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ABSTRACT

This study explores the use of machine learning to enhance patient mobility and caregiver ergonomics by opti-
mizing the use of mobility aids. Traditional manual assessments can be subjective and inaccurate, so this research
develops a data-driven model for object detection and human activity recognition. A computer vision dataset was
created using video recordings of controlled caregiving scenarios. The study leverages advanced machine learning
models, including YOLO for object detection, pose estimation, ResNet-18 for frame classification, Inception-v4
for feature extraction, and LSTM for sequence modeling. The findings provide valuable insights into integrating

machine learning into mobility aids, improving both patient outcomes and caregiver well-being.
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1 INTRODUCTION

Humans are designed for movement, and limited
mobility affects daily tasks, social interactions, and
overall well-being. In healthcare environments,
understanding visual scenes is essential for support-
ing patients and assisting caregivers in monitoring
and decision-making [Khoshkangini et al., 2024].
Caregivers in healthcare settings, from hospitals to
nursing homes, face high rates of Musculoskeletal
Disorders (MSDs)[Jamali et al., 2024b], making it
crucial to improve their quality of life and work
conditions. Mechanical lift equipment reduces the risk
of MSDs associated with patient handling. Observa-
tional postural assessment methods, such as Rapid
Entire Body Assessment (REBA), Rapid Upper Limb
Assessment (RULA), and Ovako Working Posture
Analysis System (OWAS), are commonly used to
mitigate MSD risks, but these methods are manual,
time-consuming, and prone to variability due to
subjective expert evaluations [Yuan and Zhou, 2023].
Recently, advanced computer vision technologies
have been explored for automatic ergonomic as-
sessments, offering a more efficient and objective
alternative [Jamali et al., 2025, Kim et al., 2021,
Zhang et al., 2018, Jamali et al., 2024a].
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MSDs pose significant challenges in healthcare, affect-
ing nurses, therapists, and employers through absen-
teeism, medical expenses, and workers’ compensation
claims [Yuan and Zhou, 2023]. Despite the critical na-
ture of this issue, ensuring proper product usage, main-
taining patient comfort, and optimizing caregiver er-
gonomics remains a persistent challenge during care-
giving. While existing studies have explored healthcare
technology and posture recognition [Kim et al., 2021],
[Zhang et al., 2018], they often fail to address the spe-
cific application of mobility aids and their correct usage
in caregiving scenarios. Additionally, limited research
has focused on improving patient mobility outcomes
and caregiver ergonomics through machine learning.
This study aims to bridge these gaps by developing and
validating machine learning models for object detec-
tion, pose estimation, and activity recognition in sim-
ulated clinical environments, focusing on mobility aids
like lifts, wheelchairs, and beds. Using a novel dataset
created from videos recorded at a controlled clinical
setting, where subjects simulated caregivers and pa-
tients, this research represents an innovative approach
to classifying caregiving activities in relation to mobil-
ity aid equipment. While the study does not encom-
pass the full real-world variability or explore all poten-
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tial algorithms, it targets correct product usage and en-
hances patient mobility and caregiver posture, address-
ing a critical and underexplored area in healthcare tech-
nology.

In order to better understand the applicability of ma-
chine learning techniques in the identification of correct
product usage of mobility aids equipment and posture
assessment, the following Research Questions (RQ)
have been formulated.

RQ 1. To what extent can machine learning be applied
for object and activity recognition to effectively utilize
and identify correct product usage and assess posture in
caregiving using mobility equipment?

RQ 2. Can transfer learning techniques be effectively
applied to improve the accuracy and efficiency of ob-
ject detection and human activity recognition systems
in real-world scenarios?

2 BACKGROUND
2.1 Caregiver Ergonomics

Ergonomics in healthcare focuses on optimizing care-
givers’ tasks and environments to enhance well-being,
productivity, and care quality [Waters, 2010]. Derived
from the Greek words "ergo" (work) and "nomos"
(natural laws), it is defined as the science of improving
safety and productivity by aligning jobs, equipment,
and human interaction [Mansoor et al., 2022]. The
physically demanding tasks of caregiving, such as
lifting, transferring, and repetitive movements, often
strain the musculoskeletal system, increasing the
risk of MSDs like back pain, strains, and sprains
[Waters, 2010].

