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ABSTRACT

This paper proposes the second version of the widespread image-based Hand Gesture Recognition dataset HaGRID
— HaGRIDv2. We have added 15 new gestures to the existing 18, encompassing both conversational and control
functions, including two-handed gestures. Building on the foundational concepts proposed by HaGRID’s authors,
we implemented the dynamic gesture recognition algorithm and further enhanced it by adding three new groups
of manipulation gestures. The “no gesture” class was significantly expanded and redefined with a new semantic
focus to include a diverse range of natural hand movements, which led to a 16-fold reduction in false positives
on HaGRIDv2. The HaGRIDv2 dataset outperforms the original HaGRID in pre-training models for gesture-
related tasks. Besides, we achieved the best generalization ability among gesture and hand detection datasets.
Additionally, the second version of the dataset provides a diverse range of hand samples, which is crucial for
fine-tuning modern diffusion models. By fine-tuning on HaGRIDv2, these models achieve improved outcomes
in generating anatomically correct hand gesture images. HaGRIDv2, pre-trained models, and a dynamic gesture
recognition algorithm are publicly available.
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makes gestures invaluable for Human-Computer Inter-
action (HCI) [57]. Thus, the development of Hand
Gesture Recognition (HGR) systems has the potential
to significantly enhance user interfaces in various do-
mains [27, 66] such as robotic control [54], driver as-
sistance [52], and medicine [64, 69, 14] for touchless
interaction. The proposed research aims to develop a
comprehensive HGR system for video conferencing [2,
1] and home automation devices [5, 65, 17, 7, 12]. The
system should enhance participants’ communication,

Figure 1: The 15 outlined in red new gesture classes
added to HaGRID’s 18 ones (“inv” stands for “in-
verted”).

1 INTRODUCTION

Hand gestures, as natural and intuitive expressions, ef-
fectively reflect emotions and facilitate communica-
tion [16]. Their ability to convey messages quickly
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enable remote control of device functions [67, 26], al-
low the manipulation of various objects on the screen,
and activate different platform features [15]. Consid-
ering the described application area, the system should
enable intuitive operation through easy-to-demonstrate
functional gestures, offer instant feedback, and effi-
ciently operate on resource-constrained edge devices.

Neural networks have recently become the primary
component of HGR systems [28, 47, 46] and action
recognition in general [32, 60, 11]. Large datasets
aligned with the system constraints described above
are required to train a model resilient to real-world
conditions. Based on the requirements described
above, the appropriate dataset should include a range
of gestures categorized as manipulative (e.g., clicking,
swiping, or zooming the screen), control (e.g., taking
screenshots), and conversational (e.g., expressing
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approval, disapproval, love, anger, regret) [59, 24]. The
first category usually implies dynamic gestures, which
involve motion and are therefore captured as videos. In
contrast, the latter two categories consist of static ges-
tures, in which a specific hand or finger pose remains
fixed (e.g., giving a thumbs-up to convey approval).
Thus, the dataset should encompass static and dynamic
gestures (i.e., videos rather than images) to cover all
three categories effectively. The HGR model should
efficiently provide real-time inference on the CPU
while remaining lightweight, as it should be integrated
into the resource-constrained device. Compliance with
such requirements significantly restricts the choice of
neural network architectures capable of operating in
the temporal dimension.

Most existing gesture datasets are limited in several
ways: some overlook functional and commonsense ges-
tures, others only cover static or dynamic gestures, and
many lack sufficient diversity in subjects (i.e., the in-
dividuals performing the gestures). The most suitable
dataset, HaGRID [23], includes various conversational
and control gestures and proposes an algorithm for dy-
namic manipulative gesture recognition. The algorithm
required static gestures to construct dynamic ones, sat-
isfying the conditions of the lightweight model. The au-
thors of [23] aimed to create the HGR system for home
automation and video conferencing services. There-
fore, all chosen gestures are straightforward and per-
form a specific function. However, HaGRID lacks sup-
port for essential device interaction gestures, such as
clicking, zooming, taking screenshots, and cursor con-
trol. Besides, the extra “no gesture” class contains too
homogeneous hands, provoking the model to predict
false positives. In this regard, we decided to expand the
dataset with new gestures to support the development
of dynamic gestures, introduce a new “no gesture” class
(see Fig. 4), and enhance the dynamic gesture recogni-
tion algorithm.

It was decided to expand the HaGRID dataset by adding
new classes. This paper introduces HaGRIDv2, the sec-
ond version of the HaGRID dataset, designed to enrich
the functionality of HGR systems for video conferenc-
ing and home automation. Although HaGRIDv2 was
developed primarily for gesture detection, we explore
its applicability to other tasks, including full-frame ges-
ture classification, hand detection, and text-to-image
gesture generation (see Fig. 2). The contribution of this
paper is four-fold:

* Extended gesture classes. HaGRIDv2 incorporates
15 new gesture classes (Fig. 1) performing control
and conversational functions. Cross-dataset evalua-
tion experiments confirmed that HaGRIDv2 demon-
strates the best domain generalization ability among
gesture detection datasets (see Tab. 5).
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¢ Improved “no gesture”. The “no gesture” class has
been improved compared to HaGRID by incorporat-
ing domain-specific natural hand positions, resulting
in a 16-fold reduction in false positives (see Fig. 8).

