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ABSTRACT
Lacunar fractal structures reduce the material quantity and weight while improving some physics properties, such
as heat transfers, and preserving good mechanical properties. Nowadays, it is possible to construct such shapes
thanks to additive manufacturing. This paper focuses on automatically generating subdivision rules for fractal
lacunar structures with local topology control. The first main difficulty is guaranteeing topological consistency
while assembling different cells to build a complicated multi-lacuna structure. The second is the adaptation of such
shapes to geometric constraints like imposed boundaries. We address these questions throughout the formalism
of the Boundary Controlled Iterated Function System. Then, we analyze the lacunarity and complexity of these
structures from various geometric, topologic, and fractal measures.

Keywords
Fractals, Geometric Modeling, Lacunar Control, Iterative Modeling, Subdivision

1 INTRODUCTION

Saving energy by designing lighter objects while main-
taining high physical properties is a crucial issue for
the industry. The global structure must respond to sev-
eral constraints, like mechanical resistance, energy ab-
sorption, heat transfer, and soundproofing, using a min-
imum quantity of material.

Porous metallic material is a pertinent solution for pro-
ducing lighter objects. One can obtain metal foams
from different techniques: mixtures of gas bubbles and
a molten alloy or with the sintering and dissolution
process [JZSL05] for instance. Because of the com-
plexity and the randomness of the manufacturing pro-
cess, it is challenging to guarantee expected properties
[Ban06, JWZ07]. Then, the definition, the characteriza-
tion, and the measure of the porosity arise in different
domains to study their relations with physical proper-
ties [Esp12, AC15, JWZ07].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Thanks to additive manufacturing, we can produce
lighter structures by designing controlled and structured
geometry like lattice [TMV+16]. These structures
generally fill a given volume with the minimum of
matter. The most straightforward approach generates a
strict periodic lattice as if one directly cuts the volume
in a lattice block. The lattice comes from an initial
periodic primary cell (thickened edges of a cube, 3D
cross, gyroid) duplicated along the three 3D axes. This
approach induces discontinuities at the boundaries of
the filled volume. A parameter (thickness of beams, for
instance) can also control the geometry of the initial
cell to modulate its density and generate lattices with
variable density to respond to specific physical prop-
erties [LJP+19]. Numerous surveys on this topic are
available; see [PHL20, CLLZ21, FFL+18]. Softwares
are available like [AKA21] to generate such lattices
using optimal surfaces like gyroid as primary cells
with variable density. An improvement of this method
is to consider the geometry of the volume to adapt
the lattice to its boundary to avoid discontinuities. In
[KT10], Kou et al. introduce randomness to obtain
irregular porous structures to produce variable density.
More recently, McNulty et al. [MBZ+20] and Levo
et al. [LVSZ21] propose bio-inspired approaches
introducing multi-scale structures. Topological opti-
mization also uses the multi-scale aspect. A second
optimization step introduces a micro-lattice structure in
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under-constrained parts of the macro lattice, resulting
from the first optimization step (see left Figure 1).
However, the hierarchy level is generally shallow (one
level for topological optimization and generally two
levels for bio-inspired approaches). Furthermore, they
are provided from ad-hoc implementation without
formalizing the topological subdivision process and
could be challenging to adapt to any situation.

We propose a new approach based on multi-scale
lacunar structures resulting from fractal geometry,
as shown in Figure 1 (middle and right). The mo-
tivations are: fractals appear as an optimal solution
[LC19, AALS17] or are used as a model of bio-inspired
structure for optimization [BRBH19]; fractal models
can generate a great variety of topologies with different
kinds of lacunarities and consequently interesting
multi-physics properties such as heat and mass transfer
[Pen10, Zha11, ZZ13], energy absorption [MGM+18]
or acoustical properties [AJS18, SHR97]; fractal mod-
eling encompasses standard NURBS and subdivision
surfaces, standard lattice structures, and multi-scale
lattices [GGS21].

Producing fractal structures is easy by programming
recursive algorithms. However, controlling the result-
ing shapes is more complicated. Some models like L-
system or Boundary Controlled Iterated Function Sys-
tem, associated with topological constraints, allow ac-
curate geometry control [TGM+09, GGS21] and enable
us to design varieties of lacunar structures with specific
fractal topology.

Generating a lightweight structure by an assembly of
fractal structures is a challenge. Difficulties come from
the different topologies and geometries arising from
fractal modeling while ensuring continuity to produce
well-defined printable objects. Controlling the bound-
ary topologies of cells makes the assembly process
straightforward. For our purpose, we use the BC-
IFS model. This model has the advantage of coding
the fractal topology with adjacency and incidence con-
straints, controlling the geometry and the topology in-
dependently, and defining free-form shapes according
to a set of control points.

As said before, this formalism provides powerful tools
for designing various complicated multi-scale lacunar
structures. However, currently, designers have to de-
scribe all the topological constraints by hand, which
could be tedious. Nevertheless, once the topology is de-
fined, the model guarantees the topological coherence,
regardless of the geometric realization, which we adjust
by control points and the iteration level.

The contribution of this paper is to provide
parametrized algorithms that automatically gen-
erate a BC-IFS model of various multi-scale 2D
structures with different lacunar topological complex-
ities. Section 2 introduces the needed definitions and

properties for the BC-IFS model. Section 3 shows a
method to automatically define the subdivision rule of
a 2D cell (a face) depending on the fractal topology
of its boundary. We complete the lacunarity control
with delay subdivisions in Section 4. In Section 5, we
propose some measures to characterize the lacunarity
and the complexity of fractal structures. Section 6
concludes this article and suggests future works.

Figure 1: Left: Example of a topological op-
timization with two levels of lattice struc-
tures (©Altair Engineering). Middle: Elephant
structure (from CGAL Computing Library at
https://github.com/CGAL/cgal) built
with multi-scale lacunas. Right: part of a mechanical
system redesigned with multi-scale lacunar compo-
nents shown in Figure 2.

Figure 2: Subdivision of a truncated tetrahedron into
some truncated tetrahedrons

2 BACKGROUND: BC-IFS MODEL
The Boundary Controlled Iterated Function System
(BC-IFS) [SGGM15] model is based on Iterated
Function System [Hut81, Bar90]. A set of contractive
transformations defines an object by describing its self-
similarity property, i.e., how this set of contractions
subdivides the object into smaller copies of itself. By
iterating on this set of transformations from an initial
object (named the primitive), the obtained sequence
converges to a unique shape called the attractor. In
practice, the number of iterations is finite, giving an
approximation of the attractor.

Recurrent IFS [BEH89] or C-IFS [ZT96] control the
subdivision process using an automaton or a directed
graph specifying the subdivision of an attractor into
copies of itself or other attractors. Each state of the au-
tomaton defines a sub-attractor, and the outgoing transi-
tions define the associated subdivision rules. By defin-
ing attractors in a barycentric space, C-IFS provide
free-form fractal shapes.

Finally, Boundary C-IFS (BC-IFS) [SGGM15, GGS21]
uses additional concepts to encode the cellular decom-
position with incidence constraints: fractal volumes
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bounded by fractal surfaces bounded by fractal edges
bounded by vertices. With a set of adjacency con-
straints between subdivided cells, we define the fractal
topology of the attractor (see Figure 3). Incidence and
adjacency constraints induce constraints on the BC-IFS
transformations. They determine the topology, while
the remaining degrees of freedom control the geometry.

Figure 3: Example of definition 2D fractal topology.
Left: the cellular decomposition. Middle: the topology
subdivision. Right: the resulting attractor.

3 AUTOMATIC SUBDIVISIONS OF 2D
CELLS

To build structures composed of lacunar cells with the
BC-IFS model (see middle of Figure 1), one has to de-
fine a global shape that assembles different cells. The
assembly uses adjacency constraints to ensure a consis-
tent fractal topology at the junction of each cell with
another. Then, one has to define the subdivision rule of
each cell adapted to the wanted lacunarity (see Figures
3 and 4 for an example in 2D).

Figure 4: Subdivision of a hexahedron into six hexahe-
drons

Defining the subdivision process of each cell (including
incidence and adjacency constraints) could be challeng-
ing for many cells. We want to automatize the definition
of the subdivision process. To facilitate the assembly of
fractal structure, we change the design paradigm by de-
ducing face subdivision from imposed edges. We auto-
matically define the subdivision of a face from its edges
with a lacunarity control and deduce all incidence and
adjacency constraints.

3.1 Notation
We classify two types of edge topology: Bn edges and
Cn edges. The Bn edges subdivide into n connected sub-
edges of type Bn (see Figure 5 for an example). The Cn
edges subdivide into n disconnected sub-edges of type
Bn (see Figure 6 for an example). In practice, Bn edges
are Bézier edges, and Cn edges are Cantor edges.
We denote a fractal face by F(∂ ,E,A) with ∂ its bound-
ary, E a tuple of three edge topologies characterizing
subdivision process, and A its subdivision algorithm.

Figure 5: Example of subdivisions of B2 and B3 edges.

Figure 6: Example of subdivisions of C2 and C3 edges.

The parameter ∂ is a tuple of the face’s edges in the
counter-clockwise direction. We use the following no-
tation ∂ = He0,e1, . . .eNI,ei being the i-th edge. The or-
der of the edges in ∂ is significant, up to a circular per-
mutation. We use this specific notation to facilitate the
comparison between boundaries. For instance if ∂1 =
HC3,B2,C4,B2,C2,B2I and ∂2 = HB2,C2,B2,C3,B2,C4I,
they represent the same boundary because ∂1 = ∂2 with
a circular shift of three elements.

The parameter E contains a tuple of three types of
edges (Ea,El ,Ec). The subdivision algorithm uses
these edges to define the boundary of the sub-faces.
Figure 7 shows where these edges appear after a
subdivision. The choice of these edge types directly
impacts the lacunarity.

Figure 7: Example of a subdivision process. The ad-
jacencies of the sub-faces are made along the edges Ea
in green. The edges that form the central lacuna are the
edges El in blue. The edges Ec in red are added between
two Cn sub-edges.

In this paper, we present several algorithms to define
the subdivision of a face. The parameter A defines the
algorithm used.

3.2 Algorithm
We present the algorithm A1 to automatize the defi-
nition of the subdivision rules of a fractal face from
its edges. We present other algorithms in Section 4.3.
Notice that the algorithm does not operate the subdi-
vision process. It defines the rules of subdivision and
all the adjacency and incidence constraints of the BC-
IFS model. Figure 8 describes all the steps of the algo-
rithm A1. It creates one sub-face for each pair of sub-
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edges in the corner of the face and one for each sub-
edge that is not in a corner. The algorithm defines the
incidence constraints for all sub-faces with the first (or
the two firsts) edge(s) in the boundary. It also defines
adjacency constraints between all adjacent subcells on
their Ea edges. The sub-faces have the same parameters
as the face, but their boundary differs. The algorithm
works as follows:

1. Subdivide the boundary (all the edges) of the fractal
face (a).

2. Selection of the sub-edges. The selection step takes,
in the sub-edges of the face, the next sub-edge not in
a corner, or the next two sub-edges in a corner. Each
selection leads to a sub-face creation. The boundary
of the sub-face starts with the selection. Define inci-
dence constraints between the sub-edge of the face
and the edges in selection.

3. Add to the boundary the Ec edge if the last edge in
the current sub-face boundary is a Cn edge (c).

4. Add to the boundary the edges Ea, El and Ea in this
order (d).

5. Add the Ec edge if the first edge in the sub-face
boundary is a Cn edge.

6. Repeat from step 2 until all the sub-faces are created
(no more selection).

7. Identify all sub-faces by their edges (i).

8. Define adjacency constraints between all sub-faces
on their Ea edges.

We execute the algorithm on an example with
the fractal face F(∂ ,E,A1), having a bound-
ary ∂ = HC4,B2,C2,B2,C3,B2I, and having
E = (C2,B2,B2). Figure 8 details step-by-step the
algorithm for this example. The first step subdivides
the boundary. The second step is selection. The first
selection is, for instance, the top right corner of the
cell: the two sub-edges are B2 and C4. Hence, the
boundary of the sub-face starts with ∂1 = HB2,C4I. The
third step adds an Ec edge since the last edge was a
Cn edge: ∂1 = HB2,C4,B2I. The fourth step fills the
boundary of the sub-face with the edges Ea, El and
Ea: ∂1 = HB2,C4,B2,C2,B2,C2I. The fifth step adds a
Ec edge if the first edge in the boundary is a Cn edge
(not the case for ∂1). We continue to the next sub-face.
The next selection is a sub-edge not in a corner: a C4
sub-edge. Hence, the boundary of the sub-face starts
with ∂2 = HC4I. Since the last edge in the boundary is a
Cn edge, the third step adds the Ec edge: ∂2 = HC4,B2I.
The fourth step adds the edges Ea, El and Ea to the
boundary: ∂2 = HC4,B2,C2,B2,C2I. The fifth step adds
the Ec edge since the first edge is a Cn edge. Finally,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Algorithm A1 to define the subdivision rule
of a face from its edges.

∂2 = HC4,B2,C2,B2,C2,B2I, and we continue so on for
all the sub-faces.

Figure 9 details five steps to intuitively understand the
A1 algorithm’s logic. An intuitive idea allows us to
quickly create other algorithms based on the same prin-
ciple. We introduce some algorithms in Subsection 4.3.
The idea of the algorithm is the following:

1. Subdivide all edges (b).

2. Add two Ec edges between the sub-edges of the Cn
edges (c).

3. Add El edges in the center of the face to create the
lacuna (d).

4. Add the Ea edges between the external boundary and
the central lacuna (e).

5. Identify all sub-faces by their edges (f).

3.3 Convergence
The algorithm defines the subdivision rule of a face into
sub-faces. It can induce sub-faces with unspecified sub-
division rules. Applying the algorithm recursively pro-
vides the subdivision rules for all sub-faces that appear
during the process. For any initial face, a finite number
of faces can appear over the recursion. All sub-faces
contain only edges from the base face or the parameter
E of the face (Ea, El , and Ec). Each sub-face contains
a limited number of edges. The maximum is seven: a
pair (Cn,Cn) of sub-edges in the corner, two edges Ec,
and the three interior edges (two Ea and one El). The
minimum is four: one Bn sub-edge (not in a corner) and
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(a) (b) (c)

(d) (e) (f)

Figure 9: Intuitive algorithm to define the subdivision
process of a face from its edges.

the three interior edges. Since there are a finite number
of edge types and each sub-face has a finite number of
edges, there are a finite number of different sub-faces.
Hence, the recursion is guaranteed to terminate.

3.4 Lacunarity control

One can control the lacunarity by choosing the types
of edges Ea, El , and Ec. Depending on that choice,
one face often appears that subdivides into copies of
itself. For instance the face F0(∂0,E,A1) with ∂0 =
HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2) always ap-
pears in the sub-faces of all faces F(∂ ,E,A1) after
some iterations, regardless the boundary ∂ . Figure 10
shows the face F0 subdivision.

Figure 10: Subdivision of the face F0(∂0,E,A1) with
∂0 = HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2). It
subdivides into six faces F0.

In the other cases, two or more faces appear, each
subdividing into copies of themselves and copies of
the other faces. Let be the faces F1(∂1,E,A1) and
F2(∂2,E,A1) with ∂1 = HC2,B2,C2,B2,C2,C2I, ∂2 =
HC2,C2,C2,C2,B2,C2,C2I, and E = (C2,B2,C2). It is
an example where F1 subdivides into four sub-faces F1
and two sub-faces F2, whereas F2 subdivides into five
sub-faces F2 and two sub-faces F1. There is no face
subdividing into several copies of itself, but there is
a cycle between two faces. These faces appear in the
sub-faces of all faces F(∂ ,E,A1) after some iterations,
regardless the boundary ∂ .

4 DELAYED SUBDIVISIONS
We introduce a delay in subdivisions to have structures
with faces with different local iteration levels. Without
delay (left of Figure 11), the size of the lacunas might
be tiny on the small face compared to the ones of the
bigger faces. The delay allows us to have a uniform la-
cunarity when the size of the cells is not uniform (right
of Figure 11). On the other hand, when faces have the
same size, the delay induces a different lacunarity (see
Figure 14). Hence, we propose delay subdivisions and
some improvements in the presented algorithm to han-
dle them.

Figure 11: A fractal structure made of five faces with-
out delay (left) and with delay (right). The central face
is smaller than the others, but with a delay in its sub-
division, its lacunas are not very small compared to the
other lacunas.

4.1 Definition
A face with a delay in its subdivision is a face that
induces no lacuna after its subdivision but has only
its edges subdivided to preserve the consistency of
the structure if the face shares an edge with another
face. We denote the delay by an exponent d ≥ 2.
The face Fd(∂ ,E,A) subdivides into only one face
Fd−1(∂ ′,E,A) with the boundary ∂ ′ that contains
the subdivided edges of ∂ . The sub-edges of Cn
edges are unconnected, so we add two Ec edges
between each sub-edges. The Figure 12 explains the
delay subdivision of the face F2 with a boundary
∂ = HC4,B2,C2,B2,C3,B2I. The sub-face boundary
∂ ′ = HC4, B2, B2, C4, B2, B2, C4, B2, B2, C4, B2, B2, C2,
B2, B2, C2, B2, B2, C3, B2, B2, C3, B2, B2, C3, B2, B2I.

We also introduce the notion of delay in the subdivision
process of edges, also denoted by an exponent d ≥ 2.
The edge subdivides into only one sub-edge of type
Xd−1

n . Hence, the geometry of the edge does not change
over iterations while the edge has a delayed subdivision
(i.e., while d ≥ 2).

4.2 Example
One can combine a delayed subdivision on a face with
a delayed subdivision on all its edges to create a global
delay in the face subdivision process. It creates a sub-
face that does not change the face’s shape since it adds
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Figure 12: Algorithm to find the subdivision of a de-
layed face depending on its edges.

no lacuna inside the face, and the boundary does not
change because of the delay on each edge. One can
also mix delayed and non-delayed edges for one face to
make a junction between a face having a global delay
and a face having no delay at all.

For instance, we build a structure with three faces
F2

0(∂
′
0,E,A1), F1(∂1,E,A1) and F0(∂0,E,A1)

with ∂0 = HC2,B2,C2,B2,C2,B2I, ∂ ′
0 the same

as ∂0 but with a delay for each edge, ∂1 =
HC2,B2,C2

2 ,B2,C2
2 ,B2,C2

2 ,B2I, and E = (C2,B2,B2).
Figure 13 shows a scheme of this structure. The faces
F2

0 and F0 behave as the same face, but F2
0 has a delay

of one iteration level because there is a delay in the
face subdivision and also in all its edges subdivisions.
The middle face F1 connects the faces F2

0 and F0 with
its shared edge C2 with the face F0 and its shared edge
C2

2 with the face F2
0 .

At the first iteration level of the structure, the face F0
subdivides into six sub-faces F0 (see Figure 10). How-
ever, the face F2

0 subdivides into one sub-face F0; a de-
lay appears here. Figure 14 shows the structure’s third,
fourth, and fifth iteration levels. We use adjacency con-
straints to make the junctions between the faces. Each
face has a consistent subdivision thanks to the definition
of all adjacency and incidence constraints (by the algo-
rithm). Hence, the structure is consistent at all iteration
levels.

4.3 Other subdivision algorithms
The presented algorithm A1 creates sub-faces with a
shared edge (Ea) between two adjacent sub-faces. The
adjacency edges start from the lacuna to the junction of
two Bn edges (see Figure 9), but there are other solu-
tions. For instance, Figure 15 shows several ways to
subdivide the face F0. The sub-faces depend on how
the algorithm places the adjacency edges from the cen-
tral lacuna on the boundary. The algorithm A1 places
the adjacency edges at the junction between two Bn
edges (middle of Figure 15). The algorithm A2 places
the same adjacency edges as A1 but also on all corners
(right of Figure 15). When some edges of a face have a

Figure 13: (Above) Scheme of a structure with three
faces. The left one is the same as the right one but with
a delay in its subdivision. The middle face makes the
links between them. (Below) The structure’s subdivi-
sion.

Figure 14: From top to bottom, the second, third, and
fourth iteration levels of the extruded structure pre-
sented in Figure 13.

delayed subdivision, there are also several ways to sub-
divide the face, as shown in Figure 16. The algorithm
A1 places the adjacency edges at the junction between
two Bn edges (top right of Figure 16). The algorithm
A2 places the same adjacency edges as A1 but also on
all corners (bottom left of Figure 16). The algorithm
A3 places the same adjacency edges as A1 but also on
corners surrounding an edge with a delay subdivision
(bottom right of Figure 16). When a face has no delay
edges, A3 and A1 generate the same subdivision rule.

Choosing the suitable algorithm would depend on the
specific application. However, to limit the number of
face types, one has to stick to the same algorithm across
all iterations rather than changing it at each level. Alter-
natively, one can use one algorithm when dealing with
faces containing edges that have a delay in their sub-
division and another algorithm for faces without such

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

6https://www.doi.org/10.24132/JWSCG.2024.1



Figure 15: Different subdivisions of the face F0 with a
boundary ∂0 = HC2,B2,C2,B2,C2,B2I.

Figure 16: Different subdivisions algorithm of a face F

with a boundary ∂ = HC3,B2,C2
2 ,B2,C2,B2I.

edges. There are a lot of possibilities to define the
subdivision algorithm. The key is to ensure that when
the algorithm is applied repeatedly, it leads to already-
known faces (no creation of new face topologies). Note
that for a structure containing several faces, one can use
a different algorithm for each face in order to vary the
subdivision. Figure 17 shows an example of two faces
having the same boundary but a different algorithm.

Figure 17: Two faces F1(∂ ,E,A1) and F2(∂ ,E,A2)
with the same boundary ∂ = HB2,B2,B2,B2,B2I and the
same E = (B2,B2,B2). The algorithm A2 (left) creates
more lacunas than A1 (right).

5 MEASURES ON FRACTAL STRUC-
TURES

To evaluate the variability of the lacunarity, one can use
several measures like relative density [JWZ07], area, or
length of boundary (perimeter). However, these mea-
sures strongly depend on the iteration level. To char-
acterize fractal structures, evaluating the evolution of
the area and the perimeter is convenient from one it-
eration to the following. The fractal dimension is es-
pecially recommended for such a structure. We pro-
pose an additional measure that characterizes the topo-
logical complexity of such structures. For the rest
of the article, F0 is the face F0(∂0,E,A1) with ∂0 =
HC2,B2,C2,B2,C2,B2I and E = (C2,B2,B2). Its geo-
metric realization is in Figure 18.

Figure 18: First five iteration levels of the face F0 we
use for all geometry based measures. Top-left image is
the primitive.

5.1 Area and perimeter
For lacunar fractal structures, the area Ai decreases, and
the perimeter Pi increases with each iteration. We look
at how these values are changing through iteration lev-
els. For instance, with the face F0, we compute Ai and
Pi for all iterations. To normalize the results and see
the factor FA (respectively FP) multiplying the area (re-
spectively the perimeter) at each iteration, we compute
Ai/A0 and Pi/P0. Table 1 contains the values for the
area and the perimeter of the face F0 for the iteration
levels 0 to 5. Figure 19 (respectively 20) shows the vari-
ation of the area (respectively the perimeter) through it-
eration levels. We have FA = 0.76 and FP = 1.97, mean-
ing the area decreases by 24% while the perimeter in-
creases by 97% for each iteration level.

i Ai Pi ln(Ai/A0) ln(Pi/P0)
0 234.90 61.61 0 0
1 174.49 97.96 -0.30 0.46
2 132.50 185.63 -0.57 1.10
3 100.92 381.78 -0.84 1.82
4 76.92 807.93 -1.12 2.57
5 58.64 1725.87 -1.39 3.33

Table 1: Area and perimeter of the face F0 for each
iteration level i.

5.2 Relative density
We compute the relative density [JWZ07] of a fractal
structure at different scale levels by using an image of
that structure and a mask with variable size. The idea
is to have a local evaluation of the matter quantity. We
drag the mask over the image for each pixel of the struc-
ture and count the number of pixels belonging to the
structure after the mask application. Then, we divide
the value by the surface of the mask. Finally, we color
the image’s pixel at the mask’s center depending on the
relative density found (between 0 and 1) using the col-
ormap in Figure 21. Figure 22 contains the resulting
image for the third iteration level of the face F0 for dif-

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

7https://www.doi.org/10.24132/JWSCG.2024.1



Figure 19: For each iteration level, the logarithm of the
area over the area of the primitive for the face F0. The
area decreases by 24% for each iteration level.

Figure 20: For each iteration level, the logarithm of the
perimeter over the perimeter of the primitive for the
face F0. The perimeter increases by 97% for each it-
eration level.

ferent mask sizes. Figure 23 contains the relative den-
sity for the structure in Figure 13. The structure’s left
side has a higher density than the right side because of
the delay in subdivision. The additional iteration adds
more lacunas on the right side, reducing the relative
density.

Figure 21: The colormap we use for the relative density.
A value of 0 is mapped on the blue and a value of 1 is
mapped on the red. Any other value between 0 and 1 is
mapped linearly between blue and red.

5.3 Fractal dimension
Using the box-counting algorithm, we compute the
fractal dimension and note it Dbox [Man85]. The fractal
dimension is the slope of the line when we plot the
values of ln(Nε) on the Y-axis against the value of
log(1/ε) on the X-axis. We note ε the size of the
boxes and Nε the number of boxes of size ε that cover
the geometry. For a given geometry, we set it in a
squared grid of size one by one. We start with a box
size of 1/16 since bigger box sizes are insignificant.
We use the geometry of the face F0 (in Figure 18) to
compute all geometry-based measures. With the fifth

Figure 22: Relative density on the third iteration level
of the face F0 for different mask sizes. In the reading
direction, the mask sizes are 21, 51, 101, 151, 201 and
251 pixels. The image has a size of 825×953 pixels.

Figure 23: Relative density on the fractal structure in
Figure 13 for a mask size of 101 pixels. The image has
a size of 2607×953 pixels.

iteration level, we compute that the face has a fractal
dimension of Dbox = 1.65. Table 2 contains the values
for each size of boxes, and Figure 24 represents the
corresponding line.

ε ln(1/ε) ln(Nε)
1/16 2.77 4.96
1/32 3.47 6.09
1/64 4.16 7.28
1/128 4.85 8.46
1/256 5.55 9.62
1/512 6.24 10.71
1/1024 6.93 11.80

Table 2: Box-counting method on the fifth iteration of
the face F0.

5.4 Topological measure of fractals
One cannot use the Euler-Poincaré characteristic to
characterize the topology of a fractal structure because
of the infinite increase of the number of lacunas. To
address this question, we suggest computing the ratio
limit between the number of lacunas and the sum of
the number of lacunas and sub-faces. This measure
does not depend on the geometric realization. For
a given iteration level, we consider the space as a
partition composed of sub-faces and lacunas. We
quantify the ratio of the space lacunas occupy. Then,
the topological measure of a fractal is the limit of this
ratio when the iteration level tends to infinity. This ratio
gives information on the number of created lacunas
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Figure 24: For the fifth iteration of the face F0, the slope
of the curve gives Dbox = 1.65.

as a function of created sub-faces along the iterative
process.

For a given iteration level i, we note the number of la-
cunas (respectively number of sub-faces) NL

i (respec-
tively NC

i ). We compute them recursively. For the prim-
itive (when the iteration level is zero), there is no lacuna
(NL

0 = 0). For the first iteration level, a no-delayed face
has a central lacuna that counts as one lacuna. It can
also have lacunas in its boundary due to Cn edges. We
consider that each Cn edge creates n− 1 half lacunas.
When the iteration level is more than zero, NL

i is the
face’s number of lacunas at the first iteration level plus
the number of lacunas of each sub-face at the previous
iteration level.

About the number of sub-faces, when the iteration level
is zero, there is one face. For any other iteration level,
the number of sub-faces is the sum of the number of
sub-faces for each sub-face at the previous iteration
level. When the subdivision of a face F gives n sub-
faces F, we compute the number of sub-faces with the
equation 1 and the number of lacunas with the equation
2.

NC
i = ni (1)

NL
i = NL

1 +n×NL
i−1 (2)

For instance, we compute the values of NC
i and NL

i for
the face F0. Figure 10 describes this face subdivision.
When there is no iteration, NL

0 = 0 and NC
0 = 1. The

face has three C2 edges, each of which induces one-
half lacuna at the next iteration level. Hence at the
first iteration level, NL

1 of F0 = 1+ 3× 0.5 = 2.5. The
subdivision of F0 gives six sub-faces F0, hence NC

1 of
F0 = 6. For the second iteration level, we have NL

2 of
F0 = 2.5+6×2.5 = 17.5 and NC

2 of F0 = 6×6 = 36.
Since the subdivision of F0 gives six sub-faces F0, we
could compute NC

2 as 62 that is also 36.

Let the ratio Ri be:

Ri =
NL

i

NC
i +NL

i

Table 3 indicates the topology-based measures of F0 for
the first five iteration levels. The curve of the ratio Ri of
F0 for the first ten iteration levels is in Figure 25. Notice
that the ratio has a finite limit. We found that the limit
depends only on the parameter E of the face. The al-
gorithm creates more and more characteristic faces that
depend on these parameters. Hence, the limit R of Ri
when i tends to the infinity of any face depends on the
limit R of the specific faces that appear due to the sub-
division algorithm. For a characteristic face that subdi-
vides into itself and from equations 1 and 2, we have
the following formula:

R = lim
i→+∞

Ri =
NL

1

NL
1 +NC

1 −1

For instance, with the face F0, the limit is:

R =
2.5

2.5+6−1
=

1
3

i NL
i NC

i Ri
0 0 1 0
1 2.5 6 0.294
2 17.5 36 0.327
3 107.5 216 0.332
4 647.5 1296 0.333
5 3887.5 7776 0.333

Table 3: Topology-based measures NL
i , NC

i and Ri of
the face F0 for the iteration levels i from 0 to 5.

Figure 25: The ratio Ri of the face F0 for the iteration
levels from 0 to 10.

5.5 Discussion
We created some faces that subdivide in themselves to
study the impact of the algorithms and their parameter
E in the lacunarity. The faces are the following:

• F0.

• F1(∂1,E1,A1) with ∂1 = HC2,C2,C2,C2,C2,C2,C2I
and E1 = (C2,C2,C2).

• F2(∂2,E2,A1) with ∂2 = HB2,B2,B2,B2,B2I and
E2 = (B2,B2,B2).
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• F3(∂3,E1,A2) with ∂3 = HC2,C2,C2,C2,C2I.

• F4(∂4,E2,A2) with ∂4 = HB2,B2,B2,B2I.

• F5(∂5,E3,A2) with ∂5 = HB3,B3,B3,B3I and E3 =
(B3,B3,B3).

Figure 26 contains the faces at the fourth iteration level.
Table 4 lists those faces with the value of NL

1 , NC
1 ,

limi→+∞ Ri, the factors FA and FP, and the fractal di-
mension at the fourth iteration level of the cells.

Figure 26: Some characteristic faces that subdivide into
themselves. (Top left) The face F0. (Top middle) The
face F1. (Top right) The face F2. (Bottom left) The face
F3. (Bottom middle) The face F4. (Bottom right) The
face F5.

Face NL
1 NC

1 R FA FP Dbox
F0 2.5 6 0.33 0.76 1.97 1.72
F1 4.5 7 0.43 0.76 2.09 1.74
F2 1 5 0.20 0.85 1.69 1.82
F3 3.5 10 0.28 0.79 2.58 1.77
F4 1 8 0.12 0.75 1.92 1.72
F5 1 12 0.08 0.81 2.40 1.77

Table 4: List of measures for each face in Figure 26.
There are the number of lacuna and the number of sub-
faces at the first iteration, the R value that is the limit of
Ri when i tends to infinity, the factors FA and FP, and
the fractal dimension.

Globally, the set of parameters we used to provide the
different fractal faces impacts our topological measure
R. The values depend on the subdivision algorithm and
the parameter E. They reflect the specificity of the face
lacunarity.

On the other hand, geometry measures are more deli-
cate to interpret because they depend on geometric re-
alization. However, we can observe that for two faces
having an identical value of FA, the value of FP is higher
when the parameter E contains the most Cn edges. Intu-
itively, Cn edges induce lacunas while Bn edges induce
no lacunas.

Generally, the higher the fractal dimension, the higher
the FA and the lower the FP, even if the fractal di-
mension is relatively homogeneous for these examples.

However, for an identical value of FA, the fractal dimen-
sion increases with the value of FP.

6 CONCLUSION AND FUTURE
WORK

Automatic construction of fractal structures while con-
trolling the lacunarity is challenging because of the va-
riety and complexity of possible topologies.
We propose an automatic method defining the topology
of fractal faces’s subdivision, depending on the topol-
ogy of their boundary and additional parameters con-
trolling the lacunarity. Our method presents three main
advantages. First, a few intuitive sets of parameters de-
fine the type of lacunarity. Second, we base our con-
struction on the BC-IFS model, which codes the topol-
ogy of the fractal structure. It ensures the consistency
of the limit fractal topology and over iterations. The
resulting model can be exported in STL format and di-
rectly printed in additive manufacturing (see Figure 27).
This topological approach allows us to adapt the lacu-
nar geometry to intended applications. Third, as we de-
fine a lacunar face from its boundary, we can directly
create complicated assemblies without additional con-
straints, with each face being defined from the edges of
its neighborhood faces.

Figure 27: 3D print of the fractal structure presented in
Figure 13 and 14.