2.2 Mobility Aid equipment

Mobility aid equipment includes devices like
wheelchairs, crutches, scooters, canes, and walk-
ers to support individuals with mobility impairments.
Advances in technology have introduced innovative
aids such as ceiling lifts, bed lifts, and transfer
aids, designed to improve accessibility and facili-
tate patient transfers. These assistive devices aim
to enhance safety for both patients and caregivers
[Schoenfisch et al., 2019].

2.3 MaxiMove Lift

The MaxiMove is a mobile patient lifting device de-
signed to aid caregivers in transferring and reposition-
ing patients with limited mobility. It typically con-
sists of a wheeled base for maneuverability, a standing
frame with a lifting mechanism and adjustable height
as shown in Figure 1(a) [Owens and Tapley, 2018], and
supportive sling attachments that secure the patient dur-
ing transfers.
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2.4 SaraFlex Lift

The SaraFlex lift Figure 1(b) is designed to assist care-
givers in transferring patients who require support dur-
ing activities such as standing, walking, or reposition-
ing, enabling a single caregiver to aid a patient from a
seated to a standing position in one natural movement
[Arjo, 2024].

(a) MaxiMove . (b) SaraFlex
Figure 1: Mobility Aids

3 RELATED WORKS

Few studies classify correct mobility aid usage, making
it largely unexplored. However, there are similarities
in dataset creation efforts highlighting the need for
customized data to support machine learning models.
[Gauen et al., 2017] analyze major machine learning
datasets and propose a novel dataset creation method
using network cameras, focusing on object detection
with "people” labels. Our study uses RGB cameras to
capture specific events. [Tian et al., 2022] present the
Construction Motion Data Library (CML) for activity
recognition in construction, using ergonomic labels
to identify unsafe postures. Our project leverages
similar methods for posture recognition in specialized
activity datasets. [Agrawal and Ertel, 2018] introduce
the ERTRAG project, a virtual trainer for nursing staff
to reduce MSDs by identifying incorrect postures.
Our project involves MaxiMove and SaraFlex lifts to
facilitate patient transfers, reducing direct physical
handling by caregivers. [Yuan and Zhou, 2023] pro-
pose an ergonomic posture risk assessment (EPRA)
method using the ROMP algorithm with a single RGB
camera. Our work calculates angles between 2D body
segment vectors. [Ohetal., 2011] introduced the
VIRAT Video Dataset to support continuous visual
event recognition (CVER) in outdoor environments
using footage from both stationary and aerial cameras.
While our work focuses on indoor settings typical of
caregiving contexts, it similarly emphasizes continuous
monitoring of human-object interactions. Recent work
by [Azadvatan and Kurt, 2024] demonstrates the effec-
tiveness of training YOLO-based architectures from
scratch for vehicular detection, while our approach
leverages transfer learning to adapt pre-trained YOLO
weights for healthcare-specific objects, achieving faster
convergence and higher accuracy on domain-specific
tasks.
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4 METHODOLOGY
4.1 Data Collection and Creation

We created a dataset capturing caregiver-patient
interactions with mobility aids, inspired by
safety and productivity monitoring methodologies
[Gauen et al., 2017]. This dataset simulates realistic
caregiving scenarios, addressing the lack of specificity
in existing datasets like MOCAP and NTU + RGBD
120 [Tian et al., 2022]. Data were collected through
video recordings in a simulated healthcare environment
using two Sony alpha-6 RGB cameras, following ethi-
cal guidelines with informed consent from participants.
Efforts were made to ensure diversity in height, weight,
gender, and ethnicity among participants, all of whom
were 18 years or older. Although professional nursing
staff were not involved, the data collection was guided
and validated by domain experts to ensure procedural
accuracy. Our dataset focuses on two primary activi-
ties: transferring from bed to wheelchair and vice versa
using the Maxi-MOVE lift, and transferring from bed
to wheelchair and vice versa using the Sara-Flex lift.
Eight sub-activities were identified from each of the
main activities, and only the relevant frames for each
sub-activity were included for processing. Irrelevant
portions, such as repeated or incorrect actions, were
excluded, ensuring a focused and accurate dataset for
model training.

4.2 Experimental Setup

Experiments were conducted in a simulated healthcare
setting with hospital beds, wheelchairs, and lift systems
to mirror typical caregiving scenarios. Two Sony alpha
6 RGB cameras were positioned 2.5 meters from the
scene and 3 meters apart, angled at 45 degrees to cap-
ture views. The setup included a wheeled hospital bed,
MaxiMove and SaraFlex lifts, and necessary slings and
straps. Activities involving the MaxiMove lift lasted 3
to 5 minutes, while SaraFlex activities averaged around
2 minutes, depending on the complexity of the activity.

