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Abstract

In this study we provide empirical evidence demonstrating that the quality of training data impacts model perfor-
mance in Human Pose Estimation (HPE). Inaccurate labels in widely used data sets, ranging from minor errors
to severe mislabeling, can negatively influence learning and distort performance metrics. We perform an in-depth
analysis of popular HPE data sets to show the extent and nature of label inaccuracies. Our findings suggest that
accounting for the impact of faulty labels will facilitate the development of more robust and accurate HPE models
for a variety of real-world applications. We show improved performance with cleansed data.
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1 INTRODUCTION

Human Pose Estimation (HPE) has recently been used
to analyse and make decisions at sporting events. These
analyses of human pose in the centimetre range can be
decisive. The uncertainties or the quality of the ma-
chine decision making are partly due to the underly-
ing data quality and are usually not communicated to
the analyst. While HPE has a long history of previous
work, current model-based approaches mostly rely on
two datasets for training. These data sets are labelled
for 2D HPE, which forms the basis for 3D HPE in many
newer approaches [1}2}|3}/4}|5, 6] and is crucial for fur-
ther applications, including those mentioned above.

While such standardized benchmarks are a fundamental
prerequisite to scientific progress, recent studies have
also highlighted problems with this approach. For one,
with the ever increasing pace of innovation in the field
of Machine Learning (ML), models achieve very good
results in benchmarks quickly and the impact of model
improvements become difficult to measure when pre-
dictive performance saturates [7]. This problem is ag-
gravated by the fact that statistical significance of per-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

http://www.doi.org/10.24132/CSRN.2025-2

15

formance improvements in such benchmarks is often
difficult to assess: The generalization error on the test
set is typically reported as a point estimate, but it can
exhibit variances often larger than the differences in
predictive performance commonly reported at the top
of benchmark leaderboards [[8]]. Hence improvements
on benchmarks that do not account for the uncertainty
in the generalization error estimates are sometimes dif-
ficult to evaluate [9]]. Second, data quality issues in the
training and test data, even in well curated and carefully
controlled benchmark data sets [[10], have been demon-
strated to impact both model training and estimates of
generalization performance [11f]. In this study we argue
that the impact of these problems on the advances of the
state of the art in HPE have been underrepresented in
the literature so far. We provide empirical evidence for
data quality problems in erroneous annotation data of
commonly used data sets and we demonstrate their im-
pact on model training and generalization performance.
These findings have implications for the interpretation
of previously published results.

Therefore we underline the importance to look at the
training and evaluation data to ensure reliability in
benchmarks and real-world scenarios. In this work
we contribute the following to existing methods and
research:

1. We provide a comprehensive analysis of labeling er-
rors in commonly used HPE benchmark data sets,
developing both a taxonomy of annotation errors
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and a simple yet effective heuristic to identify faulty
and difficult annotations.

. We evaluate the proposed heuristic’s impact on data
quality in established models leading public HPE
benchmarks, discussing the effects of cleaned data
and model improvements on popular HPE models.

2 RELATED WORK
2.1 Human Pose Estimation

There have been several surveys looking into the cur-
rent state of HPE technology [12} |13} [14} [15]. HPE is
generally divided into whether the model regresses the
body keypoints directly as pixel coordinates or whether
it uses a probabilistic prediction by outputting keypoint
coordinates as heatmaps, which both show notable re-
sults [12]]. Furthermore, there are two widely used
paradigms 2D HPE falls into: the top-down- or the
bottom-up approaches. The bottom-up approach ini-
tially identifies all visible body keypoints in an image,
and subsequently matches these keypoints to the re-
spective individuals. In contrast, the top-down method
begins by detecting each person and their bounding
boxes, followed by pinpointing the keypoints within
each of these boxes.