We complete this approach by introducing a delay in
the subdivision process, allowing the cohabitation in an
assembly of different iteration levels of an identical la-
cunar fractal. We use this extension to produce a ho-
mogeneous lacunarity over faces with different sizes or
to manage variation lacunarity. We can extend this ap-
proach by proposing additional subdivision algorithms
and introducing more than one main lacunar, for exam-
ple.
We analyze the lacunarity of the resulting structures by
evaluating and proposing different measures for geo-
metric and topologic characteristics.
Future works focus on an automatic process to subdi-
vide volumes. It is more complicated than faces since
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the adjacency of two volumes is on faces, with more
topology possibilities than edges. As for faces, we
can subdivide each volume edge (faces) and create sub-
volumes for each sub-face. However, there could be
several adjacency faces and lacuna faces for each sub-
volume. The complexity induced by the topological
cellular decomposition of 3D fractal structures needs
deep analysis to identify, parametrize, and automatize
the subdivision process while guaranteeing topological
consistency.
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ABSTRACT
We developed Beta Caller, an end-to-end system supporting the sport of rock climbing for climbers with visual
impairment. Beta Caller provides real-time, audible instructions containing a prediction for the climber’s next
move while they are actively climbing a rock wall. This system leverages computer vision techniques to collect
key information about the climber’s environment, enabling Beta Caller to make move predictions on climbing walls
it has never encountered before. Neural networks are used to predict where the climber should move next, based
on information provided by the computer vision models. The predicted move is translated into a verbal message
guiding the climber to the next hold and then transmitted via wireless headphones using a text-to-speech model.
This novel idea makes one of the fastest growing sports in the world even more appealing and approachable to
climbers with visual impairment, however, this tool can be utilized by all climbers to improve their climbing skills.
Beta Caller achieved 80.08% accuracy predicting which limb the climber should move next and, when predicting
the location of the next hold, Beta Caller achieved a bounding box error of only 6.79%. These results pioneer a
strong foundation shaping the future landscape of rock climbing prediction tools for visually impaired climbers.

Keywords
artificial intelligence, computer vision, human computer interaction, object detection, pose estimation, human
motion prediction, rock climbing

1 INTRODUCTION

Rock climbing is one of the fastest growing sports
in the world, exploding in popularity in the last few
years. With inspiring and alluring documentaries like
The Dawn Wall [Low17a], Free Solo [Vas18a], Valley
Uprising [Mor14a], and many more, coupled with the
sport’s Olympic debut in the 2020 Summer Olympics,
rock climbing grew exponentially in the last few years
and captivated the interest of millions of people world-
wide. Even before these catalyzing events, the sport of
rock climbing garnered interest across the globe due to
the sport’s ability to concurrently challenge participants
physically and mentally. The sport initially interested a
niche group of outdoorsy, free-spirited people, but now
captivates the attention of a wide-spread, diverse audi-
ence. For those less familiar with this sport, definitions

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of several rock climbing terms whose meaning may not
be innately understood are provided in Table 1.

Hold 3D plastic grip for a climber to grab with
their hand or step on with their foot

Move Transition of hand or foot to the next hold
Route A sequence of moves, typically using a sin-

gle hold color, to get to the top of the wall
Beta Information about how to complete a route
Caller Someone providing instructions to a climber

Table 1: Rock Climbing Terminology

A large population of athletes with varying disabilities
competitively participate in sports, and rock climbing
is no exception. Climbers with disabilities have found
many innovative and unique ways to push and pull their
body up a wall to get to the top. There have been many
technological advancements in prosthetics and various
rock climbing gear to make the sport more approach-
able, inclusive and enjoyable to a wider scope of abil-
ities. However, technology assisting visually impaired
climbers remains grossly under-researched. The most
common and “advanced” way for a visually impaired
climber to participate in the sport is to have someone,
who is typically a specially trained coach, on the ground
verbally coaching the climber (known as the “caller”)
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by providing them information (commonly referred to
as “beta”) about how to ascend the wall. In addition to
hearing the commands for the next move, visually im-
paired climbers use their palms to scan the wall for rock
holds. This current approach is exceedingly challeng-
ing, time consuming and may be intimidating to a new
climber and to the caller who is coaching the climber up
the wall. The caller’s task is arguably the most impor-
tant and requires significant climbing experience, spa-
tial estimation skills and quick thinking in order to pro-
cess the climber’s body position, what holds are avail-
able to them, where they should move next, and finally
call out a command to guide the climber to the next
hold.
This paper introduces the application of computer vi-
sion and mobile media technology to a revolutionary
sensory substitution device, Beta Caller, that leverages
Artificial Intelligence (AI) to aid rock climbers of all
abilities to better enjoy and compete in the sport. Beta
Caller combines two computer vision models to under-
stand key information about the climber’s environment
(where holds are located on the wall and the climber’s
body pose), as well as a combination of neural networks
to provide a real-time prediction of the climber’s next
move. Beta Caller uses a text-to-speech model to trans-
mit an audible message containing coaching informa-
tion in a timely and useful manner to enable the climber
to quickly and successfully complete the next move and
ascend to the top of the wall. In addition to this novel
system, our paper contributes a rock climbing move-
ment dataset that, to the best of our knowledge, stands
as the sole resource of its kind.

2 RELATED WORK
Despite the recent interest in rock climbing, research
within the sport is fairly limited in quantity, depth
and scope. A small amount of rock climbing research
focuses on better understanding how rock climbers
move their bodies [Pfe11a][Ouc10a][Sib07a][Wei14a],
and additional research describes a handful of real-time
climbing tools to make the sport more enjoyable by
helping climbers efficiently move through a route
[Kos17a][Kos17b]. A majority of climbing research,
however, aims to provide performance feedback to
the climber after their workout session concludes in
order to evaluate how well they trained instead of
providing feedback while the climber is on the rock
wall [Lad13a][Bre23a][Kos15a].
One example of a performance feedback tool was cre-
ated by Ekaireb et al. to assess video footage of a
climber using computer vision and machine learning to
provide a report of how well the person climbed a route
[Eka22a]. Their research conducts image segmentation
creating a mask of the raw image only containing the
climbing wall and excluding the background. Addi-
tionally, information about the climber’s environment is

gathered using an object detection model to locate all of
the holds on the climbing wall and then a pose estima-
tion model identifies all of the climber’s joint keypoints.
This information is collected for each video frame and,
after the climb is completed, these frames are evaluated
to provide the climber with feedback about how well
they climbed the route. Beta Caller improves the sys-
tem created by Ekaireb et al. by collecting information
about the climber’s environment and training a model to
provide climbers with real-time movement predictions
on any indoor rock climbing wall.

2.1 Assistive Technology for Visually
Impaired Rock Climbers

Richardson et al. developed a real-time, assistive
climbing system to guide visually impaired climbers
[Ric22a]. Climb-o-Vision uses a helmet-mounted,
computer vision system that identifies where holds
are located on the climbing wall and provides tactile
feedback on the climber’s tongue to guide them to a
hold. This system is able to identify holds only where
the climber’s helmet is facing and does not provide
guidance to the climber where the next best hold is
located. Electrotactile tongue interfaces have advanced
the capabilities of vision substitution, however this
research did not provide any conclusions evaluating the
effectiveness of the tongue interface during climbing to
guide a climber’s hand to holds.
Ramsay and Chang [Ram20a] developed a real-time
climbing tool to assist visually impaired climbers as
they are actively climbing using a body pose sonifi-
cation system. They developed a tool to provide the
climber with an auditory command containing the loca-
tion of the next hold on the wall. Additionally, the tool
produces a tone for the climber that changes pitch based
on the distance from the climber’s hand to the next hold.
However, this tool is limited to a specific, standardized
climbing wall called a MoonBoard. A MoonBoard is a
small (7.5ft wide by 10.5ft tall) climbing wall used with
the sole purpose of training. This board is filled with
evenly-spaced holds each with an LED light. When
lit, the LED lights identify the holds the climber is al-
lowed to use creating the intended route. The primary
benefit of this board is that there are over 6,000 pre-
programmed routes in a small space. The MoonBoard
was created to provide advanced rock climbers with a
training tool. The easiest route on a MoonBoard is sig-
nificantly more challenging than the most routes in an
indoor rock climbing gym, therefore it is not intended
for use by a majority of the climbing community.
Ramsay and Chang’s research [Ram20a] capitalized on
the known, uniform placement of holds on the Moon-
Board, eliminating the need for object detection to iden-
tify the location of holds on the rock climbing wall. Ad-
ditionally, the use of a MoonBoard automatically pro-
vides known move sequences, so there is no need to
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Figure 1: Beta Caller Architecture

create a move prediction model to intelligently predict
where the climber should move next or which limb they
should move. Ramsay and Chang solely focused on us-
ing a pose estimation model to identify the climber’s
joint keypoints in order to provide the climber with an
auditory command of how to move to the next known
hold. Their results were successful when demonstrated
on a vertical Twister game mat representing a simulated
climbing wall. Beta Caller significantly augments this
work outside of the confines of the MoonBoard by gen-
eralizing the nature of the system to work on any indoor
rock climbing wall. This requires Beta Caller to be able
to accurately identify hold locations in addition to the
climber’s pose, as well as predict the next best hold for
the climber to move to and which hand should move
to that hold. To the best of our knowledge, there does
not exist any research into real-time systems that pre-
dict where a climber should move next.

3 METHODOLOGY
Beta Caller gathers information about the climber’s en-
vironment and provides real-time, audible commands
containing a prediction for the climber’s next move
while they are actively climbing. In practice, the pro-
posed system allows a climber to point a camera at the
climbing wall to guide them to the top by providing a
series of commands to accomplish each next move.

3.1 System Architecture
Beta Caller comprises three primary components:
video camera input, a suite of AI models, and a
text-to-speech model providing an audible command to
the climber via wireless headphones (Figure 1).

Beta Caller runs on a laptop which is stationed on the
ground with a camera facing the climber on the climb-
ing wall. The first two models utilize computer vi-
sion techniques to gather key information about the
climber’s environment. The first model employs object
detection to identify where the holds are located on the
climbing wall. The second model uses pose estimation
to locate the climber’s pose by identifying joint key-
points on the climber’s body. The last model, the core

of Beta Caller, uses information about the climber’s en-
vironment to predict where the climber should move
next. Specifically, a combination of neural networks
were built to predict which limb the climber should
move and, if either hand is predicted to move next, to
which hold the climber should move that limb.
After a move is predicted, simple trigonometry is used
to calculate the direction the climber should move their
hand to the next hold. Additionally, the distance be-
tween the climber’s wrist and the next hold is calcu-
lated. Using this information, Beta Caller calls out
which hand the climber should move, the angle which
the climber should move their hand, and the distance
from their wrist to the predicted hold (e.g. “Right
hand. Two o’clock. About two feet.”). This com-
mand is played using a text-to-speech engine, pyttsx3,
and enables the climber to listen to the output using
wireless headphones connected to the laptop. Once
the climber receives this command, Beta Caller waits
for the climber to complete the move by continuously
tracking the climber’s pose. Once the move is com-
pleted, Beta Caller makes another prediction where the
climber should move to and transmits that command to
the climber. This process is repeated until the climber
finishes the entire route.

3.2 Data Pipeline
To the best of our knowledge, there does not exist a rock
climbing dataset suitable for predicting climbing move-
ment, so we constructed a dataset with over 4,100 im-
ages collected as image sequences from over 250 videos
where each frame is saved after a completed move.
The images are named according to the video they cor-
respond to followed by the time sequence (e.g. 01-
01.jpg). These images are sent through a data pipeline
to gather features and labels to later be used to train the
move prediction model.
The first step in the data pipeline is to run inference
on each image using two computer vision models to
gather key information about the climbing wall and the
climber’s body position. Beta Caller uses one of the
leading and most widely used object detection models,
YOLOv8 [Red16a], to train a custom object detection
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Figure 2: Results of Data Pipeline for Image Labeling

model to identify indoor rock climbing holds. In addi-
tion to object detection, Beta Caller utilizes the state of
the art pose estimation model, ViTPose [Xu22a]. ViT-
Pose is a vision transformer model that has an encoder
to extract image features and a lightweight decoder to
conduct pose estimation. Beta Caller uses ViTPose to
get the x-y coordinates of 17 joint keypoints from the
climber’s body. The data collected from each of these
computer vision models is illustrated in Figure 3.

Figure 3: Data Output from Computer Vision Models

Hold predictions can be drawn with bounding boxes
around each hold found in the image and joint keypoints
are drawn as dots accompanied by lines connecting
the keypoints, providing a stick figure of the climber.
The illustrations of the computer vision models’ results
shown in Figure 4 are used solely for demonstrative
and validation purposes because Beta Caller will not
need to visually display the holds and pose, rather use
that information to provide an audible command to the
climber.

Figure 4: Computer Vision Models’ Results

After running inference on an image, the output data is
added to a CSV file. The data output from these models
are two data structures containing normalized x-y coor-
dinates of the holds within the image and the climber’s
joint keypoints. The holds data structure contains a row
for each hold detected and four columns representing
the bounding box coordinates (xmin,ymin,xmax,ymax).
The pose data structure contains a row for each of the
17 joint keypoints and two columns representing the
keypoint’s x and y coordinates.
The data pipeline uses these two data structures for both
the current image and the previous image from the im-
age sequence to compute and identify the labels for the
previous image. There are five labels in the dataset:
which limb moved and the bounding box coordinates of
the hold the climber moved their limb to. Beta Caller
combines both feet together into a single class because
the primary focus of calling moves to a climber is to di-
rect them to the best hand holds. Focusing on accurate
hand predictions provides the climber more time, using
less energy, to find the best holds for their feet to pre-
pare them for the next hand movement. Additionally,
providing specific guidance for four limbs instead of
two might easily become overwhelming for a climber.
Previous experience climbing with people with visual
impairment confirms the necessity of predicting the cor-
rect hand to move as well as when the climber is re-
quired to move their feet up to prepare for the next hand
movement. Therefore, the limb label will be assigned
the value left hand, right hand or feet.
In order to validate the data pipeline, labels are drawn
on each image. The top left corner of the image con-
tains text for which limb will move and a red bounding
box is drawn around which hold the climber will move
their limb to. For example, the first image in the Figure
2 sequence is labeled indicating the climber will move
their right hand to the red box because this outcome is
observed in the subsequent image from the sequence.
The final dataset prepared for the move prediction mod-
els is in CSV format containing 34 features, represent-
ing the normalized x-y coordinates for each of the 17
joint keypoints, and 5 labels (limb,xmin,ymin,xmax,ymax)
for over 4,100 images. The dataset was split into two
subsets: training and testing. Specifically, 90% of the
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data was used for training the model and 10% was re-
served for testing its performance. During training,
30% of the training data was used for validation.

3.3 Move Prediction
Two dense neural networks are trained to predict the
climber’s next move. The first is a multi-class classifi-
cation network used to predict which hand the climber
should move or if they should move their feet. The
model architecture is illustrated in Figure 5. The in-
put layer contains 34 input neurons matching the num-
ber of features in the dataset. The first hidden layer
contains 256 neurons and the second contains 128 neu-
rons and they both use the ReLU activation function.
Finally, the output layer contains three neurons (left,
right, feet) and uses the Softmax activation function to
create simulated prediction probabilities for each class.
This model uses the Adam optimizer, the Categorical
Cross-Entropy loss function, as well as prediction ac-
curacy for the performance metric.

...
...

...

I1

I34

H1

H256

H1

H128

O1

O2

O3

Input Hidden 1 Hidden 2 Output

Figure 5: Limb Prediction Neural Network

Combining both the left and right foot movement into a
single class causes a class imbalance where each hand
represents 25% of the training dataset and the feet class
contains 50%. In order to maintain the largest num-
ber of data points, Synthetic Minority Over-sampling
Technique (SMOTE) [Cha02a] is used to balance the
three classes. This technique creates additional, syn-
thetic samples similar to the left and right hand obser-
vations to match the number of feet observations.

The second neural network is a multi-output re-
gression network used to predict a bounding box
(xmin,ymin,xmax,ymax) where the climber should move
their hand next. Similar to the limb prediction model,
the input layer contains 34 input neurons and this model
uses five hidden layers. The hidden layers contain
256, 128, 64, 32 and 16 neurons, all using the ReLU
activation function. The output layer consists of four
neurons (xmin,ymin,xmax,ymax) activated by the Sigmoid
function. This model uses the Adam optimizer, the
Mean Squared Error (MSE) loss function, and Root
Mean-Squared Error (RMSE) as the performance
metric.

3.4 Command Translation

After the next move is predicted, Beta Caller contin-
ues in one of two ways depending on which limb is
predicted. If the climber’s feet are predicted to move,
Beta Caller immediately communicates to the climber
to move their feet upwards to a nearby hold. If one
of the climber’s hands is predicted to move, a series
of computations must occur first to translate the move
predictions into a usable command. For a majority of
visually impaired climbers, a usable command contains
which hand they should move along with what direction
and how far they should move that hand.

To translate a prediction, Beta Caller first maps the pre-
dicted hold location to the nearest actual hold on the
climbing wall found by the object detection model. Us-
ing this hold’s center point and the climber’s nose key-
point, the angle between the two coordinates is calcu-
lated and converted into an hour hand on a clock. The
12 o’clock position represents 0 degrees and each addi-
tional 30 degrees increments the hour hand by one.

In addition to the direction the climber should move
their hand, the distance between the climber’s predicted
hand and the next hold is calculated using the climber’s
wrist keypoint and the hold’s center point. The hold lo-
cation and climber’s joint keypoints are all represented
by pixel values, so the pixel distance can be calculated
easily. However, physical distance is required. In order
to convert the pixel distance into physical distance, a
known physical distance within the image must be used
to create a conversion factor.

The distance between the climber’s eyes, known as
pupillary distance, is a distance on the human body that
has the least amount of variance between human sub-
jects. Limb length, waist or shoulder width, and essen-
tially all other human body measurements vary greatly
from human to human. However, the average pupillary
distance is 2.5 inches and only ranges from 2-3 inches
for all humans [Whi22a]. Therefore, the average pupil-
lary distance is used as a known physical distance to
create a conversion factor for calculated pixel distances.
Despite the climber facing away from the camera, ViT-
Pose is able to make an accurate prediction of where the
person’s eyes are located.

The exact distance, in feet and inches, is not the easi-
est for a climber to process, understand and move their
body. Beta Caller converts the distance to the next
hold to a more usable approximation of distance in or-
der to simplify the command and not overwhelm the
climber. Table 2 provides examples of these simplifi-
cations. Once the distance is known, all three parts of
a command (hand, direction, and distance) are trans-
mitted to the climber using a text-to-speech conversion
library, pyttsx3. For example, a climber might hear
“Right hand. Two o’clock. About two feet.”.
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Feet Inches Move Distance
0 6 6 inches
2 0 - 3 About 2 feet
2 4 - 9 2 and a half feet
2 10 - 11 About 3 feet

Table 2: Distance Simplification Examples

4 RESULTS
An experiment was conducted for both the limb pre-
diction and hold prediction neural networks with the
goal of creating the best network architecture by trying
three pose estimation models and changing the number
of hidden layers and neurons.

The three pre-trained pose estimation models used in
the experiment are MediaPipe [Goo24a], YOLOPose
[Maj22a], and ViTPose [Xu22a]. The accuracy of the
pose estimation model is of utmost importance as its
outputs serve as crucial inputs for both the limb and
hold prediction models. In order to find the best net-
work architecture, the number of hidden layers was var-
ied from one to five layers. Each additional hidden layer
contains half of the number of neurons from the pre-
ceding hidden layer. The experiment includes networks
where the first hidden layer contains 256 neurons, as
well as networks that start with 128 neurons in the first
hidden layer. In total, thirty different configurations
were tested to find the best limb prediction model and
ten configurations for the hold prediction model.

The results of the experiment are summarized in Ta-
ble 3. The most accurate configurations obtain 80.08%
limb prediction accuracy and both use ViTPose joint
keypoints for limb prediction. One network contains
two hidden layers with 256 and 128 neurons and the
other network has four hidden layers containing 128,
64, 32, and 16 neurons. With the exception of one
model architecture, using ViTPose for features for limb
prediction always led to the highest accuracy. As a
result, ViTPose data was used for all models in the
hold prediction experiment. The best hold prediction
model configuration reached a bounding box RMSE of
0.0679. The input and output data use normalized pix-
els between 0 and 1, so this RMSE represents the per-
centage of error from the predicted bounding box to the
actual hold. The most accurate neural network contains
five hidden layers with 256, 128, 64, 32 and 16 neurons
and achieves a bounding box prediction error of 6.79%.

In order to validate the move predictions made by both
neural networks, the ViTPose data from an image is
used for inference with the two trained models. The
predicted limb is written in the top left corner of the im-
age and an yellow box is drawn to show the predicted
coordinates where the climber should move their hand.
A red box is drawn to indicate the closest hold to the
predicted coordinates. The final inference results can
be visualized in Figure 6. In the left image, the move

prediction models predict the climber will move their
left hand to the yellow box which is mapped to the hold
outlined with a red box. The right image confirms an
accurate prediction that the climber did move their left
hand to that predicted hold.

Figure 6: Beta Caller Prediction Results

Quantitative metrics describing the models’ ability to
accurately predict which limb the climber should and
to where the climber should move their limb should not
be the primary focus of evaluating the effectiveness of
Beta Caller. Rock climbing, like dancing, can be more
of an art than a science at times and provides climbers
the option of approaching a route differently depending
on the climber’s body type, climbing style, flexibility,
and numerous other factors. This results in a single
route being climbed in innumerable diverse ways and
establishes the fact that a correct sequence of moves
does not exist, rather there are better singular moves
than others.

In practice, a human caller will provide an “incorrect”
command for which limb the climber should move or
where they should move that limb, or both. However,
this is merely the result of the caller’s climbing style
and how they would approach the route. Fortunately,
the “incorrect” command will not impede the climber
from continuing to move up the wall. Therefore, when
Beta Caller’s limb prediction model incorrectly predicts
a limb to move, it is no different than the human caller
and the climber will still be able to find a hold to move
to even with the incorrectly predicted limb.

The hold prediction model’s error is greatly reduced
when Beta Caller maps the predicted bounding box to
the closest hold found by the object detection model.
However, even with the known location of a hold it
is challenging for any climber to hear the command
“Right hand. Two o’clock. About two feet.” and move
their hand to the exact location of the hold because the
clock direction is rounded to the nearest hour and the
distance is rounded to the nearest half foot. This style of
command provides an appropriate amount of informa-
tion without overwhelming the climber with too much
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Hidden Layers Hidden Neurons Limb Accuracy Hold RMSE
MediaPipe YOLOPose ViTPose ViTPose

1 256 69.74 68.94 73.18 0.0696
128 69.30 68.32 67.05 0.0702

2 256, 128 72.81 72.67 80.08 0.0686
128, 64 71.93 68.94 73.95 0.0687

3 256, 128, 64 69.30 69.57 77.78 0.0680
128, 64, 32 72.81 68.94 79.31 0.0684

4 256, 128, 64, 32 71.49 69.57 79.69 0.0682
128, 64, 32, 16 72.37 65.97 80.08 0.0690

5 256, 128, 64, 32, 16 71.49 65.97 77.78 0.0679
128, 64, 32, 16, 8 71.93 64.60 78.16 0.0692

Table 3: Limb Prediction and Hold Prediction Experiment Results

detail. Fortunately, visually impaired climbers are es-
pecially talented at scanning the wall with their palms
to find a hold nearby.

Without existing systems for comparison, these results
provide a solid foundation, establish strong baselines,
and pave the way for future rock climbing prediction
systems.

5 CONCLUSION
This paper provided an operational prototype of an end-
to-end system to revolutionize rock climbing for peo-
ple of all skill levels, especially those with visual im-
pairment. Beta Caller leverages a compilation of AI
models to assist rock climbers up a wall to better en-
joy and compete in the sport. Beta Caller successfully
combines two state-of-the-art computer vision mod-
els for object detection and pose estimation and uses
two neural networks to predict which limb the climber
should move, as well as the next best hold for a climber
to move to. Achieving limb prediction accuracy of
80.08% and predicting the next hold with only 6.79%
error, Beta Caller creates a vital audible command con-
taining the predicted move’s information in a timely and
useful way to enable the climber to make the next move
and ascend to the top of the rock climbing wall.

6 FUTURE WORK
Current accuracy for the limb prediction and hold pre-
diction neural networks are sufficient to demonstrate
proof of concept and create a robust starting point for
rock climbing movement prediction. However, these
results have the potential to be more accurate. Dense
neural networks are the simplest of feed-forward net-
works due to their connections from all neurons to all
neurons between each layer. The images used as input
for the dense neural networks are currently treated as
individual, independent observations and they exclude
the information observed from the previous frame or
multiple frames. The sport of rock climbing is inher-
ently sequential. For example, if a climber moves both

of their feet, the next move will likely be one of their
hands, not their feet again. In order to more accurately
model this sequential nature of rock climbing, a recur-
rent neural network or transformer network can be used
to leverage the capability of making strong sequence-
to-sequence predictions.

Beta Caller was built on a smaller dataset, so a promis-
ing avenue for future work involves collecting more
data to fine-tune the object detection, pose estimation,
and move prediction neural networks. This iterative
fine-tuning process holds the potential to significantly
enhance the accuracy and versatility of these models,
ensuring their effectiveness across various climbing en-
vironments and accommodating diverse body types and
climbing styles.

In order to establish a conversion ratio for estimating
physical distance from pixel distance, Beta Caller uti-
lizes the climber’s pupil distance. It is imperative to
validate the accuracy of these estimates through empir-
ical testing. While this conversion methodology holds
promise for its simplicity and applicability, its real-
world performance should be evaluated across various
rock climbing walls. Testing should assess the accuracy
of the derived physical distances compared to ground
truth measurements. Additionally, the robustness of the
conversion ratio should be tested under different light-
ing conditions, camera angles, and camera distances
away from the wall.

Another opportunity for future research could involve
a comparative study evaluating the efficacy of Beta
Caller, contrasted with the performance of a human
caller providing beta to the same climber on the same
routes. Speed, accuracy, and ease of understanding
could be used as metrics to assess the climber’s re-
sponse to Beta Caller predictions compared to human
caller predictions. Such a study would not only offer in-
sights into the system’s effectiveness but also shed light
on the climber’s interaction with inclusive technologies
and enhance our understanding of the capabilities and
adaptations within the visually impaired community.
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Abstract
Fairing methods, frequently used for smoothing noisy features of surfaces, evolve a surface towards a simpler
shape. The process of shaping a simple surface into a more complex object requires using a scalar field defined
in the ambient space to drive the surface towards a target shape. Practical implementation of such evolution,
referred to as Lagrangian Shrink-Wrapping (LSW), on discrete mesh surfaces presents a variety of challenges.
Our key innovation lies in the integration of adaptive remeshing and curvature-based feature detection, ensuring
mesh quality and proximity to target data. We introduce the Equilateral Triangle Jacobian Condition Number
metric for assessing triangle quality, and introduce trilinear interpolation for enhanced surface detailing to improve
upon existing implementations. Our approach is tested with point cloud meshing, isosurface extraction, and the
elimination of internal mesh data, providing significant improvements in efficiency and accuracy. Moreover we
extend the evolution to surfaces with higher genus to shrink-wrap even more complex data.

Keywords
fairing, surface evolution, Lagrangian Shrink-Wrapping, adaptive remeshing, feature detection, mesh quality, point
cloud meshing, isosurface extraction, mesh simplification

Figure 1: Lagrangian shrink-wrapping (LSW) evolution with the help of adaptive remeshing of input point cloud sampling of
bunny with 12K vertices over 150 steps with an icosphere starting surface with subdivision level s = 2.

1 INTRODUCTION
Shape extraction from diverse input, including image
data, point clouds, or mesh surfaces, is ubiquitous in
modern geometry processing. A critical challenge in
this domain is maintaining the quality of mesh elements
extracted from these representations, which is essential
for downstream processing applications such as render-
ing or numerical simulations. Traditional methods of
direct triangulation of point clouds often require point
normals, or otherwise struggle to produce watertight
manifold surfaces. Unlike direct processing techniques,
evolutionary methods make use of principles like diffu-
sion described by partial differential equations which
can be equipped with spatial information of input data,
such as distance fields, to evolve a simple starting sur-

face with known topological properties, for example, a
sphere, into a shape with the desired amount of detail.

1.1 Contributions
This work introduces a robust and stable shrink-
wrapping tool designed for voxel, mesh, and point
cloud data (see Fig. 1), employing a triangle surface
mesh. Our contributions include:

• In contrast with prior approaches, the surface is no
longer subject to the stretching of linear discretiza-
tion elements (mesh triangles), essentially pushing
the solution closer to how a smooth surface would
evolve. This places our shrink-wrapping algorithm
among the state-of-the art methods which also em-
ploy some form of adaptive remeshing.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

21https://www.doi.org/10.24132/JWSCG.2024.3



• Compared to existing implementations, we use tri-
linear interpolation of (possibly truncated) distance
voxel values instead of nearest neighbor for shape
precision.

• Extension of the tool’s applicability to initial sur-
faces constructed from distance contours broadens
its utility to higher-genus target data1.

• The use of customized equilateral triangle quality
metric, validating the production of high-quality
meshes.

• We adopt a curvature-based feature detection tech-
nique, facilitating a more accurate representation of
intricate geometric features.

2 RELATED WORK
Our exploration stands on the contributions in signif-
icant areas of application: fairing, remeshing, image
segmentation, surface reconstruction, and geometry
simplification.

The fairing approaches utilize the key diffusion term
in the evolutionary equations. In its simplest form it
involves smoothing out all features of an input sur-
face as performed using a semi-implicit formulation of
the standard mean curvature flow (MCF) by Mikula
et al. [2], and minimizing Willmore energy by Crane
et al. [3]. This leads also towards unknotting tangled
higher-genus surfaces by Yu et al. [4] who also consid-
ered a point cloud or mesh obstacle repelling an evolv-
ing surface. The outputs of such obstacle problem can
be stacked on top of each other in the form of nested
cages studied by Sach et al. [5].

Surface extraction from image data involves augment-
ing the standard MCF by advection which was also
explored by Mikula et al. [2] in Section 3.2. These
methods date back all the way to perhaps the most
widespread brain extraction tomography application
called BET2 first published by Smith in 2002 [6].
BET2 extracts a surface from an initial icosphere mesh
which evolves towards the boundary of human brain,
driven by advection evaluated from the thresholds
computed within the histogram of the tomography
image.

We put significant emphasis on the development of
point cloud reconstruction tools developed by Daniel
et al. [7] in collaboration with the authors of [2]. A
suitable example of recent evolutionary approaches
to surface reconstruction from point cloud data is
Point2Mesh which also uses neural networks to evolve
convex hull starting surfaces [8].

1 We consider the genus of a surface envelope of a triangle soup
or a point cloud target set in the sense of Hurtado et al. [1].

Since, as we mentioned, evolutionary methods can use
simpler initial surfaces, they can also serve as simpli-
fication tools for enveloping meshes with undesired in-
ternal cavities and non-manifold vertices or edges [1].
This leads us to the use of evolutionary shrink-wrapping
for the purposes of remeshing, as done by Kobbelt et
al. [9], and extended to outward-evolving quad surface
patches by Huska et al. [10].

3 METHODOLOGY

Figure 2: Slice of distance field d to surface Γ Utah Teapot
with resolution 1203 and an evolving surface F driven by
fields d and −∇d. Source: [11].

3.1 Surface Evolution
Let X be a Riemannian 2-manifold. For a time inter-
val [0,T ], the map F : [0,T ]×X → R3 defines surface
evolution in R3, governed by:

∂tF = vN + vT , (1)

where vN and vT are the normal and tangential compo-
nents of velocity respectively. To ensure that the de-
composition into normal and tangential components at
F(x) ∈ R3 is well-defined at each point x ∈ X , F t =
F(t, ·) must be an immersion of X into R3 for all t ∈
[0,T ]. Equation (1) is accompanied by an initial im-
mersion F0 = F(0, ·). First-order Laplacian smooth-
ing follows ∂tF = ∆gF F =−2HN, where H = (κmin +
κmax)/2 is the mean curvature and N the outward unit
normal. As demonstrated in Section 4.2 of [11], nu-
merical simulations using the Laplace-Beltrami formu-
lation with respect to the metric gF of immersion F con-
verge to the behavior of mean curvature flow (MCF) for

the shrinking sphere solution r(t) =
√

r2
0 −4t, begin-

ning from radius r0.2

Now let Γ ⊂ R3 be a target set, potentially a non-
manifold surface (see Fig.2) or a point cloud. Let
d : R3 → R be the distance field of Γ, taking either the
unsigned d+ or signed d± form, the latter of which dis-
tinguishes the interior Int(Γ) from the exterior Ext(Γ)
of Γ with negative and positive sign respectively.
The target set Γ generates its distance field d in its am-
bient space R3, and for this reason, it can affect the evo-
lution of F in the following advection-diffusion model:

∂tF = ε∆gF F +ηN +ρvT , F(0, ·) = F0, (2)

2 This alignment underscores the practical equivalence of the
Laplacian smoothing approach to MCF in numerical settings.
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where ε,ρ , and η are control functions, namely

ε(d) :=C1
(
1− e−d2/C2

)
, C1,C2 > 0, (3)

ρ(d) : = A
(
1− e−d2)

, A > 0, (4)

η(d) := D1d
(
(−∇d ·N)−D2

√
1− (∇d ·N)2

)
,

D1 > 0, D2 ≥ 0, (5)

inspired by [10] using the distance field d to target Γ.
With ε we ensure that MCF slows down to zero as F
approaches Γ, we also use a similar control function
ρ to slow down the effects of tangential redistribution
near Γ, and finally η controls the orientation of normal
N to surface F (see Fig. 2). To make sure that F does
not evolve past Γ under the influence of MCF, we can
use modified weight functions ε+ and η+ which are
non-zero only for positive values d > 0.