Figure 2: Experimental setup of the shooting scene

S PROPOSED APPROACH

The proposed approach is shown in Figure 3. The
process starts by converting raw videos into frames.
YOLOV8 Object Detection identifies and localizes ob-
jects, while YOLOv8 Pose tracks movements by map-
ping key skeletal points. A Face Detection module
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was optionally included to blur faces for privacy con-
siderations. The ResNet18 frame classifier, which dis-
tinguishes relevant frames from irrelevant ones, cate-
gorizes frames before Inception-v4 extracts high-level
feature vectors. While both ResNet and Inception ar-
chitectures are effective for image processing and clas-
sification, Inception-v4 was chosen for its superior fea-
ture extraction capabilities, whereas ResNet18 was op-
timized for frame classification in this study. The er-
gonomic analysis module uses pose keypoints to com-
pute an ergonomic score. Feature vectors are processed
by an LSTM network to analyze sequential activities,
with fully connected layers supporting high-level rea-
soning and a sigmoid activation for binary classification
of ergonomic correctness.

5.1 Data preprocessing

Data preprocessing involved annotating the dataset for
object detection and pose estimation using Roboflow,
as well as preparing the dataset for training the ResNet
and LSTM models for activity detection and scoring.
Videos were uploaded to the Roboflow platform and
manually annotated.

For object detection, bounding boxes were drawn, and
class labels (caregiver, patient, wheelchair, bed, Maxi-
Move, and SaraFlex) were assigned at a rate of 1 frame
per second. The dataset comprised 4,932 labeled im-
ages, preprocessed with auto-orientation and resizing.
Data augmentation (flipping, brightness adjustments,
blurring) expanded it to 11,834 images. The dataset
was then split into 10,354 samples for training, 986 for
validation, and 494 for testing.

In order to annotate a dataset for pose estimation, we
identified keypoints representing human joints such as
the head, shoulders, elbows, wrists, hips, knees, and
ankles. A 13-keypoint skeletal structure was used, as
illustrated in Figure 4, connecting joints through lines
(e.g., shoulder to elbow, elbow to wrist) to form a
mapped human pose. Unlike more complex 17- or 21-
keypoint systems, the 13-point structure minimized an-
notation time while maintaining the necessary detail
to evaluate ergonomic postures. Our pose estimation
dataset preparation included labeling 1,042 images, fol-
lowed by preprocessing (auto-orientation, resizing) and
augmentations (saturation, brightness, blurring, noise)
to enhance robustness, expanding it to 3,229 images.
The dataset was split into 2,916 for training, 211 for
validation, and 102 for testing.

The dataset for training the frame classifier and LSTM
models was prepared through systematic steps. Frames
were extracted from raw videos at 25 fps, categorized
into distinct sub-activities and saved in separate fold-
ers with sequential filenames. This organization en-
ables focused training and evaluation on specific activ-
ities. The preprocessing (cropping) retained only ob-
jects of interest detected by the object detection model,
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Figure 3: The conceptual diagram of the proposed approach for classifying activities as correct or incorrect.
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Figure 4: 13-point keypoint system

minimizing background noise. To enhance generaliza-
tion, five data augmentation techniques, including ro-
tation, flipping, color adjustments, brightness and con-
trast variations, were applied.

5.2 Object Detection Module

The object detection component (illustrated in figure 3)
of this study utilizes the YOLOvV8 model as the primary
framework for identifying and locating various objects
involved in caregiving activities. The YOLOv8n variant
was chosen for its computational efficiency and capa-
bility to operate on a CPU, yielding satisfactory results
for object detection.

During the training phase, key metrics such as box loss
and class loss were computed. Box loss quantifies the
error in bounding box predictions, while class loss as-
sesses the accuracy of object class predictions. Follow-
ing the training phase, the model’s performance was as-
sessed using the validation dataset.

5.3 Pose Estimation Module

Pose estimation was performed using the YOLOvS
Pose model, adapted for tracking and analyzing care-
giver movements to assess ergonomic postures. While
this study focuses on caregiver posture assessment,
evaluating patient posture is proposed for future
research. The YOLOv8n-Pose variant was trained
with custom hyperparameters, setting ’pretrained’
parameter to false to accommodate our 13-keypoint
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annotation system instead of the default 17-keypoint
setup. Model accuracy was assessed using precision
metrics, including the mean absolute error (MAE) of
joint angles.