2.2 Training and Benchmarking Data sets

HPE models are typically trained and evaluated on spe-
cific data sets, with their performance assessed using a
variety of benchmark metrics tailored to each data set.
The de facto standard among these data sets are COCdﬂ
(Common Objects in Context) [[16] and MPIIE] (Max
Planck Institute for Informatics) [17]] due to their size
(200.000 and 40.000 labeled poses for COCO and MPII
respectively) and their variety in terms of image con-
tent. For performance measurement, different metrics
are employed based on the data set. For instance, MPII
commonly uses a variant of the Percentage of Correct
Keypoints (PCK) metric, specifically PCKh@0.5. This
metric measures keypoint detection accuracy and con-
siders a keypoint correct if it is within a threshold dis-
tance (50% of the head segment length for PCKh@0.5)
from the ground truth. COCO uses the Object Keypoint
Similarity (OKS) score [10], a metric that considers
the person’s scale and keypoint visibility in the image,
and evaluates the similarity between predicted and ac-
tual keypoints, allowing for some labeling noise. Since
most models evaluate and train on COCO and MPII we

analyze those in more detail in [subsection 3.

https://cocodataset.org
2lhttp://human-pose.mpi-inf.mpg.de/
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2.3 Advancements in Keypoint Detection

A notable advancement in pixel-wise regression and
keypoint detection accuracy was achieved through
HRNet [18]], which addresses information loss chal-
lenges by implementing an architecture consisting of
parallel subnetworks with varying resolutions. This
makes HRNet a preferred backbone for state-of-the-art
keypoint prediction models and is used throughout
in this study. Other advances tackled the issue of
accuracy loss introduced by image and annotation pre-
and post-processing such as Unbiased Data Processing
(UPD) [19] and Distribution-Aware Coordinate Rep-
resentation (DARK) [20]]. Recent leaderboards on the
COCO and MPII test-set often mention the following
high performing technologies: Polarized Self-Attention
(PSA) [21], Residual Step Network (RSN)[22] and
ViTPose [23]. PSA uses the idea of Self-Attention
layers [24] coupled with the concept of polarized
filtering. RSN introduced intra-level feature fusion
through dense connections in its Residual Step Blocks
to refine feature representation at sequential convolu-
tion levels and VitPose utilized the popular transformer
architecture for the keypoint detection task. Other
recent advancements include Pose as Compositional
Tokens (PCT) [25[], which represents poses as tokens
encoding body sub-features, and LocLLM [26f, a
large language model architecture (LLM) that uses text
descriptions and images for keypoint identification. In
we report scores for each method as they have
been published in their respective work, unfortunately
no scores for the COCO test-dev have been reported
for LocLLM so far.

Method AP PCKh@0.5
VitPose+/VitPose-G 81.1% 94.3%
HRNet + UDP +PSA  79.4% -

RSN 79.2% 93.0%
PCT 783% 92.5%
HRNet + DARK 76.2% 90.6%
HRNet + UDP 76.5% -

Table 1: Reported results of state-of-the-art 2D human
pose estimation methods for the OKS metric (COCO
test-dev) and the PCKh@0.5 (MPII)

2.4 Data Quality in Machine Learning

Data quality has been recognized as one of the most
important hyperparameters in ML model development.
While the majority of models assume stationarity of
both the data distribution as well as the label distribu-
tion, this assumption is violated in most real world ap-
plications. Data errors, or more generally shifts in the
data distribution, do occur often and have been studied
actively [27]]. In the ML community this research is of-
ten referred to covariate shift if the shift is attributed
to the input features [28|] and label shift, if the shift is


https://cocodataset.org
http://human-pose.mpi-inf.mpg.de/

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Localization Errors

Random Localization

Poor Localization ‘Wrong Localization Bounding Box Fitting

et -

Figure 1: An error taxonomy specifically for keypoint label errors in
the different types of localization errors. Right: A series of labeling errors highlighting their diversity.

associated with the target variable [29]]. Some sources
of noise in training data can have positive, regularizing
effects [30]. This effect is leveraged in the augmen-
tation techniques applied in computer vision to render
the models invariant w.r.t. data shifts that do not change
the semantic properties of an image. Other data quality
problems have been demonstrated to have severe nega-
tive impact on generalization performance [31} 11} [32].
Consequently strategies to detect data quality problems
in data sets are being investigated in various application
domains [33]. A key challenge in this context remains
automation [34]]. Several approaches were proposed to
detect data set shifts [33] 36l or label shifts [29].
Other approaches aim at generation of realistic errors
to improve model robustness 39]]. Our work is in-
spired by and complements recent findings that demon-
strate how simple heuristics can be effective for remov-
ing label errors in computer vision benchmark data sets
and significantly impact the generalization error esti-
mates [[11]].