We also use the angle-based tangential redistribution
inspired by [10] for computing velocity vT with pre-
ferred weight ω = 0.05 throughout our experiments.

3.2 The Discrete Picture
The evolving surface F is represented by a triangle
mesh (K,V ) where K is an abstract simplicial complex
and V ⊂ F [X ]⊂R3 the vertex set, such that its geomet-
ric realization — in the sense of Hoppe et al. [12] — is
a compact manifold surface without boundary. Scalar
and vector fields (d and −∇d) are sampled on regular
voxel grids G ⊂ R3 containing Γ with cell size cG > 0
using trilinear interpolation. In our experiments, we
compute cell size as cG = βmin/40, that is: 40 voxels
per minimal dimension of the target set’s bounding box.

We use the icosphere subdivision surface (see "step 0"
in Fig.1) for simulations with spherical starting sur-
faces, and for another set of simulations we use isosur-
faces of the distance field Sd0 = {x ∈ R3 | d(x) = d0}
reconstructed via the Marching Cubes algorithm [13]
after which it is processed with a single step of adap-
tive remeshing by Dunyach et al. [14] to achieve more
uniform vertex density3. The adaptive remeshing algo-
rithm is then used during evolution when necessary4.

Distance field d is computed using a multi-step ap-
proach from Section 2.1 in [11] accelerated by spatial
data structures like AABB tree and Octree, and using
the Fast-Sweeping algorithm by Zhao [16]. The gradi-
ent ∇d is computed as a central difference of respective
neighboring cell values for each cell.

Non-linear parabolic equation 2 is discretized using fi-
nite 2-volumes (areas) Vi surrounding mesh vertices

3 The PMP library [15] allows us to use only one iteration of
pmp::Remeshing::adaptive_remeshing if the re-
sulting mesh quality suffices.

4 when the measured polygon quality drops below the desired
level.

Fi, i = 1, ...,NV = |V | (see Fig. 3). The concept of
these, so called, co-volumes is explained in more de-
tail by Meyer et al. [17] and Mikula et al. [2]. In
particular, the Laplace-Beltrami operator in (2) is dis-
cretized using a cotangent scheme when compiling the
underlying sparse linear system of dimension NV ×NV .
Analogously to [10], the advection terms in our case
ηN +ρvT correspond to the state of the previous time
step during evolution, and thus are added to the sys-
tem’s right-hand side.

The linear system is solved for each coordinate of ver-
tex Fi and time step t ∈ [0,T ]. Our preferred solver is
BiCGStab, but according to [2] the sparse SOR method
can also be used.

3.3 Numerical Stability

Figure 3: Two distinct types of Laplacian co-volumes eval-
uated for icosphere starting surface Fr: Voronoi (a.1) and
barycentric (a.2) [17]. The starting surface can also be com-
puted as a level set Sd0 of the distance field d where the maxi-
mum expected size of the (barycentric) co-volume can be es-
timated from 4 neighboring voxels with side cG > 0 (b).

The stability of the sparse linear system derived from
(2) relies heavily on the spectral radius ρ(A) of the sys-
tem matrix A with non-negative diagonal entries. Ac-
cording to Section 3 in [18], the semi-implicit finite
volume approach for curves in R2 leads to stability con-
straint τ ≈ h2 where h > 0 is a spatial step and τ > 0 a
time step. In the co-volume formulation on F this trans-
lates to τ ≈ µ(V ) where µ(V ) is the measure (area) of
a representative co-volume V . Large deviations result
in the formation of singularities5 in F . However, vari-
ability of measures µ(V ) in unstructured meshes allows
only an approximate control ensuring ρ(A)≤ 1.

5 At first glance, we consider these singularities qualitatively
different from those handled by Kazhdan et al. [19].
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The simplest available curvature-preserving heuristic
involves uniform scaling the evolving surface F and its
corresponding distance field d to target set Γ by factor

φ =
(
τ/(σ µ0(V )))1/2, (6)

where σ > 0 is a, so called, shrink factor which ac-
counts for the decrement in average µ(V ). Whenever
one requires a result F t in the original size we simply
scale by the inverse of (6). The mean initial co-volume
measure µ0(V ) is estimated from the starting geome-
try assuming uniform vertex density over the surface.
In the case of an icosphere with radius r > 0, we put
µ0(V ) = 4πr2/Ns

V , where

Ns
V =

(
N0

E(4
s −1)+3N0

V
)
/3 (7)

is the number of vertices under subdivision level s ≥ 0
with N0

V = 12 vertices and N0
E = 30 edges of the base

icosahedron. For the proof of formula (7) see Chapter
5 in [20]. With initial isosurface F0 = Sd0 , we estimate
µ0(V ) = c2

G(4
√

2)/3 for voxel size cG > 0 (see Fig. 3
(b)).
Throughout our experiments with the shrink-wrapping
evolution we keep track of the value µ(V ) per vertex as
well as its bounds and average.

3.4 Remeshing and Feature Preservation

Figure 4: A trade-off between local triangle quality and fea-
ture preservation: Results after using cosine-based (a) and
curvature-based (b) feature detection. Points of the target set
Γ are shown in blue.

Adaptive remeshing [14] introduces deviations from the
evolving surface F when applied. This can be mitigated
using control functions ε+ and η+ with strictly posi-
tive support for signed distance fields that can even be
shifted by some value d̃0 > 0 to achieve better results.
Sparse point cloud sets Γ, however, do not provide val-
ues d < 0, and require the use of different techniques
for freezing points which should not sink below their
respective feature.
In mesh processing, features refer to distinctive subsets
of the mesh surfaces, such as sharp corners, creases, and
boundaries, which carry important information about
the shape of the object being represented. We need
the sensitivity to true features6, and on the other hand
avoid marking false positives at convex-dominant sad-
dle (CDS) points (see Fig.5 (b)), that is: saddle points
with much higher positive curvature.

6 Stemming from the shape of generating set Γ.

Figure 5: (a): An estimate of mean curvature angle γ at vertex
Fi. (b): The imbalance of principal curvatures κmax and κmin
at a convex-dominant saddle vertex. The color values show
mean curvature H.

Since we require an automatic process during surface
evolution, we propose a vertex-based detection evaluat-
ing the angle of mean curvature γ = Hl where l is the
arc length of smooth surface F . In the discrete setting
we evaluate γ i at vertex F i = Fi using neighborhood
mean edge length7: l = 1

m ∑
m
p=1 ∥Fip −Fi∥ where m is

the valence of vertex Fi, and the cotangent estimate of
mean curvature H from [17].
Using γ we convert mean curvature H to a scale-
invariant quantity. Vertices with γ = 2lH < γcrit are
marked as feature. Unfortunately, this alone leads to a
decrease of mesh quality in CDS points – saddle points
where |κmax| < K|κmin| for curvature imbalance factor
K > 1. Such feature elements can be false positives,
and we propose not to mark them. Additionally, we
should also not mark vertices with valence m > 6
because the following adaptive remeshing steps will
avoid fixing them.
Considering the extent of sizes βmin, βmax of axis-
aligned bounding box of Γ and box expansion factor
ζ > 0 for the distance field d we use empirical estimate

r ≈ 0.4(βmin +(0.5+ζ )βmax) (8)

for the radius of the starting icosphere with subdivision
level s. The sizing for remeshing [14] is computed as

lmin = 2λminr sin
(
γico2−(s+1)), lmax = λmaxlmin, (9)

where γico = 2π/5 is the angular segmentation of the
base icosahedron, and λmax > λmin > 0 are controllable
scale factors. Throughout experiments in Section 4 we
empirically put λmin = 0.14, and λmax = 4. For the iso-
surface evolution we change the minimum edge length
factor to λmin = 0.4 and put

lmin = λmin
√

2cG, lmax = λmaxlmin, (10)

where cG is the cell size of the distance field grid. Com-
bined with error εrem = max{∥F −F∥} between linear
approximation F and surface arc F , we obtain adaptive
sizing values for all edges [14] (we set this value to
(lmin + lmax)/4). For our evolving surface, the sizing
needs to be adapted to stabilized scale φ .

7 Also used by [6] to estimate the local radius of curvature for
a surface update term.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

24https://www.doi.org/10.24132/JWSCG.2024.3



Figure 6: The effect of changing approximation error εrem af-
ter 80 time steps for adaptive remeshing as a multiple of min-
imum edge length lmin = 0.0799 of Armadillo (in stabilized
scale φ = 0.0261).

It should also be noted that strong (low-εrem) adaptiv-
ity may adversely affect co-volume sizing necessary for
stability (see Fig. 6), especially for feature vertices.
To achieve higher level of detail for surface F close to
Γ, the mesh sizing parameters λmin and λmax can be de-
creased for chosen time steps to achieve the effect seen
in Fig. 1. The time step size τ must be adjusted accord-
ingly, to ensure stability as described in Section 3.3.

3.5 Triangle Quality Metrics

Figure 7: Two quality metrics with preference for equilateral
triangles: double inradius over circumradius ratio (a), and Ja-
cobian of the unit equilateral triangle (b) to the planar repre-
sentation T = {v0,v1,v2} in triangle plane: PT .

As mentioned in Section 3.3, the semi-implicit formu-
lation of (2) places restrictions on sizes of co-volumes
and their uniformity across the surface. The resulting
surface FT can then be used, for example, in mechan-
ical FEM analysis [21]. Most importantly, however,
our motivation to ensure that most triangles are as close
to equilateral as possible stems from the possibility of
fast visualization. The rendering of almost-equilateral
triangles can then be accelerated by treating them as
discs, i.e.: fish-scale mesh8 [22]. More information on
the quality of linear elements can be found in Section
1.1.2 of [23].
We choose two metrics measuring "equilateralness",
namely

1. 2rin/rcirc ∈ [0,1] where rin is the inradius and rcirc
is the circumradius of the triangle, implemented in
MeshLab™. For an equilateral triangle 2rin = rcirc.

2. Our customized condition number κ(J∆) of the
equilateral triangle Jacobian J∆ : R2 → R2 inspired
by [24].

8 It is faster to compute disc-ray intersection than triangle-ray
intersection.

When expressing the planar vertex position in the re-
spective basis, we normalize the edge lengths with re-
spect to basis vectors, shown in Fig.7, to account for
scaling.

3.6 Experimental Setup
We implemented our framework in C++ with the help
of the PMP Library9 [15] which provides a versatile
half-edge (suface) mesh representation [26]. As men-
tioned in Section 3.2, we chose the BiCGSTAB solver
with IncompleteLUT preconditioner from the Eigen
library10.

3D visualization of the VTK polydata output is accom-
plished using ParaView from Kitware™. Since VTK
supports only vertex values, we average metrics from
Section 3.5 across triangles adjacent to each vertex.

First, we show the validity of the stabiliza-
tion heuristic from Section 3.3 by measuring
µmax = maxi=1,...,NV µ(Vi), µmin = mini=1,...,NV µ(Vi)

and the mean µ(V ) = 1
NV

∑
NV
i=1 µ(Vi) for all time steps

t ∈ [0,T ]. We also observe how the use of remeshing
reduces the range of values [µmin,µmax].

Since our implementation currently supports two types
of starting surface — icosphere and isosurface (see
Fig.3) — we naturally choose the latter option to
shrink-wrap target data with higher genus. To compare
the efficiency of shrink-wrapping in other approaches,
we select the closest predecessor [7] and the latest work
on Repulsive Surfaces by Yu et al. [4]. Since these
methods achieve a somewhat "incomplete" wrapping
result, we distinguish between two scenarios
• obstacle, with D2 = 0,

• and full-wrap, with D2 > 0,
where D2 is from the advection control function (5).

We judge the experiments based on two criteria:
1. Distance-based: How well the result FT approxi-

mates the target set Γ.

2. Quality-based: What is the triangle quality distribu-
tion of FT according to Section 3.5.

The first criterion can be measured by simply sampling
d on its domain per vertex as d

∣∣
Ft using trilinear in-

terpolation, or we can approximate the Hausdorff dis-
tance:

dH(F t ,Γ) := max
{

sup
p∈Ft

d(p,Γ),sup
q∈Γ

d(F t ,q)
}
, (11)

where d(p,Γ) ≈ d
∣∣
Ft and d(F t ,q) is the value of the

distance field to surface F t at a point q ∈ Γ for all t ∈
[0,T ].

9 The library is inspired by the book with the same name [25].
10 PMP also uses Eigen internally for matrix and vector repre-

sentations.
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Figure 8: The range of co volume measures [µmin,µmax] tested for two target meshes (Armadillo and Bunny), for four different
settings (of constant D2 and with or without adaptive remeshing) with resulting meshes F80τ on the right.

Note that compared to [27] and [28] we choose to
utilize trilinear interpolation within already computed
distance fields over regular grids.

Furthermore, we divide our experiments into the com-
parative and demo categories, with the latter being fo-
cused solely on mesh simplification.

It can be observed that evolutionary algorithms (men-
tioned in Section 2) have a large variety of parameters
to fine-tune. We also deem our overall surface extrac-
tion algorithm to have too many parameters to cover
in this paper. We shall henceforth only mention some
of them while, regarding the rest, we refer to our source
code on GitHub [29] which will also contain the param-
eter settings which will yield the comparative, as well
as, "most representative" results shown in Section 4.

4 RESULTS
4.1 Stability
Since scaling (6) can be weighed by shrink factor σ > 0,
we first assume σ = 1, and observe the values of co-
volume measures µ(V ) for each vertex during Nt = 80
steps. From measures shown, for example, in Fig. 8
we deduce µ(V ) ≈ τ/5 most of the time, so we put
σ = 1/5. It is evident that without remeshing, values
µ(V ) fluctuate even above the time step size τ .

4.2 LSW for Surface Reconstruction
For the comparative evaluation we choose the Bunny
mesh uniformly sampled11 to 12K vertices. Compar-
ing the resulting values in three distinct histogram eval-
uations for the final time step (see Fig. 9), yields a clear
improvement of our method when compared with that
of Daniel et al. [7] in terms of both face quality metrics
due to remeshing. As mentioned in Section 3.6, it was
also important to see how far away the resulting surface

11 From the uniform distribution over all mesh vertex indices
from the original file.

stays from the target point cloud Γ. Clearly, the distri-
bution of distances is smallest for our full wrap config-
uration with the maximum fit. However, in order to im-
prove the effectiveness of feature detection (see Section
3.4) for point cloud targets, we chose value d̃0 =

3
√

3
4 cG

which is the 1.5-multiple of the voxel diagonal half-
length, which is evident in the shift of the histogram
of d

∣∣
F when compared to the results from [7] and [4]

(see Fig. 9).

Figure 9: Comparison of four different LSW experiments via
histograms of per-face (see Section 3.5) and per-vertex metric
d
∣∣
F for the last time step.

Figure 10: Evaluation of (11) throughout evolution.
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Figure 11: Evaluation of κ(J∆) (see Section 3.5) on the shrink-wrapping results from icosphere setup (a), and the higher-genus
isosurface starting surface with given isolevel values d0 > 0.

Figure 12: Comparison of our isosurface setup with the "Enveloping CAD" approach by Hurtado et al.[1].

When examining Hausdorff distance (11), we observe
fast and stable convergence of F towards the target
point cloud Γ in both our Obstacle and FullWrap con-
figurations. Due to the lack of the corrective term with
coefficient D2 in (5), the implementation by Daniel et
al. [7] hangs without reaching the surface with sig-
nificant oscillations. The completely different global
method by Yu et al. [4] finds it difficult to converge to
the target altogether even after more time steps (see Fig.
10).

We also mark the time steps when mesh sizing changes
with symbol ∆. In case of [7] it takes place of a 4:1
triangle subdivision, whereas we use a decay factor of
0.7 for λmin (see Section 3.4) which is, analogously to
[7], applied to time step size τ to ensure stability. In the
case of our implementation and that of Yu [4], remesh-
ing takes place whenever necessary for all time steps.

4.3 High-Quality Simplification
Treating our model as an enveloping tool for mesh
simplification presents its own benefits and challenges.
Most importantly, the simpler topology of the starting

icosphere surface F0 yields higher simplification ra-
tio considering meshes with internal simplices, that is:
those embedded inside the enveloping boundary of the
surface, as in Hurtado et al. [1]. On the flip side, the
shrink-wrapping of datasets with higher-genus envelop-
ing boundaries leads to self-intersections of F . Without
the ability to fix self-intersections by incrementing the
surface genus, we are bound to the genus of the starting
surface F0. That being said, if we construct F0 from a
higher-genus isosurface of the target set distance field
d, we are bound to keep internal cavities if the data al-
ready has some larger than voxel size cG > 0 (see Fig.
12).

In this section, we also present quality assessment via
κ(J∆) of the resulting surfaces FT for a wide variety of
datasets as shown in Fig. 11. Even with a few iterations
of adaptive remeshing whenever the range of κ(J∆)
per triangle exceeds our chosen range in our experi-
ments: [1,1.5] (which slightly exceeds that recomended
in [24]), we are able to maintain the quality of almost all
faces for all time steps. For meshes with significant fea-
tures, such as Armadillo, Bunny, and the higher-genus
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isosurface evolution datasets (Fig. 11 (b)) the use of
curvature-based feature detection as described in Sec-
tion 3.4 inhibits adaptive remeshing on vertices marked
as feature.

Figure 13: Comparison of point cloud reconstruction results
from the Ball-pivoting algorithm and our full-wrap LSW with
sizing 0.005. Boundary edges of the non-watertight resulting
surface are highlighted in green.

5 DISCUSSION AND FUTURE WORK
Our scale-based heuristic shows stable results with ico-
sphere starting surfaces F0 (see Section 4.1). How-
ever, adjusting parameters is necessary for isosurface
F0 to ensure stability. The LSW method excels in
providing the best fit for full-wrap configurations, sur-
passing other surface evolution techniques in Haus-
dorff distance evaluation, demonstrating LSW’s ability
to closely approximate target meshes without sacrific-
ing surface integrity.

When compared to shrink-wrapping techniques like Yu
et al. [4], our approach offers competitive face qual-
ity and significantly better fit via distance-based eval-
uation, particularly excelling in the full-wrap configu-
ration (see Section 4.2).

In addition to the results presented in Section 4, we
must also qualitatively compare our reconstruction
approach to the Ball-Pivoting Algorithm (BPA) [30]
which, unlike the widely-used Poisson Reconstruc-
tion [31], does not require normals for the input point
cloud (see Fig. 13). Unlike BPA, which can introduce
holes, LSW with the full-wrap configuration stands
out in producing watertight surface reconstruction
without the need for point normals. It should be noted,
that unlike BPA, shrink-wrapping approaches merely
approximate the original points.

As a mesh simplification tool, our model offers both
benefits and challenges. The use of an icosphere Fr as
a starting surface simplifies topologies effectively, yet
produces self-intersections for higher-genus target data
Γ. This stems from the fact that the comparison prin-
ciple (see Huisken [32]) no longer holds for the forced
MCF (2). The use of isosurface Sd0 with isolevel d0 > 0,

Figure 14: The formation of self-intersection polylines PI at
time tI > 0 when shrink-wrapping a double torus. Faces inter-
secting at least one other face from surface FtI are highlighted
in red.

on the other hand, does not solve this problem for gen-
eral target data Γ because it preserves undesired cavities
(see Fig. 12).

In our future work we focus on solving the issue of
compatibility with higher-genus data by removing sur-
face patches with inverted normals, and properly con-
necting the remaining faces (see Fig. 14). This will
automatically increment the genus of the evolving sur-
face F whenever self-intersections are detected at time
tI > 0. This approach is the time-inverse of the surgery
technique by Kovács [33], but requires only combina-
torial adjustment when the self-intersection polyline PI
is computed.

We shall also examine the stopping criterion for LSW
to achieve full versatility. Evolution can, for example,
terminate when at least 98% of the points no longer
move, or change their distance d to Γ. Such criteria
need to be formulated for general target data with arbi-
trary genus and features.

Furthermore, our feature detection techniques are in-
sufficient for very sharp features in Γ (see the T-Rex
dataset in Fig. 12), and require further inquiry with var-
ious projection-based techniques.

When it comes to the applications, we consider using
our method for progressively streaming very large mesh
files only by passing well-sampled subset of its ver-
tex table and then reconstructing the sample as a point
cloud. Feature-sensitive stochastic sampling has been
done by Li et al. [34], yet may benefit from our ap-
proach which does not require normals in the input data
Γ. We propose that this progressive vertex-focused file
parsing provides reasonable preview for very large data,
often acquired by modern 3D scans.

6 CONCLUSION
In this work, we have introduced a novel approach
to automated surface extraction that significantly en-
hances the efficiency and accuracy of shaping complex
objects from simple surfaces. By integrating adaptive
remeshing and curvature-based feature detection into
the process of Lagrangian Shrink-Wrapping (LSW), we
have shown that our method not only maintains high
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mesh quality but also ensures proximity to target data
across various configurations.

Our findings demonstrate that the scale-based heuristic
provides a stable foundation for the evolution of ico-
sphere starting surfaces, albeit requiring nuanced pa-
rameter adjustments for other surfaces like isosurfaces.
Notably, our method achieves superior surface fitting in
"full-wrap" configurations, outperforming existing evo-
lutionary methods when assessed using Hausdorff dis-
tance. This precision in approximation without sacri-
ficing surface integrity highlights the potential of our
approach for applications requiring accurate and high-
quality surface reconstructions.

Moreover, our method presents a competitive alterna-
tive to existing surface reconstruction and mesh sim-
plification techniques, such as those proposed by Yu
et al. [4], especially in terms of face quality and the
preservation of intricate geometric features. The abil-
ity of LSW to produce watertight tessellations without
the need for normals in the input data, unlike the Ball-
Pivoting Algorithm, further underscores its utility for
seamless model generation from point cloud data.

As an enveloping tool for mesh simplification, our
approach exhibits a comparable simplification ratio
for meshes with internal simplices, aligning with
the observations of Hurtado et al. [1]. However,
we also recognize the challenges posed by datasets
with higher-genus enveloping boundaries introducing
self-intersections during evolution, which will be the
focus of our future work.

Looking forward, we aim to address the limitations en-
countered with higher-genus data and explore the de-
velopment of more robust feature detection techniques
to capture sharper features accurately. The potential
application of our method for progressive streaming
of large mesh files presents an exciting avenue for re-
search, promising a significant impact on the field of
geometry processing and beyond.
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ABSTRACT
The automation of games using Deep Reinforcement Learning Strategies (DRL) is a well-known challenge in AI
research. While for feature extraction in a video game typically the whole image is used, this is hardly practical
for many real world games. Instead, using a smaller game state reducing the dimension of the parameter space
to include essential parameters only seems to be a promising approach. In the game of Foosball, a compact and
comprehensive game state description consists of the positional shifts and rotations of the figures and the position
of the ball over time. In particular, velocities and accelerations can be derived from consecutive time samples of
the game state. In this paper, a figure detection system to determine the game state in Foosball is presented. We
capture a dataset containing the rotations of the rods which were measured using accelerometers and the positional
shifts were derived using traditional Computer Vision techniques (in a laboratory setting). This dataset is utilized to
train Convolutional Neural Network (CNN) based end-to-end regression models to predict the rotations and shifts
of each rod. We present an evaluation of our system using different state-of-the-art CNNs as base architectures
for the regression model. We show that our system is able to predict the game state with high accuracy. By
providing data for both black and white teams, the presented system is intended to provide the required data for
future developments of Imitation Learning techniques w.r.t. to observing human players.

Keywords
Game State Detection, Computer Vision, Deep Learning, Foosball, Deep Reinforcement Learning, Imitation
Learning

1 INTRODUCTION

State detection based on Computer Vision techniques
has been used in the automation of games using Rein-
forcement Learning, cf. [22, 25]. The common way is
to take an input image stream, e.g. the whole screen in
a video game cf. [22], and predict a next action based
on a DRL system. In contrast to video games, the usage
of whole images is often not practical when automating
real-world games. In this case, using a lower dimension
abstraction of the game, for which we employ the term
game state, can be advantageous for the DRL training
and prediction. The game of Football is a good example
for the automation of complex real-world games [20].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

A better accessible scenario is found in the game of
Foosball, which provides a stable, more controllable en-
vironment, cf. [28, 29]. More concrete, the game state
can be defined as the positional shift and the rotations of
the figure rods plus the position of the ball as a function
of time. In particular, the velocities of the figure rods
and the velocity of the ball can be approximately calcu-
lated using multiple consecutive time samples. We note
that, specifically in Foosball, using the described game
state instead of an overall image reduces the parameter
space for a DRL agent significantly. In order to provide
the required state space data, a game state detection sys-
tem is needed to extract the game state and provide the
data to the DRL agent.

In this paper, we present a game state detection system
for the Foosball table shown in Fig. 1. The Foosball
table is automated using industrial motors on the black
team while the other, white team is human-controllable.
At the top of the table, a Logitech BRIO webcam is
mounted which captures the playing field in a top down
perspective. Currently, the motors report their shifts
and rotations, so the game state of the black figures is
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Figure 1: The physical Foosball table. The black
team is controlled by industrial linear and rotary mo-
tors while the white team is controlled by humans. A
Logitech BRIO webcam captures the playing field in a
top down perspective.

available as a potential ground truth. Additionally, there
exists work on the detection of the position and veloc-
ity of the ball [5]. The game state of the white figures
is unknown. Our system developed in this work is able
to detect the game state of all figures (black and white)
of the Foosball table using Deep CNN and Computer
Vision. We utilize the available game state data for the

Figure 2: A working example of our figure detection
system. The predicted positional shift and rotation an-
gle of each rod is printed above the rod. The captured
data can be used by a DRL agent through a ZeroMQ
based data provisioning system.

black figures as a ground truth to validate our system.
A working example of our system is shown in Fig. 2.
As all figures are included in the game state, our system
can also be used to capture the state of non-automated
Foosball tables. In this respect, we are preparing and
contributing to future Imitation Learning experiments
(based on matches of only human players) where the
whole state space is planned to be captured by Com-
puter Vision techniques.

The paper is structured as follows: Section 1 intro-
duces this paper and provides a brief overview of re-
lated work. In section 2 we describe our approach
to game state detection. We evaluate our system and
present results in section 3. In section 4 we conclude
the paper and present aspects of future work.

1.1 Related Work
Several studies conducted research in automating a
Foosball table. The sub-process of game state detection
is a key part of the automation process [11, 13, 29].
While the detection of the ball is a necessity for a
rudimentary automation of a Foosball table, Enos et
al. [7] and Gashi et al. [9] note the importance of
the detection of the figures to enable a dynamic game
play. Due to the focus on the basic automation, most
studies do not attempt the figure detection in their
work. Bambach et al. [3] and Horst et al. [15] only
examined the game state detection without addressing
the actual automation process. In contrast, Gashi et
al. [9], Rohrer et al. [24] and Zhang et al. [31] only
addressed the automation by extending already existing
automated Foosball tables and using the established
state detection methods.

The automation Hardware is usually built around lin-
ear and rotary motors to control the rods with addi-
tional sensors to measure the shift and rotation, cf.
[5, 17, 21, 29]. Over time, the research shifted from rule
based algorithms, cf. [29, 30], towards DRL based ma-
chine learning models, cf. [5, 9, 24]. Imitation Learning
methods were also used to improve the early rule based
approaches [31].

All above studies use a camera and computer vision
techniques to detect the game state. Mohebi [21] de-
scribes additional methods for the ball state detection,
including the usage of Bluetooth, a touch sensible
screen as the playing field and a grid of light emitters
and detectors. Most studies, however, rely on color
segmentation based approaches to detect a distinct
colored ball, cf. [3, 7, 11, 18, 26]. The state of the
figures is often not considered. Weigel et al. [29]
implemented a rudimentary figure detection system
which they discarded in their next iteration [28].
Bošnak et al. [4] proposed the usage of visual marker
patterns to detect the rotation of the rods. Janssen
et al. [17] used a MRI scanner to detect figures in
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a 3D scan but only used this information to enhance
the ball detection system. Mohebi [21] proposed the
usage of additional sensors for the figure detection.
Other studies addressed the figure detection by using
a similar color segmentation approach as already used
for the ball detection, cf. [1, 21]. In contrast, Horst et
al. [15] concentrated their work on detecting the game
state of an automated Foosball table by implementing
a proof-of-concept for the midfield, human-played
figures. Their setup includes the utilization of the
YOLOX object detector [10] to find the individual
figures and a custom regressor network to predict the
rotation angle.

1.2 Contributions
In this work, we present a figure detection system for
the physical automated Foosball table used by Horst et
al. [15], De Blasi et al. [5] as well as [9, 24], the later
two references focusing on the DRL part. Our work ex-
tends previous work of Horst et al. [15] who derived a
first proof-of-concept using CNN-based Computer Vi-
sion methods.
Our contributions can be summarized as follows. (a)
We created and verified a ground truth dataset for the
training of a CNN-based detection model; (b) We de-
rive an improved figure detection system by basing on
end-to-end learning; further, the new system is able to
detect all white figures and additionally the black, com-
puter controlled figures. (c) In the developed end-to-
end setup, we trained and evaluated multiple feature
extractor backbones, including ResNet [12], MobileNet
[16] and EfficientNet [27]; (d) We propose a data provi-
sioning system based on ZeroMQ [14]. Concerning (a)
we use accelerometers and the motors of the Foosball
table to measure the rotations of the rods. Addition-
ally, we derive the shift by utilizing traditional CV tech-
niques. While [15] captured all data in one video using
OLED screens to display the rotation of the rods, we
discard the screens and OCR step by directly reading
from the micro-controller, therefore reducing complex-
ity and fixing noted issues. Concerning (b) we discard
the YOLOX object detector [10] which was used in [15]
to detect each individual figure. Instead, we aim for an
end-to-end regressor network for shift and rotation de-
tection on a per-rod basis. Additionally, we extend and
refine the ideas of [15] to include all figures of the Foos-
ball table and to fix issues noted there. Furthermore, we
contribute to the DRL research started by De Blasi et
al. [5] and extended by Rohrer et al. [24] and Gashi et
al. [9]. In particular, by deriving the whole state space
(including the black figures), we are preparing for Im-
itation Learning approaches which require a system to
extract the game state of pre-recorded human matches
(including both black and white figures).
In contrast to other previous research, color based ap-
proaches, cf. [1, 3, 26, 29], are not applicable since

Figure 3: Measuring the rotational shift relative to the
ground (α) using a two-axis accelerometer. Since the
gravitational force of 1g is fixed and due to the orthog-
onal alignment of the X and Y axis, the measured accel-
erations on those axis are proportional to the sine and
cosine of α .

the figures are not colored with distinguishable col-
ors. While we also use additional sensors for creating a
ground truth, a similar approach to Mohebi [21] is not
applicable due to a non-permanent hardware modifica-
tion constraint. We use state of the art deep CNN for the
game state detection which removes the need for a cali-
bration step ahead of time and creates a more robust and
stable system in contrast to traditional CV techniques.

2 GAME STATE DETECTION
In the following, we present our approach to detecting
the game state of a Foosball game. Relying on previous
work on detecting the ball [5], we focus on detecting the
figures. More precisely, we detect the positional shifts
and rotations of the figures. This amounts to detecting
the shift and rotations of the corresponding rods since
the relative position and the angles do not change within
the rod. The velocities of the figures can be calculated
through consecutive shifts and rotations. First, we de-
scribe our approach to creating a ground truth dataset
using accelerometers and the motors of the Foosball ta-
ble. Afterwards, we develop end-to-end regressor mod-
els basing on widely used CNN backbones as feature
extractor networks.

2.1 Dataset Creation
The training of our end-to-end regressor network re-
quires the presence of a dataset consisting of the shifts
and rotations of all rods of our Foosball table. For the
white, human controlled rods, the shift and rotation val-
ues are not available. In contrast, the motors which con-
trol the black rods report their state. We use the reported
state as a ground truth to verify our dataset creation sys-
tem.

The shift of the white rods can be calculated using tra-
ditional Computer Vision techniques. In contrast, the
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rotation cannot be validated with traditional CV meth-
ods due to different perspectives and no ground truth
being available. Therefore, our approach includes the
usage of accelerometers to measure the rotation in the
real world. An accelerometer measures the linear accel-
eration on a defined axis. When fixed to a specific point,
the gravitational force is a linear acceleration which can
be measured by an accelerometer. Using two orthogo-
nal axis, the relative tilt to the ground can be calculated,
cf. [8, 23]. As shown in Fig. 3, the measured acceler-
ation A is related to the angle α: AX ,OUT

AY,OUT
= 1g×sin(α)

1g×cos(α) =

tan(α) which results in α = tan−1(
AX ,OUT
AY,OUT

) with AX ,OUT

as the measured acceleration on the X axis and AY,OUT
as the measured acceleration of the Y axis. The default
rotation is defined as a figure standing vertically with
the head up. The rotation is measured as 0 degrees in
the default rotation while the motors of the black figures
report 180 degrees as default. Therefore, the measured
rotations are shifted to also use a default rotation at 180
degrees.

