generated documentation beyond the minor trends ob-
served.

5.3 Diversity

Since each of the 1,000 generated synthetic patellar lux-
ation documentations contains a specific set of abnor-
malities, each associated with a region and condition in-
dex, we wanted to validate whether the LLM produced
any duplicates. Detecting duplicate documentations is
important, as their presence would not contribute any
new knowledge for learning from the synthetic data.
Among the 1,000 generated synthetic documentations,
we identified six duplicates. These results can be in-
terpreted as an indication that our data generation ap-
proach is effective in producing diverse synthetic docu-
mentations.
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Figure 4: Comparison of stroke distribution in patellar
luxation grades 1 and 4. Arrows highlight key differ-
ences, including increased abnormalities and a regional
shift in the knee joints, where acute inflammation (red)
in grade 1 progresses to chronic damage (black) in
grade 4.

5.4 Efficiency for Classification Models

As previously mentioned, we have only 70 real-world
documentations available, 19 of which contain a diag-
nosis of patellar luxation, while the remaining 51 corre-
spond to other diagnoses. To assess the effectiveness of
the generated synthetic data for canine musculoskeletal
diagnosis, we generated an additional 1,000 synthetic
visual documentations across various diagnoses, creat-
ing a binary classification dataset to determine whether
a documentation represents a patellar luxation or not.
This approach allowed us to train a classification model
and evaluate its performance on the available real-world
data.

Similar to the approach used for generating synthetic
documentations of patellar luxation, we explicitly spec-
ified the target diagnosis as part of the input prompt to
the model. For each run, the diagnosis was sampled
from a list of possible conditions derived from the 51
real-world documentations that contain diagnoses other
than patellar luxation (e.g., lumbosacral osteoarthritis).
Since real-world documentations often include multiple
conditions rather than a single diagnosis, we collected
a list of 136 distinct diagnoses in total. Using this list
ensured that our synthetic data covered the same range
of diagnoses as the real-world documentations. How-
ever, the LLM was still exposed to only four examples
of patellar luxation documentation, as our input prompt
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Figure 5: Visualization of the loss curve during fine-
tuning the EfficientNet classifier on our generated syn-
thetic data. The curve shows higher loss on the real-
world test data, but it generally reflects changes in the
validation data as well. After 500 steps, the model ap-
pears to begin overfitting.

remained unchanged, meaning it generated documenta-
tions for all 136 diagnoses in a zero-shot setting.

Using 1,000 synthetic documentations per class (patel-
lar luxation and any other diagnosis), we fine-tuned
an EfficientNet-B1 model pre-trained on ImageNet
[Den09]. The 2,000 synthetic documentations were
split into 1,600 training and 400 validation samples.
Fine-tuning was performed with a batch size of 16,
a learning rate of 1 x 107*, and images resized to
240 x 240 pixels for 1,000 steps (10 epochs). The
corresponding loss and F1 score curves during fine-
tuning are shown in Figure 5 and 6. When evaluated
on 70 real-world bodymaps (19 with patellar luxation
and 51 with other diagnoses), the model achieved an
F1 score of approximately 88%. This indicates that
our synthetic data generation approach can effectively
support classification tasks, particularly in cases where
real-world observations are limited (e.g., rare diseases).

5.5 Ablation Study

Based on the high F1 score achieved by our classifier,
which was fine-tuned solely on the generated synthetic
data, we were curious how a classifier trained on a
dataset constructed using hand-written rules would per-
form. In other words, after analyzing 19 real-world
patellar luxation documentations, we wanted to test
whether the computationally intensive approach of us-
ing LLM-generated documentation was necessary, or if
a simpler rule-based dataset could achieve similar re-
sults. The rules for constructing our baseline dataset
are as follows:

Patellar Luxation. The location of the patellar lux-
ation is chosen as either left, right, or bilateral. The
condition in the knee joint is then assigned as either
chronic or acute. Additionally, with a probability of
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Figure 6: Visualization of the F1 score during fine-
tuning the EfficientNet classifier on our generated syn-
thetic data. After 500 steps (5 epochs), the F1 score
appears to converge on the test data, consistent with
the loss curve observation that the model begins over-
fitting after 500 steps. The highest F1 score of 88% on
the test data is achieved after 670 steps.

0 200 1000

20%, a chronic or acute condition is also assigned to
the hip joint on the same side. Between 2 and 8 soft tis-
sue abnormalities are added in the immediate knee area,
upper thigh, and lower leg, with the number doubling if
the luxation is bilateral. Duplicate abnormalities are not
allowed.

Other Diagnoses. For other diagnoses, an integer value
is randomly sampled from the range of 3 to 25, repre-
senting the number of abnormalities to be added. Each
abnormality is then assigned a random region from the
214 possible anatomical regions, along with a corre-
sponding condition selected from seven possible con-
ditions. Duplicate abnormalities are not allowed.

Based on these rules, we created a baseline binary clas-
sification dataset comprising 1,000 visual documenta-
tions for each class (patellar luxation and any other
diagnosis). Additionally, we generated two more bi-
nary classification datasets, each modifying our previ-
ous approach (see Section 5.4) in a single aspect: In one
case, we removed the region information for all 214
anatomical regions from the initial prompt (stated in
Section 4.4); in the other, we removed the four few-shot
examples. This allowed us to assess their impact on the
generated synthetic data. Using the same methodology
as in Section 5.4, our results for all four datasets are
presented in Table 1.