2.5 Label Noise in HPE

In the particular application domain investigated in this
study, 2D HPE, label noise has been discussed by sev-
eral authors and is typically being reported as:

* Missing keypoints for visible body parts [40].

* Localisation errors of keypoints [41} 42, [I0].

* Structure confusion (Left/Right, Arms/Legs) [41].
* Randomly annotated keypoints [41]].

* Missing or incomplete occlusion label [40].

Most approaches focus on making the HPE models
more robust in the presence of noisy labels, rather than
cleaning data. Johnson et al. model keypoint
localization errors produced by human workers as an
isotropic Gaussian distribution of vertical and horizon-
tal displacement. Structural errors are assumed to be
uniformly distributed across the entire data set. Using
a small subset of ’expert’ annotated data they define a
learning task to steer faulty annotations closer to the
“expert’ truth.

http://www.doi.org/10.24132/CSRN.2025-2
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Kato et al. [40] adapt the concept of knowledge distil-
lation by using a teacher model to improve insufficient
ground truth labels. A student network is then trained
using improved annotations to increase its performance.
To handle missing, shift, and duplicate noise in point
data Wan et al. proposed a new loss function that
takes uncertainty about labels into consideration.

Complementing this prior work we propose to inves-
tigate in more detail the types of errors and their im-
pact on HPE model training and generalization error
estimates. While previous methods accept the errors
in the data set, we show their frequencies and suggest
a method for detecting those outliers. By data cleans-
ing and showing the effect on training and evaluation,
we conclude the problems in effectiveness of existing
models trained and evaluated on these data sets, their
benchmark in general and its implications on real-world
scenarios. We show a more detailed error taxonomy for

keypoint label errors in

3 METHOD

We determine and quantify the prevalence and type of
errors in the data set using a systematic analysis. This
involves a comprehensive examination of various data

sets (subsection 3.1J), leading to the development of a
detailed error taxonomy (subsection 3.2)). Utilizing this

taxonomy, we then devise a strategy for detecting faulty
labels, enabling us to identify and address errors across
the entire data set (subsection 3.3Hsubsection 3.6).

3.1 Data Set Selection

Due to the variety of different training and benchmark-
ing data sets, we decided to reduce our selection to
the most relevant data sets currently used for HPE. We
evaluated how many unique models and methods used
which data set based on data from three surveys
which included 40 different methods from 2018
to 2022. In order to include publications after 2023 we
also considered additional research working with online
databases. The results can be seen in [Figure 2| The out-
come of this evaluation indicates that COCO and MPII
are the most commonly used data sets for training and
testing. Many published papers rely on the training data
they provide and on their evaluation tasks to assess the
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performance of their methods. The ground truth an-
notation data is often provided by a crowd of human
annotators, for example the Amazon Mechanical Turk
(AMT) platform[I7]. As mentioned earlier by John-
son et al. [41], human crowd work on pose labelling
is prone to errors. Some data sets like COCO model
margins of human labelling noise into their evaluation
metric [[10], however severe labelling mistakes not ac-
counted by the metric might still influence training and
validation results.

cocaumnr‘

P (2014)
M

Total Number

Figure 2: The plot illustrates the frequency of usage
of each data set for training or benchmarking purposes.
Data was gathered from three HPE surveys, encom-
passing 40 distinct methods, and additional research for
publications after 2023.

3.2 Data Set Errors

We define an extended error taxonomy for the data sets
as shown in|Figure I|and distinguish between two main
error classes, localization errors and labeling errors. For
localization errors, we distinguish different subclasses
to describe specific types of wrong positioning of key-
points or bounding boxes. These errors are continuous,
while labeling errors are discrete and describe different
types of missing labels or errors in the data structure.