Figure 4: The hardware used to measure the rota-
tion of the white figures. Four GY-521 modules
with MNPU6050 accelerometers on 3D-printed mounts
were screwed on top of the rods. The accelerome-
ters are connected to an ESP32 based micro-controller
via an I2C connector. Additionally, we included a
WS2812B-based LED strip to indicate the internal tim-
ing and a button to calibrate the zero-point of the ac-
celerometers.

We validated two different types of accelerometers,
namely the MPU6050 on GY-521 breakout boards and
the ADXL345. By measuring the rotation of the black
rods with those sensors we could verify the measure-
ments and estimate errors between the actual rotation
and the measurements. We found that the MPU6050
sensor measured the rotation with a higher accuracy but
still had a mean absolute error of around 5 degrees with
outliers between 20 and 25 degrees. We also observed
that some of the sensors tested had calibration errors
which where visible in a systematic deviation between

the real and measured rotation angle. To minimize the
deviation between the measurements and the real rota-
tion in our ground truth, we rejected the corresponding
sensors. Fig. 4 shows an image of our measurement
hardware.

Wait 0.4 
seconds

Read 
measurements

•Accelerometers

•Motors

•Camera image

Save data

•Append image to
video

•Append sensor
data to CSV file

Random 
movement of

the black figures

Start

End

Figure 5: Our proposed dataset capturing process. One
iteration of the process corresponds to one frame taken
by the camera. While the black figures are moved auto-
matically, the white figures need to be moved manually
during the dataset capturing to get a versatile set of dif-
ferent shifts and rotations.

The capturing process, as illustrated in Fig. 5, consists
of four steps which are repeated. First, we move and
rotate the black rods randomly to get diverse states. As
the white rods are not connected to motors, those were
moved manually by hand. Next, the system waits 0.4
seconds to let the motors finish their movements. This
reduces the risk of motion blur and a faulty state re-
ported by the motors, as they report their final posi-
tion and not their current shift. Afterwards, the mea-
surements of the motors and the accelerometers are re-
trieved and a snapshot of the webcam is captured. In
the last step, the camera image is appended to an MP4-
encoded video and the measurements are saved in a
CSV file. This process is repeated N times to get N indi-
vidual game states with a corresponding camera image
in the dataset. The resulting dataset contains the posi-
tions and rotations of the black rods, the rotations of the
white rods and the camera image.

For deriving the positional shifts of the white rods in
the data setup we use a traditional Computer Vision ap-
proach. We start by defining a one pixel wide column
in the center of each rod and applying a binary thresh-
olding. We search for connected groups of black pix-
els in this column to find the rubber stoppers which are
mounted at each end of the rods. Using those stoppers
we can find the center of each rod. We calculate the
actual shift by converting the offset between the cen-
ter of the table and the center of the rod from pixels
to mm. We validated this approach by calculating the
shifts of the black rods. We observed, that the reported
shift sometimes differs from our calculations. As illus-
trated in Fig. 6, our calculations were more accurate.
We conclude, that the rods were still moving when the
image was taken resulting in an offset between the re-
ported and the actual shift. The observed motion blur
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pattern, as shown in Fig. 6, confirms this assumption.
While the images are not blurred, the rods contain a
vertical motion blur but no horizontal bluring. Since
this motion blur will also be present when detecting the
game state of a real Foosball game, we keep the faulty
images in the dataset but use our calculated shift as our
ground truth.

Figure 6: Outliers with a high deviation between the
calculated shift (red line) and the reported shift (green
line). While the motors report the final shift of the rod,
regardless if the rod is still moving, the calculation is
based on the current image. Therefore, the calculated
shifts are more accurate.

Summing up, the derived data set consists of 500 im-
ages containing the corresponding shifts and rotations
of the black and white figures. Due to our automated
data capturing process using the accelerometers for the
measurement of the rotations and an automated CV pro-
cess for the shift calculation, we were able to avoid
a manual labeling process. We note however, that in
some occasions, minor manual adaptions were neces-
sary to accommodate small deviations in the camera
angle. The positions and rotations of the black figures
are uniformly distributed. Due to the manual movement
of the white rods, the positions and rotations could not
reach a uniform distribution and include some bias to-
wards specific values, c.f. Fig. 7. Albeit not attempting
to detect the ball, we included it in the dataset to get
more realistic images.

2.2 End-to-End Regressor Networks
For the game state detection on our Foosball table, we
propose the utilization of common state-of-the-art Im-
age Classification models like ResNet [12], Efficient-
Net [27] and MobileNet [16] as a backbone for feature
extraction. As the shifts and rotations of the rods are
continuous numerical variables, the problem at hand
constitutes a regression problem. Thus, classification

Figure 7: Distribution of the rotation of the black and
white goalkeepers. The black goalkeeper was moved
randomly by the computer which results in a uniform
distribution of measured rotation angles. In contrast,
the white goalkeeper was moved manually by hand re-
sulting in a non-uniform distribution with a bias to spe-
cific angles. This effect is also present on the other
white rods.

models/networks which typically consist of a feature
extractor backbone and a classification head cannot be
used directly. However, we may reuse the feature ex-
tractor (cf. [2]; which mostly consists of convolutional
layers) and replace the classification head with a cus-
tomized regression head. This approach fits within the
idea of fine-tuning on a downstream task using parts
of a neural network trained for another task on a large
set of training data; in particular, we here use already
proven feature extractor architectures trained for classi-
fication on ImageNet [6].

To account for the periodicity of angles, we decided to
use eiϕ = (cosϕ,sinϕ) as variable for regression, i.e.,
we predict the sine and cosine of the angles. Addi-
tionally, the shift is scaled to a range of -1 to 1 which
balances the influence of the shift, the sine and the co-
sine. Ultimately, as a regression head, we used a linear
layer with an output dimension of three and no activa-
tion function to predict the values (s,cosϕ,sinϕ) where
the symbol s denotes the shift.

To mitigate the problem of perspective distortion,
which occurs due to the wide field-of-view of the
camera, we use an individual regressor model per rod,
resulting in 8 models which are trained and inferred
sequentially. Each regressor uses a pre-defined cutout
of the overall camera image. We custom-trained the
8 models using four different base architectures from
ResNet18, ResNet50 [12], EfficientNetV2 [27] and
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MobileNetV3 [16] as feature extractors. The weights
of the feature extractors are initialized using transfer
learning with the provided ImageNet1K [6] weights of
the base models from PyTorch. The custom regression
head is initialized randomly. Each regressor is trained
over 50 epochs using the MSE loss function and the
Adam optimizer [19] with a fixed learning rate of
0.001. During the training process, we used 80 % of
our dataset (400 images) to train the CNNs and 20 %
(100 images) for validation.

2.3 Data Provisioning System
As our work contributes to the automation of our Foos-
ball table using DRL or Imitation Learning techniques,
a data provisioning system needs to be implemented
which should (a) use standardized formats; (b) be eas-
ily accessible with a minimal need of further Hard- or
Software; (c) not introduce high latency into the sys-
tem. We propose a publish-subscribe messaging system
based on ZeroMQ [14] which satisfies those require-
ments.

Regressor Pipeline ZMQ Pub/Sub

Live Dashboard

Student A

Student B

Figure 8: The proposed game state detection pipeline
including the data provisioning system. Due to the uti-
lization of ZeroMQ, multiple clients can connect and
receive the game state data simultaneously.

The data producer side of the pipeline, in which the
shift and rotation is predicted, publishes the JSON-
formatted results through a ZeroMQ TCP socket. A
client can then connect to this socket, subscribe to the
messages and decode the JSON data. An illustration
of the data provisioning system with multiple example
clients is shown in Fig. 8. While this approach intro-
duces some latency, it also has other major advantages.
Firstly, multiple clients can connect to the socket simul-
taneously. Secondly, the TCP-based socket can also be
shared through a network. This enables the possibility
of the permanent installation of a dedicated game state
detection server accessible to researchers. This would
free resources for possible DRL experiments, as the
game state detection must not be executed on the same
hardware. The option of multiple connected clients al-
lows for different simultaneous experiments as long as
the actual Foosball table hardware is not required.

3 EVALUATION
As we utilized multiple feature extractor backbones for
our regression model, we evaluate the performance of

the overall system per feature extractor based on the
prediction accuracy measured as Mean Absolute Error
(MAE) and the inference time. We define the following
criteria:

a) The MAE for the shift should not exceed 11 mm.
The feet of the figure is 22 mm wide, so an error in
the positional shift of ± 11 mm would still result in a
straight shot. Since every rod has different shift lim-
its, the percentage range per rod varies between ±
8.5 % for the defender and ± 20 % for the midfield
rod.

b) The MAE for the rotation should not exceed 42 de-
grees. A figure is able to block a shot if the feet
of the figure are below the highest point of the ball.
This is given at a maximum rotation of ± 47 degrees.
Due to small rotations of the figure on impact with
the ball, we deduct an offset of 5 degrees. There-
fore, a figure which is predicted to stand vertically
would be able to stop the ball up to an error of ± 42
degrees.

c) The inference time should be lower than 16.6 ms.
Since our present camera is only able to record at
60 FPS, this is the limit which we consider to be
real-time. Ultimately, the system should be as fast
as possible to provide as much information to the
DRL systems as possible. A shorter inference time
is therefore generally preferred.

3.1 Quantitative Evaluation
Evaluation of the Prediction Quality. We compare
the results using a ResNet18, a ResNet50 [12], an Ef-
ficientNetV2 [27] and a MobileNetV3 [16] where we
use an individual regressor model per rod as detailed in
Section 2.2.

Table 1 shows our evaluation results for the shift detec-
tion. Considering the MAE averaged w.r.t. all rods, all
feature extractor backbones passed the defined objec-
tive – they were below the predefined thresholds above.
The shift detection is more accurate on rods which have
a smaller movement range (e.g. the midfield rod) than
on rods with a high movement range (e.g. the defense
rod). Further, the predictions for the white rods have a
higher accuracy than those for the black rods. We be-
lieve that a possible explanation for this finding can be
that, in the training data, the shifts of the black rods fol-
low a uniform distribution while the white rods (which
were moved manually by hand) are distributed non-
uniformly. Examining each rod individually, both re-
gression networks based on the RestNet18 and on the
ResNet50, stay within the predefined error tolerance,
whereas the networks based on the MobileNetV3 and
EfficientNetV2 backbones exceed the requirement on
the white defender. Further, the ResNet18 based model
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Feature Extractor Black Rods White Rods Average
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 2.94 4.02 1.23 1.6 2.94 7.42 2.2 8.68 3.88
ResNet50 2.4 4.02 1.35 2.77 4.5 6.49 1.91 7.83 3.91

MobileNetV3 7.68 9.35 3.01 7.32 9.06 11.94 3.89 6.78 7.38
EfficientNetV2 9.82 5.97 2.06 3.75 5.5 12.73 4.47 8.53 6.6

Table 1: Mean absolute error of the predicted shift in mm per rod and feature extractor.

Feature Extractor Black Rods White Rods Average
Goal Defense Midfield Striker Goal Defense Midfield Striker

ResNet18 1.23 1.47 0.88 1.38 12.64 13.93 4.96 10.93 5.93
ResNet50 1.34 1.43 0.97 1.33 8.33 5.44 4.06 9.91 4.10

MobileNetV3 3.46 2.18 1.72 4.35 17.86 22.96 7.69 21.21 10.18
EfficientNetV2 6.31 2.14 2.29 1.69 14.26 25.32 13.59 28.68 11.79

Table 2: Mean absolute error of the predicted rotation angle in degrees per rod and feature extractor.

performed slightly better on average than the ResNet50
based model. In our opinion, these observations indi-
cates that further training data is necessary to use the
full potential of deeper networks.
In Table 2, we provide the mean absolute errors of the
rotation angle prediction. Overall, all models achieved
the required maximum average error of ± 42 degrees
having large margins to the defined threshold. Similar
to the shift prediction, the estimate for the white rods
had higher MAEs compared to the black rods. In con-
nection with this, we observe that, in addition to the
non-uniform sampling, the rotation angle of the black
rods is restricted to the range between 120 and 240 de-
grees (motor constrains) while the white rods can ro-
tate freely. Therefore, the white rods have a higher
range of possible values which can also explain the
worse prediction accuracy. Furthermore, the ground
truth data contains a mean error of ± 5 degrees due
to the measurements with the accelerometers. As al-
ready observed in the shift detection, the ResNet based
models yield lower MAE values compared to the Mo-
bileNetV3 and EfficientNetV2 based models.
Evaluation of the Inference Time. The inference
times of the models were evaluated on four different
systems: System A: Apple MacBook Pro 2018 with
Intel Core i7 processor and AMD Radeon Pro 560X
GPU; System B: Apple MacBook Pro 2021 with Ap-
ple M1 Pro processor; System C: PC with AMD Ryzen
9 5900X processor and NVIDIA RTX 3080 GPU; Sys-
tem D: Cloud VM with AMD EPYC-Milan processor
and NVIDIA A100 80G PCIe GPU. All systems use
the GPUs, either through the Metal Performance Shader
(MPS) backend or through NVIDIA CUDA. The mod-
els were trained using PyTorch 2.1.0 and Torchvision
0.16.0 in a Python 3.9 environment.
Table 3 summarizes the mean and median inference
times on the different systems. The inference times
are measured as overall inference time and the infer-

ence time per rod. The overall time should roughly be
about 8 times the inference time per rod, as all rods are
inferred sequentially. Additionally, the corresponding
FPS are calculated. Overall, the ResNet18 based model
performed the best with the lowest inference time of
86.18 ms median on system C, thus achieving only 11.6
FPS which is significantly lower than the desired 60
FPS. The other evaluated CNN architectures could not
achieve at least 10 FPS on average. The slightly better
prediction quality of the ResNet50 based regressor is
-in our opinion- not enough to justify the higher infer-
ence time of an additional 33.14 ms on the same hard-
ware compared to the ResNet18 based model. If the se-
quential execution would be parallelized, the ResNet18
based model would probably achieve the desired 60
FPS considering the median inference time per rod of
10.77 ms on system C. The ARM-based MacBook (sys-
tem B) would then also achieve the goal with 13.38 ms
median inference time.

Albeit providing a higher performing GPU, system D
could not reach a better performance compared to the
other systems. Our conjecture is that the system is
CPU-bottle-necked due to the sequential execution of
the rods. We observed an average GPU utilization of
40 % on system C and 7 % on system D which sup-
ports this assumption. While all systems except the
cloud VM showed only small deviations of 0 to 3 %
between the median and mean inference times, system
D resulted in high deviations of 9.51 % for the Effi-
cientNetV2 based model and 14 to 18 % for the other
models. The outliers in the inference times could in-
dicate lower performing storage resulting in more time
needed to move data between RAM and the GPU.

3.2 Qualitative Evaluation
In a qualitative evaluation and live tests on the Foosball
table, we observed overall accurate results, e.g. illus-
trated in Fig. 2. There were several issues, in particular
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Backbone System Inference Time (ms) Inf. per Rod (ms) FPS
Mean Median Mean Median Mean Median

ResNet18

MacBook Pro 2018 (Sys. A) 288.51 286.27 36.06 35.78 3.47 3.49
MacBook Pro 2021 (Sys. B) 108.03 107.11 13.50 13.38 9.26 9.34

Gaming PC (Sys. C) 88.88 86.18 11.11 10.77 11.25 11.60
Cloud VM (Sys. D) 126.23 106.94 15.78 13.36 7.92 9.35

ResNet50

MacBook Pro 2018 (Sys. A) 581.58 573.85 72.69 71.72 1.72 1.74
MacBook Pro 2021 (Sys. B) 182.79 182.45 22.84 22.80 5.47 5.48

Gaming PC (Sys. C) 120.83 119.32 15.10 14.91 8.28 8.38
Cloud VM (Sys. D) 130.77 114.60 16.34 14.32 7.65 8.73

MobileNetV3

MacBook Pro 2018 (Sys. A) 497.21 501.49 62.14 62.58 2.01 1.99
MacBook Pro 2021 (Sys. B) 156.76 156.44 19.59 19.55 6.38 6.39

Gaming PC (Sys. C) 117.00 115.93 14.62 14.29 8.55 8.63
Cloud VM (Sys. D) 122.81 105.14 15.35 13.14 8.14 9.51

EfficientNetV2

MacBook Pro 2018 (Sys. A) 1538.96 1496.68 192.36 187.08 0.65 0.67
MacBook Pro 2021 (Sys. B) 402.34 400.27 50.29 50.03 2.49 2.50

Gaming PC (Sys. C) 249.31 245.97 31.16 30.74 4.01 4.07
Cloud VM (Sys. D) 235.70 215.24 29.46 26.90 4.24 4.65

Table 3: Mean and Median inference time for different feature extractor backbones on the different systems. All
systems utilized GPU acceleration through either NVIDIA CUDA or Apple MPS. While the Cloud VM (system
D) has the highest theoretical GPU performance, not all backbones could benefit from this. Instead, the lower
performing RTX 3080 from system C resulted in a shorter median inference time for the small ResNet18 based
model and almost equal times for the ResNet50 and MobileNetV3 based models. All systems except the cloud
VM showed only small deviations between the mean and median inference time.

concerning lightning conditions and blur which we dis-
cuss next.

Dependence of the Prediction Quality on the Light-
ning Conditions. As illustrated in Fig. 9, the predic-
tion accuracy is highly dependent on the lighting con-
ditions which cannot be controlled. Our training data
was captured with natural light in the summer while we
tested the system in the winter with predominantly arti-
ficial light. As seen in Fig. 9, the artificial light (in the
right images of each example) results in harder shadows
with a brighter playing field, especially at the edges of
the field. In contrast, the natural light showed only soft
shadows. A more diverse dataset with different lighting
conditions including natural and artificial light would
improve the consistency of the system and provide a
more generalized prediction model.

Dependence of the Prediction Quality on Blur. We
observed an influence of blur in the images on the pre-
diction accuracy. Since we use a standard webcam
without any modifications, the exposure time and focus
cannot be fixed. Commonly, a webcam uses a variable
exposure time to control the brightness of the image, as
the aperture is fixed. Therefore, in a darker scenario,
the webcam uses a longer exposure time to get a bright
image. The long exposure time can, however, result in
motion blur especially on the fast moving figures of the
Foosball table. Additionally, the variable focus leads
to an automatic re-focusing of the camera which results
in overall blurred images. In Fig. 10, the predicted
rotation on the blurred, right images deviates about 11

degrees in a) and 20 degrees in b) compared with the
same physical rotation in the non blurred counterparts
in the left images.

Additionally, we observed a high influence of occluded
figures and / or general unknown items in the images,
e.g. by placing a hand inside the camera frame. This
risk cannot be eliminated and should be addressed in
the future.

4 CONCLUSION, DISCUSSION AND
FUTURE WORK

In this paper, we presented a CNN based figure detec-
tion system for a semi-automatic Foosball table: the
black team was controlled by motors and the white team
was controlled by human players. More precisely, we
first created and verified a ground truth dataset for train-
ing CNN-based detection models. Then, we have de-
rived an improved figure detection system by basing on
end-to-end learning. This contrasts the previous work
[15] where an intermediate object detection step utiliz-
ing a YOLO detector was used. Further, we included
the detection of all white figures and additionally the
black figures in the detection system. We trained and
evaluated our approach using various feature extrac-
tor backbones, including ResNets, MobileNets and Ef-
ficientNets. Finally, we proposed a data provisioning
system based on ZeroMQ.

We demonstrated that our system is able to detect the
shifts and rotations of all figures based on a camera
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Figure 9: Examples for the influence of lighting con-
ditions on the prediction accuracy. Each example is
shown with natural light conditions (the same as in the
training data) on the left and artificial light conditions
on the right with a similar rotation angle. The artificial
lighting results in harder shadows and a brighter back-
ground compared to the natural light. While the images
in a) and b) predict the correct rotation in both light-
ing conditions, the examples in c) and d) show extreme
examples of a deviation from the actual rotation in the
artificial lighting conditions. In all cases, the position is
predicted within the given boundaries.

image in a top-down perspective. The shift and rota-
tion detection of our system satisfy our defined require-
ments for all figures. Using the ResNet18-based model,
we achieved mean absolute errors of 3.88 mm for the
position and 5.93 degrees for the rotations of all figures.

While the overall accuracy of the system satisfies the re-
quirements we defined, some limitations remain. First,
concerning stability, we observed that the lighting con-
ditions and image blur can have significant influence
on the prediction accuracy. Second, the present system
does not achieve a game state detection in real-time,
i.e. at 60 FPS. Means to address these issues could be
as follows: Concerning speed, one possible solution is
the parallelization of the regression models which are
currently inferred sequentially. As shown in this paper,
the inference time for one rod would achieve a real-time
detection at 60 FPS. Concerning the stability of the sys-
tem, one potential approach is the modification of the
hardware of the Foosball table. It appears to be most
promising to switch to another, manually controllable
camera, as the current webcam shows clear drawbacks.

A further limitation is found in the Foosball table it-
self. The motors controlling the black rods are subject
to a rotation limitation between 120 and 240 degrees on
the driver level. This safety feature cannot be overwrit-
ten without modifying the hardware and should remain
to reduce the maximum velocity of the ball. A manu-
ally played Foosball table does not have this issue. The

a) b)

207°
-60 mm

218°
-59 mm

127°
6 mm

237°
11 mm

Figure 10: Two extreme examples for the influence of
blurred images on the prediction quality. The left im-
ages of a) and b) are non blurred versions with the
same positions and rotations as in the right images. The
blurred images are a result of the camera performing a
re-focusing of the whole image. We observed this ef-
fect to occur every 30-60 seconds.

same approach as described in Sec. 2.1 could be ap-
plied to generate a corresponding dataset including full
360 degree rotational movement of the black rods.

One aspect of future research is to further develop the
system w.r.t. real-time capabilities and robustness such
that it can be directly used in the automation process,
i.e., provide the necessary information on the game
state to the future RL agent controlling the non-human
player in a robust way in real-time. Another line of
future research is to employ (developments of) the pro-
posed system for Imitation Learning. To this end, we
plan to employ our game state detection system for cap-
turing real Foosball games played by humans. This
would improve the training of a DRL agent by reduc-
ing the need for On-Policy and / or simulation data.
We note that for the creation of an Imitation Learning
dataset, real-time detection is not necessary.
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ABSTRACT
We present an approach to backpropagating through minimal problem solvers in end-to-end neural network train-
ing. Traditional methods relying on manually constructed formulas, finite differences, and autograd are laborious,
approximate, and unstable for complex minimal problem solvers. We show that using the Implicit function the-
orem (IFT) to calculate derivatives to backpropagate through the solution of a minimal problem solver is simple,
fast, and stable. We compare our approach to (i) using the standard autograd on minimal problem solvers and
relate it to existing backpropagation formulas through SVD-based and Eig-based solvers and (ii) implementing the
backprop with an existing PyTorch Deep Declarative Networks (DDN) framework [GHC22]. We demonstrate our
technique on a toy example of training outlier-rejection weights for 3D point registration and on a real application
of training an outlier-rejection and RANSAC sampling network in image matching. Our method provides 100%
stability and is 10 times faster compared to autograd, which is unstable and slow, and compared to DDN, which is
stable but also slow.

Keywords
minimal solvers, epipolar geometry, backpropagation, outlier removal, implicit function theorem

1 INTRODUCTION
Recently, minimal problem solvers [Nis04, SNKS05,
KBP08, LOÅ+18, MVP22] have been incorporated
into end-to-end machine learning pipelines in camera
localization [BKN+17], image matching [WPS+23],
and geometric model estimation by RANSAC [BR19].
The key problem with using minimal problem solvers
in end-to-end neural network training is to make them
differentiable for backpropagation.

Early attempts to backpropagate through minimal
problem solvers used explicit derivative formu-
las [IVS15, DYH+18, RK18] and finite differ-
ences [BKN+17] to compute derivatives for backprop-
agation. Recent work [WPS+23] proposed computing
the derivatives using autograd. These are valid ap-
proaches, but they can still be considerably improved.
Manual differentiation is laborious and must be done
repeatedly for every new problem. Finite differences
are approximate and are prone to numerical errors.
Using autograd is also limited to relatively simple
minimal problem solvers since, for more complex

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

solvers with large templates [MVP22], differentiating
the templates becomes unstable due to, e.g., vanishing
of the gradients [BSF94].
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Figure 1: A typical end-to-end training pipeline with a
minimal problem Solver [WPS+23] that trains a Neu-
ral Network (NN) to predict correct matches. Forward
pass: Tentative handcrafted matches m between images
I1, I2 are clarified using NN [ZGZ+21] parametrized by
trained weights q , and scores s for these matches are
computed. Differentiable D-RANSAC selects a mini-
mal data sample w using the scores s; the Solver com-
putes a model Ê, which is scored by the loss J using the
correct matches m(igt) with the ground truth inlier indi-
cator igt . The groundtruth Egt is passed to the Solver to
choose the closest model. Backward pass: Gradient ∂J

∂q
for training weights q is computed by the chain rule.
The key issue is robustly and efficiently backpropagat-
ing through the Solver. We propose to use the Implicit
function theorem (IFT) directly or implement the back-
propagation via the PyTorch Deep Declarative Network
(DDN) machinery [GHC22].
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Let us illustrate using the minimal problem solvers
in end-to-end neural network training for calibrated
image matching [WPS+23], Fig. 1. First, a for pair
of images I1, I2 the RootSIFT [AZ12] pre-detected
features are used to produce tentative matches m, and
the Neural Network s = NN(q ;m) computes scores s
of the matches m. The network is parameterized by
weights q , the learned pipeline parameters. Next,
the differentiable w = D-RANSAC(m,s) selects
a minimal data sample w from m using the s scores.
The sample w is passed to the Essential matrix solver
E = Solver(w), which computes up to 10 E candidates
and selects the best Ê that is closer to the known
ground truth Egt . The Solver can thus be seen as
solving a discrete optimization problem consisting
of first solving a set of polynomial equations and
then choosing the optimal one w.r.t. Egt . Having Ê, a
projection-based loss J(Ê,M, igt) is calculated from all
tentative matches m and the indicator igt of the known
correct (inlier) matches. As a function to be optimized,
the pipeline is the composition

J(w;Egt , igt)= J(Ê;m, igt)�Ê(w;Egt)�w(s;m)�s(q ;m)

where Egt , igt , and m can be seen as parameters pro-
vided by training data.

To learn weights q , the (transposed) gradient

∂L
∂q

=
∂L
∂ Ê

∂ Ê
∂w

∂w
∂ s

∂ s
∂q

of J w.r.t. q has to be calculated. Calculating ∂L
∂ Ê ,

∂w
∂ s ,

∂ s
∂q

is straightforward and efficient using autograd. Cal-
culating ∂ Ê

∂w could also be attempted by autograd. We
show that it often fails even for a simple minimal prob-
lem of computing the calibrated relative camera pose
from five image matches [Nis04]. Our main contri-
bution is to show how to calculate ∂ Ê

∂w robustly by the
existing PyTorch machinery of Deep Declarative Net-
works (DDN) [GHC22] and robustly an efficienlty us-
ing the Implicit function theorem (IFT).

1.1 Motivation
Minimal problem solvers can be complex. Symbolic-
numeric minimal problem solvers [EM05, Nis04,
LOÅ+18, MVP22] consist of potentially very large
templates (formulas combined with the Gauss-Jordan
elimination) to construct a matrix whose eigenvectors
provide the solutions. The size of the templates is, for
systems with a finite number of solutions and more
than three unknowns, proportional to a polynomial in
Dn, where D is the mean degree of input constraints
and n is the number of unknowns [HL11]. In practice,
it is not always necessary to construct a full Groebner
basis [CLO15], but practical automatic solver gen-
eration algorithms [KBP08, LKZ17, MVP22] still

produce very large templates for problems with more
variables. See, for example, the sizes of the templates
in [MVP22] and the related discussion there.
Therefore, backpropagating through such templates
using autograd on the fully expanded computa-
tional graph, as in [WPS+23], is generally slower
and potentially less stable. Another issue is the
backpropagation stability through large eigenvector
decompositions [DYH+18]. Backpropagation through
constraints at the optimum using the Implicit function
theorem (for active KKT constraints in semi-algebraic
cases) is much simpler, with linear complexity in the
size of the input constraints, and is stable.

1.2 Contribution
We investigate backpropagation methods through mini-
mal problem solvers in end-to-end neural network train-
ing. We show that using the Implicit function theo-
rem to calculate derivatives to backpropagate through
the solution of a minimal problem solver is simple, fast,
and stable. We provide a direct implementation of IFT
backpropagation that is stable and fast. We also show
how a stable but slower backpropagation can be im-
plemented using the existing PyTorch Deep Declarative
Networks framework [GHC22]. This second approach
may be helpful for quick testing of functionality before
a more efficient IFT backpropagation is implemented.
We compare our approach to using the standard auto-
grad on minimal problem solvers [WPS+23] and relate
it to the existing formulas for backpropagating through
SVD-based and Eig-based solvers [IVS15, DYH+18].
We demonstrate our technique on toy examples of train-
ing outlier-rejection weights for 3D point registration
and on a real application of training an outlier-rejection
and RANSAC sampling network [WPS+23] in two im-
age matching and camera relative pose computation.
Our IFT backpropagation provides 100% stability and
is 10 times faster than unstable autograd and DDN.

2 PREVIOUS WORK
The interest in backpropagating through minimal prob-
lem solvers started with attempting to develop a differ-
entiable version of RANSAC that could be used in end-
to-end learning pipelines.
In seminal work [BKN+17], a differentiable pipeline
for camera localization, including RANSAC and PNP
solver, has been suggested. The PNP solver was so ef-
ficient that it was possible to estimate the derivatives of
its output by numerical central differences. We show in
Example 1 how to easily estimate the derivatives using
the Implicit function theorem.
In [RK18], a method for robust estimation of funda-
mental matrices embedded in an end-to-end training
pipeline was proposed. The goal was to gradually learn
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weights for scoring tentative matches to suppress mis-
matches in a sequence of weighted least-squares prob-
lems. Here, the fundamental matrices are computed
via SVD. Backpropagating through SVD uses deriva-
tives computed by explicit formulas derived in [IVS15].
Computing derivatives explicitly by formulas is the best
approach, but it can be laborious when done manually,
as in [IVS15]. We use this example to show in Sec-
tion 6.1 that our approach based on DDN/IFT provides
equally correct results.
Recent work [WPS+23] presents another differentiable
pipeline for image matching that includes a differ-
entiable version of RANSAC and minimal problem
solvers for fundamental and essential matrix computa-
tion. Here, the solvers may use minimal data samples,
i.e., 7 and 5 correspondences, respectively, and solve
for the matrices using symbolic-numeric algebraic
minimal problem solvers, e.g. [Nis04]. To backpropa-
gate through the minimal problem solvers, [WPS+23]
uses autograd on the templates and the following
Eigendecomposition. As explained above, this is a
possible approach for small templates but should be
replaced by our approach whenever possible. We show
in experiments, Section 6.2, that using autograd often
fails even for the relatively simple minimal problem
solver of essential matrix estimation. In contrast, our
approach based on using the Implicit function theorem
delivers 100% stable results and is 10 times faster.
Our approach relies on using the Implicit function the-
orem [Rud76], which was already used to implement
backpropagation for SVD and Eigendecomposi-
tion [IVS15, DYH+18] computation blocks of learning
pipelines. These approaches manually compute for-
mulas for Jacobians and gradients and implement
backward passes for the modules. It is the simplest,
fastest, and most robust approach currently possible.
It should be used in all final implementations.
To provide a simple but slow error-prone engineering
solution for implementing backpropagation through al-
gebraic solvers, we exploit the DDN [GHC22] that
implement a framework to backpropagate through al-
gebraic and semi-algebraic optimizers. A similar ap-
proach has been suggested in [ZGM+20], but we pre-
fer [GHC22] since it provides PyTorch framework im-
plementation.

2.1 IFT end-to-end learning
The implicit function theorem (IFT) was used in sev-
eral interesting works related to using geometric opti-
mization in end-to-end learning. None of the works
deals with minimal problems, but they are very re-
lated to the tasks that are solved with minimal problem
solvers, and thus we comment on them here.
In [CPC+20], IFT is used to backpropagate through the
least-squares PNP optimization solver for end-to-end

learnable geometric vision. Explicit formulas for the
Jacobians of the PNP least-squares solvers are derived,
and it is shown that they lead to accurate and stable
backpropagation. This is an interesting work because it
presents a particular generalization of polynomial prob-
lems to rational problems but concentrates on one spe-
cific geometrical problem.

In [CWW+22], there is a method for backpropagation
through a probabilistic PNP. Technically, this approach
does not use IFT since the PNP in this formulation is not
a solution to equations, but a function providing a dis-
tribution over the domain of camera poses. The deriva-
tives of the output are thus readily computable by auto-
grad or by explicit formulas.

In [AK17], the OptNet layer for propagating through
optimization problems solved by layers of small
quadratic programs is developed using IFT. The aim
is to provide an efficient and stable backpropagation
that can be implemented on GPU. This is an interesting
work since it shows how to backpropagate through
an important class of optimization problems. However,
it can’t address general minimal problems since it
only addresses the problems specified as a quadratic
program with linear constraints.

3 USING THE IMPLICIT FUNCTION
THEOREM

Let us now explain and demonstrate how to compute
derivatives of the output of a minimal problem solver
using the Implicit function theorem.

Technically, minimal problem solvers generate so-
lutions x(a) to systems of polynomial equations
f1(a), . . . , fK(a) based on input parameters a. To
backpropagate through the minimal problem solvers, it
is necessary and sufficient to compute the derivatives
∂x
∂a at each solution x w.r.t. parameters a.