¢ Support for dynamic gestures. We extend the dy-
namic gesture recognition algorithm [23] by devel-
oping swipes, clicks, zooms, drag-and-drops, and
other manipulative gestures.

e Multi-task experiments. Experimental results
show that HaGRIDv2 excels even beyond its main
scope: it achieves top scores on standard bench-
marks for hand detection (Tab. 6), significantly
improves pre-training for various gesture-related
tasks (Fig. 7), and effectively addresses anatom-
ically incorrect gestures generated by diffusion
models (Fig. 9).

The dataset and the extended algorithm for recogniz-
ing dynamic gestures are publicly available'? under the
modified Creative Commons CC-BY 4.0 license.

The paper is organized as follows: Sec. 2 reviews key
gesture datasets regarding applicability to device con-
trol systems. Sec. 3 outlines the HaGRIDv2 collection
process and its key characteristics. Sec. 4 introduces the
dynamic gesture recognition algorithm trained solely
on static images, and Sec. 5 presents baseline experi-
ments across various tasks. Cross-dataset generaliza-
tion is examined in Sec. 6, and Sec. 7 compares Ha-
GRIDv2 and HaGRID in terms of pre-training perfor-
mance, false positive triggering, and gesture genera-
tion quality. Ethical considerations and limitations are
discussed in Sec. 8 and Sec. 9, respectively. Finally,
Sec. 10 summarizes findings and future directions.

2 RELATED WORK

There are a variety of HGR datasets with gestures cat-
egorized based on their applications [59, 24]: sign lan-
guage [53], control [68, 58, 9, 21, 23, 51, 62], con-
versational [10, 23, 4, 51, 42, 43, 39, 21] and manip-
ulative gestures [47, 68, 41, 9, 34, 56, 6]. The pro-
posed research aims to develop an HGR system for
device control and video conferencing, where manip-
ulative, control, and conversational gestures are essen-
tial. Therefore, the system should recognize both static
and dynamic gestures, which are reviewed in this study.
Sign language recognition datasets are excluded be-
cause their gestures are unsuitable for performing the
described functions.

Dynamic gesture datasets are typically annotated for
action recognition, classifying entire video sequences.

"'https://github.com/hukenovs/hagrid
Zhttps://github.com/ai-forever/dynamic_ges
tures
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Dataset Samples  Classes  Subjects Scenes Resolution Annotations Annotation Method
Gesture Detection
LaRED, 2014 [21] 243,000 81 10 10 640x480 masks automatically
OUHANDS, 2016 [42] 3,000 10 23 various 640x480 masks, boxes automatically
HANDS, 2021 [51] 12,000 29 5 5 960x 540 boxes -
SHAPE, 2022 [4] 33,471 31+1 20 various 4128 %3096 masks, boxes manually
HaGRID, 2023 [23] 554,800 18+1 37,583 >37,583 1920x1080  boxes, keypoints* manually
HaGRIDv2, 2025 (ours) 1,086,158 33+1 65,977 >65,977 1920x 1080  boxes, keypoints* mixed
Gesture Classification
HTU HGR, 2011 [55] 1,000 10 10 various 640x480 labels manually
Kinect Leap, 2014 [39, 40] 1,400 10 14 - 640x480 labels manually
Senz3D, 2015 [43, 44] 1,320 11 4 - 640%x480 labels manually
SIT-HANDS, 2023 [10] 4,200 14 10 various 1920x 1080 labels manually
Hand Detection
HAND, 2011 [45] 5,628 1 - - mixed boxes automatically
EgoHands, 2015 [8] 4,800 1 various various 720x 1280 masks, boxes mixed
Human-Parts, 2019 [31] 14,962 3 - various mixed boxes automatically
TV-Hands, 2019 [50] 9,498 1 various various - boxes manually
ContactHands, 2020 [49] 20,516 1 - various - boxes manually
BodyHands, 2022 [48] 20,490 2 - various - boxes manually

Table 1: The main parameters of the most popular gesture datasets. “+1” in the third column means the dataset

contains an extra class “no gesture”.

@ 9

in some columns means the information was not found. * — keypoints

prepared by using the MediaPipe [38] hand model. Subjects refer to the distinct individuals performing the ges-
tures, while scenes include variations in background, lighting, camera angle, and other environmental factors. Such
diversity helps the model learn to generalize across different setups and reduces overfitting to specific conditions.
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Figure 2: Different tasks addressed by HaGRIDv2. (a) The hand detector recognizes all hands by bounding boxes
with the same label “hand”; (b) The gesture detector aims to predict a bounding box with a label for each hand
on the image; (c) The gesture classifier produces a label for the entire image; (d) The gesture generator creates an
image of a person showing a gesture according to the prompt.

In contrast, static gesture recognition can be achieved
by solving various tasks, including gesture detection
and classification (see Fig. 2 for difference), hand
gesture keypoint estimation, and gesture segmenta-
tion. However, classification labels are impractical in
multi-person frames, keypoints can stick together when
the person is far away, and segmentation masks are
excessive for gesture recognition and yield no mean-
ingful benefit over detection-based approaches. While
many existing detection datasets typically feature just
one person per frame, bounding box annotations and
augmentations such as mosaic used in YOLO [63]
still enable training models to detect an unlimited
number of gestures in a single image. Additionally,
only third-person (i.e., captured from an external
viewpoint rather than the user’s) data are suitable for
video conferences and device control.

