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ABSTRACT
Accurate recognition and interpretation of sign language are crucial for enhancing communication accessibility
for deaf and hard of hearing individuals. However, current approaches of Isolated Sign Language Recognition
(ISLR) often face challenges such as low data quality and variability in gesturing speed. This paper introduces
a comprehensive model training pipeline for ISLR designed to accommodate the distinctive characteristics and
constraints of the Sign Language (SL) domain. The constructed pipeline incorporates carefully selected image and
video augmentations to tackle the challenges of low data quality and varying sign speeds. Including an additional
regression head combined with IoU-balanced classification loss enhances the model’s awareness of the gesture
and simplifies capturing temporal information. Extensive experiments demonstrate that the developed training
pipeline easily adapts to different datasets and architectures. Additionally, the ablation study shows that each
proposed component expands the potential to consider ISLR task specifics. The presented strategies enhance
recognition performance across various ISLR benchmarks and achieve state-of-the-art results on the WLASL and
Slovo datasets.
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1 INTRODUCTION
Sign Languages are the primary means of communi-
cation for many deaf and hard of hearing individu-
als. According to data from the All-Russian Society
of the Deaf (VOG1), there were more than 150,000
native speakers of Russian Sign Language (RSL) in
2019. Such languages do not replicate spoken language
but possess their own lexicon and unique grammatical
rules. Due to the language gap, deaf and hard of hear-
ing people may experience prejudice in finding employ-
ment, pursuing academic education, or accessing medi-
cal services. Furthermore, learning Sign Language (SL)

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1 https://voginfo.ru/all-russian-society-of-the-deaf/

is challenging due to the limited number of teachers and
native speakers.

However, developing robust Sign Language Recogni-
tion (SLR) systems remains challenging. Variations
in gesturing speed, complex spatial-temporal features,
and real-world capturing conditions (e.g., diverse back-
grounds or lighting) can notably affect recognition ac-
curacy. Furthermore, large-scale, high-quality datasets
are still limited.

Sign language understanding is covered by three pri-
mary tasks: ISLR (Isolated Sign Language Recogni-
tion), CSLR (Continuous Sign Language Recognition),
and SLT (Sign Language Translation). This research
focuses on ISLR, where videos are classified into indi-
vidual sign categories. One of the beneficial applica-
tions of this task is to create an automatic SL trainer,
where users are shown a video example of a sign, and
the recognition system assesses the quality of human
gesturing. This advancement could make the learning
of SL more accessible.

The development of automatic SLR systems is becom-
ing widespread [16, 8] to facilitate communication be-
tween deaf and hearing individuals. SLR is a com-

21

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.33, No-1-2, 2025

http://www.doi.org/10.24132/JWSCG.2025-3



Figure 1: The process of receiving IoU scores. (a) Con-
sider the initial video, where the sign is between frames
2 and 5. (b) Randomly shift the sign‘s boundaries by
one frame to enhance model robustness (see Section 3.1
for details). (c) Collect frames by sliding a window of
size 3 across the video (window size of 3 chosen only
for illustration). (d) Calculate IoU scores by dividing
the number of sign frames in the window by the win-
dow size and adjust the classification scores. Note that
the window size of 3 in this figure was selected purely
as an example and was not used in our experiments.

plex challenge due to the impact of hand movement,
location, orientation, shape, and facial expressions on
sign meaning [33]. The SLR system should function
in real-world settings (schools, hospitals, or train sta-
tions). Its complexity is due to variations in sign dis-
play speeds, low video quality and resolution, diverse
backgrounds, and varying lighting conditions. These
factors adversely affect the system, which needs to op-
erate with real-time response and maintain high qual-
ity to minimize errors. Besides real-world limitations,
SLR faces domain-specific challenges such as limited
data availability and complex temporal dependencies.
Current methodologies often do not fully address these
issues, limiting the development of models that gener-
alize across diverse signing styles, varying execution
speeds, and other conditions. To address these prob-
lems, we explore novel training strategies and propose
a robust pipeline designed to handle the aforementioned
challenges in the ISLR domain.