Dataset F1 Score

Full Prompt (LLM) 0.88
w/o Few-Shot Examples 0.83
w/o Region Information 0.70

Baseline (Rule-Based) 0.60

Table 1: Results of our ablation study comparing the
impact of different synthetic datasets on classification
performance.
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Using the full prompt to generate synthetic data pro-
duced the best results, achieving an F1 score of 88%.
Removing the four real-world examples from the input
prompt led to a slight drop in performance, with an F1
score of 83%, while removing the region information
caused a significant decline to 70%. The worst perfor-
mance came from using our simple rule-based baseline
dataset, which resulted in an F1 score of 60%. These
findings highlight several key insights. A simple rule-
based dataset is insufficient for achieving strong classi-
fication performance on the 70 real-world documenta-
tion samples. In contrast, synthetic data generated us-
ing our proposed approach leads to strong classifica-
tion results, underscoring its expressiveness. Addition-
ally, adding both few-shot examples and region infor-
mation enhances the quality of the generated synthetic
data and, consequently, improves classification perfor-
mance. However, specifying possible regions is signif-
icantly more important than providing a few real-world
examples, which yield only a slight improvement.

6 DISCUSSION

The goal of this study was to determine whether LLMs
can effectively generate synthetic data for canine mus-
culoskeletal diagnosis. Based on our findings, we be-
lieve this question can be answered affirmatively. A
lightweight EfficientNet-B1 classification model, fine-
tuned on our generated synthetic dataset, achieved a
strong F1 score of 88% when evaluated on 70 real-
world documentation samples. In contrast, a model
trained on a simple rule-based dataset only achieved an
F1 score of 60%, highlighting both the faithfulness and
diversity of the synthetic documentation generated by
the LLM. Additional indicators of the synthetic data’s
faithfulness and controllability are presented in Sec-
tion 5.1, where we demonstrated that the generated data
is sensitive to the given location and grade informa-
tion of a patellar luxation. In terms of diversity, our
analysis of 1,000 generated patellar luxation documen-
tations revealed only six duplicates, highlighting the di-
versity of the synthetic dataset. Regarding controlla-
bility, our findings indicate that while certain attributes
— such as position and severity of patellar luxation —
meaningfully influence the generated documentation,
others, including age, sex, and weight, do not appear
to have a significant impact. This suggests that, while
the generation of synthetic documentation for canine
musculoskeletal diagnoses is partially controllable by
individual attributes, further research is needed to en-
hance attribute-specific control. We hypothesize that
fine-tuning or incorporating retrieval-augmented gener-
ation (RAG) [Lew20] could improve the LLM’s aware-
ness of how symptoms and abnormalities vary based
on factors such as age, weight, and breed. Specifi-
cally, we recommend leveraging specialist literature or
research papers in the canine musculoskeletal domain
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to refine the model’s controllability. In addition to our
investigation in Section 5.4, further analysis of the opti-
mal number of generated documentations per diagno-
sis needed for robust classification results could im-
prove efficiency. Expanding our approach to a multi-
class classification setting with more real-world test
data could further strengthen the validity of our find-
ings. Finally, in contrast to observations reported by the
authors of the DeepSeek R1 model [Guo25], we found
that including a few example documentations in the in-
put prompt led to improved results (see Section 5.5).
This suggests that in cases where a standardized out-
put format is desired, providing exemplars within the
prompt may be beneficial.

7 CONCLUSION

In this work, we investigated whether LLMs can effec-
tively generate synthetic data for canine musculoskele-
tal diagnosis, despite their limited prior exposure to
this specific use case. Using only synthetic data gener-
ated by our proposed method to fine-tune a lightweight
classification model, we achieved a strong F1 score of
88% on 70 real-world test samples. Our findings indi-
cate that certain controllable attributes, such as age and
weight, do not meaningfully influence the generated
synthetic data, highlighting some limitations. However,
we also demonstrated that attributes such as position
and grade information of a diagnosis can effectively
guide data generation. Additionally, our approach re-
sulted in diverse documentations with minimal dupli-
cation. For future work, we suggest that fine-tuning
or retrieval-augmented generation (RAG) with high-
quality, domain-specific knowledge could improve the
influence of controllable attributes like age and weight.
Moreover, generating a larger volume of synthetic data
for a broader range of diagnoses and evaluating it within
a multi-class classification setting with more real-world
test data could further validate the promising results
presented in this study. These advancements could con-
tribute to improving Al-assisted diagnostic tools in vet-
erinary medicine.
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APPENDIX

Young (1 -5y) Middle (6 9y) Old (10- 20y)

Figure 7: Bubble charts for all three age bins appear nearly identical, suggesting age does not significantly
influence synthetic documentation generation.

Female
Figure 8: Bubble charts showing stroke distribution for female and male documentations, with no significant
difference observed.

Low Medlum H|gh
Figure 9: Bubble charts for the three weight bins show generally larger bubbles in the low and high bins, with the
knee joint and surrounding soft tissue having slightly larger bubbles in the high weight bin.

Figure 10: Higher grades of patellar luxatlon correspond to more abnormahtles Notably, abnormalities also shift
regionally, particularly in the knee joints, where acute inflammation (red) in grade 1 progresses to chronic damage
(black) in grade 4.
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