We now explain how the Implicit function theo-
rem [Rud76] can be used to implement simple,
efficient, and numerically stable computation of the
derivatives of x w.r.t. a. Let us start with the formula-
tion of the theorem itself, and then consider a simple
example.

Theorem 1 (Differentiating roots of a polynomial sys-
tem). Let H(a) = h1(x,a), . . . ,hK(x,a) be a sequence
of K complex polynomials in N unknowns x= x1, . . . ,xN
and M unknowns a = a1, . . . ,aM. Let x(b) be an iso-
lated multiplicity-one solution to H(a) in x for a := b 2
CM. Then,


∂xn(a)
∂am

(b)
�
=�


∂hk(x,a)

∂xn
(x(b),b)

�+∂hk(x,a)
∂am

(x(b),b)
�

with k = 1, . . . ,K, m = 1, . . . ,M, n = 1, . . . ,N, and [A]+
denoting the pseudoinverse [Mey01] of the (Jacobian)
matrix [A].
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Proof. Informal statement: The Implicit function the-
orem is a very standard fact. Here we use it in a spe-
cial situation when functions are polynomials, since we
focus on the Computer Vision problems. The main is-
sue is thus ensuring that the assumptions of the Implicit
function theorem are satisfied. For polynomials, which
are continuous, infinitely differentiable functions, the
assumptions of the Implicit function theorem are sat-
isfied iff the solutions to the polynomials are isolated
and have multiplicity one. See Supplementary Mate-
rial, Section 9 for more details.

Let us demonstrate the above theorem with an exam-
ple of the classical computer vision P3P minimal prob-
lem of solving the absolute pose of the calibrated cam-
era [FB81].

Example 1. Consider a general configuration of
three 3D points A1,A2,A3 2 R3, their respective
calibrated image projections represented by homo-
geneous coordinates a1,a2,a3 2 R3 and the vector
x = [x1,x2,x3]> 2 C3 of the depths of the points. Stack
all 3D points and image points in a single vector
a = [A1;A2;A3;a1;a2;a3] 2 R18. The 3D points, their
projections, and depths are related by

0 = h1(x,a) = ||A1�A2||2� ||x1a1� x2a2||2

0 = h2(x,a) = ||A2�A3||2� ||x2a2� x3a3||2

0 = h3(x,a) = ||A3�A1||2� ||x3a3� x1a1||2

The calibrated absolute camera pose computation
solves for the depths x(a) as functions of the pa-
rameters a. In this example, K = 3, N = 3, and
M = 18. The polynomial system above generically has
8 multiplicity-one solutions xs(a),s = 1, . . . ,8 [FB81].
Now, we compute the derivatives of the solutions for a
generic parameter vector b. Let us first compute the
derivatives of the functions hk(x,a) w.r.t x and a

Jx(x,a) =
 ∂hk (x,a)

∂xn

�
=

2

6666664

∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

3

7777775
(x,a) =

= 2

2

64
�a>1 (x1a1 � x2a2) a>2 (x1a1 � x2a2) 0

0 �a>2 (x2a2 � x3a3) a>3 (x2a2 � x3a3)
a>1 (x3a3 � x1a1) 0 �a>3 (x3a3 � x1a1)

3

75

Ja(x,a) =
 ∂hk (x,a)

∂am

�
=

2

6666664

∂h1
∂a1

. . .
∂h1
∂a18

.

.

.
. . .

.

.

.
∂h3
∂a1

. . .
∂h3
∂a18

3

7777775
(x,a) =

⇥
K1 |K2

⇤

K1 = 2

2

64
A>1 �A>2 A>2 �A>1 0

0 A>2 �A>3 A>3 �A>2
A>1 �A>3 0 A>3 �A>1

3

75

K2 = 2

2

4
�x1(x1a1 � x2a2) x2(x1a1 � x2a2) 0

0 �x2(x2a2 � x3a3) x3(x2a2 � x3a3)
x1(x3a3 � x1a1) 0 �x3(x3a3 � x1a1)

3

5

Next we evaluate Jx(x,a) and Ja(x,a) at a generic pa-
rameter vector b= [0,0,3,2,0,3,0,6,3,�1/3,�1/3,1,

1/3,�1/3,1,�1/3,5/3,1] and, e.g., the first solution
x̂(b) = [3,3,3]

Jx(x̂(b),b) =

2

4
�1.33 �1.33 0.00

0.00 �5.33 �21.33
�4.00 0.00 �20.00

3

5

Ja(x̂(b),b) =

2

4
�4 0 0 4 0 0 . . . 0 0 0

0 0 0 4 �12 0 . . . 12 �36 0
0 �12 0 0 0 0 . . . 0 �36 0

3

5

and compute


∂ x̂n(a)
∂am

(b)
�

= �Jx(x̂(b),b)�1Ja(x̂(b),b) =

=

2

4
1.66 1.33 0 . . . 1.25 0.24 0
1.33 �1.33 0 . . . �1.25 �0.24 0
�0.33 0.33 0 . . . �0.25 �1.75 0

3

5 .

4 IMPLEMENTING MINBACKPROP
WITH IFT

The first option to implement the backpropagation for
a minimal problem solver is to use the Implicit function
theorem in a straightforward way (as in Example 1).
This has been done before, e. g., in [IVS15] for SVD
and EIG solvers. To use the Implicit function theo-
rem directly, one can construct a system of polynomial
equations, compute the derivatives of the system w. r. t.
inputs and outputs manually or with the help of a com-
puter algebra system [CSC], and follow the theorem 1
to compute the Jacobian of the output with respect to
the input. In case the system of equations is overde-
termined, one can write down the Lagrange multipliers
method and then use the IFT for the new system.

Applying the Implicit function theorem involves
inverting the Jacobian of the polynomial system
w. r. t. the output, so before inverting the Jacobian
one can check if the matrix is full-rank using SVD.
If it is not, one can randomly choose a full-rank
Jacobian from the batch to invert.

5 IMPLEMENTING MINBACKPROP
WITH DDN

The second option to backpropagate through a mini-
mal problem solver is to use a fully automatic method
to compute the derivatives. The Deep Declarative Net-
works (DDN) framework, introduced in [GHC22], pro-
vides a PyTorch implementation allowing backprop-
agation through optimization solvers, including alge-
braic, semi-algebraic (i.e., with inequalities), and non-
polynomial problems. Next, we explain how to use
the DDN framework for implementing backpropaga-
tion for minimal problem solvers.

Declarative node: The DDN framework introduces
declarative nodes that take input w into the optimal so-
lutions

ŷ(w) = arg min
y2C

f (w,y)

where C is a constraint set.

Constraint set C: For algebraic minimal problem
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solvers, the set C = {y : h1(y) = 0, . . . ,hK(y) = 0} is an
algebraic variety [CLO15] consisting of a finite number
of points. Hence, in this case, the algebraic variety is
a finite set of solutions to some system of polynomial
equations H = [h1, . . . ,hK ]. Assuming the genericity
of data, which is often guaranteed by having noisy
measurements, solutions to H have all multiplicity
equal to one. Hence it is easy to compute derivatives of
the solution to H w.r.t. parameters as demonstrated in
Section 3.

Loss f : The low-level loss depends on a particular
problem. DDN framework implements backpropaga-
tion for a general declarative node and thus expects
a loss function f (w,y) with non-degenerate derivatives.
For instance, in Section 6.2, thus, one must “invent”
such a loss function for minimal problem solvers
since they provide exact solutions that always satisfy
equations H exactly. A natural choice is to use the
sum of squares of the equation residuals from a subset
of H, i.e., f = Âhi2G✓H h2

i , such that the derivatives
of f are non-degenerate. A possible choice is to use
a random linear combination of some hi’s. For instance,
in Section 6.2, we use the sum of squares of the linear
constraints only to keep f simple and non-degenerate.

It is important to mention that in the pipeline
of [WPS+23], the “Solver” not only computes the so-
lutions y to a polynomial system H but also selects the
best solution ŷ by finding ŷ that is closest to the ground-
truth ygt in kŷ�ygtk2 sense. This discrete optimization
step does not influence the derivatives of ŷ w.r.t w
since, locally, small changes of w do not influence
the result of this discrete optimization as small changes
to w generically do not change the result of the discrete
optimization.

End-to-end training formulation: End-to-end train-
ing of a pipeline with a declarative node is in [GHC22]
formulated as the following bi-level optimization
problem

min
w

J(w, ŷ(w))

s. t. ŷ(w) 2 arg min
y2C

f (w,y)

with C = {y: h(y) = 0} ,

(1)

where J(w,y) is an upper-level loss, f (w,y) is a low-
level loss, h(y) are constraints, w is the input parame-
ters to the declarative node, y is the model to be esti-
mated, and C is a constraint set. The relation w 7! ŷ
is defined as a solution to the low-level optimization
problem provided by the declarative node.

Gradients for minimal problem solvers: To mini-
mize the loss J(w, ŷ) in (1) via the gradient descent,

SVD

gradients of SVD

SVD

DDN / IFT

(a) Explicit gradients (b) Implicit gradients

Figure 2: The figure demonstrates the backpropaga-
tion for the toy example for the 3D point registra-
tion with an outlier. The forward pass is the Kab-
sch algorithm [Kab76] (SVD) and remains the same
for both explicit and implicit methods. The backward
pass is performed explicitly via the closed-form gradi-
ents of SVD [IVS15] (a) and implicitly, using the Deep
Declarative Networks (DDN) [GHC22] and the Implicit
function theorem (IFT) (b).

we need to compute DJ(w, ŷ)1. In our formulation,
the loss function J(w, ŷ) does not depend on w explic-
itly. Therefore

DJ(w, ŷ) = Dy J(w, ŷ)Dŷ(w) . (2)

The gradients Dy J(w, ŷ) are the gradients computed be-
fore the declarative block and the Dŷ(w) are the gradi-
ents through the solution of the low-level optimization
problem.

Declarative node specification: The important fea-
ture of the DDN framework is that one does not have
to provide formulas for the derivatives explicitly. It
is enough to specify a declarative node by defining
the loss f (w,y) and the constraints H = [h1, . . . ,hK ].
The backward pass based on the derivatives is then au-
tomatically computed by the DDN framework. This
makes the implementation of backpropagation through
minimal problem solvers easy and robust.

6 EXPERIMENTS
In our experiments, we compute the Dy(w) for a so-
lution of a minimal problem in three ways. First, we
compute the gradients using the closed-form solution
and backpropagate explicitly using autograd. Secondly,
we compute the gradients Dy(w) via the Implicit func-
tion theorem and backpropagate through a solution by
using them directly. Finally, we use the Deep Declar-
ative Networks framework to implement the backprop-
agation by specifying a suitable optimization problem.
Our experiments show that the derivatives of a solution

1 Here we use the notation from [GHC22] where DJ(w, ŷ) de-
notes the total derivative dJ(w,ŷ(w))

dw of loss J(w, ŷ(w)) w.r.t. w
when ŷ(w) is considered a function of w, Dw J(w, ŷ) means
partial derivatives ∂J(w,ŷ)

∂w of J(w, ŷ) w.r.t. w when ŷ is con-

sider fixed, and Dŷ J(w, ŷ) means partial derivatives ∂J(w,ŷ)
∂ ŷ

of J(w, ŷ) w.r.t. ŷ when w is consider fixed.
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(b)(a)

Figure 3: A toy example for the 3D point registration problem with an outlier: (a) visualization of four points
before and after rotation R with inlier/outlier weights w, blue points denote inliers, and the magenta point is
the outlier; (b) the weight for the outlier (left) and the weight for an inlier (right) during the optimization. The red
color indicates explicit computation of the gradients, the blue color denotes backpropagation with the DDN, and
the green color is backpropagation with the IFT. One can see that the gradients computed with the DDN and the IFT
approximate the gradients of SVD computed in closed form.

to the minimal problem can be computed implicitly;
they accurately approximate the derivatives computed
explicitly, leading to more stable results.
We consider two types of experiments to show the ef-
fectiveness of the proposed method. Firstly, we con-
sider a toy example for the 3D point registration with an
outlier. We chose this task since a solution to the min-
imal problem during the forward pass can be com-
puted using SVD, and the gradients of SVD can be
computed both explicitly, using the closed-form solu-
tion, and implicitly, using the Implicit function theo-
rem and the Deep Declarative Networks. Secondly, we
incorporate our MinBackProp into the existing state-
of-the-art epipolar geometry framework, backpropagate
through it, and compare the results on the real data.
Our main goal is to show that we obtain equivalent
behavior of the whole learning pipeline as the base-
line [WPS+23] but in a more stable and efficient way.
Note that we do not aim to improve the learning task
of [WPS+23] but demonstrate better computational ma-
chinery for solving it.

6.1 3D Point Registration with an Outlier
Given two sets P and Q of 3D points, a point pi 2 P
corresponds to the point qi 2 Q, i = 1, . . . ,N, where N
is the number of points. We want to find a rotation ma-
trix R 2 R3⇥3: qi = Rpi, 8i. Given the ground-truth
rotation matrix Rtrue 2 R3⇥3, we define the weights wi,
i = 1, . . . ,N, for each correspondence pi $ qi to mark
inliers and outliers. To find R and w = [w1, ...,wN ], let
us consider a bi-level optimization problem:

min
w

J(R̂(w))

s. t. R̂(w) 2 arg min
R2 SO(3)

f (w,R)

s. t. h(R) = 0 .

(3)

Where J(R̂(w)) is the upper-lever loss:

J(R̂(w)) = arccos

 
tr
�
R̂(w)RT

true
�
�1

2

!
, (4)

measuring the angle of the residual rotation [HZ03] and

f (P,Q,w,R) = f (w,R) =
1
N

N

Â
i=1

wi kRpi�qik2
2 , (5)

is the low-lever loss, and h(R) is as the constraint

h(R) = RT R� I = 0 . (6)

The low-level minimization problem (5) is known as
Wahba’s problem [Wah65].
Forward pass. During the forward pass, we solve
the low-level optimization problem and compute
the value of J(R̂(w)). The low-level optimization
problem is solved by the Kabsch algorithm [Kab76],
which includes the computation of SVD of a matrix
constructed from coordinates P and Q. The forward
pass is the same for both DDN/IFT and SVD lay-
ers (Fig. 2).
Backward pass. During the backward pass, we
compute all the derivatives with respect to the input
and parameters via the chain rule and update the vector
w. The backward pass is different for the SVD and
the DDN/IFT layers, and we compare these three
methods on the toy example below.
A toy example. Let us consider a toy example to com-
pare the gradients computed explicitly and implicitly
given a forward pass fixed for both methods. Given four
random points in 3D space, we transformed the points
with an identity transform Rtrue and corrupted one
correspondence, for instance p1$ q1. We want to find
the rotation matrix R along with inlier/outlier mask w
(see Fig. 3 (a)) given the correspondences pi $ qi.
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Method AUC@5� AUC@10� AUC@20�

—-RANSAC [WPS+23] 0.41 0.45 0.5
MinBackProp DDN 0.4 0.44 0.49
MinBackProp IFT 0.41 0.45 0.5

Table 1: The average AUC scores for essential ma-
trix estimation of —-RANSAC [WPS+23] and Min-
BackProp (ours) over 12 scenes of the PhotoTourism
dataset [JMM+20], under different thresholds. Our
method shows the same result as —-RANSAC.

We start with the uniform distribution of weights w
and initialize them with 1/N. The developments of
the values of w for an inlier and the outlier during
the optimization are shown in Fig. 3 (b). We opti-
mize the weights w using the gradient descent with
the learning rate of 0.1 for 30 iterations. The values
of w for the outlier decrease to 0 and the values of w
for inliers increase. One can see that the gradients
calculated implicitly approximate the gradients of SVD
computed in closed form well.

One can find one more toy example for the fundamental
matrix estimation (8-point) in the Supplementary Mate-
rial, section 10.

6.2 Training Outlier Detection in Epipo-
lar Geometry Estimation

Our second experiment is incorporating our Min-
BackProp into the existing state-of-the-art epipolar
geometry pipeline with real data. For that pur-
pose, we consider a fully-differentiable framework
—-RANSAC [WPS+23] that exploits the 5-point
algorithm [Nis04] for essential matrix estimation
and evaluates it on the RootSIFT [AZ12] features
of the PhotoTourism dataset [JMM+20]. Figure 1
illustrates the architecture of —-RANSAC and the way
how we integrate our MinBackProp in it. We adopt all
the formulations and processing of [WPS+23], except
for the backpropagation through the minimal problem
solver (red rectangle in Fig. 1).

Given a pair of images I1 and I2 and a set of tentative
correspondences m = [qi, q̃i] computed from the Root-
SIFT features, the inlier indicator igt , and the ground
truth essential matrix Egt . The goal is to train a Neural
Network (NN) [ZGZ+21] with parameters q that pre-
dicts importance scores s during inference. In Fig. 1,
D-RANSAC indicates differentiable Gumbel Softmax
sampler, w denotes a minimal sample used as input into
the Solver, and J is the loss function.

In accordance with eq. (1), we formulate our bilevel op-
timization problem as follows. The upper-level objec-
tive J is the symmetric epipolar distance over the inlier
set igt of matches mi = [qi, q̃i], Ê is the predicted model

Method stable runs (%) backward time (s)
—-RANSAC [WPS+23] 20 34.4
—-RANSAC⇤ 30 34.5
MinBackProp DDN (ours) 100 37.6
MinBackProp IFT (ours) 100 3.6

Table 2: Stability metrics for 1K training of the baseline
—-RANSAC [WPS+23] and our MinBackProp meth-
ods for the essential matrix estimation. —-RANSAC⇤
denotes implementation of —-RANSAC [WPS+23]
without dropping non-real values in the solver during
the forward pass. Our MinBackProp is much more sta-
ble compared to the —-RANSAC and —-RANSAC⇤ and
MinBackProp IFT ten times faster than the baseline.

to be estimated, and l̃i = Êqi, li = ÊT q̃i are the epipolar
lines

J(Ê,m, igt) =
1
|igt | Â

i2 igt

✓
1

l2
i1 + l2

i2
+

1
l̃2
i1 + l̃2

i2

◆�
q̃T

i Êqi
�2 ,

(7)
while the low-level objective is the “invented” loss con-
sisting of the algebraic error of the constraints (which
is always evaluated to zero but provides non-singular
Jacobians, see the discussion in section 5)

Ê(w) 2 arg min
E2R3⇥3

1
5

5

Â
i=1

�
q̃T

i Eqi
�2

s. t. 2EET E� tr
�
EET �E = 0 ,

kEk2 = 1 ,

(8)

where wi = [qi, q̃i] is a pair of matches from a min-
imal sample normalized by the intrinsic matrix pixel
coordinates, and E is an essential matrix. The same
equations eq. (8) are used to construct the polynomial
system for the Implicit function theorem and compute
the derivatives w. r. t. Ê and [qi , q̃i] and the Jacobian
∂ Ê
∂w , respectively. See Supplementary Material, sec-
tion 11 for more details.
As in the section 6.1, we retain the forward pass for
the MinBackProp unchanged. However, we modify
the computation of gradients during the backward pass.
Instead of computing the gradients explicitly by the au-
tograd as in —-RANSAC, we exploit the Deep Declara-
tive Networks and the Implicit function theorem.
For training, as in —-RANSAC, we use correspon-
dences of the St. Peter’s Square scene of the Photo-
Tourism dataset [JMM+20], consisting of 4950 image
pairs, with split 3 : 1 into training and validation, while
the rest 12 scenes remain for testing.
To show the effect of our method, we perform two types
of experiments. First, we want to show that our method
does not decrease the baseline quality. Secondly, we
want to show that computing the gradients via the Im-
plicit function theorem is more stable and does not
cause runtime errors during the backward pass when
autograd tries to invert a singular matrix.
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For the first experiment, the testing protocol is as fol-
lows: the scores s are predicted by the trained NN, and
the model E is estimated by MAGSAC++ [BNIM20].
Table 1 shows the Area Under the Recall curve (AUC),
AUC scores are averaged over 12 testing scenes for dif-
ferent thresholds. The essential matrix E is decomposed
into R and t using SVD and maximum error between R
and Rgt and t and tgt is reported. We train all three ap-
proaches for 10 epochs. One can see in Table 1 that
our MinBackProp obtained the same scores as the —-
RANSAC, showing that it does not decrease the quality
of the baseline.

The second experiment aims to demonstrate the
stability of the proposed MinBackProp compared
to the —-RANSAC. For this purpose, we perform
the following experiment. Both methods are trained
for 10 epochs, and 10 random runs are performed.
We measure the percentage of runs which finished
10 epochs training without any runtime errors dur-
ing the backpropagation. The results are reported
in Table 2. Our method is 100% stable compared to
the baseline, which is 30% stable, and it is also ⇥10
faster. —-RANSAC⇤ denotes the implementation of
the original —-RANSAC without dropping non-real
solutions during the forward pass of the solver since
to backpropagate the gradients with the DDN, we
need to find at least one solution to the optimization
problem, so in case the solver can not find any real
solution, we return the one from the previous iteration.
We also measured the stability of the —-RANSAC⇤
to be sure that this minor change does not contribute
to the stability of our method.

All the experiments were conducted on NVIDIA
GeForce GTX 1080 Ti with CUDA 12.2 and Pytorch
1.12.1 with Adam optimizer [KB15], learning rate
10�4 and batch size 32.

7 CONCLUSION
We have presented a new practical approach to back-
propagating through minimal problem solvers. Our
MinBackProp allows backpropagation either using
the Deep Declarative Networks machinery, which
brings stability and easy use, or using the Implicit func-
tion theorem directly, which on top of stability, also
speeds up significantly the backward pass. Through
synthetic examples, we have shown the applicability of
our method on a wide variety of tasks. Furthermore,
we compared MinBackProp against the state-of-the-art
relative pose estimation approach from [WPS+23] and
have shown 100% stability compared to 70 � 80%
failure rate of the autograd approach, while speeding
up the computation 10 times. Our method opens up
a promising direction for efficient backpropagation
through hard minimal problems.

See Supplementary Material for additional technical
details. The code is available at https://github.
com/disungatullina/MinBackProp .
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ABSTRACT
Fish motion is a very important indicator of various health conditions of fish swarms in the fish farming industry.
Many researchers have successfully analyzed fish motion information with the help of special sensors or computer
vision, but their research results were either limited to few robotic fishes for ground-truth reasons or restricted to 2D
space. Therefore, there is still a lack of methods that can accurately estimate the motion of a real fish swarm in 3D
space. Here we present our Fish Motion Estimation (FME) algorithm that uses multi-object tracking, monocular
depth estimation, and our novel post-processing approach to estimate fish motion in the world coordinate system.
Our results show that the estimated fish motion approximates the ground truth very well and the achieved accuracy
of 81.0% is sufficient for the use case of fish monitoring in fish farms.

Keywords
fish activity index, multi-object tracking, absolute depth map reconstruction, post-processing approach, motion
estimation, fish swarm

1 INTRODUCTION

The level of fish activity serves as an important
indicator in fish farming, providing biologists with
insights into the condition of a fish swarm, such as
hunger or sickness. For example, reduced activity
is often observed in hungry fish, leading to a no-
ticeable decline in their overall speed. Summarizing
the motion characteristics of a fish swarm is one of
many approaches to reflect their entire activity level.
Some researchers in recent years have used computer
vision [HZL+20, WML+21] or Doppler-based tech-
nique [HFPA20, HFPA19, HFU+22] to estimate real
fish speed, but they cannot evaluate the error of their
method because of the lack of real fish speed as the
reference. Other researchers [WWX15, WLZ+16]
found robotic fishes with special sensors could be
an alternative because these sensors can provide the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ground truth as a reference, but their experimental
results are limited to very few fishes rather than fish
swarms. Overall, these attempts consistently fail to
reflect the true motion information of fish swarms in
3D space, leading to low persuasiveness and reliability.

In our work, we address the aforementioned limitations
in two steps. First, it is technically difficult to obtain
the real speed of a fish swarm in the real world, so we
use the Unity game engine [JBT+18] to simulate differ-
ent fish swarm scenes in the real world. By undertaking
this approach, we can not only replicate real-world fish
swarm scenarios but also utilize Unity to generate accu-
rate fish swarm motion data and the ground truth. Sec-
ond, we propose a novel algorithm as shown in Fig. 1 to
robustly estimate fish motion in a simple, reproducible,
and inexpensive manner. This algorithm consists of
three main components, a multi-object tracking mod-
ule, a monocular depth (mono-depth) estimation mod-
ule, and a post-processing module. In our experiments,
our unique post-processing method proved to be effec-
tive in overcoming the significant challenges caused by
complex fish swimming motion in 3D space. The esti-
mated average speed of the fish swarm is located in the
world coordinate system, so our result can reflect the
real state of fish motion. We use this average speed of
the fish swarm as an index to represent the overall activ-
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Figure 1: The overview of our Fish Motion Estimation (FME) algorithm. In a given frame Ft , we employ an object
detector and Kalman Filter [Kal60] for fish tracking, assigning a unique ID to each fish. Simultaneously, a mono-
depth model processes this image Ft and estimates the relative inverse depth map. From this, we reconstruct the
absolute depth map. Afterward, we utilize our post-processing approach to process the tracking result and absolute
depth map, and further we use this processing result to compute the fish swarm’s average speed Vt in the world
coordinate system.

ity level of the fish swarm. Although we study our Fish
Motion Estimation (FME) algorithm in a synthetic en-
vironment, we believe that our approach can be easily
and effectively transferred to the real world. Therefore,
all experimental steps in the synthetic environment re-
main strictly consistent with those in the real world.
We structure this paper as follows. In Section 2, we
summarize the recent approaches for fish motion esti-
mation. In Section 3, we describe our approach to abso-
lute depth map reconstruction, the post-processing ap-
proach, and speed computation in detail. In Section 4,
we show the detailed experiment results in multi-object
tracking, mono-depth estimation, and fish motion es-
timation. In Section 5, we summarize our work and
present the future plan to improve our fish motion esti-
mation algorithm.
Our main contributions include:

• Introduction of a new algorithm that accurately esti-
mates how fishes move in 3D space.

• Creation of a novel post-processing method to han-
dle the challenges posed by the way fishes swim,
making our approach stand out.

• A step forward by looking at how fishes move not
just in 2D but also in 3D space, offering a more com-
plete picture.

2 RELATED WORK
Fish studies in the early days relied on video systems to
analyze fish swimming movements from video record-
ings, such as FICASS [PSW+97]. Later on, some

researchers used camera-based computer-controlled
devices to perform real-time processing of fish kine-
matic information, including swimming acceleration
and velocity [WZ07, CXG+09]. However, their
research results are only based on few fishes. Other
researchers use the Doppler principle-based technique
to measure the motion information of fish swarms
in sea cages [HFPA20, HFPA19, HFU+22]. Unlike
the Doppler-based technique, some researchers used
CNN-based methods to continuously track multiple
fishes and further use the tracking results to estimate
the fish swimming speed [LXH+21, BPPLAM23].
However, their experimental findings are less reliable
as they cannot compare their results with ground truth,
and their works are limited in 2D space. Zhang et
al. [ZZH+23] utilized a binocular camera to project
the 2D tracking space into 3D space and compare their
estimated fish swimming speed with their ground truth
in that space, but their ground truth is derived from
pixel coordinates rather than from the real world.

To enhance the reliability of experimental results, sub-
sequent researchers replaced the real fish with the con-
trollable robotic fish because they can obtain the real
swimming speed of the robotic fish as the ground truth.
However, these robot fish-based methods require addi-
tional assistance, such as the optimal information fu-
sion decentralized Kalman filter algorithm [WWX15],
pressure sensor [WLZ+16, ZZX14], and the deep re-
inforcement learning controller [DSAR24, DNSR23].
Nevertheless, their experimental subjects only involve
very few robotic fishes rather than fish swarms.
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Figure 2: Three types of coordinate systems. (b) The
arrows represent the fish’s swimming directions.

To overcome these dilemmas, we use 3D fish models
and the Unity game engine to simulate real-world fish
swarm scenes. Under these settings, we can obtain real
fish speed in 3D space as the ground truth. Since our
synthetic fish scenes are in the world coordinate system,
our work extends fish motion estimation from 2D to 3D
space.

3 METHOD
3.1 Absolute Depth Map Reconstruction
To estimate the fish motion information in World Co-
ordinate System (WCS) shown in Fig. 2 (c), we first
need to acquire fish position information in WCS. As
shown in Fig. 1, we use MiDaS Hybrid [RLH+22] as
the mono-depth model to estimate relative inverse depth
Rinv, and use an object detector to estimate fish posi-
tion in the Pixel Coordinate System (PCS) shown in
Fig. 2 (b). The depth Rinv predicted by MiDaS Hybrid
is scaled and shifted to a unit scale s = 1 and zero trans-
lation t = 0, so it loses the absolute depth information
of the objects in the scene and only presents the relative
positional relationship between objects. However, we
need the absolute depth information to convert fish po-
sition information from PCS to that in WCS. To solve
this problem, we use an optimized transform algorithm
as shown in Equation (1) to convert Rinv to absolute
depth Dabs.

s∗, t∗← argmin L2(Ddv,Rdv) (1)

Ddv is the known absolute depth values in the scene,
while Rdv is the relative inverse depth values in the
depth map Rinv. This algorithm requires at least two
known absolute depth values Ddv and two relative in-
verse depth values Rdv to solve s∗ and t∗.

We place ten reference objects in the fish pond to pro-
vide the known absolute depth values from the fish

scene. We take the center point on the front surface
from each reference object as the reference point pi.
We locate the coordinate of each reference point pi =
(wi

x,w
i
y,w

i
z) in WCS. Since Unity game engine can of-

fer camera extrinsic parameter E and intrinsic parame-
ter I, we can convert these reference points in WCS to
those in the Camera Coordinate System (CCS) shown
in Fig. 2 (a). Afterward, we collect the absolute depth
values Ddv from these reference points. We continue to
convert these reference points in CCS to those in PCS
so that we use the pixel coordinates of these reference
points to extract Rdv from the relative inverse depth map
Rinv. In the end, we use the known absolute depth val-
ues Ddv and relative inverse depth values Rdv to solve
the optimal solution s∗ and t∗. With s∗ and t∗, we can
reconstruct the absolute depth Dabs by using following
the Equation (2).

Dabs← Rinv× s∗+ t∗ (2)

3.2 Post Processing
Fish swimming movements are random, unpredictable,
and easily influenced by their states as well as the sur-
roundings [RPM22, HZL+20]. These special features
eventually cause two problems, which are the fluctua-
tion in the position of the BBox center point and the
abrupt jump in the depth value at that point. These two
problems will cause large errors in speed computation
because we estimate fish speed based on the BBox cen-
ter points.

We assume that the location of a fish at the current
frame f is based on its location at previous frames.
Therefore, our idea is to summarize the past location
information of a fish and use it to update its location in-
formation in the current frame f . We use the Exponen-
tially Weighted Moving Average (EWMA) to achieve
it.

3.2.1 Fluctuation problem of BBox center point
Due to the various fish swimming postures or fish-
tail swinging movements, these factors could cause the
BBox dimensions to change abnormally between suc-
cessive sequences. For example, the width of BBox
may suddenly become larger or smaller in two succes-
sive frames t− 1 and t when a fish is swimming. This
leads to the fluctuation problem on the BBox center
point, and it can negatively affect the estimation results
of fish speed. To overcome this problem, we create two
detectors as described in Equation (3) to monitor ab-
normal changes in the BBox dimensions. We use the
average variation Avg(.) of the BBox dimensions in the
past 30 frames as the reference to determine if the cur-
rent change in the BBox dimension is abnormal.

detectorw = abs(wt −wt−1)> Avg(Dw,Len(Dw))

detectorh = abs(ht −ht−1)> Avg(Dh,Len(Dh)).
(3)
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Figure 3: Annotation. The real-time speed of each fish
in WCS.

Dw = {(wi−wi−1)}t−1
i=t−28 is the list containing the dif-

ference between the BBox width w in every two adja-
cent frames, while the Dh = {(hi− hi−1)}t−1

i=t−28 repre-
sents the difference in BBox height h. If we detect an
abnormal change in the BBox dimensions at frame t
when a fish swims, we collect its BBox dimensions in
the previous 5 frames. Afterward, we use EWMA to
update the BBox dimensions at the current frame t and
further compute the BBox center point ct = (cx

t ,c
y
t ).