The basic approach to the ISLR task involves a classifi-
cation neural network, designed to process RGB video
data. The model takes the sequence of frames sam-
pled from the video as input and predicts a text la-

bel corresponding to the sign depicted in the video.
Many existing methodologies within this field provide
either a solution at the model level [6, 44, 13], in-
volving alterations to the model architecture, or at the
data level [46], focusing on expanding the training data.
Due to unaddressed domain-specific challenges, these
approaches may not fully leverage the models’ poten-
tial for ISLR. Our work introduces a training pipeline
designed for real-world SLR. It boosts performance
without altering the underlying model architecture or
dataset. To address both domain-specific challenges
and practical deployment constraints, we apply a series
of modifications to the basic approach. These enhance-
ments improve accuracy across multiple datasets and
model types, including transformers [24, 37] and con-
volutional neural networks (CNNs) [4]: (1) video-level
data augmentations to simulate the different gesturing
speeds (shown in Figure 3); (2) image-level data aug-
mentations to reproduce low video quality; (3) an aux-
iliary sign boundary regression head to direct the net-
work to focus more on the frames containing signs; and
(4) 1D Intersection-over-Union-balanced CrossEntropy
(IoU-balanced CE) loss to enhance the model’s capabil-
ity to understand signs (see Figure 1). Considering the
necessity for real-time response, we focus on modifying
strategies solely based on RGB data without additional
modalities like hand keypoints [29] and depth [19, 29]
information.

The contribution of this paper is fourfold:

• We propose a versatile and scalable training pipeline
for ISLR models that considers domain-specific
constraints, including data quality, varying sign
execution speeds, and sign boundary awareness.

• We present a novel large-scale dataset, SlovoExt,
which combines the Slovo [21] dataset with our
newly assembled Russian Isolated Sign Language
Dataset; we also release2 the code and pre-trained
models to facilitate further research. The SlovoExt
dataset will be available as part of a larger RSL
dataset in future work.

• We illustrate how the proposed training strategies
enable superior performance compared to existing
solutions, bridging the gap between data-level and
model-level improvements in SLR tasks.

2 RELATED WORK
Sign Language Recognition Training Heuristics.
Many works in the SLR field have implemented model
architecture-level alterations to improve performance.
In [12], self-mutual distillation was employed to

2 https://github.com/ai-forever/TrainingStr
ategiesISLR
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Figure 2: Overall training pipeline. Video-level and image-level augmentations are applied, and the neural network
is further trained with augmented data and sign boundary annotations.

enable the model to learn temporal and spatial features.
In [13], authors used correlation and identification
modules to capture hands and face trajectories more ef-
fectively across consecutive frames. Other researchers
have employed data-based approaches to boost their
model. The authors of [46] utilized datasets of various
sign languages for training to address the issue of
insufficient data. Some approaches have incorporated
not only RGB but also pose information [3], hand and
body keypoints [20, 6, 44], and mouthing cues [32],
combining data- and model-level modifications. This
paper focuses on developing a training pipeline to be
applied to any ISLR model that takes RGB videos as
input and outputs classification scores.
Image & Video Augmentations. Many studies focus-
ing on SLR have employed random crop [5, 6, 30, 1, 34]
and horizontal flip [12, 30, 1, 34] as standard image
augmentations. However, these studies often do not ad-
dress how to handle non-mirrored signs, which should
be kept the same since altering them could change their
meaning. Zhou et al. [43] utilized strong data augmen-
tation techniques, such as geometric and color space
transformations, to enhance the model’s robustness to
data perturbations.
Video augmentations have proven widely effective in
the action recognition task to enhance the model’s ca-
pacity to capture temporal dependencies. However, ac-
tions in this task (e.g., walking or running) are fre-
quently repetitive and can be correctly classified at any
time. On the contrary, the order of movements is es-
sential in the SLR task. The specificity is the main rea-
son for the inability to apply some of the transformation
proposed in [10], where authors augmented data with
video reversing, frame mixing, and temporal extension
of CutMix [40]. In [34], the authors proposed a video
augmentation method where part of the video frames
corresponding to one gesture is removed, added, or re-
placed with frames depicting a different gesture within