5.4 Angle Calculation and Posture As-
sessment

Accurate calculation of joint angles and posture assess-
ment are crucial for evaluating caregiving activities and
identifying risks of MSDs [Yuan and Zhou, 2023]. The
model predicts keypoints on video frames of caregivers
and patients, corresponding to body parts like the head,
shoulders, elbows, hips, knees, and ankles. These coor-
dinates are used to compute joint angles, with a focus
on assessing the caregiver’s back bending posture to de-
termine MSD risks.

The study assesses the degree of hip bending from
a lateral trunk view, classifying posture as normal,
moderate, or severe based on RULA and OWAS guide-
lines [Yuan and Zhou, 2023], [Zhang et al., 2018],
[Paudel et al., 2022]. These tools correlate bending
angles with risk categories: normal posture (low risk),
moderate bending (medium risk), and severe bending
(high risk). The following section outlines techniques
for analyzing caregiver ergonomics, focusing on angle
calculation and posture evaluation.

Keypoint Detection and Pose Analysis: Keypoints
correspond to critical body landmarks, such as the hips
and shoulders. Midpoints between keypoints are cal-
culated to simplify angle computations. For instance,
the midpoints between the hips and shoulders are rep-
resented as (x;,y;) coordinates for subsequent calcula-
tions.

The first step involves extracting the coordinates of rel-
evant keypoints detected by the pose estimation model.
The detection process is performed with a confidence
threshold, ensuring accurate and reliable identification
of keypoints. The coordinates of keypoints are repre-
sented as:

P = (xi,yi) ey

Where P, denotes the index of the keypoint. For in-
stance, keypoints for shoulders, hips, and other signifi-
cant joints are indexed accordingly.
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Angle Calculation: Angle calculation involves deter-
mining the angles formed by vectors between keypoints
that represent caregiver and patient postures. Specifi-
cally, to evaluate body segment alignment, we calcu-
late the angle at the hip by using lines connecting the
shoulder midpoint and the hip midpoint. Another line is
drawn from the shoulder midpoint to intersect an imag-
inary line that extends vertically from the hip midpoint,
forming a right angle at the intersection point, referred
to as the vertical reference.

1. Midpoints Calculation
Shoulder midpoint:

XL+XR YL +}’R) 2

2 72
where x; and y; represent the coordinates of the left
shoulder, and xg and yr represent the coordinates of
the right shoulder.

Fyhoulder_mid = <

Hip midpoint:

XL+XR YL +yR> 3)

Phip_mid = < ) ’ )
where x; and y; represent the coordinates of the left
hip, and xr and yg represent the coordinates of the right
hip.

2. Vector Definitions
Vectors u and v are defined between these keypoints
u = (Pspoulder_mid> Phip_mid) )

V= (P vertical_reference Hlipfmid) )
where Pyertical_reference 1 @ point directly above Bip_mid
chosen to form a right angle with the horizontal line
through P, shoulder_mid
3. Angle computation

This is achieved by using trigonometric functions. The
cosine of the angle 6 between the vectors u and v is

computed as:
u-v

 ulfflv]]
Thus, the angle 6 can be calculated as:

6 = arccos (uv> @)
[[ulf{}v]

where arcos() finds the inverse of the cosine angle. The
angle 0 is then converted from radians to degrees by the
formula:

cos(0) (6)

180

edegrees =0 x T ®
Angle Adjustment: To account for the 2D effect and
body alignment, the calculated angle is adjusted based
on the slope of the hip line. This adjustment ensures
that the angle measurement accurately reflects true er-
gonomic conditions, compensating for any tilt in the hip
line. The adjustment is formulated as follows:
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1. Slope Calculation

Yright_hip — Yleft_hip

Slope = )

Xright_hip — Xleft_hip

2. Adjusted Factor

The adjustment factor incorporates the slope to modify
the calculated angle:

scaling_factor

10
1 + |slope| (10)

adjustment_factor =

Where scaling_factor is a manually fixed parameter de-
termined through empirical analysis to ensure accurate
adjustments.