An overview of datasets related to HGR is organized
as follows. Sec. 2.1 discusses datasets relevant to the
device control task, while Sec. 2.2 examines datasets
related to gestures data domains not central to this re-
search.

http://www.doi.org/10.24132/CSRN.2025-1

2.1 Devices Control

Static Gestures. Tab. 1 shows that only HaGRID [23],
LaRED [21], OUHANDS [42], HANDS [51], and
SHAPE [4] datasets are relevant for the required
annotations. Each dataset has limitations that can
affect its suitability for developing a reliable HGR
system for real-world conditions. The LaRED [21]
and the OUHANDS [42] datasets include images
captured from close distances, making them unsuitable
for training models intended to operate in larger
environments. Besides, there is no currently access to
the LaRED samples due to the outdated link. Also,
OUHANDS [42] and HANDS [51], constructed with
only 23 and 5 subjects, respectively, are inappropriate
for developing a robust HGR system. In addition,
even the most diverse datasets on classes lack gesture
variety for control and conversational purposes. So,
while the SHAPE [4] dataset lacks enough control
gestures, the HaGRID [23] suffers from a deficiency
of conversational ones, containing only “like” and
“dislike” emotional gestures. Since emotional gestures
are essential for video meetings, such an omission
restricts the overall functionality of the HGR system.
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Dynamic Gestures. Datasets such as [58, 34, 56, 62,
47, 6, 68, 41, 9] are the most relevant for dynamic ges-
ture recognition in device interaction and video confer-
encing. There are only ChAirGest [56], Jester [41],
and IPN Hand [9] datasets meeting the described re-
quirements about the existence of functional gestures
and third-person view. However, these datasets fo-
cus mainly on manipulative dynamic gestures and lack
the necessary static conversational and control gestures.
This gap highlights their insufficiency in covering the
full spectrum of gestures needed for device control and
video conferencing.

While a completely suitable dataset is unavailable, the
HaGRID dataset includes both control and conversa-
tional gestures, allowing for the recognition of dynamic
manipulative gestures as proposed in the algorithm ref-
erenced in [23]. Therefore, we introduced a number
of substantial improvements and developed the second
version of HaGRID, which includes new gesture classes
and a more diverse and representative "no gesture’ cat-
egory (see Fig. 4).

2.2  Other Tasks

HaGRIDv2’s design, with one gesture per frame, sup-
ports full-frame classification, which is ideal for single-
user interactions with personal devices. Additionally,
HaGRIDv2 includes a wide variety of hand postures,
including complex ones and natural hand positions,
making it well-suited for hand detection tasks.

Hand Gesture Classification. All the static datasets
for object detection reviewed below can also be used
for image classification. In addition to them, there are
NTU HGR [55], Kinect Leap [39], Senz3D [43], and
SIT-HANDS [10] (see Tab. 1). However, these datasets
also have disadvantages in solving the human-computer
interaction problem. The NTU HGR [55], Senz3D [43],
and Kinect Leap [39] datasets contain 100-140 samples
per gesture class, which is not enough to build a suffi-
ciently high-quality model (see ablation study in [23]).
In addition, Senz3D and Kinect Leap scenes are homo-
geneous, and the gestures are too close to the camera.
The SIT-HANDS [10] dataset was made heterogeneous
in subjects, lighting conditions, and background. How-
ever, the dataset has only 2,800 training frames and con-
tains a relatively small variety of gestures, severely lim-
iting the system’s functionality.

Hand Detection. Among the hand detection datasets
there are HAND [45], EgoHands [8], Human-
Parts [31], TV-Hands [50], ContactHands [49],
BodyHands [48]. Hands detection datasets may differ
in the annotation type: some use horizontally aligned
bounding boxes, while others use oriented bounding
boxes. Since most well-known detection models work
with horizontally aligned bounding boxes, this type
is preferred, so we did not conduct experiments on
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HAND [45], TV-Hands [50], and ContactHands [49]
for simplicity.

Datasets vary in the number of people, subjects, reso-
lution, and scenes. EgoHands [8] is intended for first-
person gesture detection and segmentation across vari-
ous backgrounds, while BodyHands [48] and Human-
Parts [31] offer 14,000 and 15,000 diverse third-person
samples, respectively. Due to their heterogeneity, these
datasets are valuable benchmarks for hand detection,
but they focus only on natural hand postures and do not
include specific gestures or complex finger positions.
By addressing some key limitations in existing datasets,
HaGRIDvV?2 offers improved support for these areas.

3 HAGRIDV2 DATASET

The HaGRIDv2 dataset follows the same design as Ha-
GRID, featuring 33 static gestures (shown in Fig. 1)
along with additional “no gesture” samples to prevent
false positives. The dataset is used to train gesture
recognition models, enabling the development of HCI
and device control systems.

HaGRID’s
no gesture |

HaGRIDv2’s
no gesture

Figure 4: Samples of the “no gesture” class in HaGRID
and HaGRIDv?2 datasets.

The HaGRIDv?2 dataset differs from the HaGRID with
the following key updates:

* We added ‘“holy”, “heart” (in two variations, see
Fig. 1), “middle finger”, and “gun” as emotional,
conversational gestures used during the conversa-
tion, and “three3” for extra functions.

*  We expanded the range of control gestures by one-
handed “thumb index”, “grip”, “point”, “pinkie”,
and “grabbing”, and two-handed “thumb index2”,

“timeout”, xsign”.

take photo”, “
* Some of added static gesture classes were designed
to enable the extension of the dynamic gesture
recognition algorithm by developing such gestures
as “drag and drop”, “click”, “zoom in”, “zoom out”

and new variations of swipes.