3.2.2 Jump problem on the depth value
Abrupt changes in depth value at the BBox center
points occur mainly when a fish is partially occluded
by others during fish interactions. This occlusion
problem causes the fish BBox center point to jump
onto other fishes in the next frame making the depth
value inaccurate. To tackle this problem, we first create
a detector as shown in Equation (4) to monitor each
fish and detect if its depth value at the BBox center
point jumps. We assume that the change in depth value
for each fish in successive frames is smooth when a
fish swims alone. abs(dt − dt−1) is the absolute depth
difference in successive frames. We experimentally
found that δ = 0.6 m delivers good results. Together
with the BBox center point ct = (cx

t ,c
y
t ) at current

frame t, the absolute depth map Dt
abs and the set of

depth values in past 30 frames Dep = {d∗i }t−1
i=t−29, we

use EWMA to update the depth value at the current
frame t. Eventually, we obtain the updated absolute
depth value d∗t .

detectordep = abs(dt −dt−1)≥ δ . (4)

3.3 Speed computation
In order to estimate the average speed of the fish swarm,
we start with a single fish. We use the BBox center

Hyperparameter Symbol Search Space
Kernel Size k [3×3,5×5,7×7]

Detection Thres Td [30%,40%,50%,60%,70%]
Tracking Thres Tt [30%,40%,50%,60%,70%]
Fusion Thres Tf [30%,40%,50%,60%,70%]

Untracked Thres Tunt [30%,40%,50%,60%,70%]
Unconfirmed Thres Tunc [30%,40%,50%,60%,70%]

IoU Thres Tiou [30%,40%,50%,60%,70%]

Table 1: Grid search space for hyper-parameters

points C = {(cx
i ,c

y
i )}t

i=1 and the absolute depth values
Dep = {d∗i }t

i=1 to firstly project BBox center points C
in PCS to WCS, and then we compute fish speed V =
{vi}t

i=1. The time interval is 1/30 seconds, so f ps =
30. Next, we still use the above computation steps to
calculate the speed for each fish in a fish swarm. With
our multi-object tracker, we can identify each fish in
the next frames. For each frame, we use Equation (5) to
compute the average speed v̄t of all tracked fishes. Here
N is the total number of fishes at the frame t. After
traversing all frames T , we obtain the average speed
V̄ = {v̄t}T

t=1 as the final result.

v̄t =
1
N

N

∑
o=1

vo
t , (5)

4 EXPERIMENTS
4.1 Synthetic Fish Dataset
There are some fish datasets available for different com-
puter vision tasks, such as [UKT20] and [SLK+20],
but none of them provides fish motion information.
Therefore, we use Unity game engine [JBT+18] to de-
sign our synthetic fish dataset and automatically gener-
ate annotation as shown in Fig. 3. This synthetic dataset
contains 163 videos which have 89901 images in to-
tal. We split this dataset into training dataset with 99
videos, validation dataset with 32 videos, and testing
dataset with 32 videos. The frame per second in this
dataset is 30 fps.

Unity captures the ground truth speeds based on the
gravity center of the 3D fish model. It is very difficult
to visually determine the position of the gravity cen-
ter of a swimming fish, so we choose to approximate
the ground truth speed by the speed of the BBox center
point. This is expected to introduce inherent errors, pri-
marily stemming from two distinct factors. Firstly, the
likelihood of the gravity center aligning precisely with
the center point of the BBox diminishes when a fish is

Trackers k Td Tt Tf Tunt Tunc Tiou
Thrnet 3×3 30% 70% 70% 70% 30% −
Tretina − 30% 50% − 70% 30% 50%

Tf asterrcnn − 50% 50% − 70% 40% 50%

Table 2: Grid search result for multi-object trackors
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Trackers IDF1 ↑ MOTA ↑ MOTP ↑ f ps ↑
Thrnet 80.1% 81.1% 87.4% 16.7
Tretina 79.4% 80.5% 86.7% 20.39

Tf asterrcnn 82.4% 81.8% 87.4% 21.15

Table 3: Multi-object tracking results

navigating through three-dimensional space. Secondly,
the depth value at the BBox center point consistently
corresponds to the outer surface of the fish, whereas the
gravity center resides within the fish. Consequently, the
depth value at the BBox center point is almost always
smaller than the value at the gravity center.

4.2 Multi-Object Tracking
We adopt the tracking-by-detection approach to
achieve multiple fish tracking in our synthetic fish
swarm scenes. We prepare three detector-based multi-
object trackers, including HRNet-based tracker Thrnet ,
RetinaNet-based tracker Tretina, and FasterRCNN-
based tracker Tf asterrcnn. We use the same training
strategy to train these object detectors. The batch size
is set to 10. We optimize these models with the Adam
optimizer [KB14] for 40 epochs. The learning rate γ is
1.25e−4, and it is decayed by half for every 10 epochs.
After the training stage, we use each well-trained
object detector and Kalman Filter [Kal60] to compose
a multi-object tracker. Since Kalman Filter involves
some hyperparameters, we create a search space for
each tracking hyperparameter shown in Table 1 and use
the grid search approach to find the optimal tracking
parameter for each tracker. We show the result in
Table 2.

We use the evaluation metrics that are commonly
adapted in the community to measure tracking per-
formance. The tracking result is shown in Table 3.
Thrnet has comparable overall performance with Tretina,
but Tf asterrcnn outperforms other trackers in tracking
performance and inference speed. Therefore, we will

Reconstruction Algorithms
RMSE/m ↓ &1.25 ↑ &1.252 ↑mono-depth models ML

MiDaS
Hybrid

LR 0.625 0.73 0.94
PR 27.36 0.72 0.925
DT 0.66 0.695 0.915

KNN 0.655 0.7 0.92

MiDaS
Large

LR 0.93 0.58 0.825
PR 42.915 0.605 0.84
DT 0.79 0.575 0.855

KNN 0.785 0.59 0.85

Boosting
MiDaS

LR 0.725 0.675 0.9
PR 118.3 0.66 0.885
DT 0.71 0.665 0.9

KNN 0.7 0.67 0.9

TCMiDaS

LR 1.675 0.355 0.535
PR 2934.985 0.44 0.62
DT 1.485 0.38 0.6

KNN 1.415 0.375 0.61

Table 4: Comparison of different absolute depth map
reconstruction algorithms

Figure 4: Random layout of reference objects. (a) The
red boxes are the positions of reference objects. (b) The
reference objects from the front view.

use the FasterRCNN-based tracker to achieve multiple
fish tracking in the following experiments.

4.3 Absolute Depth Map Reconstruction
Since it is technically difficult to generate precise depth
maps as ground truth in underwater environments, we
cannot train any mono-depth models in the real world.
Similarly, we do not train any mono-depth models on
our synthetic datasets, and we use an already well-
trained model MiDas [RLH+22] with high generaliza-
tion ability.

4.3.1 Transformation Algorithms
We choose four open-source mono-depth variants
based on MiDaS as our experimental candidates,
and they are MiDaS Hybrid [RLH+22], MiDaS
Large [RLH+22], BoostingMiDaS [MDM+21] and
TCMiDaS [LLZ+21]. We use four Machine Learning
(ML) algorithms to reconstruct absolute depth maps
from the relative inverse depth maps, including Linear
Regression (LR), second-order Polynomial Regression
(PR), Decision Tree (DT), and KNN. There are two
primary reasons for this operation. Firstly, these
models lack the capability to directly predict absolute
depth maps. Secondly, [RLH+22, MDM+21, LLZ+21]
do not put forth any default transformation algorithms

Figure 5: Examples of reconstructed absolute depth
maps
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Figure 6: Examples of the absolute depth maps reconstructed by linear regression in different fish scenes. The
green rectangle marks the ignored fish. The blue rectangle marks fish with the same depth values in a small fish
swarm.

that can effectively convert a relative inverse depth
map into an absolute depth map. We use the Root
Mean Squared Error (RMSE) to measure the deviation
between the estimated depth values and the ground
truth. We also use &1.25 and &1.252 to evaluate their
precision. Since absolute depth map reconstruction
requires some known depth values from the scene,
we tried different layouts of the reference objects and
came up with the one that performed best, as shown in
Fig. 4 (a).

A depth estimation algorithm is deemed effective if it
achieves continuous values in the predicted depth map
without introducing layering effects, while also main-
taining good metrics for both the background and fore-
ground objects. We combine four mono-depth vari-
ants and four ML algorithms and evaluate their absolute
depth map reconstruction results. The result is shown
in Table 4. We find that polynomial regression ends up
with a very large error in RMSE. This primarily stems
from the x2 term in polynomial regression, which tends
to magnify large depth values during the depth map re-
construction process. Thus, it is unsafe to use polyno-
mial regression to conduct depth map transformation.
As shown in Fig. 5, the decision tree and KNN tend to
reconstruct absolute depth maps with obvious layering
effects, so it is not acceptable in our case. Addition-
ally, the reconstructed depth maps based on TCMiDaS
lose most of the depth information. It is probably be-
cause the training strategy in Li et al. [LLZ+21] does
not maintain the original generalization capability of
MiDas. Thus, we will not consider this model in our
work. Unlike other ML algorithms, linear regression
maintains the most balanced performance in all metrics
and with all Midas variants. Therefore, linear regres-
sion is the most suitable transformation algorithm.

We further compare the absolute depth maps recon-
structed by linear regression in different fish scenes. As
shown in Fig. 6, MiDaS Large tends to miss some fishes

that are relatively far away in the scene when estimating
depth maps. BoostingMiDaS can provide depth infor-
mation for all fishes, but it tends to predict the same
depth values for neighboring fishes forming a group in
the image. The reason may be that the fish’s appear-
ance and the boundaries between these fishes become
blurred in these scenes, so BoostingMiDaS incorrectly
recognizes their contextual cues as the same. Such a
situation makes it difficult for BoostingMidas to distin-
guish multiple fishes with blurred boundaries. MiDaS
Hybrid and linear regression do not have the problems
mentioned above, so we will use MiDaS Hybrid and
linear regression to reconstruct absolute depth maps for
our fish scenes.

4.3.2 Layout of Reference Objects
The spatial layout of reference objects is another im-
portant factor in absolute depth map reconstruction. As
shown in Fig. 7, we prepare seven different spatial lay-
outs and restrict the size of all reference objects to
0.1× 0.1× 0.1m3. We assume that the reference ob-
jects in this size are too small to affect fish swimming
movements.

The result is shown in Table 5. We find that the in-
creasing number of reference objects from layouts A to

Figure 7: Different layouts of reference objects. The
red bboxes are the positions of reference objects
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Figure 8: Post-processing performance. The Occ means occlusion.

D improves the overall accuracy in absolute depth map
reconstruction and decreases errors in reconstructed ab-
solute depth values. The reason is that placing more ref-
erence objects in the depth direction of the fish pond can
provide more depth information about the pond. How-
ever, as shown in Table 5, placing two more objects in
layout E shown in Fig. 7 ends up with a very similar
evaluation result to that of layout D. This result indi-
cates that placing more objects is less helpful in improv-
ing the accuracy of absolute depth map reconstruction.
To solve this problem, we created layout F by slightly
shifting each reference object in different directions by
a small distance. In Table 5, the overall evaluation re-
sult in layout F delivers better results than other layouts.
Compared to layout E, layout F uses the same number
of reference objects to obtain a more complete depth
range in the fish pond. Therefore, we will arrange ref-
erence objects in our fish ponds according to layout F.

4.4 Post Processing
To investigate the effectiveness of our post-processing
method against the fluctuation problem of BBox center
point and the jump problem on depth value, we cre-
ated simple scenes where a fish swims in pre-designed
movements. These scenes include three types of motion
and three types of swimming trajectories. The three
types of motion include acceleration (Acc), decelera-
tion (Dec), and uniform (Unif). The three types of tra-
jectories include the Coordinate Axis direction (CA),
the Coordinate Plane direction (CP), and Spatial Turn-
Around movements (STA). In detail, the CA direction
includes directions in

−→
d = (1,0,0),

−→
d = (0,1,0), and

Layout RMSE/m ↓ &1.25 ↑ &1.252 ↑
A 1.84 0.1 0.525
B 0.65 0.68 0.89
C 0.59 0.735 0.93
D 0.565 0.755 0.95
E 0.57 0.75 0.955
F 0.55 0.77 0.95

Table 5: Absolute depth map reconstruction in different
layouts

−→
d = (0,0,1), while the CP direction includes direc-
tions in

−→
d = (1,1,0),

−→
d = (1,0,1), and

−→
d = (0,1,1).

Since a fish is either occluded or not occluded when
swimming in a fish swarm, we divide these scenes into
the occluded and not-occluded ones. In total, we have
18 different scenes. Also, we feed the ground truth
BBox and depth map to our post-processing approach
rather than the tracking result and reconstructed abso-
lute depth maps as shown in Fig. 1.

As shown in Fig. 8, our FME algorithm can produce
better results in occluded and non-occluded scenes than
FME algorithm without the post-processing approach.
Our post-processing approach reduces ▽RMSE by
0.274m/s. This result implies that our post-processing
approach effectively addresses the disturbance caused
by fish swimming movement. Following, two exam-
ples are given to demonstrate the improvements in fish
motion estimation.

Since fish swimming movements always cause the drift
problem on BBox center point, we make a single fish
swimming in the direction

−→
d = (1,0,0) as shown in

Fig. 9 in order to investigate the influence of this prob-
lem on the fish motion. The fish swimming along this
trajectory can always be at the same distance from the

Figure 9: Post processing on BBox
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camera. As shown in Fig. 9, the estimated result based
on our post-processing approach remains exactly the
same as the ground truth while the method without the
post-processing generates a very fluctuating result. This
comparison indicates that our post-processing approach
can overcome the drift problem on BBox center points.
When a fish is swimming behind another fish as shown
in Fig. 10, it causes the depth value at the BBox center
point to abruptly jump in two consecutive frames. How-
ever, our post-processing approach can overcome this
problem and maintain smooth changes in depth values
on successive frames.

4.5 Fish motion estimation
We have prepared two types of fish scenes, including
the single-fish scene and the fish swarm. Our initial
focus is on the single-fish scene. This choice allows us
to fully isolate the effects of interaction between fishes
and concentrate on assessing the influence of the spatial
swimming movements of an individual fish on our FME
algorithm. We compare our FME algorithms based on
four different input sources that include Ground Truth
BBox (GTBBox), Ground Truth depth (GTDepth),
Predicted BBox (PredBBox), and Estimated absolute
Depth map (EstDepth). We consider the result from
the algorithm based on GTBBox&GTDepth as the
benchmark.

We utilize RMSE to evaluate the deviation between the
estimated speed and the ground truth speed. We also
use distance correlation (DistCorr) to quantify the sim-
ilarity of tendency between them. Unlike the Spearman
correlation and the Pearson correlation, DistCorr can
measure the nonlinear association between two vari-
ables with non-monotonicity, and it does not impose
any restrictions on the distribution of these two vari-
ables.

Figure 10: Post processing on depth. The red line on
the top figure represents the fish swimming trajectory.

4.5.1 Single-Fish Scene
As shown in Table 6, the benchmark result ends up
with an error of RMSE = 0.05m/s, while the correla-
tion reaches up to DistCorr = 92.0%. Since we only
use ground truth depth maps and BBox to estimate fish
speed, we think this error mainly comes from the inher-
ent error as we discussed in Section 4.1 and our post-
processing approach.

The estimation result in group C is very close to the
benchmark, giving an error of RMSE = 0.06m/s and
the correlation of DistCorr = 92.0%. The reason for
this difference is that BBoxes predicted by our track-
ing algorithm deviate a bit from the ground truth BBox,
so it leads to a localization error in the fish positions.
However, its performance remains very close to the
benchmark as shown in Fig. 11 (b). We notice that
the result in Group B is worse than that in the bench-
mark. This is mainly because the reconstructed abso-
lute depth map provides less accurate depth values for
fish speed computation. In group D, the combination
of our tracking and absolute depth reconstruction al-
gorithms can generate nearly the same performance as
that in group B. It implies that our absolute depth es-
timation algorithm is the main error source in single-
fish motion estimation. However, the estimated speed
shown in Fig. 11 (c) approximates the ground truth well
enough. Thus, we believe that our algorithm can ro-
bustly estimate fish motion in single-fish scenes with
an error of RMSE = 0.08m/s and the correlation of
DistCorr = 89.0%.

4.5.2 Fish Swarm Scene
As shown in Table 7, we notice that the benchmark
result has an error of RMSE = 0.03m/s, but the cor-
relation between the estimated average speed and the
ground truth is DistCorr = 92.0%. The estimated re-
sult in Group D has an error of RMSE = 0.06m/s.
By comparing with the benchmark, our tracking and
absolute depth map reconstruction algorithms together
lead to an increasing error in the estimated average
speed by ▽RMSE = 0.03m/s. Also, its correlation
of DistCorr = 81.0% differs from the benchmark by
▽DistCorr = 11.0%. The reasons are two-fold. First,
fish swarm scenes make a more difficult task for our
tracker because of occlusion, which makes it more dif-
ficult to continuously and stably track a fish with the
same tracking ID, and increases the chances of los-
ing some tracked targets or ID switches while tracking

Group Input Source RMSE(m/s) ↓ DistCorr ↑
A Benchmark 0.05 92.0%
B GTBBox&EstDepth 0.08 90.0%
C PredBBox&GTDepth 0.06 92.0%
D PredBBox&EstDepth 0.08 89.0%

Table 6: Fish motion estimation in single-fish scenes
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Figure 11: Fish motion estimation. (a)-(c): single fish scenes. (d)-(f): fish swarm scenes.

many fishes. This problem is highly dependent on the
complexity of fish interaction in a fish swarm. The im-
perfection of our tracking algorithm on motion estima-
tion becomes more obvious in fish swarm scenes. Sec-
ond, fish swarm scenes increase the difficulty of recon-
structing accurate absolute depth information for the
fish. These two aspects eventually lead to the devia-
tion in fish speed computation. However, the estimated
speed curve shown in Fig. 11 (f) closely mirrors the
trend of the ground truth curve. Thus, we believe that
our tracking model and mono-depth estimation algo-
rithm can adequately estimate fish motion in fish swarm
scenes with RMSE = 0.06m/s and DistCorr = 81.0%.
Our biologist partners believe that this error is accept-
able as long as the estimated speed curve is close to the
ground truth curve.

Additionally, we adopt a 95% confidence interval to
measure the error range of the average speed in a fish
swarm at a given frame f computed by our FME algo-
rithm, and the range is [−0.167m/s,0.1m/s]. This error
range is measured under the frame rate of 30 fps.

5 CONCLUSION
In our research, we tackled challenges in fish motion
studies by addressing the lack of ground truth informa-
tion, and the complexity of fish swarm scenes. We cre-
ated synthetic fish data and introduced a novel fish mo-
tion estimation algorithm, incorporating multi-object
tracking, a mono-depth model, and an innovative post-
processing approach for 3D motion estimation. Our re-
search successfully extends fish studies from 2D to 3D
space. Our experiments show that our post-processing

Group Input Source RMSE(m/s) ↓ DistCorr ↑
A Benchmark 0.03 92.0%
B GTBBox&EstDepth 0.05 88.0%
C PredBBox&GTDepth 0.04 92.0%
D PredBBox&EstDepth 0.06 81.0%

Table 7: Fish motion estimation in fish swarm scenes

method significantly reduces errors in fish speed com-
putation, and our FME algorithm can estimate ade-
quately accurate fish motion in different fish swarm
scenes.
Our work demonstrates the feasibility of accurately
computing fish motion using a multi-object tracker and
a mono-depth model. Looking ahead, we aim to design
a neural network model for direct fish speed prediction.
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ABSTRACT
In this paper, we aim to improve rendering reflections using environment maps on moving reflective objects. Such
scenarios require multiple reflection probes to be positioned at various locations in a scene. During rendering,
the closest reflection probe is typically chosen as the environment map of a specific object, resulting in sharp
transitions between the rendered reflections when the object moves around the scene. To solve this problem,
we developed two convolutional neural networks that dynamically synthesize the best possible environment map
at a given point in the scene. The first network generates an environment map from the coordinates of a given
point through a decoder architecture. In the second approach, we triangulated the scene and captured environment
maps at the triangle vertices – these represent reflection probes. The second network receives at the input three
environment maps captured at the vertices of the triangle containing the query point, along with the distances
between the query point and the vertices. Through an encoder-decoder architecture, the second network performs
smart interpolation of the three environment maps. Both approaches are based on the phenomenon of overfitting,
which made it necessary to train each network individually for specific scenes. Both networks are successful at
predicting environment maps at arbitrary locations in the scene, even if these locations were not part of the training
set. The accuracy of the predictions strongly depends on the complexity of the scene itself.

Keywords
reflection probes, interpolation, convolutional neural network

1 INTRODUCTION
Rendering reflective materials presents a formidable
challenge in real-time computer graphics. Our goal is
to render reflections that faithfully mirror the surround-
ings of a moving reflective object while ensuring fast
rendering. Various techniques address this issue, yet
the balance between speed and accuracy remains ever-
present.

At one end of the spectrum, we encounter techniques
yielding highly precise results but demanding con-
siderable time and computational resources, often
unsuitable for real-time applications. Path tracing,
notably improved by the recent advancements in
denoising techniques, serves as a prominent example.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Conversely, there exist techniques capable of fast
but less precise outcomes. By far the most common
approach in practice are environment maps. However,
environment maps capture only the surroundings of a
single point in space (i.e. the reflection probe), which
may result in inaccurate reflections if the location of
the reflection point differs from that of the probe. To
some extent, this issue can be addressed by placing
multiple reflection probes in a scene and then selecting
the closest one at runtime based on the location of
the reflective object. This leads to sharp transitions
between reflections when the selected reflection
probe changes, which can be mitigated by linearly
interpolating neighboring reflection probes. Linear
interpolation, however, leads to noticeable inaccuracies
and distortions in interpolated reflections.

To address these issues, we present two techniques
based on convolutional neural networks (CNNs). In the
first approach, a CNN with a decoder architecture takes
the location of a reflective object as input and outputs an
interpolated environment map at that location. The sec-
ond technique uses a CNN with an encoder-decoder ar-
chitecture. First, the set of reflection probes is triangu-
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lated, yielding a triangle mesh covering the scene. Dur-
ing runtime, three reflection probes that form a triangle
encompassing the reflective object are selected. Their
corresponding environment maps, along with interpo-
lation weights determined by the distance of the reflec-
tive object from the reflection probes, are input into the
CNN. The CNN then outputs the interpolated environ-
ment map for the given location within the scene. Train-
ing both CNNs involves overfitting to specific scenes,
necessitating separate training sessions for each scene.
We evaluate the techniques on several scenes to demon-
strate their performance and accuracy. Results show
that both techniques produce more accurate reflections
than simple linear interpolation, at the cost of computa-
tional complexity.

2 RELATED WORK
Rendering reflections in computer graphics is a richly
explored domain crucial for achieving realistic scenes.
While sophisticated algorithms like path tracing offer
physically accurate illumination, there is a parallel fo-
cus on less computationally intensive methods leverag-
ing ambient images and reflection probes.

Foundational work by Blinn and Newell [3] introduced
techniques for applying textures and reflections to
curved surfaces, elevating rendering quality using
digital signal processing theory and curved surface
mathematics. By incorporating a reflection term
inspired by Phong’s work [9], the authors aimed to
simulate more realistic lighting effects, particularly
on highly polished surfaces. This involves accurately
modeling surface properties and employing precise
normal vectors, along with a subdivision algorithm
to facilitate the simulation of mirror reflections from
curved surfaces.

Structured importance sampling, detailed by Agarwal
et al. [1], offers a technique for illumination rendering
based on surrounding images. It includes algorithms
for sampling lighting textures with visibility consider-
ation and hierarchical layering for surrounding image
sampling, optimizing reflection rendering while reduc-
ing the required samples.

Ramamoorthi and Hanrahan’s contributions [10] intro-
duced efficient reflection representation with spherical
harmonic reflection maps, allowing for accurate sam-
pling frequency determination based on error analysis
and fast prefiltering methods using spherical harmonic
transformations.Further advancements in reflection ap-
pearance were made through the prefiltering of ambi-
ent images. Kautz et al. [4] presented three algorithms
that unify prefiltering methods, including fast hierar-
chical filtering, machine-accelerated prefiltering, and
anisotropic BRDF model prefiltering. The first algo-
rithm provides approximately 10 times faster prefilter-
ing than the brute force method, while the second, op-

timized for real-time usage, provides accelerated pre-
filtering. Lastly, the third enables the application of en-
vironment map techniques to anisotropic BRDF models
for the first time.

Ashikhmin and Ghosh [2] simplified reflection creation
with simple blurred reflections using OpenGL capabil-
ities, while Křivánek and Colbert [6] developed filter
importance sampling to reduce aliasing errors in real-
time rendering.

Manson and Solan’s fast filtering method [7] utilized
hardware-accelerated trilinear sampling for efficient
cube map prefiltering, optimizing coefficients to main-
tain high-quality results while reducing complexity.

McGuire et al. [8] introduced a novel data structure
called light field probes, and two algorithms for real-
time global illumination computation in static environ-
ments. The ideas from screen-space and voxel cone
tracing techniques were applied to this data structure to
efficiently sample radiance on world space rays, with
correct visibility information, directly within a pixel
and compute shaders. The approach improves tradi-
tional techniques by eliminating artifacts like light leak-
ing and enabling complex illumination effects in real-
time rendering scenarios.

Xia and Kuang [12] presented a novel method for non-
uniform probe placement in probe-based global illumi-
nation algorithms, aiming to reduce memory waste and
improve shading accuracy. The algorithm dynamically
adjusts probe positions based on illumination informa-
tion, by calculating irradiance errors between probes
and shading points and employing gradient descent.
The method achieves similar rendering quality to exist-
ing techniques like DDGI but with fewer probes. How-
ever, the algorithm is currently limited to static scenes
and light sources.

Rodriguez et al. [11] presented a method for global
illumination rendering using illumination textures and
reflection probes, optimizing memory consumption
with adaptive parametrization and introducing reflec-
tion probes to store light paths in the scene for specular
reflections.

Finally, Kopanas et al. [5] introduced a novel approach
for rendering scenes with curved reflectors, termed
Neural Point Catacaustics, using a point-based repre-
sentation and a neural warp field to model reflection
trajectories. By leveraging neural rendering techniques
and efficient point splatting, complex specular effects
can be synthesized from casually captured input photos.
Key contributions include the explicit representation
of reflections with reflection and primary point clouds,
enabling interactive high-quality renderings of novel
views with accurate reflection flow.
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3 INTERPOLATION NETWORKS
Our goal was to devise methods for generating accu-
rate environment maps at arbitrary locations in a scene,
used for rendering reflective objects. In this section,
we present two approaches based on CNNs. Both ap-
proaches intentionally leverage overfitting. Our strat-
egy involved training each model with a rich set of
scene-specific data, which facilitated the learning of in-
tricate details and subtleties within test scenes, thus en-
abling the models to adapt effectively to the test scenes.

3.1 First approach: point-based predic-
tion

In the first approach, we provided the CNN with global
coordinates (x,y,z) of a reflective object at its input,
and tasked it with predicting a corresponding environ-
ment map for the given location. The CNN adopts a
decoder architecture, transforming global coordinates
into an RGB image. First, the input passes through
4 fully connected layers, which expand to 384 output
neurons. Subsequently, the CNN features 16 convolu-
tional layers, with batch normalization incorporated af-
ter each layer to ensure stable learning. To achieve the
desired output image resolution of 512× 256 pixels, 5
upsampling layers are inserted after every third convo-
lutional layer, doubling the spatial resolution. ReLU ac-
tivation functions are applied after each fully connected
or convolutional layer. A schematic of the architecture
is shown in Figure 1.

Figure 1: Schematic of the CNN used in the first ap-
proach.

3.2 Second approach: triangulation-
based prediction

In the second approach, we aimed to enrich the net-
work’s input with additional scene context, providing
three environment maps along with interpolation
weights based on the distance from the reflection
probes.
Interpolation weights w1, w2 and w3 for a point x in a
triangle defined by reflection probe locations p1, p2 and
p3 are computed as follows:

w′
1 = (∥p1 −x∥+ ε)−1

w′
2 = (∥p2 −x∥+ ε)−1

w′
3 = (∥p3 −x∥+ ε)−1

w1 = w′
1/(w

′
1 +w′

2 +w′
3)

w2 = w′
2/(w

′
1 +w′

2 +w′
3)

w3 = w′
3/(w

′
1 +w′

2 +w′
3)

We used ε = 10−9 to avoid numerical errors.

3.2.1 Architecture
The CNN in the second approach adopts an autoen-
coder architecture. The encoder comprises 5 convolu-
tional layers paired with max pool layers for each of
the three input images. The interpolation weights are
passed through 4 fully connected layers followed by 5
convolutional layers. Subsequently, the encoded data
is passed through the decoder, consisting of 7 convo-
lutional layers. In the decoder, upsampling layers are
inserted after each convolution, except the last two, as
the desired resolution, which was the same as in the
first approach, was achieved at that point. Similar to
the first approach, ReLU activation functions are ap-
plied after each fully connected or convolutional layer.
A schematic of the architecture is shown in Figure 2.

Figure 2: Schematic of the CNN used in the second
approach.

3.2.2 Scene triangulation
Each scene has been triangulated based on a manually
selected set of reflection probe locations. Delaunay
triangulation has been used due to its tendency to
avoid sliver triangles. The selection of reflection probe
locations varied based on the size and complexity of
each scene. In the largest and simplest scene, spanning
from (−400m,−400m) to (400m,400m), 25 reflection
probes were determined, while the second and third
scenes, although smaller in scale but more intricate,
necessitated a denser placement of reflection probes.
Specifically, the second scene, measuring (−5m,6m)
by (7m,23m), had 21 reflection probes, while the
third scene, sized (2m,25m) by (32m,50m), featured
33 reflection probes. Similarly, in the fourth scene,
which spanned from (5.7,−1.9) to (11.7,−28.9), 25
reflection probes were uniformly placed. The fifth
scene, although bigger, spanning from (−45,70) to
(100,−140), had its main focus between coordinates
(−45,8) to (100,−11) and (23,−11) to (40,−140).
Consequently, there was a denser placement of 25
reflection probes within this area to capture the scene’s
intricacies. Similarly, In the first scene, reflection
probes are densely concentrated in the central region,
as it is the most relevant area of the scene, whereas, in
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the subsequent three scenes, we aim to distribute the
reflection probes as uniformly as possible across the
entirety of the scene. Figure 3 shows how the scenes
have been triangulated.

At each selected reflection probe, we captured the envi-
ronment map required as input data for the CNN.

Figure 3: Triangulation of used scenes.

3.3 Learning data
Training the CNNs requires a diverse dataset encom-
passing input-output pairs for every scene.

For both approaches, panoramic environment maps
serve as the reference output data, captured at uniform
grid intervals adjusted for scene complexity and size.
Specifically, 600 locations were determined for the
first scene, 250 for the second scene, 805 for the third
scene and 196 for the fourth scene where environment
maps were captured. The fifth scene, however, was
an exception, with 1210 locations not determined
uniformly across the whole scene but only in the most
relevant part, which was from (−45,8) to (100,−11)
and (23,−11) to (40,−140).

In the second approach, reflection probe locations were
also determined, and panoramic images captured at
these points served as input alongside interpolation
weights for the locations of reflective objects.

Careful curation of the training set ensures an accurate
representation of the depicted scene, facilitating effec-
tive network learning.

3.4 Learning procedure
We begin by outlining the training process for both
CNNs before delving into a detailed presentation of
their performance in Section 4.

During each iteration of the network, input data were
first fed through the model to generate predictions in
the form of image data. Then the Mean Square Er-
ror, which was used as a loss function, was computed
from predicted images provided on the CNN’s output
and true images for the given input coordinates pro-
vided in the training set. The Adam optimizer was then
employed to minimize the model’s error.

For both developed CNNs, three key parameters were
determined: the learning rate, batch size, and the num-
ber of epochs. Throughout the training of both net-
works, the learning rate was set to 0.0005. For the first
network, the batch size was set to 32, and the number of
epochs was set to 16,384, while these hyperparameters
were halved for the second network due to the increased
complexity of the input data, which included three ad-
ditional images.

Both models for all three scenes were trained using an
AMD Ryzen Threadripper 1950X 16-Core CPU in con-
junction with an NVIDIA TITAN V GPU.

The learning procedures for each scene are shown in
Figure 4. The loss function values of the last steps are
presented in Table 1 and the training duration for both
CNNs and each scene is presented in Table 2.

Las Value of First Second
Loss Function CNN CNN

First Scene 129.688 81.607
Second Scene 192.072 119.955
Third Scene 391.773 333.901
Fourth Scene 109.982 70.636
Fifth Scene 194.705 *

Table 1: Loss function values for the last step by scenes.

Training time Training time
of first CNN of second CNN

First scene 20 h 50 min 26 h 59 min
Second scene 9 h 10 min 10 h 40 min
Third Scene 28 h 2 min 36 h 21 min
Fourth Scene 6 h 53 min 8 h 58 min
Fifth Scene 42 h 9 min 54 h 30 min

Table 2: Training duration for each scene.

4 RESULTS
Our evaluation relies on both quantitative metrics, such
as Mean Squared Error (MSE), and subjective assess-
ments, leveraging the Learned Perceptual Image Patch
Similarity (LPIPS) metric for a comprehensive under-
standing. Both CNNs were trained and tested across
five distinct scenes: a simplistic building environment,
a detailed room 3, a forest 4, a space ship corridor 5, and
a city 6 (see Figure 5).

2 Some initial training steps with significantly different values
are excluded from the graph for better visualization.

3 https://sketchfab.com/3d-models\/the-king-s-h
all-d18155613363445b9b68c0c67196d98d

4 https://www.cgtrader.com/3d-models/exterior/l
andscape/forest-house-scene

5 https://www.cgtrader.com/free-3d-models/scie
nce/other/sci-fi-corridor-6b2e3194-8a54-484
6-a290-5bf473a88a74

6 https://www.cgtrader.com/free-3d-models/arch
itectural/architectural-street/city-scene-719
d674f-97b6-49a1-8399-de7722a60f5e
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First scene Second scene Third scene Fourth scene Fifth scene
Figure 4: Change in the loss function during the training of the first and second CNNs for each scene.2 The training
data for the second CNN for the fifth scene is not presented due to corruption.

Figure 5: Five scenes on which we trained and tested
CNNs.