In order to better annotate the error frequency, we have

reduced the error taxonomy (see to 5 classes

and summarized them:

* Missing annotation: a keypoint is located on the im-
age plane, is visible or not and is not labeled.

» False label: A keypoint is not on the image plane but
is labeled.

* Incorrect position: The position of the keypoint is
clearly incorrect.

e Leftright swap: Two keypoints and their assign-
ment are swapped between left and right.

* Visibility error: The visibility flag of the key point
is set incorrectly.

In a next step, we asked three people to label these five
error classes in a sample of the MPII validation set (here
we use the split from HRNet [18]]) and the COCO data
set. From the MPII validation set we randomly take 161
out of 4917 annotations and from the COCO validation
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Figure 3: Left: The frequency of occurrence of an error
class in our sample. Right: The frequency of error an-
notations for keypoint classes (only false annotations,
LR swap and position errors were considered).

set we take 163 out of 6352. This corresponds to a con-
fidence level of 99% and a margin of error of 10%.

Our analysis reveals that both data sets contain approx-
imately 2% positional and left-right swap errors, along
with false annotations. In these cases, keypoints are
incorrectly labeled, resulting in them not actually be-

ing present on the image plane (see [Figure I). As can

be seen in both data sets show a large error
for visibility flag labels, especially the COCO data set.

Although these errors do not affect current top-down
approaches, since they are not considered during train-
ing and loss calculation, they can, however, influence
bottom-up approaches [43].

We should also mention that the results between the
two data sets are not directly comparable, as our an-
notators may have been better trained to detect errors in
the COCO data set, leading to a seemingly more criti-
cal approach to scoring. We did not additionally eval-
uate the bounding box fitting in the manual evaluation
process. However, a frequency of poor bounding box
fitting was noted. If we only look at the raw annota-
tion data, we can already see that in the MPII data set
around 3.4% of the annotated keypoints are outside the
ground truth bounding box. For the COCO data set it
is around 3.8%. If the ground truth bounding is used in
the evaluation, then it may be the case that the keypoint
cannot be estimated at all, as the part is cut off in the
top-down process.

3.3 Automatic Label Noise Detection

In order to detect data points with faulty labels y, auto-
matically with high confidence we develop heuristics to
estimate p(y.|9,y), the probability that a label is wrong
given the prediction of a HPE model § € R? and the
(potentially faulty) annotation y € R?. We assume that
the majority of data points is correctly annotated and
that a HPE model has learned to make accurate predic-
tions. Large deviations between prediction y and anno-
tations y hence indicate labeling errors. We assume that
the large deviations between prediction ¥, and annota-
tions y are similar for each HPE model m € {1,..., M}
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described in|subsection 3.4] We use the distance 6, be-

tween the predictions J,, of model m € {1,...,M} and
the ground truth y

ey

to create a feature vector A = [6;,8,,...,0y]. Our
heuristic aggregates the distances of single joints esti-
mates into one score by modeling the distribution of
deviations p(A) across all models

On=Im—y

pel9,y) =1-p(A), (2)

For estimating p(A) we use a well established non-
parametric outlier detection method, an Isolation For-
est [[44]] as implemented in PyOD [45[]. We emphasize
that the choice of the outlier detection method is not the
key factor for the label noise detection proposed in this
work. The relevant functionality is a non-parametric
density estimator that approximates the distribution of
deviations p(A) given the multivariate feature vectors
A. Indeed we find most other methods commonly used
for outlier detection to work equally well.

3.4 Evaluation Models

We select five different top-down approach models us-
ing the MMPose[46] library to create and evaluate our
label noise detection. MMPose supports various 2D hu-
man pose estimation model architectures and data sets.
Therefore, it enabled us to keep evaluation standardized
and fair by using the configuration files for each model
listed in [Table 2] and[Table 3] To simplify the reproduc-
tion of results we used pre-trained model checkpoints
provided by MMPose to generate the predictions for the
outlier detection. The model performances on the orig-
inal validation set for MPII and COCO, reported in this
paper, are all consistent with scores reported by MM-
Posg’| Deviations in the COCO results compared to the
results listed online are due to the fact that ground truth
bounding boxes were used for the COCO evaluation, to
avoid an influence of the bounding box estimation er-
rors on the metric evaluation.