In total, 15 new static gesture classes and four
groups of dynamic gestures (swipes, drag-and-
drops, zooms, clicks) were developed to cover
various device functions (see Fig. 1).
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Figure 3: The key statistics of HaGRIDv2. (a) Image resolution distribution showing the scatter of image dimen-
sions; (bad) Distribution of subjects in the training, validation, and test sets, with the x-axis indicating the number
of subjects who recorded the number of samples shown on the y-axis; (¢) Bounding box area distribution; (f)
Brightness distribution; (g-i) Age and gender distributions of subjects, received automatically by MiVOLO [29]
neural network; (j) Racial distribution of subjects, received automatically by FairFace [25] neural network.

* The HaGRIDV2’s “no gesture” class was explicitly
designed to address false positives by including a
broader range of natural hand positions (e.g., relaxed
hands near the face, holding a cup, natural gesticu-
lation), whereas HaGRID is limited to a single re-
laxed hanging hand posture (see Fig. 4). We studied
popular hand positions in setups involving device in-
teraction and video conferencing platforms, identi-
fied the most frequent gestures, and specifically col-
lected these natural movements.

3.1 Dataset Creating Pipeline

The data creation pipeline almost followed the one pro-
posed by the original HaGRID authors [23] to maintain
the consistency of HaGRIDv2’s data distribution. Also,
such a pipeline allows us to collect heterogeneous sam-
ples in large volumes. We used the same crowdsourcing
platforms, such as Yandex.Toloka® and ABC Elemen-
tary* and instructions for crowdworkers through min-
ing, validation, and filtration steps, described in Dataset
Creating Pipeline in [23]. In the mining stage, crowd-
workers captured photos with a specified gesture under
controlled conditions. In the validation stage, valida-
tors review images on the crowdsource platforms to en-
sure the gesture is performed correctly, and only prop-
erly executed photos are retained. Finally, the filtration
stage aimed to remove ethically sensitive images, in-
cluding those featuring individuals under 18.

Annotation. We have decided to replace HaGRID’s
manual box annotation with an automated one due to
its time- and labor-intensive nature. A substantial size
of HaGRID is enough to train a robust hand detector for
automated annotations, as demonstrated by HaGRID’s
authors in their ablation study [23]. We have also im-
plemented crowd moderation for quality assurance.

https://toloka.yandex.ru/
https://elementary.activebc.ru/
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The annotation process consisted of two stages: hand
detection and distinguishing gesturing hands from “no
gesture”. We trained the YOLOv10x [63] detector on
the HaGRID, previously reducing all gesture classes to
one class “hand”. Each bounding box was assigned ei-
ther the corresponding gesture label or “no gesture,”
leveraging the fact that the gesture name for each im-
age is known from the data collection stage. For im-
ages featuring one-handed gestures, the hanging hand is
identified as the one that is always below the hand with
the gesture (see Fig. Sa). For two-handed gestures, we
obtain joint boxes by combining two hand boxes, mak-
ing a box from the upper left edge of the left hand to
the lower edge of the right hand (see Fig. 5b). Fig. 5c
shows the exception of the “xsign” gesture, where two
boxes are merged to a square, the side of which is equal
to the distance between the extreme points of the boxes.

3.2 Dataset Characteristics

The HaGRIDv2 dataset is an extension of the widely
used HGR dataset HaGRID. Adding 531,358 samples
divided into 15 new gesture classes and the extra “no
gesture” class to the original HaGRID, the received
combination contains over a million primarily Full
HD RGB images (see Fig. 1 and Fig. 3a). Since the
presented research aims to build a system for home
automation devices and conference control, added
classes are related to these domains. Thus, each gesture
is intended to perform a specific associative function.
A special “no gesture” class encompasses domain-
specific hand postures common for the mentioned
applications, such as hands near the face, relaxed, or
holding objects. Added static gestures contributed
to an extension of the dynamic gesture recognition
algorithm presented in [23]. There is the opportunity
to recognize such dynamic gestures as ‘“zoom”, “click”,
and others.


https://toloka.yandex.ru/
https://elementary.activebc.ru/

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

hand detection annotations

0.3219482,
0.35768715,
0.10416912,
0.0842157

0.69197184,
0.8047886,
0.08692274,
0.11455249

a)

0.4349057,
0.40991343,
0.12035247,
0.13963701

YOLOV10x
hand detector »

0.33711138,
0.5959584,
0.11651261,
0.11222341

0.55799653,
0.5948848,
0.13000747,
0.12701544

<)

1

“label": [
oy

n",

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

gesture detection annotations

“united_bbox": [
C
0.3219482,
0.35768715,
0.10416912,
0.0842157

1,

“united_label": [
"grip”,

]

“united_bbox": [
C

0.41131055,
0.35697935,
0.14394762,
0.19257109

1,

1

“united_label": [

1

—> heuristics —

“united_bbox": [
C
0.33711138,
0.5948848,
0.35089262,
0.263169465
1,

“united_label": [

Figure 5: The pipeline for automatic image annotation. a) The higher hand on the one-handed gesture image is
marked as the gesticulating hand; b) Two predicted boxes for the two-handed gesture are merged into a single box.
¢) A two-handed “xsign” gesture is marked by a square bounding box, received by stretching a vertical line equal

to the distance between two boxes.