4.1 Evaluation of predicted environment
maps

To measure the accuracy of the predicted environment
maps, we compared them against actual scenes at spe-
cific points in the room. We assessed both approaches
and also generated interpolated images of reflection
probes using the same spatial triangulation as described
in Section 3. These interpolated images were created
by weighting the pixels of three reflection probes.

For each scene, we selected four distinct points within
the scene for evaluation. Two points were from the
training set (Point A and Point B), and two were out-
side it (Point C and Point D). This evaluation process
provided insights into the models’ predictive accuracy
across various scenarios.

Models were tested on Intel(R) Core(TM) i7-10510U
4-Core CPU and NVIDIA GeForce MX250 GPU.

4.1.1 First Scene: Simple Building

The first scene depicts a simple environment with min-
imal details—a building comprising a floor and eleven
columns against a sky backdrop.

Mean Squared Error

The Mean Squared Error (MSE) values for the first
scene are shown in Table 3.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 100.38 61.59 418.28
Point B 235.40 247.20 1085.67
Point C 718.93 744.58 1152.46
Point D 428.81 443.50 1451.75

Table 3: MSE values according to the real image of the
surroundings for the first scene.

The first CNN shows slightly higher MSE values for
points inside the training data set, while the second
CNN exhibits marginally larger errors for points out-
side of it. Both CNNs significantly outperform interpo-
lated reflection probes.

To visually represent the disparities between predicted
and actual images, Figure 6 presents error maps, illus-
trating discrepancies for one point within the learning
set and one outside. These maps delineate areas of in-
consistency between predictions and real surroundings.
Correct values are depicted in gray, while errors are in-
dicated by varying colors, with greater intensity denot-
ing larger errors. Error maps reveal fewer errors for
both CNN approaches compared to the interpolated re-
flection probes. The first CNN demonstrates less error,
particularly noticeable on the ground and distant tow-
ers. However, slight variations in sky color are notice-
able in the predictions of the first CNN.

Learned Perceptual Image Patch Similarity

Table 4 shows the Learned Perceptual Image Patch
Similarity (LPIPS) values for the first scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.0584 0.0418 0.0868
Point B 0.1172 0.1187 0.1870
Point C 0.1694 0.1795 0.1893
Point D 0.1302 0.1275 0.1993

Table 4: LPIPS values against the real image for the
first scene.

Both CNNs exhibit comparable performance in terms
of perceptual properties such as color, texture, and
shape, outperforming interpolated reflection probes.

4.1.2 Second Scene: Room
The second scene depicts an intricately detailed room
adorned with various decorations.

Mean Squared Error

The MSE values for the second scene are presented in
Table 5.

The second CNN shows lower errors in most cases, es-
pecially within the training set. Both networks outper-
form interpolated reflection probes.
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First Second Interpolated
Point CNN CNN Reflection Probes

Point A 134.81 114.39 952.968
Point B 178.43 134.51 1410.76
Point C 1075.77 995.61 1273.71
Point D 613.60 633.00 1197.21
Table 5: MSE values for the second scene.

Visualizations of error maps confirm the superiority of
our approaches over interpolated reflection probes, par-
ticularly within the training set. Although the advan-
tage diminishes slightly for scenarios outside the train-
ing set, our approaches consistently outperform the in-
terpolated probes. The correlation between the error
maps and mean squared error values further validates
the robustness of our approaches.

Learned Perceptual Image Patch Similarity

Table 6 displays the LPIPS values for the second scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.1750 0.1538 0.2494
Point B 0.1673 0.1448 0.2401
Point C 0.2535 0.2418 0.2074
Point D 0.2238 0.2030 0.2565

Table 6: LPIPS values for the second scene.

Our approaches show a significant perceptual advan-
tage over interpolated reflection probes on training set
data. However, this advantage decreases with out-of-
sample data, especially in the third case, where the
LPIPS metric for interpolated reflection probes is lower
than for our methods.

4.1.3 Third Scene: Forest

The third scene depicts a forest teeming with trees of
various sizes, low shrubbery, and scattered rocks. Dom-
inated by green hues, the scene boasts intricate details.

Mean Squared Error

The MSE values for the third scene are listed in Table 7.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 517.92 498.21 1876.48
Point B 367.71 338.59 1269.22
Point C 686.12 799.88 1203.10
Point D 805.69 832.67 1961.62
Table 7: MSE values for the third scene.

The second CNN performs better within the training
set, while the first CNN is better for points outside the
training set, contrary to visual impressions favoring the
second approach. Both outperform interpolated reflec-
tion probes.

Analyzing the error maps reaffirms the superior per-
formance of our approaches over the interpolated re-
flectance probes, although this distinction is less appar-
ent in the actual images, especially within the forested
regions.

Learned Perceptual Image Patch Similarity

Table 8 presents the LPIPS values for the third scene.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.3055 0.2653 0.2802
Point B 0.2720 0.2491 0.2043
Point C 0.3491 0.3284 0.2769
Point D 0.3316 0.2998 0.3088
Table 8: LPIPS values for the third scene.

The LPIPS values show less pronounced deviations,
with interpolated reflection probes performing compa-
rably to the CNNs.

4.1.4 Fourth Scene: Spaceship Corridor

The fourth scene depicts a small spaceship corridor
characterized by predominant grayscale hues.

Mean Squared Error

The MSE values for the fourth scene are shown in Ta-
ble 9.

First Second Interpolated
Point CNN CNN Reflection Probes

Point A 129.08 57.90 1031.44
Point B 111.29 67.39 1413.32
Point C 1303.07 1519.17 1394.56
Point D 856.83 1001.12 1321.07
Table 9: MSE values for the fourth scene.

The second CNN shows lower MSE for points within
the training set. Surprisingly, the first CNN presents a
marginally lower MSE for points outside the training
set. Moreover, in these cases, the MSE of interpolated
reflection probes is not substantially greater.

Error maps reveal more errors in the first CNN’s pre-
dictions than the second’s within the training set, and
even more in interpolated reflection probes. Outside
the training set, error maps are similar for all three ap-
proaches.

Learned Perceptual Image Patch Similarity

Table 10 shows the LPIPS values for the fourth scene.

The second CNN demonstrates superior perceptual per-
formance, with both CNNs exhibiting better perceptual
characteristics than interpolated reflection probes.
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First Second Interpolated
Point CNN CNN Reflection Probes

Point A 0.1309 0.0878 0.2248
Point B 0.0991 0.0663 0.2193
Point C 0.2361 0.2334 0.1886
Point D 0.2317 0.1908 0.2405

Table 10: LPIPS values for the fourth scene.

4.1.5 Fifth Scene: City
The fifth scene depicts a cityscape with diverse build-
ings and two main thoroughfares, which were the focal
points for both network training endeavors.

Mean Squared Error

The MSE values for the fifth scene are presented in Ta-
ble 11.

first second interpolated
point CNN CNN reflection probes

Point A 168.45 214.49 2470.10
Point B 236.60 265.06 2303.81
Point C 578.39 476.49 3016.37
Point D 468.92 337.91 1169.55
Table 11: MSE values for the fifth scene.

The first CNN outperforms the second CNN for points
within the training set, while the second CNN shows
slightly better performance for points outside the train-
ing set. Both CNNs significantly outperform the inter-
polated reflection probes across all points.

For this scene as well, error maps were calculated, re-
vealing fairly similar results between our first and sec-
ond approaches for points within and outside the train-
ing set. Conversely, error regions for interpolated re-
flection probes are considerably larger and more intense
for all points compared to our approaches.

Learned Perceptual Image Patch Similarity

Table 12 shows the LPIPS values for the fifth scene.

first second interpolated
point CNN CNN reflection probes

Point A 0.1261 0.1395 0.3036
Point B 0.1733 0.1607 0.3338
Point C 0.2074 0.2120 0.2697
Point D 0.1936 0.1933 0.2564
Table 12: LPIPS values for the fifth scene.

From a perceptual standpoint, both of our approaches
are fairly equivalent across all points, exhibiting signif-
icantly superior performance compared to interpolated
reflection probes.

4.2 Performance Evaluation Results
In addition to assessing prediction performance, we
gathered runtime data for both CNNs to evaluate their

suitability for rendering reflections in real-time. To-
tal execution time (including pre-processing and post-
processing) and prediction time were measured over
1000 consecutive predictions, from which the average
time per prediction was calculated.

Regarding speed, the first network exhibited superior
performance, with an average total execution time of
approximately 173 milliseconds with a prediction time
of about 95 milliseconds. In contrast, the second net-
work had a total execution time of around 333 millisec-
onds, with a prediction time of approximately 295 mil-
liseconds.

We also compared their performance in real-time exe-
cution in the Unity game engine. Specifically, we eval-
uated rendering speed, measured in frames per second
(FPS) Table 13.

Speed First CNN Second CNN Reflection Probe
Renderings 6-10 FPS 0.7-2 FPS 5-150 FPS

Table 13: Rendering speed comparison for different re-
flection rendering approaches.

The second approach’s CNN proved to be unsuitable
for real-time applications due to its slow performance.
While the real-time reflection probe demonstrated ex-
cellent efficiency in the simplest scene, achieving a con-
sistent rendering speed of approximately 150 FPS, it
struggled in more complex scenes. In these scenarios,
the first CNN performed comparably to the real-time
reflection probe, but with smoother transitions between
reflections, making it the preferred option for real-time
applications.

5 DISCUSSION
In this section, we critically analyze the outcomes and
metrics discussed in Section 4. We explore the advan-
tages and drawbacks of each approach, consider their
respective applications, and propose avenues for future
enhancement.

Both approaches were trained and tested on five differ-
ent scenes. We initiated the development of both ap-
proaches with the first and simplest scene. This scene
provided insight into the promising direction of our ap-
proach, as we successfully trained the networks for a
straightforward and repetitive environment. For the sec-
ond scene, we selected a room filled with intricate de-
tails to assess the ability of the networks to learn such
features. The third scene depicted a diverse environ-
ment rich in detail but predominantly characterized by
a single color. Here, we aimed to evaluate the ap-
proaches’ effectiveness in reproducing details in such
environments. With the same objective, we trained the
fourth scene, albeit significantly smaller than the third
and featuring a different dominant color. This enabled
us to assess the influence of dominant color and scene
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Figure 6: The upper half illustrates the prediction results of the two networks alongside the actual environment map
and the interpolated reflection probes for all five scenes. In each scene, the first column showcases the outcomes
for the point included in the training set, while the second column displays the outcomes for the point not included
in it. The lower half displays error maps corresponding to the rendered results.

size on the results. Finally, the fifth scene contains nu-
merous details, which are uniformly distributed and ex-
hibit regular shapes throughout the scene (unlike the
second scene, where details are unevenly distributed
and irregular). Here, we aimed to investigate the im-
pact of detail distribution and shape on the results.

5.1 Evaluation of results
We analyzed the effectiveness of the networks in var-
ious aspects, including prediction performance, color
accuracy, and real-time processing.

Initially, we examined the fidelity of the surroundings’
depiction, assessing whether objects were accurately
represented and the level of detail in each depiction.
Notably, the images generated by the second approach
rendered buildings, especially those outside the training
set, less accurately compared to the first network (Fig-
ure 7). Despite this, both networks performed similarly
in rendering objects in other scenes. However, the sec-
ond network’s predictions exhibited more detail, likely
due to the additional input data.

The first approach demonstrated superior proficiency
in predicting details of rectilinear shapes, particularly
when such shapes were in stark contrast with their sur-
roundings, which was most pronounced in the first and
fifth scenes.

Furthermore, the second network demonstrated supe-
rior color prediction, particularly in scenes with similar
color tones between objects and the background (Fig-
ure 8). For instance, in the first scene, the sky and build-
ing’s colors closely resemble each other, with the sec-
ond network providing more accurate predictions. Con-
versely, the first network struggled with color nuances,
especially apparent in the forest scene. The second net-

Figure 7: The figures illustrate the rendering of the first
scene at the point, which was not part of the training
set. The first image is the real image at that point, the
second is the prediction of the first CNN, and the third
is the image predicted by the second CNN.

work’s enhanced color perception also contributed to its
ability to capture finer details.

Figure 8: The images in the first column depict actual
surroundings, while those in the second column repre-
sent predictions made by the first CNN, and those in
the third column depict predictions made by the sec-
ond CNN. The images reveal an error in recognizing
the correct lower hues by the first network.

In general, both approaches exhibited fairly compara-
ble success in predicting environment maps at points
outside the training set. However, the small amount
of training data was evident in the second and fourth
scenes, where the first approach performed relatively
poorly. Consequently, it can be inferred that an unde-
sirable degree of overfitting occurred. This assertion is
further supported by the MSE values, which are very
small for points within the training set but significantly
larger for points outside the training set.
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Effective utilization of our approaches requires careful
scene design and consideration of lighting placement
before data capture and network training. Retraining
the CNN after any scene changes is crucial to main-
taining accurate and realistic reflections. Additionally,
careful placement of static objects and lighting effects
ensures their influences are accurately captured in the
training data and reflected in predictions.
Despite these considerations, a significant drawback of
our approaches remains the absence of reflective object
shadows in rendered reflections. Since the training data
is captured without it being present in the scene, its
shadows are not included, preventing the rendering of
self-reflections and reflections between multiple reflec-
tive objects. This limitation persists even with meticu-
lous scene design and data capture planning. Moreover,
reflections of other non-static objects in the scene and
their shadows are not present in the captured training
data, as we cannot predict their spatial positions in ad-
vance at the time of data acquisition.
From a speed perspective, the first network outper-
formed the second due to processing less data. While
the second network’s additional input led to more de-
tailed predictions, it came at the cost of slower process-
ing.
Overall, both approaches have demonstrated the capa-
bility to predict and depict the surroundings of a given
point in the scene fairly accurately, albeit sometimes
with a lack of detail. Compared to traditional ap-
proaches such as using the nearest reflection probe or
interpolating between reflection probes in the scene to
depict reflections, our approaches predict and depict the
environment of the object more accurately. However,
it is notable that these predictions sometimes portray
fewer details, resulting in slightly blurred surroundings.
Regarding speed, both approaches are slower than tra-
ditional methods, although the first approach has a suf-
ficiently fast rendering speed. When compared to real-
time reflection probes, which also accurately depict the
environment of the object and produce cleaner render-
ings with more details, our approaches excel particu-
larly in complex environments where real-time reflec-
tion probes may falter, especially during the movement
of reflective objects, where transitions between differ-
ent rendered reflections are highly noticeable and sharp,
a limitation not present in our approaches.

5.2 Usability of models
The CNN developed in the second approach proves un-
suitable for real-time applications. Conversely, the first
approach’s network is well-suited for real-time applica-
tions like gaming, where heavy computational tasks are
minimal, allowing for swift network predictions. On
the other hand, both CNNs are valuable for rendering
reflections in animations or design tools, offering qual-
ity results within reasonable processing times.

From the perspective of the quality of predicted
environment maps and rendered reflections, our ap-
proaches are most useful for reflective objects that lack
pronounced reflective properties (such as wrinkled or
rough surfaces), where finer details in the rendered
reflections are not crucial. However, their reflections
contribute to creating a realistic appearance of the
scene, where our approaches excel in providing gener-
ally accurately depicted surroundings in reflections and
smooth, natural transitions between different areas of
the environment as the reflective object moves through
the scene.

Both approaches excel in environments with static
scenes, making them ideal for rendering moving
objects against a relatively stable backdrop. However,
they are less effective for static objects with pro-
nounced reflective properties, such as mirrors, where
traditional reflection probes are more appropriate. Our
approaches shine when rendering scenes where moving
objects significantly enhance visual realism, such as
characters or vehicles traversing a static environment,
contributing to a lifelike visual perception of the
surroundings.

5.3 Possible improvements
5.3.1 Enhancing robustness through incorporat-

ing varied object heights

Currently, both approaches are trained solely on scenes
where the main activity occurs within a single plane,
and the reflective objects move only at a single height
(varying only in x and z coordinates). Consequently,
both networks are trained with constant y coordinates.
It would be worthwhile to further generalize the ap-
proaches and make them more robust by incorporating
different y coordinates in the training data, thus teach-
ing them to predict reflections for objects at varying
heights. In such a scenario, the first CNN would not
require additional upgrades, while the second approach
would need some adjustments, primarily considering a
different spatial decomposition.

5.3.2 Enhanced prediction quality

To elevate prediction quality, augmenting network com-
plexity by integrating additional fully connected or con-
volutional layers could enhance adaptability to train-
ing data. However, caution is warranted as increased
complexity may elongate prediction times. Advanced
CNN layers like capsule and dynamic layers offer po-
tential replacements for traditional convolutional lay-
ers, enabling better adaptability to training data with-
out significant model slowdown. Moreover, employ-
ing sophisticated loss functions such as perceptual or
contrastive loss could further refine predictions by pre-
serving content and style fidelity. Also, post-processing
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techniques like noise reduction, sharpening, and con-
trast enhancement could refine predicted images, aug-
menting overall quality.

5.3.3 Model speed optimization
Implementing model compression techniques like
pruning and quantization reduces model size and
prediction times, albeit with potential prediction
quality trade-offs. Model caching, wherein predicted
images for known inputs are stored to circumvent
redundant predictions, offers an efficient strategy for
recurrent input scenarios, albeit with increased memory
overhead.

5.3.4 Realistic reflections
Exploring methods to prefilter environment maps for
more realistic reflections akin to mirror reflections
could enhance scene realism.

The absence of self-shadows in object reflections could
be addressed via prerendering shadows in training data,
possibly using shadow mapping techniques.

6 CONCLUSION
In this paper, we endeavor to enhance existing methods
for rendering reflections, particularly those reliant on
reflection probes. One of the foremost challenges with
these methods lies in rendering reflections as reflective
objects move within a scene, and in mitigating the jar-
ring transitions between disparate reflection probes.

To address this issue, we introduce two novel meth-
ods leveraging convolutional neural networks (CNNs)
to generate environment maps at specific points within
a scene. Both methods demonstrate success in predict-
ing scene surroundings, seamlessly blending reflections
as objects move through the scene. Particularly in com-
plex environments, the first method outperforms real-
time reflection probes provided by the Unity game en-
gine, offering smoother and more natural transitions be-
tween reflections. However, due to its slower process-
ing speed, the second method’s comparative evaluation
remains unfeasible for real-time applications. Notably,
the resolution of predicted environment maps varies
with scene complexity, rendering the current methods
more suitable for rendering blurred reflections.

Future research avenues may explore enhancing image
resolution in complex scenes and optimizing method
speed. Furthermore, exploring pre-filtering techniques
for environment maps could enhance the realism of ren-
dered reflections.
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ABSTRACT
Modern graphics APIs expose control over the infamously non-coherent GPU caches to application programmers
through the mechanisms of pipeline barriers and render passes. A developer is then asked to group together their
GPU computations based on memory access patterns such that cache flushes and invalidations are minimized,
but render graph systems enable automation of this process. In this paper, we study the problem of finding an
optimal execution order for a frame graph to minimize the amount of render pass breaks, which in turn minimizes
cache control operations. We formulate and analyze a novel NP-complete problem MLGP and use it to propose an
approach to render pass merging that results in 30% less render pass breaks when compared to previous works.
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Figure 1: A contrived sample frame graph represented through a Λ graph. Nodes are computations, arrows represent
causality or precedence, red edges represent barriers. Some precedence edges also require a barrier. Colors represent
unique frame buffers requested by nodes. We are interested in finding a node execution order that enables optimal
barrier batching and minimal render target changes.

1 INTRODUCTION
Frame Graphs and Cache Management
Throughout the history of computing, graphs have
proven themselves to be an exceptionally effective tool
for describing and working with computation. Most
compilers use control flow graphs as one of the interme-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

diate representations of a program; several approaches
to concurrency use graphs explicitly to represent compu-
tations; various visual programming systems use graphs
as their representation of choice, including graph-based
shader authoring and gameplay programming systems
as seen in industry-standard engines like the Unreal
Engine [Epi]. Low-level graphics programming is no
exception, most engines are either in the process of mi-
grating from an immediate-style command dispatching
architecture to a frame graph [ODo17] (also known as a
render graph [Wih19]) based architecture, or have done
so several years ago. A frame graph runtime library pro-
vides its user with an explicit node abstraction, which
declaratively describes a computational atom. Different
systems chose different granularity for the computations
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abstracted inside nodes, from single dispatches of com-
pute shaders or a fixed rendering algorithm, to an entire
pass of rendering to a fixed set of render targets. The
nodes communicate with each other through a resource
system provided by the runtime, and the set of all user-
created nodes constitute a computational graph that de-
scribes the process of computing a single application
frame which is to be presented on the screen.

It is noteworthy that a principally different graph-based
approach has recently appeared in the Godot engine
[Ban24]. Godot uses an immediate-style user-facing
API, but does not translate user-dispatched GPU com-
mands directly into low-level graphics API command
lists, instead constructing a data dependency graph from
them, which is then processed analogously to traditional
frame graphs. This approach is close in spirit to control
flow graphs used by various compilers and allows to
reap most benefits of a frame graph like system without
breaking compatibility with existing application code.

The benefits of a graph-based approach are manyfold.
User-facing frame graph systems provide a robust archi-
tectural framework for organizing graphics application
code, and both user-facing and Godot-style graph sys-
tems enable automatic optimization of various aspects
of an application: memory allocation, work scheduling,
resource management, cache management, and several
others. For this paper, we are interested in cache man-
agement and work scheduling in particular.

While the previous generation of graphics APIs have
hidden all of cache management infrastructure away
from an application programmer inside the device-level
driver, such an approach has proven itself to be quite
inefficient at times, especially on mobile tile-based de-
ferred renderer architectures, and so the new generation
of graphics APIs, including Vulkan and Direct3D 12,
delegates cache management to the application devel-
oper. Focusing on the Vulkan API, this is manifested in
two aspects: pipeline barriers and render passes. Both of
these are not exclusively cache management tools, how-
ever. A pipeline barrier is a tool that controls 3 aspects
of an application:
1) cache invalidation and flushing,
2) GPU pipeline synchronization,
3) texture layout transitions.
Render passes, on the other hand, are a tool for con-
trolling the special rendering output merging hardware
available in most GPUs. Several parts of the rasteri-
zation pipeline can be implemented in hardware more
optimally than in software via general-purpose memory
operations, including Z-testing, alpha-testing and sim-
ple rendering writes. In particular, tile-based deferred
renderer GPU architectures store the textures which par-
ticipate in the output merging stage, usually referred to
as attachments, in a special tile cache, which is never
flushed or invalidated throughout a single render pass.

Obviously, any performance-sensitive program should
strive to maximize cache locality, or in other words,
minimize cache flushes and invalidations. For programs
that execute on the GPU, this problem is two-fold: cache
access must be independently optimized inside shader
code and inside the high-level command stream executed
by the GPU. The former is similar to CPU cache access
optimizations and is covered extensively in literature
(e.g. [Bav14]), while the latter is a problem that is novel
for application programmers and has been previously
solved by proprietary means inside drivers for OpenGL,
DirectX11 and similar.
Being interested in frame graphs, we focus on the lat-
ter. In terms of the Vulkan graphics API, this means
minimizing the amount of render passes and barriers
that are executed throughout a frame while preserving
the functionality and correctness of a program. Various
work items with compatible frame buffers, the sets of ac-
tive attachments, should be grouped together into render
passes. Barriers should be grouped together too, as test-
ing shows that fine-grained cache control exposed by the
Vulkan API is usually not leveraged by device drivers,
and a flush of any memory region from a certain cache
usually leads to a flush of the entire cache. Moreover, as
barriers also synchronize various GPU pipeline stages,
generally by preventing new work from being sched-
uled onto a processing unit before previous work was
completed, grouping them also minimizes the amount of
stalling throughout the frame. Finally, it must be noted
that the Vulkan API prohibits barriers from being exe-
cuted within render passes, so minimizing the amount of
render passes by grouping work together also automati-
cally minimizes the amount of grace points throughout
the frame at which a barrier may be executed, and so
naturally leads to grouping of barriers.

2 RELATED WORKS
One of the earlier public works on merging render passes
inside a frame graph is Hans-Kristian Arntzen’s Granite
engine [Arn17]. In Granite, each node represents an
entire logical render pass that is then translated into a
Vulkan subpass. The algorithm employed for render
pass merging is executed after the graph has been sorted
into a linear execution order and tries to produce a new
ordering that greedily maximizes reasonable scoring
heuristics of subpass attachment reads being forcibly
merged with the writer pass, dependent subpasses being
as distant from each other as possible, and not ending a
pass for as long as possible. This engineering approach
to the problem fits mobile-oriented development quite
naturally, as it focuses on various subpass interactions
that often occur in mobile Vulkan-based applications,
but lacks rigorous analysis of effectiveness of the algo-
rithm.
The approach Granite takes for its user-facing API is
what may be called a coarse-grained approach, meaning
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that each node represents an entire Vulkan-style sub-
pass, or even an entire render pass for engines that do
not target mobile devices. As far as the authors are
aware, most commercial engines take a similar approach
to their frame graph API: Unity [Tec; TAC21], Unreal
[Epi], Frostbite [ODo17], one of Activision’s engines
and AMD’s RPS [Adv] all use coarse-grained nodes.
Among these, it is publicly known that render pass merg-
ing is performed only for Activision’s Task Graph Ren-
derer, according to their talk at Rendering Engine Archi-
tecture Conference 2023 [Cha23], although algorithmic
details are not available publicly. This is to be expected,
as for a render graph runtime with coarse-grained nodes
rendering code is already grouped together based on
what render pass it belongs into, except for the case of
mobile rendering, where still manual pass management
is usually employed.

An alternative approach is what can be referred to as
fine-grained nodes. With this approach, each node rep-
resents a computation that may be smaller than a single
pass or subpass, and hence each pass in the resulting
GPU command stream consists of commands recorded
by multiple nodes. Consider an opaque G-buffer ren-
der pass. Coarse-grained approach suggests that there
should exist a single node responsible for this pass that
dispatches rendering of multiple systems, plugins or
modules, while a fine-grained approach suggests that
any system that needs to render opaque geometry to the
G-buffer should create its own node with its own «vir-
tual» render pass and let the frame graph runtime merge
these nodes into a single pass. This approach provides
architectural benefits to the developer:
— no additional event-like system needs to be employed

to make passes present in the engine by default cus-
tomizable by optional subsystems;

— if desired, it is possible for an optional subsystem to
forcibly break a render pass mid-way to read an inter-
mediate result of rendering without modifying other
code, for example, to create a hierarchical culling Z-
buffer [GKM93] that contains only static geometry.

Note that in the case of fine-grained nodes, it is cru-
cial for the runtime to have a robust render pass merg-
ing algorithm, as a single logical pass might consist of
dozens of subsystem nodes. On the other hand, while
coarse-grained nodes do nott technically require such an
algorithm, it is still desirable to have one, as extensibil-
ity of passes being handled outside of the frame graph
runtime can lead to subsystems creating passes that are
identical to other existing passes throughout a project’s
long lifetime or when the code that creates the initial
pass is inaccessible for the developer.

As for the algorithmic problems described in this paper,
to the best of authors knowledge, they are completely
novel and have not been tackled previously.

Our Contribution
We focus on fine-grained frame graph runtimes and
attempt to solve the render pass merging problem, al-
though our results can also be applied to coarse-grained
runtimes, or even Godot-like render graphs. We con-
sider only the simplest case of each resulting render
pass being constrained to have a single subpass, leaving
multi-passes for future work. We formulate a rigor-
ous statement of the minimal lambda graph partition
problem that we consider to be general enough to be
applicable to any frame graph system, the solution to
which is then used to produce a node execution order
that is optimal in its amount of render pass breaks. This
problem is then analyzed and shown to be NP-complete
even under some sensible regularity conditions. Finally,
we present a greedy approach for solving this problem
that results in graph execution orders that have about
30% less render passes than a baseline approach that
closely matches that of the Granite engine.

3 EARLY STREAK SEGMENTATION
Mathematical model
For the purposes of this paper, the following mathemati-
cal model of a frame graph will be used.

Definition 1. A Λ-graph is a tuple (V,P,C,L), where
(V,P) is a directed acyclic graph, (V,C) is an undirected
graph, and L : V → N.

The set V represents nodes present in a frame graph;
the set of directed edges P represents precedence order
between nodes, constraining possible execution orders;
the set of undirected edges C models pairs of nodes that
are in conflict with each other and require a barrier to be
executed between them; and finally the label function L
represents unique frame buffers used by each node, or
more generally, any mutually exclusive global state that
is expensive to change on the target platform. A possible
frame graph of an application represented through this
definition can be seen on figure 1.

Informally, the problem we are trying to solve is as
follows. Find a topological sort of (V,P) and a partition
of it into as few contiguous sequences as possible, such
that within each sequence there are no conflicting nodes
and all labels are the same.

When faced with this problem, the first approach that
comes to mind is choosing the next node to be executed
to have the same frame buffer as the previous one, which
is close to Granite’s approach. It must however be noted
that depending on the algorithm chosen for topologically
sorting, the optimal solution may not be achievable at
all. Both a depth-first and breadth-first traversal based
topological sorting algorithms are restricted in the set
of possible orders of traversals, and the optimal order
may lie outside this restricted set. This motivates us to
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Figure 2: Simplest example where baseline Granite-like
approach fails. Colors represent different frame buffers
(including lack thereof), dashed outline represents the
set of nodes among the which the algorithm must make
a choice, node A already being scheduled as the first one.
If C is selected as the next node to be executed, the next
one has to be B, and so the resulting order is A,C,B,D
and the algorithm has failed to merge C and D into a
single pass.

always prefer Kahns algorithm [Kah62], which enables
achieving any valid topological sort order from a graph
by varying the strategy of selecting the next node to be
processed. And so the first naive algorithm in its fullness
would be using Khans topological sorting algorithm and
prioritizing nodes with the same frame buffer as the last
processed node when choosing the next node to process.
This, however, does not yield satisfactory results on
relatively straightforward examples, e.g. figure 2, which
motivates the following formalization of the problem.

Definition 2. A condensation of a directed graph with
respect to a partition of the node set V = V1 ⊔ ...⊔Vs
is a directed graph (W,Q), where W = (1, ..., s) and Q ={
(i, j) | ∃v ∈ Vi,∃w ∈ V j, (v,w) ∈ P∧ i , j

}
.

Definition 3. Call a partition of the node set correct for
a Λ-graph if it satisfies the following:
1) ∀i,∀v,w ∈ Vi,λ(v) = λ(w);
2) ∀i,∀v,w ∈ Vi, {v,w} <C;
3) and the condensation w.r.t. to it is acyclic.
The subsets Vi constituting the partition will be referred
to as buckets.

Definition 4. The problem of finding a correct parti-
tion of minimal size s is called minimal lambda graph
partition and denoted as MLGP.

The statement of MLGP can informally be understood
as partitioning a frame graph into render passes before
it is sorted, and correctness conditions correspond to the
fact that it should be possible to produce a node execu-
tion order with render passes corresponding precisely to
partition buckets.

In presence of a minimal partition for the lambda graph,
a corresponding execution order can be achieved as
shown in algorithm 1. This algorithm is de-facto equiva-
lent to sorting the condensation graph first and then sort-
ing nodes within each partition set according to edges
from P afterwards.

Next, note that when an optimal solution to the initially
stated informal problem of sorting the graph while min-
imizing the amount of render pass breaks is available,
a correct partition that will yield the same amount of
passes when sorted with algorithm 1 can clearly be con-
structed. Hence constructing a minimal partition and
then sorting the graph while using it will indeed solve
the initial informal problem.
This mathematical statement is not exclusive to render-
pass related problems, as each set of the partition simply
represents a contiguous streak of nodes that can be exe-
cuted with no barriers or global state changes (e.g. frame
buffer changes) as represented by L. Following this line
of thought, we call this approach early streak segmen-
tation, as opposed to segmenting the graph into streaks
mid-flight while sorting it.

Analysis of MLGP
First of all, MLGP ∈ NP, as checking the correctness of
a partition can be done in polynomial time. Moreover,
clearly,
Claim 1. MLGP is NP-complete.

Proof. Observe that a correct partition of a lambda
graph (V,∅,C, id) is equivalent to finding the chromatic
number of (V,C). □

Algorithm 1 Modification of Khan’s algorithm that
builds an execution order based on a correct partition of
a Λ-graph.

for v ∈ V do
Dv← out-degree of v in (V,P)

end for
for i← 1 to s do

Ei← num. edges (v,w) ∈ P s.t. v < Vi and w ∈ Vi
end for
F← nodes with out-degree 0
R← empty list
Denote V−1

v = i when v ∈ Vi
repeat

v← any element w of F s.t. EV−1
v
= 0

if R not empty then
p← last element of R
v← any element of F ∩V−1

p
end if
Append v to R
for w→ v do

Decrement Dw
Decrement EV−1

v
if Dw = 0 then

Add w to F
end if

end for
until no elements remain in F
return R
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Figure 3: The construction described in claim 2. The
initial graph is V′ = {0,1,2,3}, E′ = {{0,2}, {1,2}, {2,3}}.
Nodes in V′ are depicted through dashed rectangles,
and the corresponding Λ graph nodes are located inside
the rectangles, where colors represent different labels.
The maximal anti-clique is {0,1,3}, and merging the
corresponding nodes pairwise minimizes the partition.

Calculating chromatic numbers for arbitrary graph is
known to be a notoriously hard problem, and so some
regularity conditions must be enforced on Λ-graphs that
we are to consider. Inspired by other fields of study, as
well as our observation of graphs of various applications,
we formulate a requirement analogous to lack of data
races inside a multi-threaded program.