the same video. This technique allowed the authors to
address the data deficiency and leverage the contextual
information within the sign sequence. In this paper,
we only remove and add frames (“speed up" and “slow
down" in Section 3.1) to speed adjustments because re-
placing is unsuitable for the ISLR task, given that only
isolated signs are present. Ahn et al. [1] used different
frame sampling rates to capture spatial and temporal in-
formation separately. We adopt a similar approach with
randomness (“random add" and “random drop" in Sec-
tion 3.1) to simulate real-life SLR cases. These video
augmentations, shown in Figure 3, enable sign recogni-
tion regardless of display speed and address data insuf-
ficiency in the SLR task.
Auxiliary Regression Task. Localizing the action
boundaries via regression loss has demonstrated bene-
fits in solving action recognition tasks. This approach
enabled Zhang et al. [41] to achieve single-stage
anchor-free temporal action localization. Similarly, the
authors of [45] divided the temporal action localization
task into classification and action boundary regression,
applying L1 loss for the latter. As was stated in [25],
supplementary tasks can boost the performance of the
main task by pushing the backbone toward learning
robust and generalized representations. Considering
this concept, we incorporate an auxiliary sign boundary
regression task by adding a regression head optimized
by Huber loss [14] to the training pipeline, as it
has demonstrated better model convergence in the
experiments provided below (see Table 5). It assists the
model in understanding the temporal position of the
sign within the video, allowing it to focus more on the
frames containing the sign.
IoU-balanced CE Loss. Extracting information about
an object’s spatial and temporal boundaries proves
beneficial in both action recognition [39] and SLR
tasks [17, 32]. Techniques like IoU-loss [17, 27, 38]
can aid this process. Wu et al. [38] proposed employing
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the IoU-balanced CE loss to address the independence
between classification and localization predictions. Liu
et al. [27] employed a 1D IoU loss in the action detec-
tion task to localize relevant segments within the video.
In [17], the Generalized IoU loss was employed for
SLR by calculating IoU between the bounding boxes
of hands in each frame. In the proposed pipeline, we
combine the concepts of 1D IoU and the IoU-balanced
classification losses to devise the classification IoU loss
tailored for the video domain and the particularities
of the ISLR task. When computing the classification
score, this approach allows us to consider the relative
localization of the sign (see Figure 1 for details).

3 TRAINING STRATEGIES
To address the existing gap in SLR methodologies, de-
signing an effective training pipeline requires tailored
approaches that account for both data characteristics
and model requirements. Figure 2 shows the proposed
strategies divided into three components: (1) video-
level augmentations, (2) image-level augmentations,
and (3) additional losses. Note that these techniques
do not depend on specific SL datasets or model archi-
tectures, except for certain subcomponents detailed in
Section 3.2.

3.1 Video Augmentation
Video augmentations are designed to reduce the gap be-
tween real cases and training data regarding subjects’
gesturing speedby artificially changing the speed and
shifting the sign boundaries.

Speed Up & Slow Down. In real life, signs can appear
at various speeds, so we artificially speed up or slow
down videos to match the real-world gesturing speed
distribution. We sample every N-th frame to speed up
by a factor of N (see Figure 3a), pre-sampling addi-
tional frames on the right to maintain the same clip
length. Conversely, we repeat each frame N times
to slow down the video (see Figure 3b), pre-dropping
frames so that the final length remains unchanged.

Random Add & Random Drop. In some real-life
scenarios, gesturing speed is non-uniform because of
the difficulty or simplicity of some gesture parts or
due to external distractions during the hand move-
ment. We partially change the speed of the videos to
make the model more resistant to such uncommon
cases. Figure 3c illustrates the process of randomly
dropping frames to speed up the video partially (see
Algorithm 1). As in the case of uniform video speed
up, we retain the same clip length using the identical
process. Similarly, a random add of frames is applied
to the video for a partial slow down (see Figure 3d).
We are maintaining the video length in the same way
as in a uniform slow down.