Content. New samples were recorded by 28,394
unique crowdworkers, each located in their own scene.
Fig. 3e-g shows the age, gender, and race distributions
of the subjects, calculated for all HaGRIDv2’s 65,977
subjects. We preserve the HaGRID distribution and
ensure domain-specific relevance by collecting samples
in realistic indoor conditions with varying lighting
conditions and subject-to-camera distances. The mean
and standard deviation of the pixel values of the
HaGRIDv2 images for the RGB channels are [0.54,
0.5, 0.474] and [0.234, 0.235, 0.231], respectively.
These statistics were calculated after normalizing the
original 8-bit RGB images with pixel values in the
range [04255].

Annotations. HaGRIDv2 includes bounding box anno-
tations for all hands. Each image has one or two boxes
for one-handed gestures: one for the gesturing hand and
one for the non-gesturing hand if it is in the frame (see
Fig. 5a). Images with two-handed gestures strictly cor-
respond to two boxes for each hand. Moving from the
hand detection task to gesture detection, an additional
box encompassing both hands is added to two-handed
gesture images (see Fig. 5b-c). Bounding box annota-
tions are proposed in COCO [33] format with normal-
ized relative coordinates.

Splitting. The dataset was divided into training (76%),
validation (9%), and testing (15%) sets, recorded

http://www.doi.org/10.24132/CSRN.2025-1

by 57,656, 4,209, and 4,114 subjects, respectively.
Note that training, validation, and test sets of original
HaGRID are the subsets of corresponding HaGRIDv?2
sets. Fig. 3b-d illustrate the subjects’ distribution
across three sets with improved heterogeneity in the
test and validation sets compared to the training one.
Sets are balanced in age, gender, brightness, and race
due to randomness.

In addition, we provide hashed user IDs for researchers
to split the dataset on their own. Also, such automat-
ically received meta information as age, gender, and
race for each subject, and keypoints obtained by Medi-
aPipe [38] for each hand have also been supplied. Since
the dataset is large, we also provided the lightweight
version, with all images resized to 512 pixels on the
shortest side.

4 DYNAMIC GESTURE RECOGNI-
TION ALGORITHM

The original HaGRID [23] authors proposed a dynamic
gesture recognition algorithm that allows recognition
based solely on static gestures, eliminating the need for
video-based training and temporal dimension process-
ing. This paper presents a novel approach based on such
a logic with extended functionality.

Algorithm. Fig. 6 shows the pipeline of dynamic ges-
ture recognition. Note that the algorithm processes each
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Z0OM_OUT_END

clear_queue()

Figure 6: The algorithm for recognizing dynamic gestures, exemplified by the “zoom out” gesture.

frame independently during inference without analyz-
ing the entire sequence from start to end. We detect
hands in each frame with a lightweight RFB [3] model,
ensuring faster inference. Further, the received crops
are classified into gestures utilizing a single Residual
Block [18]. To accurately identify the boundaries of
the gesture sequence, we employ a sliding queue that
stores recognized gestures from the last n frames, which
is experimentally set to 30. The choice of 30 frames
for the sliding queue was experimentally determined to
balance the need for temporal accuracy and computa-
tional efficiency. This value was found to provide a suf-
ficient window to accurately capture gesture sequences
while avoiding excessive overlap between consecutive
gestures. Each dynamic gesture is defined by specific
static gestures marking its start and end. Remarkably,
we maintain a separate queue for every detected hand,
enabling the system to detect multiple dynamic ges-
tures simultaneously. The algorithm monitors the queue
for the starting gesture and triggers the classification of
the dynamic gesture upon detecting the corresponding
closing gesture. Additionally, we implement checks on
each dynamic gesture’s duration, distance, and orien-
tation to ensure accurate classification, shown and de-
scribed in Tab. 2.

Checks for correctness

Gesture type Distance Duration Orientation
Swipes v v up / down / left / right
Clicks X v non-moving
Drag-n-Drop X v X

Zooms (one-handed) X v non-moving
Zoom (two-handed) X X X

Table 2: Checks for dynamic gesture recognition. Dis-
tance is the literal distance between the centers of the
bounding boxes for the gesture’s start and end posi-
tions on the screen. Duration measures the number of
frames between these positions. Orientation determines
the gesture’s direction: left, right, up, down, or non-
moving (the hand remains stationary in one screen lo-
cation throughout the gesture).

http://www.doi.org/10.24132/CSRN.2025-1

New Dynamic Gestures. The algorithm supports four
categories of gestures with their variations: swipes,
zooms, clicks, and drag-and-drops. These variations al-
low for associating different functionalities with each
gesture, enhancing the system’s versatility.

Based on such an approach, the system is pre-
dictable and lightweight, with 276,292 parameters and
106.14 Million Floating Point Operations Per Second
(MFLOPs) for the detector and 102,605 parameters
and 6.9 MFLOPs for the classifier, and runs efficiently
on standard CPU hardware. We obtained 89 Frames
Per Second (FPS) on the Apple M1 CPU, using only a
single CPU core for inference. Additionally, it is easily
expandable with new custom gestures, requiring only
static images for training.