We ensured models were comparable in size and per-
formance. Model selection was mostly kept consistent
between the COCO and MPII data set. However, for
models pre-trained on the COCO data set there was no
Hourglass model available that shared the same input
size (256x192) with the other models. For COCO, we
therefore, exchanged Hourglass for ResNeSt to main-
tain higher unity between models.

3.5 Per Keypoint Distance for MPII and
COCO

Our non-parametric outlier detection requires the dis-
tance errors per joint. In order to extract this informa-
tion we made the following modifications to the MPII

https://mmpose.readthedocs.io/en/latest/
overview.html
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and COCO evaluation pipelines. For MPII we modified
the MMPose evaluation script so that per keypoint pre-
diction to ground truth distance were saved in addition
to the mean score values. For the COCO data set, we
used a modified version of the original COCO evalu-
ation cod For each model prediction we saved the
OKS metric per joint and pose as well as the distance
for prediction to ground truth. Note that we did not use
the "raw’ distance between prediction and ground truth
but the modified version that takes the OKS o values
and the object scale into consideration. We want to note
here that a person in an image can have multiple predic-
tions, which, during the OKS calculation, are filtered
using different IoU (intersection over union) thresholds.
A lower threshold comes with a higher recall, which
means more poses are found. For the heuristic we de-
termined to use the "loose’ 0.5 IoU threshold to extract
distance and OKS score per joint.

3.6 Calibrating the Outlier Threshold

The outlier score threshold for discarding presumably
faulty annotations was calibrated as follows. We as-
sume that model predictions are less reliable for key-
points for which there is no annotation, for instance be-
cause the body part was not on the image plane. HPE
models will produce predictions for those poses, but
usually these keypoints are not included in the evalua-
tion of HPE models. Here we included these keypoints
and computed outlier scores for all keypoints. In
[ure 4{(left) we show the distribution of all outlier scores
for poses with and without keypoint annotations. In
[Figure 4|right) we show the outlier score distribution
only for keypoints that do have an annotation. We as-
sume that the erroneous annotations have similar char-
acteristics to the non-annotated keypoints. Keypoints
without annotations form a distinct mode of the outlier
score distribution in[Figure 4[left). We set the threshold
for each data set individually such that outlier scores
smaller than the mode of keypoints without annotations
are detected as outliers. For the COCO data set the
threshold was thus set to 0.75 and for MPII the thresh-
old was set to 0.35.

4 EXPERIMENTS AND EVALUATION

We conduct a series of experiments and analysis to eval-
uate the effectiveness of our heuristics. We investigate
how refining the validation data set influences model
outcomes and assess the effects of various models on
the enhanced, label-noise-free data sets. Our compar-
ison includes examining the effect of faulty labels on
evaluation metrics for COCO and MPII. We address
distinguishing "hard" and "faulty" cases by contrasting

manually hand-cleaned data sets (subsection 4.2)) with

4lhttps://github.com/cocodataset/cocoapi
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Figure 4: Determine the threshold for faulty annotations based on histograms of the outlier scores for poses on
images with and without annotations. On the left side is the score distribution of all possible keypoints, including
keypoints without annotations and on the right side the outlier scores only for keypoints with annotations. The
inclusion of keypoints without annotations, for which a lower reliability of predictions is assumed, shows a clear
second mode in the outlier score distribution (cf. left vs. right). We set the threshold for faulty annotations to
exclude all annotations that (according to our heuristic) are as faulty as keypoint predictions without annotations.

sets created by our heuristics. Additionally, we exam-
ine the influence of annotation errors on the heatmaps

(subsection 4.5)).