Figure 3: Applying video augmentations to untrimmed
videos. Identical frames are highlighted in the same
color, and sign boundaries are outlined with a dashed
line. Grey boundaries indicate duplicates of the last
frame. a) speed up the video 2 times by removing every
second frame; b) slow down the video 2 times by dupli-
cating every second frame; c) random frames drop re-
mains 80% of the total video length; d) random frames
duplication increases the total video length by 20%; e)
random boundary shift is applied, e.g., with shift of (1,
-1), which means one frame is added on the left and one
is removed on the right. These values were chosen for
ease of demonstration.

Random Boundary Shift. During inference, an SLR
system generally captures frames sequentially using a
window of a specific length. Therefore, signs that are
too short or too long may not fit into the window prop-
erly. To ensure accurate recognition, we augment the
data by randomly shifting sign boundaries, removing
part of the videos, or adding frames without signs (see
Figure 1 and Figure 3e for illustrations).

3.2 Image Augmentation
Due to the real-life limitations, the model must be adap-
tive to variations in background, subjects, image qual-
ity, and overall visual appearance. Image augmenta-
tions diversify the data in a frame-independent way to
simulate real-life cases.

Image Quality. We imitate artifacts in video record-
ings caused by low-resolution capturing, due to defects
in the video camera, or problems with video transmis-
sion over the network by compressing and downscaling
images and adding random noise and sharpness.

Horizontal Flip. Most meanings of the signs remain
unchanged after horizontal mirroring. Hence, horizon-
tal flip transformation facilitates the equal processing
of signs shown by different hands. However, some
signs are not invariant to the horizontal flip (e.g., RSL
gestures such as “left”, “right”, “heart”, and “liver”
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Algorithm 1 Random Drop Realization

1: y = [videoi]
31
i=0

// Initialize the video sequence y with frames in-
dexed from 0 to 31

2: drop_ratio← d;d ∈ (0,1)
// Set the drop ratio d, which determines the rate of
frames to drop

3: y_len← len(y)
// Calculate the original length of the video se-
quence y

4: ŷ_len← y_len
1−drop_ratio

// Compute the new length ŷ_len to extend the
video sequence such that after dropping frames, the
original length y_len is preserved

5: y.extend([videok]
ŷ_len
k=32 )

// Extend the video sequence y with additional
frames indexed from 32 to ŷ_len

6: ŷ← sort(random.choice(y,y_len))
// Randomly select y_len frames from the extended
video sequence y without repetitions. Sort the
selected frames to maintain the original order of
frames

stop transferring their meanings if shown with the in-
appropriate hand). In the experiments, this augmenta-
tion only affects mirrored signs (more details in Sec-
tion 5.1).

General. In addition to domain-specific augmenta-
tions, we utilize general ones to diversify the dataset:
color jittering to provide heterogeneity over the color
context, and CutMix [40] and MixUp [42] to induce
the model to learn more generalizable features.

3.3 Additional Losses
The following domain-specific training techniques in-
corporate domain knowledge of the sign boundaries
into the model by scaling the classification loss and
solving an additional task to enhance the main task’s
solution accuracy. These modifications are not model-
level, as they can be integrated into either architecture.

Sign Boundary Regression Head. The average ges-
turing speed of various signs may differ, and even the
same sign may take a different number of frames, af-
fecting data distribution. Motivated by this, we add
the regression head with a fully connected layer parallel
to the classification head. This auxiliary head predicts
the start and end of a sign in the input video to embed
an implicit understanding of the length and gesturing
speed into the model’s backbone. To train the regres-
sion head, we utilize Huber loss [14], which combines
the strengths of both MSE and MAE losses: it offers
sensitivity and robustness, being less affected by the in-
fluence of outliers.

