ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN

http://www.wscg.eu WSCG 2025 Proceedings

Is Python OpenCV slower than its C++ version?

Adam L. Kaczmarek, Kacper Bieryto, Jan Gabryotek and Jakub Macioch

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology
ul. G. Narutowicza 11/12
80-233 Gdansk, Poland

adakaczm@pg.edu.pl

ABSTRACT

The paper presents the comparison of the execution time of applications with regard to the programming language
in which they were implemented. C++ and Python languages are considered. The selection of the programming
language may have a significant impact on the overall performance of the application. The presented research
applies to the OpenCV programming library which is a commonly used library in the field of image processing
and computer vision. The paper presents experiments with Feature2D, Video I/O and highgui modules included
in this library. In general it seems that programs written in C++ should be faster because it is a more low level
language than Python. However surprisingly our research showed that in many cases using Python functions of
OpenCV leads to the development of faster applications. The difference was particularly significant in case of the

Feature2D module. In case of creating GUI it is negligible.

Keywords

Python; C++; OpenCV; programming languages; execution time

1 INTRODUCTION

The research presented in this paper is concerned with
verifying the execution time of applications depending
on whether they were implemented with the use of the
C++ language or Python. Such a comparison is im-
portant for the purpose of developing real time appli-
cations. Real-time applications necessitate quick data
processing, and results must be provided within the
specified time limit to be used by the end user.

The investigation utilized here involves the use of the
OpenCV library, which is one of the most essential pro-
gramming libraries used in computer vision [BKOS]. In
particular, this library can be used to create autonomous
robots. This kind of robots operate in real time and they
are able to perform tasks without being directly con-
trolled by human operators. Overall, the OpenCV li-
brary contains implementations of over 2500 algorithm.
Despite its popularity and importance there are only a
few research papers addressing the topic of selecting
a programming language suitable for using OpenCV.
OpenCV makes it possible to use its functions with
many languages including Python and C++. Despite its

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

http://www.doi.org/10.24132/CSRN.2025-36

popularity and importance there are only a few research
papers addressing the topic of selecting a programming
language suitable for using OpenCV. OpenCV makes it
possible to use its functions with many languages in-
cluding Python and C++.

Official data provides information that the Python ver-
sion of OpenCV is in fact also written in C++, therefore
there should not be a deterioration in the execution time
caused by switching from C++ to Python [Ope]. Never-
theless, Bustamante et al. showed that there is a the dif-
ference between the execution time of applications with
regard to the used programming language [BBM*22].
Ramon drew similar conclusions [Ram14]. Thus, we
decided to perform tests in order to determine the dif-
ference in speed between applications written in C++
using OpenCV functions and their substitutes written
in Python. Tests were based on developing the same
functionality using these two languages and verifying
their speed.

2 RELATED WORK

There are some research paper discussing the issue of
speed comparison between applications implemented
in C++ and those written in Python.

Bustamante et al. presented a paper which is so far
the closest to the topic of our research in compari-
son to other research paper [BBM*22]. They ana-
lyzed two implementations of the same application us-
ing OpenCV. The application was designed to process

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

http://www.wscg.eu
data for the purpose of performing real-time simula-
tions using the Unity game engine. These simulations
were aimed at developing unmanned aerial vehicles.

The first version of the application was implemented
in C++. In the second setup they used Python and the
Message Queue Telemetry Transport (MQTT) protocol
for transferring data between Unity and OpenCV func-
tions. They divided parts of their implementations into
three categories. The first category was data process-
ing necessary to perform prior to transmission, the sec-
ond one was transmission process and the third cate-
gory was data processing itself. This data processing
was performed by OpenCV.

Their finding were such that in the phase of data pro-
cessing it was much faster to use Python in compari-
son to C++ because data provided by Unity was more
compatible to OpenCV functions available in Python.
The processing time using Python was between 6 ms
and 17 ms for the data they used. In C++ it was in the
range from 35 to 57 ms. The time of data transmission
was similar in case of both kinds of implementations.
Bustamante et al. also noticed other differences related
to the programming language. In case of an algorithm
for color detection C++ proved to be faster. On aver-
age processing data with C++ lasted 0.7 ms while using
Python the average processing time was 2.5 ms. How-
ever, the algorithm for Face Detection ran faster using
Python. A single image was processed using Python in
between 7 and 12 ms and using C++ between 5 and 12
ms. Their final conclusion was such that using Python
is more advisable in case of software that they were
developing mainly because of a better compatibility of
data formats between Unity and OpenCV. Using MQTT
also supported the speed of applications implemented
in Python.

Ramon noticed that capturing images using Python
functions implemented in OpenCV takes twice as
much time as using its C++ version [Raml4]. He
showed that relation on the basis of the execution time
of the VideoCapture class methods. He performed his
experiments on the Intel Galileo board.