3. Adjusted Angle

Badjusted = O X (1 + adjustment_factor) (11)
Ergonomic Scoring: To quantify ergonomic quality,
an ergonomic score is calculated based on the measured
angles of the caregiver’s posture. The RULA/OWAS
scores for the trunk flexion angle (TFA) are categorized
into angles between 0° and 20° are considered neutral
and acceptable, while angles between 20° and 60° in-
dicate moderate lateral inclinations. Upper body an-
gles exceeding 60° for sagittal inclinations are deemed
unacceptable [Yan et al., 2017], [Abobakr et al., 2019],
[Hellmers et al., 2022], [Zhang et al., 2018]. Different
weightings are assigned to various strain levels to clas-
sify the angles into Normal, Moderate, or Severe cate-
gories. where:

¢ Normal - with a score of 1 and angles between 0° to
20° at the hip indicating optimal posture.

* Moderate - a score of 0.5 and angles between 20°
to 60° indicating some deviation from the optimal
posture.

¢ Severe - a score of 0 and angles greater than 60° re-
flecting significant deviations that could lead to mus-
culoskeletal disorders (MSDs).

1 if 6adjusted <20
strain_score = < 0.5 if20 < Oadjusted < 60
0 if 6adjustcd > 60

12)

The overall ergonomic score is derived as the average
strain score across all analyzed angles. This score pro-
vides an assessment of the caregiver’s posture, facilitat-
ing the identification of potential ergonomic risks and
implementation of corrective measures.

1 N
Overall Ergonomic Score = — ) strain_score; (13
g y & strain_score; (13)

where N is the total number of frames analyzed.
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5.5 Frame Classification Module

The frame classification module is essential for classi-
fying individual video frames to aid in detecting and
analyzing human activities and movements. We em-
ployed the ResNet-18 architecture, pre-trained on Im-
ageNet [He et al., 2015] to classify frames into distinct
activity categories. The dataset included 36,072 frames,
with 4,509 frames allocated to each of the eight classes.
This transfer learning approach utilizes the pre-trained
weights of ResNet-18 enhancing performance and ac-
celerating convergence.

5.5.1 Model Training and Validation

To narrow down the research, we focused on a single
activity: "transferring from bed to wheelchair using the
Sara-Flex lift." The dataset for frame classification con-
sisted of a varied number of frames per activity, rang-
ing from 59,740 to 37,575 frames in the training set.
To standardize, one frame was selected for every 10
frames, resulting in 3,757 frames per activity, based on
the class with the fewest frames. The test set comprised
20% of the training set, yielding 751 frames per activ-
1ty.

Two CSV files were created for training and testing,
each containing file paths and corresponding labels
based on the following label mapping:

0 : ’sara_sling_placement_bed’

1 : ’sara_sling_attach_bed’

2 :’sara_lifting_from_bed’
label_mapping — 3: ’sara_transf.er_to_wheelchair"

- 4 :’sara_lowering_to_wheelchair’
5 : ’sara_detach_sling_wheelchair’
6 : ’sara_remove_sling_wheelchair’
7

: ’sara_lifting_from_bed_wrong’

During preprocessing, the frames were resized to 224 x
224 pixels and normalized to ensure consistency. To
manage the large volume of frames, every 10th frame
was sampled for inclusion in the training dataset.

In training the frame classifier, we utilized a CNN based
on the pre-trained ResNet-18 model, replacing the fi-
nal layer with eight output neurons corresponding to
the sub-activity classes. The performance was evalu-
ated using a confusion matrix on the test set to ensure
generalization to new data.

5.5.2 Sequence Creation

Frames extracted from the input video are classified
into one of eight predefined classes or labeled as
unknown if the maximum probability is below 0.40.
Predictions of frames in the original sequence are
smoothed using a 500-frame window to reduce noise.
Frames are grouped into sequences based on transi-
tions in smoothed predictions. A change in predicted
class ends the current sequence and starts a new one.
Sequences shorter than a specified proportion of total

http://www.doi.org/10.24132/JWSCG.2025-2

16

Journal of WSCG
http://www.wscg.eu

Vol.33, No-1-2, 2025

frames are labeled as unknown. If an unknown label
appears between two sequences of the same activity, it
is merged with them; otherwise, it remains labeled as
unknown.

5.6 Feature Extraction

We implemented the Inception-v4 model. The model
was set to evaluation mode to process each frame and
extract features from the video frames in sequences of
length 50. As each frame passes through the pretrained
model, a 1536-dimensional feature vector is derived.
These features are aggregated across the sequence, en-
suring that each sequence of frames is consistently rep-
resented by 50 sets of feature vectors. If a sequence
had fewer than 50 frames, frames were duplicated; if
more, the sequence was truncated to maintain consis-
tency. The extracted features are then used as inputs for
the LSTM model.