Dataset Classes Videos Signers Resolution Language
LSE-Sign [11] 2,400 2,400 2 FullHD Spanish
LSA64 [35] 64 3,200 10 FullHD Argentinian
MS-ASL [18] 1,000 25,513 222 varying American
TheRuSLan [19] 164 13 13 FullHD Russian
K-RSL [15] 600 28,250 10 FullHD Kazakh-Russian
FluentSigners-50 [31] 278 43,250 50 varying Kazakh-Russian
WLASL2000 [23] 2,000 21,083 119 varying American
AUTSL [36] 226 38,336 43 512 × 512 Turkish
Slovo [21] 1,001 20,400 194 HD / FullHD Russian
SlovoExt (ours) 1,001 51,000 241 HD / FullHD Russian

Table 1: The main characteristics of the existing ISLR
datasets.

Classification Loss Scaling. Conventional classifica-
tion losses, like cross-entropy, have the limitation to not
consider information about the localization of the sign
in the video, which can cause irrelevant gradients to op-
timize. We use a IoU-balanced CE loss to incorporate
information about the location of the sign relative to the
window. To calculate IoU scores, the length of the inter-
section of the sign with the sampled window is divided
by the size of the window:

IoUscore =
min(wend ,send)−max(wstart ,sstart)

wend−wstart +1
, (1)

where sstart , wstart are the first frames of the sign and
the sampled window, and send , wend are the last ones,
respectively; min(a,b) and max(a,b) functions denote
the minimum and maximum of two values, respectively
(for illustration, see Figure 1 and Figure 2). The overall
classification loss is the combination of classification
and IoU scores.

4 DATASETS
We assess the training strategies described above
on three large-scale ISLR datasets: WLASL [23],
AUTSL [36], and Slovo [21]. They are the most
diverse open-source data in terms of dataset contrib-
utors, performing gestures (signers), and contexts
(see Table 1). Evaluating on these datasets alone is
sufficient to confirm the pipeline’s effectiveness.

• WLASL dataset consists of 21,083 RGB-based
videos trimmed by sign boundaries. Each video
contains only one sign in American Sign Lan-
guage (ASL), and each sign is performed by at
least 3 different signers in various dialects3. The
dataset was recorded in a studio with solid-colored
backgrounds. The WLASL contains non-mirrored
signs, but since such signs in its vocabulary are
not established, we estimate the impact of flip
augmentation for all samples in Section 6.1.

• AUTSL was designed to simulate real-life context,
i.e., different indoor and outdoor environments

3 There is more than one way to show one word. Therefore,
intraclass diversity occurs.
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and diverse lighting conditions. It contains 38,336
trimmed video samples with 512 × 512 frame
resolution and 20 different backgrounds. The
AUTSL is divided into 226 Turkish Sign Language
(TSL) signs performed by 43 signers. It comprises
numerous similar signs, so models that can extract
complex information from the input data must be
used for training. The situation with non-mirrored
signs is identical to the WLASL’s, so applying the
horizontal flip to videos is analyzed below.

• Slovo is the largest, most diversified, and the only
publicly available RSL dataset. The dataset contains
20,400 HD and FHD untrimmed videos performed
by 194 signers. It is divided into 1,001 classes, in-
cluding the additional “no event" class, which indi-
cates videos where the signer is not performing a
sign. Slovo was crowdsourced, featuring real-life
conditions and non-invariant signs to horizontal flip.

4.1 SlovoExt Dataset
We expand the Slovo dataset with a self-assembled
30,600 videos. The combination is called SlovoExt
and comprises 51,000 samples divided into the same
1,001 classes as Slovo (see Table 1). The process
of SlovoExt creation is constructed similarly to main-
tain the Slovo distribution characteristics such as video
length, signer’s appearance, and context heterogeneity
identical. SlovoExt is also utilized to evaluate the pro-
posed training strategies.

The dataset was created by native speakers of RSL and
interpreters proficient in RSL. We involved diverse con-
tributors in the data collection process to address con-
cerns about differences in sign presentation between
deaf and hard of hearing people. This approach aims
to help neural networks manage gesture variability and
mitigate the effects of native signer bias [9].

In collecting the dataset, we carefully considered the
specific features of RSL, ensuring that all data was
recorded in a single dialect. The dataset was compiled
using pre-recorded video templates provided by the All-
Russian Society of the Deaf. An exam consisting of
20 questions assessed RSL proficiency for participation
in dataset recording. Experts who scored at least 90%
were allowed to take on the tasks.