S BASE EXPERIMENTS
5.1 Experimental Setup

The base experiments are divided into three groups:
gesture detection, gesture classification, and hand de-
tection. These experiments are designed to showcase
the dataset’s ability to generalize across popular mod-
els for different tasks. We resized the images’ maxi-
mum side to 224 and padded the result with zeros to
a square. The full-frame gesture classification is based
on 33 main classes without the "no gesture” class, as
each image contains one of the target gestures. For per-
formance evaluation, we used the F1-score and Mean
Average Precision (mAP) metrics for classification and
detection tasks, respectively. All models were trained
on a single Tesla H100 with 80GB for 100 epochs with
a batch size 128. Early stopping was triggered after 10
epochs without the metric increasing by at least 0.01.

Hand and Gesture Detection. Three detection
architectures, SSDLite MobileNetV3 Large [35],
YOLOv10n, and YOLOvVI1Ox [63], were employed
to ensure that on HaGRIDvV2 it is possible to train a
robust gesture detector. We use the Stochastic Gradient
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Model Optimizer Weight Decay Learning Rate Scheduler Scheduler’ Params.
ResNet SGD 17 11 ReduceLROnPlateau mode: min, factor: 0.1
MobileNetV3 SGD 54 573 StepLR step size: 30, gamma: 0.1
VitB16 SGD 54 573 CosineAnnealingLR T max: 8
ConvNext AdamW 572 4-3 CosineAnnealingLR, LinearLR T max: 8, factor: 0.001
SSDLite SGD 574 1= StepLR step size: 30, gamma: 0.1
YOLOvI0 SGD 54 12 LambdaLR sinusoidal function
Table 3: Training hyperparameters.
. . Metrics
Model Model size (MB)  Parameters (M) Inference time (ms) Flscore  mAP
Gesture Detection

SSDLite MobileNetV3 Large [35] 10.3 2.7 26.3 - 72.7

YOLOVI10n [63] 10.33 2.7 85.67 - 88.2

YOLOVI0x [63] 121.5 31.6 1145.6 - 89.4

Full-Frame Classification

ResNet18 [19] 42.7 11.2 37.8 98.3 -

ResNet152 [19] 222.65 58.2 226.94 98.6 -

MobileNetV3 Small [20] 6 1.6 5.1 86.7 -

MobileNetV3 Large [20] 16.3 4.2 11.34 93.4 -

ViTB16 (pretrained) [13] 327.4 85.8 350.9 91.7 -

ConvNeXt Base [36] 334.2 87.6 320 96.4 -

Hand Detection
YOLOvV10n [63] 10.3 2.7 75.8 - 87.9
YOLOv10x [63] 120.8 31.6 1150.7 - 88.8

Table 4: Models training results on the HaGRIDv?2.

Descent (SGD) optimizer with an initial learning rate
of 0.01 for YOLOs and 0.0001 for SSDLite. The
YOLO models employed default augmentations such
as mosaic, hsv, and horizontal flips, while SSD trained
without any modifications. Using the same setup,
the YOLOv10x model was used to train for the hand
detection task.

Gesture Classification. In addition to ResNet-18,
ResNet-152, MobileNetV3 Small, MobileNetV3
Large, and pre-trained on ImageNet ViTB16 utilized in
[23], we also employed ConvNext [36] as a full-frame
gesture classifier. The AdamW optimizer [37] with
a specified initial learning rate, weight decay, and
scheduler for each architecture was used (see Tab. 3).

5.2 Results

Tab. 4 presents the evaluation metrics on the Ha-
GRIDvV?2 test subset. The metrics are remarkably high,
demonstrating the dataset’s effectiveness in training
robust models. To ensure the model’s ability to work
in real-life conditions, we provide a demo of gesture
classification and detection models in our repository.

6 CROSS-DATASET EVALUATION

Experimental Setup. This section covers cross-dataset
evaluation for hand and gesture detection’. We uti-
lized the same setup across all experiments, employing
YOLOV10n as a detector, the hyperparameters and aug-
mentations described in Sec. 5, and mAP as a detection
metric.

5 Cross-dataset evaluation for classification was excluded due

to the lack of accessible datasets with sufficient overlapping
gestures, making the comparison non-informative.

http://www.doi.org/10.24132/CSRN.2025-1

6.1 Gesture Detection

Datasets. We were limited to the HANDS and
OUHANDS datasets in the gesture detection task
since we could not access the LaRED and SHAPE
datasets. These datasets intersect only in 5 classes —
namely “fist,” “one,” “palm,” “peace,” and “three” —
with HaGRIDv2. Thus, we left only samples with
these overlapping gestures, reducing three training,
validation, and testing sets. The original HaGRID
dataset was excluded from these experiments, as its

content is entirely subsumed within HaGRIDv2.

Results. Tab. 5 indicates the HaGRIDv2’s complexity,
as evidenced by the lowest test average mAP. Further-
more, HaGRIDv2 exhibits superior domain generaliza-
tion, supported by the highest train average mAP. No-
tably, HaGRIDvV2 is the only dataset that consistently
achieves valuable metrics across tests on other datasets,
underscoring its value in training robust models.