4.1 Label Error Detection Evaluation
Heuristics evaluation on training set:

To evaluate the performance of the heuristic on the
training data sets, we instructed two annotators to la-
bel 100 of the 4416 poses in the COCO training set and
100 of the 1102 poses in the MPII training data that
were detected by our heuristic. For the COCO data our
heuristic detects faulty labels with an average precision
of about 36% and an average recognition rate of 31%.
For the MPII data set, the heuristic detects faulty anno-
tations with an average precision of about 41% and an
average recognition rate of 25%.

Heuristics evaluation on validation set:

In order to evaluate the quality of our heuristic to detect
faulty annotations in the validation data we instructed
three annotators to identify faulty annotations manually
on the validation data flagged as faulty by our heuristic.
On validation data our heuristic detects faulty annota-
tions with an average precision of about 16% and an
average recall of 22% for the MPII validation data set
and an average precision of about 15% and an average
recall of 33% for the COCO validation data set.

We assume that there are several reasons why our
heuristics’ performance differs between the training set
and the validation set. The models have much better
results on the training set, than on the validation set,
so separating between faulty and non-faulty keypoints
should become easier.  Also the annotators have
different opinions on keypoint errors, concentration
levels and set their focus on different keypoints/body
parts. Moreover, the labeling task becomes tedious.
Bazarevsky et al. [47] show that when they let two
annotators relabel a data set, they achieve an average
PCK@0.2 of 97.2. This raises questions on the
annotation performance in HPE tasks.

http://www.doi.org/10.24132/CSRN.2025-2

4.2 Impact of Cleaning Validation Data

The results in the previous section demonstrate that the
proposed heuristic reliably detects faulty labels. To
evaluate the impact of erroneous labels on the HPE
evaluation metrics in commonly used benchmarks, we
first investigate the impact of cleaning the validation
data sets. We list the results for the COCO data in [Ta
and the results for the MPII data in For
all metrics we compare results on the original validation
data (RAW), the validation data cleaned automatically
with our proposed heuristic, here referred to as auto
cleaned and the impact of a partial cleanup by a hu-
man annotator (HC). We used the annotations from the

error frequency analysis (see to clean
the data for the HC set.

AP AR

RAW HC AC RAW HC AC
ResNet50 [48] 73.6 73.6 745 76.6 767 774
ResNeSt [49] 73.8 73.8 747 768 768 716
SE-ResNet50 [50] 745 747 755 7177 718 715
SCNet50 [51]] 746 746 756 717 717 785
HRNet_w32 [18] 76.6 76.7 775 793 794 80.2
HRNet_w32 [18] TC 76.7 76.8 77.6 794 79.5 80.2

Table 2: Impact of cleaning on HPE metrics computed
on COCO data. Compared are metrics obtained on the
original data set (RAW), the manually cleaned set (HC)
and the automatically cleaned data set (AC). Results ob-
tained when cleaning training data (TC) are listed in the
bottom row. Cleaning validation data leads to slight im-
provements, too.

For the MPII validation data set, we discard 469(1.1%)
for auto clean and 161(0.4%) for hand clean and for
COCO auto clean 377(0.6%) and hand clean 185(0.3%)
keypoint annotations.

Our results demonstrate that discarding faulty annota-
tions from the evaluation data improves metrics across
the board slightly. In some cases the improvements are
substantial. For the models trained with the MPII data
set, we can see (cf. additional material) a significant
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Figure 5: Comparing the accuracy impact of randomly removed keypoints across 1000 repetitions and in compar-
ision hand-cleaned and auto-cleaned data sets. (left: PCKh@0.5 (MPII) - We achieve 509.05¢ for the manually
cleaned sample and 325.366 for the automatically cleaned sample. right: mAP (COCO) - We achieve 2.97¢ for
the manually cleaned sample and 25.74¢ for the automatically cleaned sample. The results therefore show a sig-

nificant influence on the metrics.)