5 EXPERIMENTS
The effectiveness of the training pipeline is assessed
by comparing two metrics: utilizing (1) the basic ap-
proach4 and (2) proposed strategies. We fine-tune three

4 The basic approach is the same as the proposed pipeline, but
without video and image augmentations, regression head, and
classification loss balancing.

Dataset Model Pretrain Task top-1 accuracy
basic approach proposed pipeline

WLASL
MViTv2-S MaskFeat 49.83 56.37+6.54

Classification
51.88 57.17+5.29

MViTv2-B 54.31 57.33+3.02
I3D 35.55 36.38+0.83

AUTSL
MViTv2-S MaskFeat 91.69 95.62+3.93

Classification
90.27 95.05+4.78

MViTv2-B 93.00 95.75+2.75
I3D 85.22 87.81+2.59

Slovo
MViTv2-S MaskFeat 71.45 81.57+10.12

Classification
77.54 80.97+3.43

MViTv2-B 79.31 81.34+2.03
I3D 62.79 63.82+1.03

SlovoExt
MViTv2-S MaskFeat 81.55 87.31+5.76

Classification
83.36 85.90+2.99

MViTv2-B 84.14 86.72+2.58
I3D 77.30 79.74+2.44

Table 2: Evaluation results. We present two top-1 ac-
curacy metrics for each setup: the metric on the ba-
sic approach and the metric obtained via the proposed
training pipeline. Two pre-trained models on the K400
dataset [22] are utilized: MViTv2 trained on the classi-
fication task and MaskFeat trained in a self-supervised
manner to reconstruct masked pixels. Green values
show gains over the basic approach.

architectures: two transformers (MViTv2-S with dif-
ferent pre-training and MViTv2-B [24]) and one CNN
(I3D [4] with a ResNet-50) – on four ISLR datasets.
The experiment results are provided in Table 2.
The top-1 accuracy is the primary metric for evaluation,
measuring the percentage of videos where the predicted
class matches the correct class. This metric was cho-
sen due to its widespread use in the SLR task, facilitat-
ing comparison with other models and benchmarking.
Mean accuracy was used to demonstrate state-of-the-
art result on the Slovo dataset and ensure consistency
with the metric on the leaderboard5.

5.1 Preprocessing
Input videos are resized to 300 resolution and con-
verted to HDF5 video format. During the training
stage, videos are square-padded and randomly cropped
to achieve a resolution of 224 × 224. The low side of
the videos is resized to 224 and square-padded during
the validation and testing stages. The model input is
a sequence of 32 frames sampled with a step of 2. If
the video does not have enough frames for sampling,
the last frame is repeated to form a complete clip. For
the Slovo and SlovoExt datasets, non-mirrored signs are
excluded from the horizontal flip augmentation. The
WLASL signs are not being flipped, and the AUTSL
signs are flipped with no exceptions because Section 6
shows the efficacy of such decisions.

5.2 Training Methodology
As shown in Figure 2, the preprocessed video is initially
exposed to video augmentations. One randomly se-

5 https://paperswithcode.com/sota/sign-language-recognition-
on-slovo-russian
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Ablation on
Image Augmentations Video Augmentations Additional Losses

Basic CutMix & MixUp Bound. Shift Rand. Add Speed Up Slow Down Rand. Drop Huber Loss IoU-balanced CE top-1 acc.

None: entire pipeline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 87.31

Image Augs.
✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 86.08−1.23
✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 83.25−4.06
✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 85.42−1.89

Video Augs.

✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 86.77−0.54
✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 87.00−0.31
✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 86.96−0.35
✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 86.99−0.32
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 86.65−0.66
✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 87.01−0.30

Losses

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 86.79−0.52
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 86.95−0.36
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 87.26−0.05

Table 3: Ablation study results. We employ the MViTv2-S model to assess the influence of each component by
removing it from the pipeline and comparing the results. Accuracy is evaluated on the SlovoExt combination. Red
values indicate differences with the entire pipeline.