6.2 Hand Detection

Datasets. We compare HaGRIDv2 with datasets de-
signed explicitly for hand detection to assess its abil-
ity to solve this task. Since HaGRIDv2 was annotated
with horizontal bounding boxes, we only compared
it with similarly annotated BodyHands [48], Human-
Parts [31], and EgoHands [8] datasets. We also in-
cluded the original HaGRID [23] dataset to test the im-
pact of more quantity and variety in gestures in the Ha-
GRIDvV2. The training, validation, and test sets of Ha-
GRIDvV2 are designed to prevent any overlap with the
HaGRID subsets, eliminating the risk of data leakage
and ensuring the integrity of the comparison.
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Trained / Tested [ [42]  [51]  HaGRIDv2 [[ Train avg. mAP (1)
OUHANDS [42] 65 0.07 4.25 2.16
HANDS [51] 0.0 65.4 7 3.5
HaGRIDvV2 (ours) 67 66.3 88.1 66.65

Testavg. mAP () [[ 33.5 33.19 5.63 I

Table 5: Cross-dataset evaluation in the gesture detec-
tion task. mAP was computed for each pair of datasets
and averaged separately for training and testing. Higher
train average mAP indicates greater model robustness,
while lower test average mAP reflects that the dataset
serves as both a strong benchmark and a challenging
test, offering a comprehensive evaluation of model per-
formance. Diagonal values were excluded from the av-
erages to ensure unbiased comparison and assess gen-
eralization.

Results. Although neither version of HaGRID was ini-
tially designed for hand detection, and their samples are
generally simpler compared to other datasets, Tab. 6
demonstrates that models trained on HaGRIDv2 gen-
eralize better to other distributions. In particular, the
model trained on HaGRIDv2 shows superior perfor-
mance when evaluated on external datasets, indicating a
stronger ability to recognize hands under varying condi-
tions. Additionally, HaGRIDv2 achieves a higher mAP
on HaGRIDv?2 than HaGRID itself, suggesting that in-
creasing the diversity of gesture classes improves the
model’s ability to generalize older gestures.

7 HAGRID VS HAGRIDV2

7.1 Pre-train Impact

Experimental Setup. We compared HaGRID and Ha-
GRIDv2 as pre-training datasets to demonstrate that
almost 2x increase in samples and class diversity in
HaGRIDvV2 consistently yields more reasonable results.
ResNet18 for gesture classification and YOLOv10n for
gesture detection were employed, applying the same
hyperparameters and metrics from base experiments in
Sec. 5.

Datasets. HANDS and OUHANDS were utilized to
fine-tune detectors on their training sets with further
assessment on their test sets. The pre-trained clas-
sifiers were fine-tuned on the Kinect Leap, Senz3D,
OUHANDS, and HANDS training sets, while HTU
HGR and SIT-HANDS were unavailable due to the in-
valid link. For the Kinect Leap and Senz3D datasets,
we performed our own test split by user identity, as the
authors provided no original split.

Results. Fig. 7 shows that models pre-trained on Ha-
GRIDv2 consistently outperformed those pre-trained
on HaGRID, improving model generalization and prov-
ing its indispensability for pre-training.

7.2 False Positive Triggering

Experimental Setup. We conducted a check for false
positive triggering to assess the impact of diversifying
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Figure 7: Impact of pre-training on gesture classifi-
cation and detection across HaGRID and HaGRIDv2.
“Original” metrics are sourced from the respective
dataset papers; missing values indicate metrics not re-
ported by the authors.
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Figure 8: Comparing the false positives on the “no ges-
ture” class for HaGRID and HaGRIDv2 datasets.

the “no gesture” class (see Fig. 4). We trained two
YOLOvV10n detectors: one on the original HaGRID
dataset and the other on HaGRIDv2. Each trained
model was assessed on the “no gesture” samples from
the HaGRIDV?2 test set to evaluate the number of false
positives.

Results. The HaGRIDv2-trained model produces 16
times fewer false positive errors than the HaGRID-
trained model, which is especially important for
production-level HGR systems (see Fig. 8). The mAP
metrics were 57 for HaGRID and 72.9 for HaGRIDv2,
highlighting the usefulness of the new “no gesture”
configuration.

7.3 Gesture Generation

Experimental Setup. This section aims to demonstrate
that adding new gestures improves the quality of gener-
ating images of people showing gestures. We fine-tuned
two Stable Diffusion 2.1 models using the LoRA [22]
(Low-Rank Adaptation) from the diffusers library [61]
on the HaGRID and HaGRIDv2 datasets. Each im-
age in the datasets was annotated with an automatically
generated description using BLIP-2 [30], following the
format: “{blip_caption} showing {gesture_name} ges-
ture”. During sample generation, we used prompts like
“there is a person showing {gesture_name} gesture”.
To conduct a fair comparison, we also compared the
HaGRIDvV2 fine-tuned model with the original Stable
Diffusion 2.1 without fine-tuning.
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Trained / Tested | EgoHands BodyHands Human-Parts HaGRID HaGRIDv2 || Train avg. mAP (1)
EgoHands [3] 75.4 0.9 1.16 3.54 4.15 24
BodyHands [48] 14 35.2 26.4 49.4 373 31.7
Human-Parts [31] 35.7 21.8 50.5 58.7 533 0.4
HaGRID [23] 39.2 19.7 35 86.7 73.9 42
HaGRIDV2 (ours) 39.4 17.3 349 87.2 87.9 44.7

Test avg. mAP (]) || 32 14.9 24.4 49.7 22

Table 6: Similar cross-dataset evaluation as in Tab. 5 for hand detection task.

Evaluation. To compare HaGRID and HaGRIDv2, we
evaluated the generation quality of 18 gestures from
the original HaGRID. For the original diffusion model,
we tested 26 gestures from HaGRIDv2, excluding “in-
verted” and “thumb_index” gestures due to their speci-
ficity, and kept only one version of each gesture (e.g.,
keeping “heart” and removing “heart2”). Each model
generated three images per gesture, resulting in 6 im-
ages per gesture. We conducted a Subjective Bench-
mark Scoring (SBS) study to evaluate their quality.
Three independent crowdworkers compared each pair
of images. Notably, the crowdworkers were unaware
of which model had generated each image, ensuring an
unbiased evaluation.