Another paper concerned with the issue of comparing
the speed of Python with regard to C++ was written by
Di Domenico et al. [DDLC23]. They focused on the
performance of GPU. They tested three configurations:

e Python with Numba environment for enabling
CUDA support

e C++ operating on CUDA

e C++ with OpenACC

Domenico et al. took advantage of NAS Parallel
Benchmarks for testing the execution time of these

http://www.doi.org/10.24132/CSRN.2025-36

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

three kinds of programming environments. The con-
clusion of their research was such that applications
implemented in Python had a similar performance as
those written in C++ when the CUDA architecture is
used. However, results that they presented indicate that
in case of some tests the Python implementation was
over 3 times slower. They also noticed that Python
used with CUDA was faster than the configuration with
C++ and OpenACC.

v~

in which they compared the performance of C/C++, Mi-
croPython, Rust and TinyGo Programming Languages
on the ESP32 Microcontroller [PLJ23]. They worked
on this comparison in the context of developing Inter-
net of Things (IoT). Comparison of Python and C++
was also discussed by Ferron and Manduchi [FM22].
They focused on real-time applications.

Another researcher who investigated the speed of soft-
ware using different languages were Briggs [Bri06]. He
compared performance of applications for calculating
exact real arithmetic in Python, C++ and C. He did not
present exact times of executions of applications im-
plemented with the use of different kinds of languages.
He only noted that the code in C would typically be 10
times faster than C++ and more than 100 times faster
than the Python version. He also claimed that achieved
efficiency is compiler-dependent.

Dedner and Klofkorn compared the performance of
Python and C++ on the example of the Riemann prob-
lem [DK22]. They tested two methods for solving this
problem, the first one used the Cartesian grid and the
second one was based on the unstructured grid. When
the first method was used they did not observed a differ-
ence in the performance depending on the programming
language. However, in case of the second method they
reported that the application implemented in Python
was 10 % slower.

3 EXPERIMENTS

This paper aims at answering the question if it is ad-
vantageous to choose C++ instead of Python to develop
software running faster even though the development
time would be longer and more complicated. The devel-
opment time is shorter using Python because this lan-
guage is more expressive and its productivity is higher
[Ber13]. We have performed a series of experiments
with different functions of the OpenCV library in order
to verify how the programming language selection af-
fects the overall performance of a resulting application.

Our experiments covered functions included in Video
I/0O, Feature2D and highgui modules of OpenCV. In the
Video I/O module the following three functions were
tested: the constructor of the VideoCapture class, the
read function of the VideoCapture class and the write
function of the VideoWriter class Another experiment

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN

http://www.wscg.eu

WSCG 2025 Proceedings

Constructor Write Read
15 T T 15 T 15 T
o 10f 4% 10 4% 10 .
£ £ £
: / 5 =
S S S
5] 83 53]
XX
0 1 1 1 0 1 1 1 0 1 1 1 1
0.5 1 1.5 2 0.5 1 1.5 0.5 1 1.5 2
pixels per frame 106 pixels per frame -10° pixels per frame -10°

—+— C++ —— Python

Figure 1: Videoio functions, execution time

was concerned with testing functions from the fea-
ture2D module. Three corner detector functions were
selected for experiments: FAST, AKAZE and BRISK.
The study of the highgui module included function im-
read, imwrite and imencode.

All tests of Video I/O involved running the code with
a specified number of repetitions. The tests were re-
peated ten times and the two extreme results were dis-
carded. Then, the average time was calculated from
the remaining results. The time taken to create an ob-
ject of this class for files of different resolutions was
measured for 1000 repetitions. In order to test execu-
tion time of tested functions two programs were imple-
mented in both programming languages ensuring that
the code was as similar as possible to maintain consis-
tency.

3.1 testdata

We tested OpenCV functions with randomly selected
images and videos. However input data was selected
with regard to their resolution.

The data used for the experiment of VideolO were
copies of the same video in resolutions of 144p, 240p,
360p, 480p, 720p, 1080p (16:9 aspect ratio). The video
is 2 minutes 28 seconds long and it has a frame rate of
23.98 frames per second.

High-resolution wallpapers were chosen for tests of
Feature 2D due to containing a large amount of pix-
els and different elements on the image, such as still
life, logos and cartoons. The tests were run on sets
of ten, twenty, thirty, forty and fifty images. The size
of the images varied form approximately 200Kb to 1,9
Mb, averaging around 600Kb. For tests concerning the
size of a single image, one of the previous images was
scaled to: 393Kb; 828Kb; 1,1Mb; 1,59Mb and 1,96Mb
respectively. The same image was used, because while
using different images for each file size, the results were
highly inconsistent.

The input data for the experiment with highgui con-
sisted of JPEG images, each with a resolution of 4624

http://www.doi.org/10.24132/CSRN.2025-36 337

x 2604 pixels. These images depicted various city ob-
jects, providing a diverse data set for the experiment.