5.7 Feature Selection

Before inputting video frame features into the LSTM
for confidence scoring, we used the SelectKBest
[Aguilera et al., 2022] method with the chi-squared
(x%) scoring function. This is a univariate feature
selection method that ranks features based on their
importance in predicting the target variable, selecting
the top k features most relevant for classification.
The highest values indicate features with a strong
association with the target variable. The chi-squared
statistic for each feature is calculated as:

C 2
2 _ (Ofc _Efc)
X - Z T

c=1

(14)

Where:
Oy, is the observed frequency of the feature in class c,

Ey. is the expected frequency of the feature in class c,

Eq — total count of feature in the datasetx total count of class ¢
fe = total number of examples .

Prior to feature selection, the LSTM model struggled
with convergence, often leading to oscillation or diver-
gence of the loss function. By applying SelectKBest,
we reduced the dimensionality of input features from
1,536 to 1,024, retaining only the most informative fea-
tures and eliminating irrelevant data. Each of the eight
corresponding LSTM models was paired with its Se-
lectKBest model, resulting in a significant reduction in
average test loss and improved generalization during in-
ference.

5.8 LSTM Model

The LSTM model is designed to evaluate whether ac-
tivities are performed correctly, where each activity in-
cludes eight specific sub-activities that must follow a
set sequence. The model computes a confidence score
for each detected sub-activity, determining if it exceeds
a predefined threshold, thereby verifying proper execu-
tion.
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5.8.1 Training and Validation

The training process involved developing eight distinct
LSTM models with the same architecture, each ded-
icated to a specific sub-activity to capture its unique
characteristics. The dataset contained 150 training ex-
amples (80%) and 37 test examples (20%) per sub-
activity. To address potential bias from intra-video sim-
ilarity, the dataset was split strictly at the video level,
ensuring no frames from the same video appeared in
multiple sets. While the background remained con-
stant, participants alternated roles (patient, caregiver),
and recordings were captured from two different cam-
era angles. Data augmentation was also applied to
increase training diversity. This setup ensured robust
training while retaining sufficient data for reliable eval-
uation. Each sequence was downsampled to a maxi-
mum length of 50 frames by selecting an optimal down-
sampling rate. Additional sequences were generated
from the same videos by selecting subsequent frames
not included in previous sequences while maintaining
the same step size, resulting in 7225 training and 1776
testing examples. Feature selection reduced the fea-
ture set from 1536 to 1024 dimensions, leading to final
dataset dimensions of (7225, 50, 1024) for training and
(1776, 50, 1024) for testing.

To prepare the data for the LSTMs, binary labels were
generated, and eight separate data loaders were created.
Each data loader contained all examples of a specific
class labeled as positive (label 1) and a random selec-
tion of examples from other classes labeled as nega-
tive (label 0). The ratio of positive to negative exam-
ples was maintained at 1:0.5. For example, if class O
(activity_0) has 1000 examples, the corresponding
model for class 0 will be trained with 1000 positive and
500 negative examples.

The LSTM architecture comprised:

 LSTM Layer: Parameters include input_size
= 1024,hidden_size = 256,num_layers
= 1, learning rate = 0.00001, and epochs =
10.

¢ Fully Connected (Linear) Layer: Reducing LSTM
output to a single confidence score.

* Activation Function: A sigmoid activation func-
tion providing a confidence score between 0 and 1.

Adam optimizer [Kingma and Ba, 2015] was used to
adjust learning rates based on recent gradients.

5.8.2 Testing

Each LSTM model was evaluated with its respective
test dataset, yielding confidence scores for each sub-
activity. Performance was assessed using Binary Cross
Entropy Loss, with the average test loss for each sub-
activity recorded.

http://www.doi.org/10.24132/JWSCG.2025-2

Journal of WSCG
http://www.wscg.eu

Vol.33, No-1-2, 2025

6 RESULTS
6.1 Object Detection Results

We evaluated object detection performance using Mean
Average Precision (mAP), Recall, and F1 Score, with
mAP50-95 scores indicating the model’s precision
across Intersection over Union (IoU) thresholds from
0.50 to 0.95. Table 1 presents F1, Precision, and Recall
metrics.

Epochs | mAP50-95 (Box) | Precision | Recall | Fl-score
50 0.8453 0.96638 | 0.9689 | 0.9677

Table 1: Validation set performance results for object
detection.