Method top-1 accuracy
RandAugment 86.79−0.52

UniformAugment 86.75−0.56
Sequential (utilized) 87.31

Table 4: Ablation study for different image augmenta-
tion methods.

Regression Loss top-1 accuracy
MAE 86.68−0.63
MSE 87.00−0.31

Huber (utilized) 87.31
Table 5: Ablation study for different regression losses.

lected from four modifications is applied to each batch.
In contrast, “random boundary shift" is constantly af-
fected. In experiments, “speed up" increases the video
speed by 2 times, and “slow down" decreases it by 2
times. “Random drop" shortens video by 10%, while
“random add" lengthen it by 30%. The random values
for sign boundaries shifting are from the interval [-5, 5],
except the interval [-5, 0] for the WLASL and AUTSL
datasets due to their trimming by the sign boundaries.

Image augmentations modify the video batch by ran-
domly choosing a combination of them with expertly
selected probabilities and magnitudes. Note that Cut-
Mix [40] and MixUp [42] influence only transformer
models in our experiments because they can degrade
CNNs due to a lack of correlation between neighboring
pixels [2].

We incorporate IoU scores into the classification head,
multiplying classification scores by them. The addi-
tional regression head is fed with video features and
sign boundaries. The network is trained by optimiza-
tion IoU-balanced CE and Huber losses for classifica-
tion and regression heads, respectively. Both are not ap-
plied to “no event" videos in the Slovo and the SlovoExt
datasets by assigning an IoU score of one and sign
boundaries of zeros. Although sign boundaries trim
the WLASL and AUTSL datasets, the regression head
works appropriately with them.

Training is performed until convergence on four Tesla
H100s with 80GB RAM. Early stopping is triggered if
the top-1 accuracy metric does not increase by at least
0.003 after 7 epochs. For the first 20 epochs, the learn-
ing rate is modified by a linear scheduler, and a cosine
scheduler is used from epochs 20 to 100. Cross-entropy
loss is minimized using the AdamW [28] optimizer.
Other parameters are variable and can be adjusted as
needed.

5.3 Results
As Table 2 shows, the proposed pipeline consistently
improves top-1 accuracy across different datasets and
architectures. Specifically, MViTv2-S achieves addi-
tional gains of 6.54%, 3.93%, 10.12%, and 5.76% on
WLASL, AUTSL, Slovo, and SlovoExt, respectively,
while I3D obtains an average improvement of 1.72%
across these datasets. The ablation study (see Table 3)
further underscores the effectiveness of each proposed
component in the pipeline.

Moreover, this approach attains state-of-the-art perfor-
mance on two benchmark ISLR datasets. On WLASL,
using MViTv2-S pre-trained with MaskFeat and further
pretrained on SlovoExt, the model achieves 62.89%
top-1 accuracy, surpassing the NLA-SLR [47] model
by 1.63%. On the Slovo dataset, this method reaches
78.21% mean accuracy, exceeding the prior best re-
sult by 14.12%. A comparable increase of 13.06% is
achieved with the MViTv2-S pre-trained on K400, con-
firming the robustness of the proposed training strate-
gies.

6 ABLATION STUDY
This section estimates the impact of each part of the
proposed pipeline individually. We divide all modifi-
cations into three blocks: (1) image augmentations, (2)
video augmentations, and (3) additional losses. We test
the necessity for each block by disconnecting it from
the entire pipeline and for its parts by shutting down
a particular part while not changing anything else. The
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ablation study uses MViTv2-S pre-trained on the Mask-
Feat to train on the SlovoExt combination.