PCKh@0.5 PCKh@O.1

RAW HC AC RAW HC AC
ResNet50 [48] 882 936 944 286 667 673
SE-ResNet50 [49] 88.4 938 945 292 668 67.4
SCNet50 [51]) 88.8 939 947 29.0 673 679
Hourglass52 [52] 889 940 947 31.7 682 688
HRNet_w32 [18] 90.0 945 952 334 69.7 70.3
HRNet_w32 [[18] TC 90.4 94.7 953 335 69.6 70.2

Table 3: Impact of cleaning on HPE metrics computed
on MPII data set. Compared are metrics obtained on
the original validation data set (RAW), the manually
cleaned set (HC) and the automatically cleaned data
set (AC). Results obtained when cleaning training data
(TC) are listed in the bottom rows. The input size for
all models was kept consistent to 256x256

improvement in the results for the Hips, Knees and An-
kles. These body parts seem to be more affected by
errors in our studies (Figure 3). We can also achieve
better results for the COCO data set and the benchmark
metric with cleaned validation data sets. This time,
however, the improvements are significantly smaller.
This is especially true for the hand-adjusted validation
data set. The modest improvements on COCO could be
attributed to the use of a more stringent metric com-
pared to PCKh and we cleaned a smaller subset for
COCO. Nonetheless, we can also see a change in the
leaderborad order for the SE-ResNet50 and SCNet50
model for the manually cleaned part.

Also, we observe a significant decrease in PCKh@0.5
score variance for the five models on the respective ad-
justed validation data set. For the raw data set vari-
ance was 0.38, which shrunk to 0.09 for the manually
cleaned set and 0.08 for the automatically cleaned set.
This suggests that the models for the MPII data set are
likely to perform similarly well. No such significant
decrease is observed for the COCO data set.

Influence of omitting key points on accuracy:

To measure the influence of cleaned validation data we
illustrate the impact of excluding keypoints from the

http://www.doi.org/10.24132/CSRN.2025-2

evaluation on metrics (PCKh and mAP) through HR-
Net and the corresponding validation set, as depicted in
We randomly discarded the same number of
keypoints as in the manual and automatic cleanup for
the respective data sets and repeated this 1000 times.
We can see a distribution of the influence of removing
the random keypoints. The mean of each distribution
reflects the original score (gray lines - RAW-score- in
the [Figure 3)). We can also see that we achieve a sig-
nificant score improvement with the hand-cleaned sets
(HC) and the automatically cleaned sets (AC) for the
MPII and COCO data set.

4.3 Impact of Cleaning Training Data

Extending previous studies [11]] that only investigated
the influence of cleaning on evaluation data, as we did
in the previous section, we also investigated the impact
of cleaning on the training data. As shown in
(COCO) and [Table 3| (MPII) we observe improved pre-
dictive performance when re-training the HRNet model
on cleaned data.

This effect can be seen for the model trained on cleaned
MPII data for almost all body parts except the hips.
In the error frequency analysis reported above, annota-
tions for hip keypoints were often affected by labeling
errors. Furthermore, hip joints have been reported be-
fore by Chen et al. [53] as "hard" to predict keypoints
for models since their appearance is not always struc-
turally obvious and often in need of more context infor-
mation. We assume that similar difficulties exist for hu-
man annotators to detect hip joints correctly and there-
fore ground truth positions scatter a lot. Nevertheless,
the overall result shows that faulty training data influ-
ences model performances.

Comparing the improvements between the two data sets
COCO and MPII we find that improvements for MPII
are larger. We assume that this is due to the larger train-
ing set of the COCO data set and the higher complexity
in COCO.

4.4 Impact of Hard Poses

One explanation for the improvements in evaluation
metrics after cleaning the data sets with the proposed
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Figure 6: Evaluation of the poses of the different sets by three annotators in the categories easy, hard and impos-
sible. (left: Comparison of the evaluation of the annotators between the sample set of the respective normal data
sets and the respective sets discarded by our heuristics. right: Comparison of the evaluation of the annotators for

the normal data set between manually discarded and non-discarded keypoints.)

heuristic could be that we are not (only) removing
faulty annotations — but just those annotations for poses
that are difficult. We investigated this hypothesis with
additional experiments. Therefore, we asked three an-
notators to categorize images into the following three
categories:

e easy: A pose is relatively easy to annotate without
any further assumptions

e hard: A pose is time-consuming to annotate or as-
sumptions have to be made

* impossible: No pose can be credibly annotated.