IoU measures the overlap between predicted and
ground truth bounding boxes, with higher thresholds re-
quiring more precise overlap [Everingham et al., 2010].
The YOLOv8 model achieved an mAP50-95 (Box)
score of 0.8453, reflecting an 84.53% average pre-
cision, demonstrating reliable object localization
accuracy. Figure 5 below shows examples of detected
objects with their respective confidence levels.

Figure 5: Object detection output and confidence levels.

The model accurately identifies "Bed," "Patient,"
"SaraFlex," "Wheelchair," and "Background" classes,
with minimal misclassification. Errors mainly oc-
cur between "Caregiver" and "Patient" due to their
close interactions with equipment. A background
class is included to reduce false positives (FP)
[Ultralytics, 2023].

6.2 Pose Estimation Results

Pose estimation was assessed using mAP and accu-
racy metrics, which are crucial for posture analysis.
The model achieved a mAP50-95 of 91.20% with over
99% precision and recall, indicating better model per-
formance in detecting and localizing keypoints accu-
rately. Table 2 summarizes the model’s performance,
and Figure 6 shows detected keypoints in an inference
image.

Epochs mAP50-95 Precision Recall
Box | Pose | Box | Pose | Box | Pose
50 0.938 | 0.912 | 0.995 | 0.995 | 0.995 | 0.995

Table 2: Validation set performance results for pose es-
timation.
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Figure 6: Keypoint detection.

6.2.1 Ergonomic Assessment

The ergonomic assessment used a scoring system based
on key body joint angles to determine the level of er-
gonomic strain experienced by caregivers during pa-
tient handling tasks. Table 3 lists frames with various
angles and their ergonomic scores, categorizing strain
severity. Frames with low angles, such as 5 and 3 de-
grees in Framel and Frame?2, received a score of 1,
indicating 'normal’ severity, while higher angles like
22 and 21 degrees (Frame828 and Frame829) scored
0.5, signaling ’low strain.” The majority of frames fell
within the 'normal’ range, with a mean score indicat-
ing acceptable ergonomic strain levels. However, in-
stances of ’low strain’ scores suggest specific postures
where caregivers could experience musculoskeletal dis-
comfort. Figure 7 illustrates the pose estimation and
keypoints with angle calculations used for ergonomic
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training and 98.85% in testing, demonstrating strong
classification performance. The high accuracy suggests
that it effectively learned to classify the different
activities from the dataset.

6.4 LSTM Model Results

LSTM training was conducted in two phases. Initially,
using all extracted features without feature selection,
the test loss showed insufficient convergence, often due
to overfitting. Table 4 presents the training, validation,
and test losses over 10 epochs, showing that while train-
ing and validation losses appeared to converge, the test
loss for most sub-activity classes did not achieve the de-
sired improvement. Applying feature selection signifi-
cantly enhanced performance, with test losses dropping
as low as 0.10 across sub-activities, as shown in Table
5. This indicates better generalization compared to the
initial approach.

Sub-activity | Epoch | Training Loss | Validation Loss | Test Loss
0 10 0.3503 0.3255 0.6283
1 10 0.3296 0.3598 0.4213
2 10 0.1867 0.2060 0.4061
3 10 0.0987 0.0852 0.3566
4 10 0.2007 0.2065 0.2184
5 10 0.2806 0.2696 0.7026
6 10 0.1569 0.1472 0.1957
7 10 0.0452 0.0388 0.0443

Table 4: Training results for LSTM models without fea-
ture selection.

scoring. Sub-activity | Epoch | Training Loss | Validation Loss | Test Loss

0 10 0.1133 0.0924 0.1006

. 1 10 0.2113 0.1952 0.2024

Frames Angle | Severity Score | Mean score 2 10 0.1113 0.0980 0.0082

Framel 5.0 normal 1 1 3 10 0.0630 0.0534 0.0950

Frame?2 3.0 normal 1 1 4 10 0.0618 0.0532 0.0591

5 10 0.1401 0.1238 0.1418

6 10 0.1304 0.1102 0.1096

Frame828 22.0 low_strain 0.5 0.69 7 10 0.0718 0.0584 0.0768
Frame829 | 21.0 | low_strain | 0.5 0.69 Table 5: Training results for LSTM models with feature

Table 3: Ergonomic posture scoring from different
video frames.

Figure 7: Pose estimation and Keypoints with Angle.

6.3 Frame Classifier Results

The ResNet-18 model was employed to classify frames
into different activity categories, focusing on the
SaraFlex. The model achieved 99.14% accuracy in

http://www.doi.org/10.24132/JWSCG.2025-2

selection.