4 RESULTS

In Fig. 1 charts are presented, showing the execution
time of tested functions depending on the size of the
input file. Results showed that the VideoCapture class
constructor in Python has shorter execution time and
this one is the most significant difference in the tested
functions. For resolutions up to 720p, the execution
time is over two times shorter. In the case of the "read"
function, there are noticeable differences in favor of
Python for lower resolution videos. However, the sit-
uation reverses for videos with resolutions greater than
360p, where C++ gains a slight advantage. The write
function has a shorter execution time in Python, but its
advantage diminishes as the file resolution increases.

Plots for data acquired during the tests of Feature 2D
are shown in Fig. 2. The results show that for both C++
and Python, the Fast function is executed with simi-
lar speed. For Akaze and Brisk functions, Python is
faster and scales better with the number of images pro-
cessed. In both cases, the Fast function is the fastest,
while Brisk is the slowest. Looking at the average time
of execution for a single image it can be assumed, that
for both C++ and Python it is unrelated to the number
of images processed. The execution time size show that
Python is faster when it comes to Akaze and Brisk func-
tions.

The findings regarding the highgui module showed that
on average the C++ implementation was around 5 per-
cent faster than the Python counterpart when handling
50 input images. With fewer images, the difference was
slightly smaller.

S CONCLUSIONS

The answer to the question "Is Python OpenCV slower
than its C++ version?" is such that in many cases appli-
cations written in Python are faster than their alterna-
tives implemented in C++. It applies both to VideolO

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Fast() Akaze() Brisk()
T T T T T T 20 T
8 - .—/‘\'/0/' -
02 B
= = = 15F h
o Q 6 I 1 o
£ £ £
g g 4l 18 107)
5 0.1p 13 E
3 3 3
3 5 g sl |
2 |- -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
393 828 1,100 1,590 1,960 393 828 1,100 1,590 1,960 393 828 1,100 1,590 1,960
File size [Kb] File size[Kb] File size [Kb]

—o—C++ Python

Figure 2: Time of execution for each method depending on the file size

and feature2D modules. In case of creating a user in-
terface with OpenCV differences are negligible. It also
needs to be noticed that C++ is a much more compli-
cated language because using it exposes an application
to segmentation fault errors which can occur if the pro-
gram is not implemented correctly. Therefore, the con-
clusion of the research presented in this paper is such
that it is advisable to select Python over C++ as a pro-
gramming language for using OpenCV.

In future work we plan to further investigate the issue
of programming language usage with OpenCV. There
are two path of further development. The first one is
analyzing a greater number of functions including ex-
periments with a narrow scope focused on a particular
functionality of OpenCV. The second path for further
research is the investigation of the code of OpenCV in
order to determine reason for differences in processing
time with regard to programming language. That rea-
son may lie in issues related to conversions in formats
of input data used by OpenCYV functions. A similar kind
of problem was observed by [BBM™22] as described in
Sect. 2.

6 REFERENCES

[BBM122] Andris Bustamante, Lidia M. Belmonte,
Rafael Morales, Anténio Pereira, and An-
tonio Fernandez-Caballero. Video pro-
cessing from a virtual unmanned aerial ve-
hicle: Comparing two approaches to using
opencv in unity. Applied Sciences, 12(12),
2022.

Donnie Berkholz. Programming
languages ranked by expressive-
ness. https://redmonk.com/
dberkholz/2013/03/25/

[Berl3]

[BKO8]

[Bri06]

[DDLC23]

[DK22]

[FM22]

[Opel]

[PLJ23]

[Ram14]

programming-languages—ranked-/

/by—expressiveness, 2013. Ac-
cessed: 2024-01-10.

http://www.doi.org/10.24132/CSRN.2025-36

338

Dr. Gary Rost Bradski and Adrian Kaehler.
Learning Opencv, Ist Edition. O’Reilly
Media, Inc., first edition, 2008.

Keith Briggs. Implementing exact real
arithmetic in python, c++ and c. Theo-
retical Computer Science, 351(1):74-81,
2006. Real Numbers and Computers.

Daniel Di Domenico, Jodo V. F. Lima, and
Gerson G. H. Cavalheiro. Nas parallel
benchmarks with python: a performance
and programming effort analysis focusing
on gpus. The Journal of Supercomputing,
79(8):8890-8911, 2023.

Andreas Dedner and Robert Klofkorn. Ex-
tendible and efficient python framework
for solving evolution equations with sta-
bilized discontinuous galerkin methods.

Communications on Applied Mathematics
and Computation, 4(2):657-696, 2022.

Nicolo Ferron and Gabriele Manduchi.
Using python modules in real-time plasma
systems for fusion. Sensors, 22(18), 2022.

OpenCV. Introduction to opencv-python
tutorials. https://docs.opencv.
org/4.x/d0/de3/tutorial_py_
intro.html. Accessed: 2024-01-10.

Ignas Plauska, Agnius Liutkevicius, and

tion of ¢/c++, micropython, rust and tinygo
programming languages on esp32 micro-

controller. Electronics, 12(1), 2023.

Manoel Carlos Ramon. Using OpenCV,
pages 319-400. Apress, Berkeley, CA,
2014.