6.1 Image Augmentations Necessity
The image augmentations block is additionally divided
into two parts – basic image transformations and
CutMix-MixUp pair – to simplify assessing their
influence. Each part and combinations of them are shut
down, resulting in three experiments. The first three
rows in Table 3 illustrate that the metric significantly
decreases by 4.06% in the absence of all image aug-
mentations. The influence of basic image augmentation
is two times less than the CutMix-MixUp one.
We also evaluate various augmentation-applying ap-
proaches, including RandAugment [7], UniformAug-
ment [26], and random sequential applications. Table 4
indicates that RandAugment and UniformAugment ap-
proaches are not effective in the proposed pipeline.
Additionally, since we are uncertain which signs are
non-mirrored in WLASL and AUTSL datasets, we
search for the optimal option via two experiments for
each: one with flip augmentation and one without for
all signs. On WLASL, the metric with a flip is lower
by 1.3%, indicating that this dataset probably contains
numerous non-mirrored signs. On AUTSL, conversely,
the metric with flip was higher by 0.11%. Therefore, in
the main experiments, we apply flip augmentation to
the AUTSL dataset and refrain from using it with the
WLASL dataset.

6.2 Video Augmentations Necessity
Similar to the above subsection, we split the estima-
tion of video augmentations necessity by disconnecting
each of them separately and the whole block, providing
six experiments. The most notable impact achievable
with one modification is produced by the “slow down"
augmentation, as without it, the top-1 accuracy drops
by 0.66%.

6.3 Additional Losses Necessity
The process of evaluation is constructed identically.
The last three rows in Table 3 show that the regression
loss provides a more substantial improvement than the
IoU-balanced CE loss, resulting in a 0.52% increase in
metrics compared to 0.05% increase. The result sug-
gests that information about absolute sign boundaries is
more crucial than relative sign position within the sam-
pling window.
Also, we conduct additional research on the impact of
Huber regression loss by replacing it with MAE and
MSE losses (see Table 5). We observe lower metrics in
both cases, with MAE yielding the lowest at 86.68%.
These results could be attributed to the behavior of
MAE, which, while descending rapidly, may get stuck
on values close to the ground truth, overshooting the
desired target value.

7 DISCUSSION
Ethical Considerations. All participants signed con-
sent forms before data mining. The forms authorized
the processing and publication of personal data for re-
search purposes. We do not restrict videos with sign-
ers under 18 since parental permission was obtained
during the registration, which complies with the Civil
Code of the Russian Federation6. To preserve contribu-
tors’ privacy, we employ anonymized user hash IDs in
the dataset annotations. Furthermore, we have ensured
that the Slovo dataset meets these ethical criteria. We
provide the dataset for research purposes only, but we
understand that it could be misused for malicious pur-
poses, such as identifying people or large-scale surveil-
lance.

Positional Statement. Through the research of the
ISLR task, we involved the All-Russian Community
of Deaf experts and professional sign language inter-
preters. The expertise of the All-Russian Society of
the Deaf was utilized at every stage of the SlovoExt
dataset creation, including data collection, validation,
and verification processes, as well as video tagging.
We also involved deaf consultants in developing train-
ing strategies to apply Considerations to particular so-
lutions. Additionally, some of our researchers took for-
mal courses on RSL to enhance their knowledge of this
domain.

Limitations. The regression head and IoU-balanced
CE loss require sign boundary annotations that are fre-
quently difficult to achieve. Thus, when the dataset is
pre-trimmed, the “random boundary shift" augmenta-
tion can adjust the sign boundaries only inward toward
the center rather than allowing shifts in both directions.
We processed RGB frames and did not analyze artic-
ulation, keypoints, or depth information. Moreover, a
lack of awareness regarding non-mirrored signs in sign
language may lead to issues when applying flip aug-
mentation. There are additional challenges in each sign
language, and each has its specifics that must be con-
sidered when adapting the pipeline.

8 CONCLUSION
In this paper, we introduce a training pipeline for the
ISLR models, considering the specifics of the SLR
domain and the constraints of real-world usage. We
demonstrate the effectiveness of applying image and
video augmentations to address the issues of low data
quality and varying gesturing speed. The importance of
integrating temporal information into the model by the
regression head combined with IoU-balanced CE loss is
also presented. The developed pipeline delivers state-
of-the-art results on the WLASL and Slovo datasets.

6 https://ihl-databases.icrc.org/en/national-practice/federal-
law-no-152-fz-personal-data-2006
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Future work will extend the training strategies to CSLR
and SLT tasks.
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