SBS Results

HaGRIDV2 |

HaGRIDv2

200

Frequency

10 HaGRIDv2

HaGRID

HaGRIDv2
HaGRID

Stable Diffusion 2.1

Stable Diffusion 2.1

o
Hands' Naturalness ~ Gesture Matching ~ Hands' Naturalness ~ Gesture Matching

Figure 9: The SBS results compare Stable Diffusion
2.1 fine-tuned on the HaGRID and HaGRIDv?2 datasets,
as well as a comparison between HaGRIDv2 and the
original Stable Diffusion 2.1 model.
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like

gon
HaGRID fine-tune

HaGRIDv2 fine-tune

. fou

E [
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Figure 10: Examples of generated images with three

Stable Diffusion 2.1 models: original, fine-tuned on
HaGRID, and fine-tuned on HaGRIDvV2.

exip

Results. Fig. 9 shows that the model fine-tuned on Ha-
GRIDv2 generates more accurate and natural-looking
gestures, thanks to the broader variety of classes it was
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trained on. The accuracy here refers to the improved
alignment between the generated gestures and the tar-
get gesture classes, as well as the higher visual natu-
ralness of the outputs. Compared to the model fine-
tuned on the original HaGRID or other datasets, the one
trained on HaGRIDvV2 more effectively replicates sub-
tle motion patterns and hand configurations, resulting in
gestures that are both semantically and visually closer
to the ground truth. However, the original HaGRID
achieved slightly better anatomical accuracy due to its
simpler distribution and lack of complex hand postures.
Additionally, the comparison with the original Stable
Diffusion 2.1 model indicated its limited ability to gen-
erate recognizable gestures, with the anatomical accu-
racy of the hands also being inferior (see Fig. 10).

8 ETHICAL CONSIDERATION

Dataset Creation. HaGRIDv2’s samples contain per-
sonal information, so crowdworkers must consent to
collect, process, and publish their photos. We com-
ply with Russia’s Federal Law ”On Personal Data”
(27.07.2006 N152), ensuring legal data handling. For
ethical reasons, images of children were excluded from
the dataset. After validation, we justified each rejected
photo and allowed crowdworkers to challenge rejec-
tions. As the HaGRID dataset is part of HaGRIDv2,
we ensured that HaGRID adheres to the described ethi-
cal requirements by contacting its authors.

Biases. Utilizing only Russian crowdsourcing plat-
forms can lead to an imbalance in the racial diversity of
workers. We tried to minimize this gap and covered the
most frequently identified races — Caucasian, Negroid,
and Mongoloid. Even though there is an imbalance,
trained on the HaGRIDv2 neural network can accu-
rately recognize gestures from underrepresented racial
groups.

Possible Misuse. There is the risk of misusing the
datasets with faces to improve surveillance systems,
profile individuals based on race, create deepfakes, and
contribute to identity theft. We release the dataset un-
der a public license for non-commercial use in research
purposes, acknowledging the potential risk of its misuse
for unlawful activities. We used anonymized user hash
IDs in the dataset annotation to preserve crowdworkers
privacy and enable the ability to split HaGRIDv2 by its
users.
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9 LIMITATIONS

Dataset. As noted in Sec. 8, the dataset is biased to-
wards the white race, potentially compromising the al-
gorithm’s robustness and performance in diverse sce-
narios. Additionally, the Gaussian age distribution,
limited to individuals 18 years and older, may lead to
inaccurate predictions for children and seniors. The
“no gesture” class expansion is specified to poses typi-
cal for device interactions, potentially leading to false
positives in other scenarios. Furthermore, predomi-
nantly home-based scenes may lead to incorrect oper-
ation when people wear outdoor clothing and gloves in
different weather conditions.

Dynamic Gesture Recognition Algorithm. The deter-
ministic nature of the algorithm reduces its robustness,
as it demands users to perform gestures with exact pre-
cision. This inflexibility can result in recognition in-
consistencies, especially in real-world scenarios where
slight variations in gesture execution are common, ulti-
mately limiting the algorithm’s reliability and user ex-
perience.

Generative Models. While the HaGRIDv2 dataset aids
in training models to generate people displaying ges-
tures (see Sec. 7.3), it has limitations. The focus of
the dataset on specific gestures and the limited vari-
ety of hands in natural positions restrict the ability of
models to generate anatomically accurate hands in free
poses, which may limit broader applicability. Addition-
ally, since the model was fine-tuned solely on samples
from the limited distribution of HaGRIDvV2, it tends to
generate images that look quite similar, reducing over-
all variety.

10 CONCLUSION

This paper introduces HaGRIDv2, an enhanced ver-
sion of HaGRID, which become the largest and most
diverse gesture dataset for HGR systems. Including
a new “no gesture” class significantly strengthens the
system’s robustness and adaptability to real-world con-
ditions, paving the way for more reliable gesture-based
interaction technologies. The HaGRIDv2 can also be
used for robust hand generation by diffusion models.
We also present a dynamic gesture recognition algo-
rithm that identifies various manipulative gestures for
device control. The dataset, pre-trained models, and
the dynamic gesture recognition algorithm will be pub-
lished in our repository.
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