6.5 Analysis of Results

Overall, the combined model’s performance across ob-
ject detection, pose estimation, frame classification, and
sequence modeling indicates capability in identifying
correct product usage and assessing posture for care-
givers. The results from each module of the system
were analyzed to assess their overall effectiveness and
key observations include:

Object Detection model’s mAP score of 0.8453
indicates good performance.

Pose Estimation model achieved 91.20% mAP for
pose accuracy. Despite the high mAP values, the
model’s performance could further be improved by
incorporating a more comprehensive range of pose
scenarios in the training dataset.

The Frame Classifier model demonstrated good
performance across many classes, though with some
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misclassifications likely due to frame overlap; address-
ing these overlaps could enhance precision.

LSTM model’s implementation without feature selec-
tion has test losses ranging from approximately 0.2 to
0.7 for various sub-activities. In particular, sub activity
5 exhibited high test losses, indicating that the model
struggled to generalize well. feature selection, losses
stabilized between 0.025 and 0.2, indicating better
generalization.

6.6 Inference Workflow and Evaluation
A snapshot of Inference results from each workflow
stage is shown in Figure 8.

Figure 8: A snapshot of combined results of all models.

The frame classifier displays the current activity and
confidence score in the top left, updating as the care-
giver transitions between tasks. The top right displays
the ergonomic score for the caregiver during each ac-
tivity. The Object Detection and Pose Detection mod-
els identify relevant objects and key skeletal points,
drawing the skeleton and calculating ergonomic scores
based on bending angles (6° for the caregiver, 9° for
the patient). Detected objects are labeled within the
scene. The model is designed to analyze entire activ-
ities, even those involving repeated sub-activities (e.g.,
transferring a patient from bed to wheelchair). This al-
lows comprehensive assessment of prolonged activities.
While the LSTM model’s confidence score may lower
with prolonged tasks, it remains effective for evaluating
caregiver performance across complete activities.

7 DISCUSSION

The primary aim of this project was to explore how
machine learning could facilitate the classification of
correct mobility aid usage and ergonomic assessment
in caregiving. Additionally, this research provided
insights into dataset creation and human activity
recognition to monitor interactions between caregivers
and mobility aids. The findings indicate that integrating
YOLO, ResNet, Inception-v4 and LSTM, effectively
identifies and classifies objects and activities within
caregiving settings.  The object detection model
showed high accuracy in recognizing essential items
like mobility aids, while the pose estimation model
offered valuable insights into caregiver and patient

http://www.doi.org/10.24132/JWSCG.2025-2
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interactions. These high-accuracy results highlight
machine learning’s potential in improving product
usage and ergonomics in healthcare.

Given this, we could answer RQ1 by stating that ”The
ML models demonstrated effectiveness in identifying
objects and activities relevant to caregiving. Object de-
tection successfully recognized key items like mobility
aids, while pose estimation accurately assessed care-
giver and patient postures, showing that ML can assist
in identifying correct product usage and ergonomic as-
sessment.”

Regarding RQ2, and upon the results obtained, we
could state that” The use of Models like YOLO and
ResNetl8 confirmed that using pre-trained models and
transfer learning improves the accuracy of object de-
tection and activity recognition tasks”

This study has several limitations. The dataset may not
fully represent real-world healthcare variability, as sub-
jects imitating patients may not capture the full range
of actual behaviors, limiting generalizability. Testing
in controlled settings may not directly translate to real-
world scenarios, impacting the model’s external valid-
ity. The manual annotation process can introduce hu-
man error and bias, potentially affecting data quality
and model performance.

8 CONCLUSION

This study demonstrated the application of machine
learning techniques in healthcare, particularly for im-
proving patient care and caregiver safety. Key objec-
tives included creating a robust dataset for object detec-
tion, pose estimation, and activity recognition; leverag-
ing machine learning models for accurate recognition
and assessment; and applying transfer learning to en-
hance model performance. The study integrated YOLO
for object detection, YOLO Pose for pose estimation,
ResNet for frame classification, Inception-v4 for fea-
ture extraction, and LSTM for sequence modeling. This
cohesive system effectively recognizes human activities
and assesses caregiver ergonomics, thereby contribut-
ing to improved healthcare practices.Future research
could focus on collecting more comprehensive data, ex-
ploring advanced ML models, and developing refined
ergonomic scoring techniques to better measure care-
giver posture.
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