For the annotations of the COCO data set, we draw the
ground truth bounding box on the images. For the anno-
tations of the MPII data set, we draw the center on the
image and a quadratic bounding box based on the scale
information in the data. The task for the annotators is to
consider only the body parts within the bounding boxes
and on the image plane.

The evaluation shows that our heuristic indeed has the
tendency to discard hard poses (see [Figure 6|left)), but
we can also see that hard poses are generally more
prone to incorrect annotations, as shown in the
[ure 6fright). Consequently, our heuristic tends to ex-
clude more challenging poses, which happen to also
be incorrectly annotated in many cases. Moreover, the
evaluation indicates that it also omits annotations that
are classified easy by human annotators, suggesting that
poses easy for humans might be difficult for models.
As the results of the re-training on the automatically
cleaned training sets in the [Table 2] and [Table 3| show,
both models slightly increase their performance on all
relevant metrics. Even though our heuristic also par-
tially penalizes hard poses, the effect on the models are
small (0.1%). Assuming that the model does not esti-
mate easier poses better now than before, the models do
not seem to benefit from hard poses during training.

4.5 Impact of Annotation Jitter

Current approaches utilize heatmaps for the prediction
of keypoints. The accuracy correlates with the variance

http://www.doi.org/10.24132/CSRN.2025-2

of these heatmaps; lower variance implies higher pre-
cision, while higher variance decreases accuracy which
is influenced by several factors. Our findings indicate
that the variance inherent in heatmaps stems not only
from the model and its hyperparameter but is also sig-
nificantly influenced by the data quality. This variabil-
ity is introduced by human annotators who tend to place
keypoints slightly differently, an effect considered in
the creation of the OKS score. To measure the impact
of this annotation jitter, we employed the Human3.6M
data set 54} 55]l, which utilizes ground truth data gener-
ated by marker-based motion capture, thereby ensuring
minimal annotation jitter. We trained an HRNet model
on a subset of the Human3.6M data set and introduced
annotation jitter by adding a random normal distribu-
tion to the ground truth data. The perturbations were
set at ¢ levels of 0.5%, 1%, and 2% of the bounding
box diagonal.

We evaluate the 4 models based on the validation set
and compress the results of the models to determine
a compression ratio. We use the compression ratio as
an indicator of how noisy the output heatmaps are. As
shown in the compression ratio increases with
the 0. This shows that more jitter produces noisier
heatmaps. This is particularly relevant as current re-
search [20} [56] focuses on the quality and noise of the
heatmaps without investigating the reasons for this.

0.0%
o 0.5%
1.0%
2.0%

T T

f T
0.25 0.30 0.35 0.40 0.45
compression rate

Figure 7: Comparison between annotation jitter and
compression ratio using the Human3.6M dataset and
HRNet. o is the percentage of the diagonal of the
bounding box used for the random normal distribution
added to the ground truth data.
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S CONCLUSION

We show that the two most used data sets in the field of
human pose estimation contain a variety of faulty an-
notations. These erroneous annotations have an impact
on model training and evaluation. We are aware of the
recursive chicken-and-egg problem of this work. Man-
ual labeling by humans will always include errors. This
also applies to our work. But data and research will
also improve iteratively. To achieve this, we need to be
aware of the errors. This should motivate further efforts
to reach a better understanding of the data sets, which
are commonly used in public benchmarks, and that ul-
timately drive scientific progress. One contribution to
achieve this could be a more careful documentation
of both data set creation [57] and model development
[58]. Our results suggest that there is a need to improve
model evaluation guidelines by creating more sophisti-
cated testing sets, which also account for data quality in
benchmark tasks. Only when we know the flaws in the
data we use can we truly interpret what our models are
doing and where improvements can be made. Specif-
ically for the MPII data set and its latest leaderboard
scores, we can assume that we have reached a level in
this benchmark, where we can no longer achieve signif-
icantly better results. The COCO data set on the other
hand, with its more robust metrics leaves more room
for further improvement. Furthermore, we show that
the performance of HPE models does not only depend
on hard cases of poses.
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