Regularity condition 1. ∀{v,w} ∈ C,v⇝ w ∨ w⇝ v,
where⇝ denotes reachability. In other words, any con-
flict is ordered by precedence edges.

We have observed this restriction to be sensible for actual
applications, and so have enforced it in the design of
the user API for our frame graph runtime. One case
where enforcing it has proven to be a problematic is
careless superfluous usage of decompressed read-only
depth attachments in legacy code, but such problems can
and should be resolved on the application programmer
side and not inside a frame graph runtime, as they lead
to performance issues in any case due to decompressing
and recompressing the depth buffer.

This condition is not enough to make the problem
tractable, although the proof is less trivial.

Claim 2. Even under the regularity condition 1, MLGP
is NP-complete.

Proof. We shall present a polynomial time reduction of
the maximal anti-clique problem to MLGP. Consider
an arbitrary graph (V ′,E′). The construction is then as
follows:
1) V =

⋃
i∈V′ {v0

i ,v
1
i };

2) E =
⋃

(i, j)∈E′ {(v0
i ,v

1
j ), (v

0
j ,v

1
i )};

3) C = ∅;
4) L(v0

i ) = L(v1
i ) = i.

A visual representation of this construction in a simple
case is shown in figure 3.

Observe that any partition that satisfies the first 2 cor-
rectness conditions essentially selects a subset of V′ by

either merging the two nodes corresponding to some
initial vertex or leaving them in separate partition buck-
ets. Moreover, the set of vertices in V ′ whose pairs of
nodes were merged form an anti-clique as long as the
third correctness condition is satisfied, as otherwise a cy-
cle would form in the condensation precisely along the
edges generated for an initial edge in E′ that prevented
the set from being an anti-clique. On the other hand, for
any anti-clique in (V′,E′), the corresponding partition is
correct by construction. Finally, note that the size of an
anti-clique S and the size of the partition s are related as
|S | = |V | − s. Hence, finding a minimal correct partition
would indeed yield an anti-clique of maximal size in the
initial graph. □

This fact, however, should not discourage one from try-
ing to solve MLGP in practice, as the construction pre-
sented above, per our informal observations, is a charac-
teristic representation of cases where a greedy approach
presented below fails to construct a minimal partition.
On the other hand, the construction is contrived, as such
configurations rarely occur in practice and make little
sense from the standpoint of computational graphs.

Greedy Algorithm

We propose a greedy algorithm that is based on the idea
of stacks, but to justify it we require some additional
facts about optimal solutions. Below, the notation⇝
is used to represent reachability along edges P or along
edges of the condensation graph, and V l

i is used to de-
note buckets whose nodes all have L(v) = l. Note also
that the contents of this subsection all assume regularity
condition 1 to hold.

λ = 0

λ = 1

λ = 2

V0
0 V0

1

V1
0 V1

1 V1
2

V2
0 V2

1

u

w

Figure 4: A visualization of the proposed approach. Cir-
cled nodes and thick arrows represent the condensation
graph, u and w are nodes which are yet to be added
into one of the sets, possibly a new one. Thin arrows
represent precedence, red ones among them correspond
to conflicts. Nodes and sets are laid out according to
their labels as 3 stacks. Admissible sets for u and w are
depicted using a green dashed outline. If the «deepest is
best» greedy bucket selection strategy is used, w must
be placed before u to avoid creating a new bucket.
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Claim 3. In a minimal correct partition of a Λ graph, for
any two buckets V l

i and V l
j with nodes in both having

the same labels, either V l
i ⇝ V l

j or V l
j⇝ V l

i .

Proof. If two such buckets are not ordered, we are able
to merge them together into a single bucket, which
would contradict minimality. The resulting partition will
still satisfy the first two correctness conditions, as the la-
bels match, and any conflict between their nodes would
have resulted in a path between them due to regularity
condition 1. Finally, a cycle occurring in the condensa-
tion after the merge would imply a path between the two
buckets, which is a contradiction. □

For this reason, we only try to construct partitions that
have this property of buckets corresponding to a certain
label being linearly ordered. This fact will also hence-
forth be abuse to assume that the notation V l

i indexes
buckets in this exact linear order, and so i< j⇔V l

i fV l
j.

For each label l, the sequence of V l
i is what we refer to

as a stack. The proposed algorithm will then try to itera-
tively take nodes in a topological order of v<w⇔ vfw
and attempt to place each node into one of the buckets
in the stack without violating correctness conditions of
the partially built condensation graph. Figure 4 should
be referred to for visual intuition of these definitions and
claims, as well as the algorithm itself.

Definition 5. When adding a new node v with L(v) = l,
having only outgoing precedence edges and possibly
some conflict edges, into an existing Λ-graph and its
partition, we call a bucket V l

i admissible if:
1) no nodes in V l

i conflict with v;
2) for each previously existing node w ∈ V l

j such that
w← v, it holds that j ⩽ i;

3) for each previously existing node w ∈ V l′
j such that

l , l′ and w← v, it holds that V l
i ̸f V l′

j .

Claim 4. Admissibility is monotonic along the stacks.
In other words, if V l

i is not admissible for v, then ∀ j < i,
V l

j is not admissible too.

Proof. Observe that thanks to regularity condition 1, a
conflict implies that there is an edge from v to some node
in V l

i . Inadmissibility due to violating the first condition
then makes V l

j inadmissible per the second condition. If
V l

i failed the second condition, clearly, V l
j will too due

to claim 3, and same reasoning holds for violating the
third condition. □

This fact greatly aids in efficient implementation of algo-
rithms, as a lot of bucket candidates can be immediately
eliminated.

Finally, observe that if a minimal partition of the graph is
already known, it is possible to reconstruct it by growing

bucket stacks, iterating nodes in topological order and
placing them only into admissible buckets, as a node
being placed in an inadmissible bucket will definitely
result in an incorrect partition. The only questions that
remain is what exact order should nodes be considered
in and what admissible bucket should be chosen. As
we have shown the problem to be NP-complete, only
heuristic approaches make sense, and the heuristics we
have chosen is to use an arbitrary order and always
prefer the «deepest» admissible bucket, i.e. the one
with the smallest index. This is motivated by the fact
that a sequence of buckets can accommodate an entire
sequence of nodes which are not ordered with anything
else but each require a barrier between them, which is
a case that does indeed occur in practice for nodes that
do compute dispatches. However, in our synthetic tests
other «static» strategies like choosing the topmost or
the midway admissible bucket did not have a significant
influence on the results. Finally, the pseudo-code for the
algorithm is shown in figure 2.

Algorithm 2 Proposed greedy solution to MLGP.
1: for l in the image of L do
2: S l← empty list
3: end for
4: F← nodes with in-degree 0
5: Chose any topsort order s.t. v < w⇔ vf w
6: for v ∈ V in chosen order do
7: M← ∅
8: for w← v do
9: W ← bucket previously chosen for w
10: Add all buckets reachable from W to M ex-

cluding W itself
11: end for
12: Vg← deepest bucket in S L(v) \M
13: if ∃w ∈ Vg s.t. (v,w) ∈C then
14: Vg← next bucket in S L(v)
15: end if
16: Put v into Vg
17: if Vg ill-defined then
18: Create new bucket and append it to S L(v)
19: end if
20: end for
21: return All buckets in S

4 EXPERIMENTAL RESULTS
The proposed algorithm was implemented in python
with O(|V |3) time complexity and O(|V |2) space com-
plexity. Random graphs were then used for comparing
the proposed approach with a baseline and random sort-
ing. The graph of one of released games that we have
access to was observed to have a 0.025 probability of
having an edge between two nodes, a 0.013 probability
of having a conflict between nodes, and 0.2 proportion
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Figure 5: Comparison of proposed streak segmentation approach to baseline and random choice, less is better.
For each graph size a sample set of 100 random graphs was generated and test results were averaged, confidence
intervals shown as painted regions around plots.

of nodes having a unique frame buffer. The node count
of this graph exceeds 100, which is characteristic of fine-
grained systems. A sequence of sets of random graphs
was then generated, distributed according to these pa-
rameters and three node sorting approaches were tested,
see figure 5. As one might expect, randomized sort-
ing results in render pass count being proportional to
node count. For the baseline approach, Granite-like ea-
ger prioritization of continuing the current pass while
sorting nodes using Khan’s algorithm was chosen. The
plots demonstrate that the suggested approach gives a
significant improvement over the baseline of 30% on
average. It is also surprising that the proposed algorithm
results in lower standard deviation, which implies more
predictable performance with respect to changes in the
graph when used in practice.

Currently, two live-service games with principally dif-
ferent fine-grained frame graphs are available to us, one
targeted at desktop computers, one at mobile devices.
Both games currently use manual barrier placement to
achieve best possible performance, and furthermore, the
latter uses manual Vulkan render pass placement. To
move away from this manual approach, a robust ren-
der pass merging algorithm was required, and when we
attempted to do so using Granite’s approach, we have
observed the result to be less optimal than the manual
approach, which made it impossible for us to gather
practical performance data from mobile devices before

a robust pass merging algorithm was devised and tested
in isolation.

However, we were able to preliminarily integrate the
algorithm into the desktop title and observe that it likely
constructs the optimal render pass segmentation for the
current frame graph of the game. The graph consists
of 171 nodes and uses 36 unique frame buffers on ul-
tra graphics presets. By randomizing the node sorting
order and recompiling the graph 10000 times, we ob-
served the streak (render pass) count to vary from 54
to 58 with mean µ = 56.22 and variance σ2 = 0.6 when
no render pass merging approach is used. As nodes
are declared in an unspecified order due to being dis-
tributed between various modules, plugins and subsys-
tems of an application, any of these results might occur
in practice, which leads to undesirable non-deterministic
performance. When the baseline approach is used, the
graph is sorted to have 54 streaks independent of further
order randomization, which alleviates non-deterministic
performance concerns. But with the proposed approach,
the streak count decreases to exactly 52 independent
of randomization, which is explained by situations as
shown on figure 2 being present in the graph. The fact
that randomization could not lower the streak count to
52 throughout the 10000 iterations can be explained by
the fact that the amount of correct topological orders for
a graph behaves asymptotically as O(n!) in general, mak-
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ing the probability of the optimal order being selected at
random increasingly small.

It must be noted that this frame graph has a reasonable
amount of legacy code which is yet to be integrated with
the frame graph runtime, and so results are expected to
improve in the future as more knowledge about the ren-
derer’s structure and more node reordering opportunities
are made available to the runtime.

The preliminary C++ implementation of the algorithm
stores reachability info of the condensation graph in a bit
matrix and heavily uses SIMD instructions to alleviate
the high asymptotic complexity of the algorithm, which
results in partitioning being executed in under 200 µs on
desktop PCs.

5 CONCLUSION
A seemingly simple problem of merging render passes
appears to have much more depth to it than we initially
anticipated. Implementing a two-pass approach of first
partitioning the graph and only then sorting it enables
saving almost a third of render pass breaks on synthetic
tests, and hence tile cache flushes in practice. Moreover,
although we initially started with render pass merging,
we quickly found out that the rigorous problem state-
ment through Λ-graphs naturally allows for grouping of
barriers too, and is applicable not only to nodes that are
parts of render passes, but to compute nodes too, as a
contiguous streak of nodes without is a general enough
to handle both.

Future Work
It is reasonable to think that the current version of the
algorithm can be improved further. Time complexity
can likely be improved without loss of quality, as well
as the C++ implementation speed. Furthermore, it is
reasonable to think that there are render pass breaks to
be saved by using more advanced heuristics for choice
of next node to be bucketed and choice of the bucket.

More work in the direction of handling multi-passes is
to come, i.e. render passes that consist of multiple sub-
passes. Technically, any two nodes that do rendering and
do not require a barrier on any paths between them in
P can be merged together into a single render pass with
two subpasses, even if their frame buffers completely
different, but it is not clear how such an approach would
affect performance, so we suspect that heuristics rep-
resented mathematically as a label «closeness» metric
will be required. Subpass attachment reads is another
optimization that is crucial for mobile performance but
is yet to be incorporated into our approach.

Finally, we are interested in applying profile guided op-
timization to render pass merging, as well as to render
graph runtimes in general. Different execution orders
may be optimal for different platforms, and so mea-
suring GPU timings of node execution and then using

them as guides for a hybrid merging algorithm may lead
to complete elimination of manual command list level
cache optimizations from daily lives of rendering engi-
neers, enabling development of applications at a higher
abstraction level and increasing productivity.
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ABSTRACT
Strokes concerned more than 795,000 individuals annually in the United States as of 20211. Detecting thrombus
(blood clot) is crucial for aiding surgeons in diagnosis, a process heavily reliant on 3D models reconstructed
from medical imaging. While these models are very dense with information (many vertices, edges, faces in the
mesh, and noise), extracting the critical data is essential to produce an accurate analysis to support the work of
practitioners. Our research, conducted in collaboration with a consortium of surgeons, leverages generalized maps
(g-maps) to compute quality criteria on the cerebral vascular tree. According to medical professionals, artifacts
due to noise and thin topological changes are significant parameters among these criteria. These parameters can
be determined via the Reeb graph, a topological descriptor commonly used in topological data analysis (TDA).
In this article, we introduce a novel classification of saddle points, and a Reeb graph variant called the Local to
Global Reeb graph (LGRG). We present parallel computation methods for critical points and LGRG, relying only
on local information thanks to the homogeneity of the g-map formalism. We show that LGRG preserves the most
subtle topological changes while simplifying the input into a graph formalism that respects the global structure of
the mesh, allowing its use in future analyses.

Keywords
Topological data analysis ; Generalized maps ; Parallel computing ; Topology-based geometric modeling ; Reeb
graph variant ; Critical points ; Cerebral vascular tree

1 INTRODUCTION
Topological data analysis (TDA) comes from mathe-
matics, applying techniques from algebraic topology to
analyze the shape and structure of data. It focuses on
understanding the underlying geometric properties of
data sets, such as their connectivity, holes, and loops,
regardless of the specific metric used to represent the
data. TDA can reveal essential features and patterns
that may not be obvious through traditional statistical or
geometric methods, proving particularly useful for an-
alyzing complex, high-dimensional, or noisy data sets.

TDA leverages topological descriptors, retrieving spe-
cific information from the data. Most of these descrip-
tors rely on the critical points of a function of inter-
est over the data, i.e., the points where the function’s
derivative is null or undefined. Therefore, computing
and classifying the critical points of a function is a cru-
cial subroutine for many TDA tasks. For instance, a
Reeb graph consists of nodes corresponding to the crit-

1 cf. CDC facts: https://www.cdc.gov/stroke/
facts.htm

ical points and arcs describing the topological modifi-
cations between these points.

TDA being agnostic to the application domain, it has
been successfully applied across various areas, rang-
ing from medicine [16, 19, 26] to musicology [2] or
chemistry [20]. Recently, TDA has been used to ana-
lyze 3D medical imaging for assisting practitioners [29,
27], e.g., for discovery in preclinical spinal cord in-
jury and traumatic brain injury [19]. In particular, the
Reeb graph has been used for 3D micro-vascular mod-
eling [39] with non-invasive imaging modality to ana-
lyze important retina-associated diseases.

As an answer to the increasing data size, recent ap-
proaches propose parallel and massively parallel imple-
mentations of algorithms to build topological descrip-
tors [28, 30]. Moreover, the complexity of data also
presents challenges related to dimension and noise.

Objectives. We aim for a massively parallel implemen-
tation of a Reeb graph construction algorithm that pre-
serves the fine-grained topological information of the
data.
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(a) (b)
Figure 1: Local to Global Reeb Graph of a tiger (a), and a cerebral vascular tree (b).

Contributions. We propose to compute a Reeb graph
variant called the Local to Global Reeb Graph (LGRG)
via a local information diffusion algorithm (examples
are given in Figure 1). Our LGRG construction algo-
rithm results in three main contributions.

• We present a refined classification of critical points.
• We offer an extended Reeb graph, which can be

computed using only local information provided by
a topological description of the structure, without re-
quiring a simplicial complex but only a mesh.

• We propose a massively parallel implementation of
an algorithm computing LGRG relying on the gen-
eralized maps data structure [10].

A key idea of our approach is to exploit topological
proximity rather than geometric one when building the
graph’s edge. We obtain a Reeb graph variant that also
considers degenerate critical points (more precisely, de-
generate saddle points), offering a robust and compre-
hensive solution for handling complex structures. To
run in parallel, our algorithm for computing LGRG re-
quires non-concurrent access to local topological infor-
mation, namely, the edges and face corners around a
vertex, which are natively available within generalized
maps.

Paper organization. The paper is organized as follows.
Section 2 reviews the various approaches to build (vari-
ants of) Reeb graphs and the existing parallelized al-
gorithms. Section 3 recalls the generalized map data
structure and the islet algorithm used for paralleliza-
tion. Section 4 presents our refined classification of the
critical points, while Section 5 describes our Local to
Global Reeb graph. Section 6 is dedicated to our exper-
imental results and comparison with other tools, with
emphasis on cerebral vascular trees. Finally, Section 7
gives concluding remarks and discusses possible exten-
sions of our work.

2 RELATED WORK
Given a Morse function [18] f : M → R on a mani-
fold M with distinct critical points, the Reeb graph [25]

is made of nodes associated with the critical points of
the function and arcs where the level sets ( f−1(c), for
some c in R) retain the same connectivity. Using dis-
crete Morse function in [5], Reeb graphs can be studied
for discrete structures [23, 8, 33, 12, 24, 35].

Most approaches that compute Reeb graphs assume that
data are represented as a simplicial complex [12, 33]
since it simplifies the algorithmic formulation of sev-
eral standard computations in algebraic topology, such
as homology groups. To this end, standard approaches
usually triangulate manifolds before computations. For
instance, a polyhedron would be decomposed into tetra-
hedra as a preprocessing step. We propose to work di-
rectly on a manifold mesh representation without this
preprocessing step.

Discrete Reeb graphs proved fruitful across several
areas of scientific visualization [13], such as shape
understanding [4], segmentation [38, 15], feature
detection [32], or data surface simplification [8].
Within medical applications, Makram et al. [17] used
Reeb graphs to automatically locate cephalometric
landmarks, Sun et al. [31] applied Reeb graphs to cap-
ture the clustering structure of brain white matter nerve
fibers. Here, we leverage the topological information
provided by Reeb graphs to analyze surface meshes
of cerebral vascular trees generated by MRI image
reconstruction.

Various generalizations of Reeb graphs have been pro-
posed. The Extended Reeb Graph (ERG) was intro-
duced in [7] as a conceptual model for surface represen-
tation. The ERG generalizes Reeb graphs by also con-
sidering degenerate critical points, a recurrent problem
in discrete surface models while respecting the seman-
tic representation of the Reeb graph. The Augmented
Reeb Graph (ARG) adds additional information to the
basic structure, such as shape, size, color, or texture. It
improves the Reeb graph’s accuracy and relevance in
understanding complex data [34, 14]. Our Reeb graph
variant is similar to the ERG but only accepts degen-
erated saddle points. Compared to the ARG, we do not
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(a) (b) (c) (d)
Figure 2: Recursive decomposition of an object to obtain its g-map representation: (a) geometric object, (b) face
split (α2), (c) edge split (α1), (d) vertex split (α0) and final graph.

store information on the Reeb graph but consider it built
embedded into the mesh. Thus, information can be di-
rectly retrieved from the object.

Advances in medical imaging enabled the acquisition
of higher quality, multimodal MRI images, resulting
in larger, more complex yet more detailed and fine-
grained images. A direct consequence is an increase in
computation times needed to build Reeb graphs which
resulted from parallel implementations for algorithms
computing Reeb graphs. Hajij and Rosen [15] proposed
one of the first parallel algorithms for Reeb graphs
based on Doraiswamy and Natarajan’s algorithm [11].
Their method partitions the manifold into submani-
folds, computes Reeb graphs on the submanifolds, and
glues the different Reeb graphs to obtain the complete
graph. In particular, the partition stage assumes that the
entire object is split into connected parts with approx-
imately as many vertices in each part, without further
consideration of the partitioning. Gueunet et al. [14]
proposed a parallel algorithm for computing an ERG
based on the optimal algorithm of Parsa [21], i.e., scan-
ning the mesh along a given direction while maintain-
ing the subcomponents of the level sets, incrementally
building the Reeb graph. Guenet et al.’s algorithm
scans the mesh in two directions but requires a post-
processing step. These (variants of) Reeb graph con-
structions highly filter the input mesh, resulting in a
graph where details are lost. This lost information can
be essential for determining the object’s structure with a
more accurate representation. Our approach exploits lo-
cal information of the vertices to categorize the critical
points and then construct a graph describing the data’s
topology. Both parts run in parallel without filtering the
input.

3 GENERALIZED MAP

This section presents the formalism of generalized
maps (g-maps). In brief, a g-map is a compact view of
the simplicial set formalism [1].

3.1 Topological model
Generalized maps [10] correspond to a generalization
of edge-based models [37] in any dimension and belong
to the class of combinatorial models used in topology-
based geometric modeling. In this approach, the topol-
ogy of an object is described as a cellular subdivision.
Intuitively, an object’s representation can be recovered
by recursively splitting its topological cells by decreas-
ing dimension. For instance, Figure 2 shows the de-
composition of a low-poly torus in 2D. From the initial
object (Fig. 2a), we separate the adjacent faces, which
are linked by blue arcs depicting the α2-links, i.e., adja-
cency relations along dimension 2 (Fig. 2b). This pro-
cess is iterated by splitting edges within faces via α1-
links for dimension 1 (Fig. 2c) and finally the vertices
via α0-links for dimension 0 (Fig. 2d). This last subdi-
vision yields the darts of the g-map which we view as
nodes of a graph whose arcs are the links obtained in
the decomposition.
Formally, g-maps can be defined as undirected graphs
labeled on arcs by dimensions and subject to additional
constraints [22]. In this article, we consider g-maps of
dimension 2, or 2-g-maps that we will simply call g-
maps. We summarize here the properties that suffice to
appreciate the content of our contributions. (1) Any dart
admits a unique incident αi-link for each i ∈ {0,1,2}.
(2) When two darts share an αi-link (for i ∈ {0,1,2}),
they belong to the same k-cells for k ̸= i, but to dis-
tinct i-cells. (3) G-maps represent orientable and non-
orientable quasi-manifolds.
G-maps provide a combinatorial description of the ob-
ject’s decomposition into topological cells. These cells
correspond to subgraphs induced by dimensions, called
orbits. An orbit consists of all the darts reachable from
an initial dart through a subset of all possible dimen-
sions. For instance, the orbit on the dimensions 1 and
2, called a ⟨α1,α2⟩-orbit, retrieves darts by following
links between cells of dimensions 1 and 2, thus always
within the same cell of dimension 0. In other words,
an ⟨α1,α2⟩-orbit encodes a vertex. Adding geometric
positions to vertices then means that all darts within an
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⟨α1,α2⟩-orbit share the same position value. Such in-
formation is called embedding [3], which provides ge-
ometric information to the topological cells. This infor-
mation is stored on the vertices of the graph, extending
the topological representation of g-maps. In this article,
we will manipulate 3D positions attached to the vertices
and orientation boolean attached to the empty orbit, i.e.,
directly to the darts.

Working with an orientation boolean attached to each
dart means that the represented object is necessarily
orientable. In this case, whenever a dart has the value
true, its αi-neighbors (for i ∈ {0,1,2}) have false,
and vice-versa. This property can be seen in Figure 3a,
where the true darts are drawn in pink and the false
darts in black. This property can be used to prevent con-
current writing in parallel algorithms. Indeed, if only
true darts write information, no dart can write at the
same time as any of its neighbors. Additionally, we
use the orientation boolean to orient vertices (see Sec-
tion 4.1).

3.2 Refresher on the islet algorithm
The islet algorithm [9] looks like the leader election al-
gorithm of distributed systems over networks by choos-
ing a dart within an ⟨o⟩-orbit. It spreads information
on all αi-links given by ⟨o⟩, iterating once over each
dimension before starting another step. It was used to
partition orbits to speed up the computation time of spe-
cific topological transformations, namely the augment
and update operations. As shown in [9], the algorithm
can efficiently be parallelized.

In Figure 3, we illustrate the islet algorithm to find
a representative dart within each vertex. We choose
the representative dart as the one with the minimal ID
(which is an integer). Since vertices correspond to
⟨α1,α2⟩-orbits, the values are alternately propagated on
α1-links and α2-links. The object used is a subdivided
square, whose g-map representation is given in Fig-
ure 3a, along with the darts’ ID. Figure 3b shows the
propagation along the α1-links and Figure 3c along the
α2-links. For example, the ID 4 in Figure 3a has been
propagated to three new darts in Figure 3c, now cov-
ering the two adjacent faces. Some darts received new
values at each propagation step, meaning that the pro-
cess should still be iterated. The algorithm stops when
no dart changes its value, which necessarily happens as
each orbit contains only finitely many darts. The re-
sult of the algorithm is given in Figure 3d, where darts
in each ⟨α1,α2⟩-orbit share the minimum ID of a dart
within the vertex.

4 CLASSIFICATION OF THE CRITI-
CAL POINTS

This section presents our refined categorization of criti-
cal points, how to compute them, and how to exploit the
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Figure 3: Steps of the islet algorithm 3.2 on the orbit
⟨α1,α2⟩. (a) The initial g-map with values associated
with the darts. (b) diffusion of minimal value inside the
islet produced by α1-links. (c) diffusion inside the islet
from α2-links. (d) Final state where the minimal value
has been diffused for the whole orbit.

topological structure to obtain a parallel computation.
Note that our computation method is axis-dependent
(like all standard methods).

4.1 Local elevations
Assuming an oriented data structure to encode a mesh,
we propose to classify the critical points of the mesh
based on elevation configurations of the topological
neighborhood of vertices. To compute the vertices ele-
vation configurations, we first compute edge elevations,
which yield face corner elevations along consecutive
edges within faces, from which we deduce the vertex
elevation configuration by aggregating the elevations of
all its incident face corners. We now detail each step of
the computation, assumed to be computed along a given
axis u for a given vertex v.

e1 e2

e3
e4

F1

F3

F4 F2

Face corner

v

Orientation

u

Figure 4: Computing the elevations.
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Edge elevation Each edge e incident to v computes an
edge elevation relative to v by comparing the position of
v and that of its other endpoint v′, depending on u. For-
mally, the edge elevation is the sign of the dot product
vv′ · u. Intuitively, a positive edge elevation describes
an edge in the same direction as the selected axis, i.e.,
v′ is ‘above’ v along u. In Figure 4, the edge e1 has a
positive edge relative to v. Note that the edge elevation
might be null. Besides, the edge elevation is relative to
the vertex v, and the edge elevation of e relative to v′ is
the opposite of the one relative to v.

Face corner elevation A face corner is a region de-
limited by two consecutive edges incident to the same
vertex in a given face. Note that the orientation of the
object naturally orients the face corners. In Figure 4,
the face F1 together with the edges e1 and e2 define one
of the four face corners of the vertex v. The face cor-
ner elevation is the oriented pair of edge elevations for
the two edges defining the face corner. If both edges
have a positive or null edge elevation, the face corner
has a HIGH elevation. Similarly, if both edges have
a negative or null edge elevation, the face corner has
a LOW elevation. Note that, if both edges have a null
edge elevation, the face corner is FLAT. For instance,
(F3,e3,e4) has a LOW face corner elevation in Figure 4,
while (F1,e1,e2) has a HIGH one. The two remaining
cases correspond to non-null edge elevations with op-
posite signs. The face corner elevation then depends on
the orientation. If the first edge has a negative elevation
and the second a positive one, the face corner eleva-
tion is UP. Reversely, a positive elevation followed by
a negative one yields a DOWN face corner elevation. In
Figure 4, (F4,e4,e1) has a UP face corner elevation and
(F2,e2,e3) a DOWN one.

Vertex elevation sequence Finally, we derive a vertex
elevation sequence for v as an ordered sequence of
face corner elevations around a vertex. The sequence
is obtained from the natural ordering induced by
the object’s orientation. This sequence is defined
as up to one circular permutation. For instance,
one vertex elevation sequence for v in Figure 4 is
given by the sequence of face corner elevations of
(F1,e1,e2), (F2,e2,e3), (F3,e3,e4), (F4,e4,e1), i.e.,
HIGH, DOWN, LOW, UP. The vertex elevation sequence
is then used to classify the vertex and find the critical
points. Note that, if one of the face corner elevations
is FLAT, it is not considered when calculating the
elevation sequence.

4.2 Classification
We propose to retrieve and classify a mesh’s critical
points based on the elevation sequence of its vertices.
We distinguish four types of critical points. In contrast
with the usual maxima, minima, and saddle points, we
further differentiate between saddles of birth and death.

A (local) minimum is a vertex with only HIGHs in its el-
evation sequence, e.g., Figure 5a. A (local) maximum is
a vertex with only LOWs in its elevation sequence, e.g.,
Figure 5b. A saddle is a vertex with at least two, by def-
inition non-consecutive, UPs or DOWNs. The difference
between saddles of birth and saddles of death comes
from the direction of the vertex normal. The saddle is a
saddle of birth if its normal aligns with u (positive dot
product) and a saddle of death otherwise. Concretely, a
saddle of birth separates the inside of an object below
and the outside above along the axis u. Examples of
saddles of birth and death are respectively given in Fig-
ure 5c and in Figure 5d. Any other elevation sequence
corresponds to a regular, i.e., non-critical, point.

(a) (b)

(c) (d)
Figure 5: Classification of critical points (a) Local min-
imum. (b) Local maximum. (c) Saddle of birth. (d)
Saddle of death.

Our classification represents two minor contributions.
First, the classification only relies on topologically local
information around a vertex and can be computed with-
out first triangulating the manifold. Second, we further
distinguish between the saddle points using only local
information. A watchful reader will notice that stan-
dard approaches to Reeb graph computation build the
classification of critical points essentially from all edge
elevations around a vertex. We introduced the inter-
mediate step of face corner elevations as an additional
speed-up when extracting critical points in parallel. We
now detail this parallel computation.

4.3 Parallelization
The three steps from Section 4.1 for the detection and
classification of critical points only require local infor-
mation around the vertices and can therefore easily be
parallelized.

Edge elevation Within the g-map data structure, an
edge e and a reference vertex v are both encoded within
a single dart, while the α0-link allows accessing the
other endpoint of the edge (in constant time). While two
α2-linked darts encode a given edge e and a given vertex
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v (they correspond to the two faces sharing the edge),
only one dart has true as the orientation boolean.
Since its α0-neighbor also has false for orientation
boolean, the edge elevation can be computed by com-
paring the position of each true-oriented dart with its
α0-neighbor. The subroutine can be realized simulta-
neously on all true-oriented darts without concurrent
read or write, i.e., in parallel.

Face corner elevation A face corner corresponds to
a ⟨α1⟩-orbit in a g-map and thus to two darts with dif-
ferent orientation boolean values. Thus, the face corner
elevation is obtained by running a parallel for loop on
all darts oriented true and comparing the dart’s edge
elevation with that of its α1-neighbor. The four cases,
HIGH, LOW, UP, and DOWN are respectively illustrated
in Figures 6a, 6b, 6c, and 6d.

C

HIGH
B

A
+

-

(a)

CLOWB

A
+

-

(b)

CUP

B

A
+

-

(c)

CDOWN

B

A
+

-

(d)
Figure 6: The different face corner elevations. (a)
HIGH: Both edges have a positive elevation (B and C
are “higher” than A). (b) LOW: Both edges have a neg-
ative elevation (B and C are “lower” than A). (c) UP:
The dart from the orbit of A with a true orientation
belongs to an edge with a negative elevation, and the
other edge has a positive elevation. B is lower than A,
which is lower than C. (d) DOWN: The dart from the
orbit of A with a true orientation value belongs to an
edge with a positive elevation, and the other edge has a
negative elevation. (B is higher than A, which is higher
than C).

Vertex elevation sequence Retrieving the vertex el-
evation sequence requires to elect one representative
dart per vertex, i.e., per ⟨α1,α2⟩-orbit. Choosing such
a dart can be performed in parallel via the islet algo-
rithm. By starting with the representative dart of a
vertex, its elevation sequence is obtained by cycling
through the α2 ◦α1-links around it and retrieving the
associated face corner elevation. This task can again
be performed in parallel within each vertex. In Fig-
ure 7, starting from any pink dart, we cycle through the

other three pink darts via α2 ◦α1-links to obtain either
UP, DOWN, UP, DOWN or DOWN, UP, DOWN, UP. Fi-
nally, each aggregated sequence is analyzed to classify
the vertex.

DOWN

UP

DOWN

UP

Figure 7: Elevation sequence around a vertex.

5 LOCAL TO GLOBAL REEB GRAPH
(LGRG)

Once the critical points have been identified, we use a
propagation algorithm that spreads information, simi-
lar to a gossip algorithm for distributed systems. The
motivation is to obtain a partition of the mesh into
sub-components created and ended by critical points.
We then build our LGRG by connecting critical points
(which are the nodes of the graph) with arcs encoding
how the sub-components link these critical points. Note
that a sub-component may correspond to several arcs in
our Reeb graph variant.

Before detailing the propagation algorithm and the con-
struction of the LGRG, we provide some insights via
the example of Figure 8. The shown torus contains four
critical points: a maximum in red, a minimum in blue,
a saddle of birth in light pink, and a saddle of death in
green (the elevations being computed along the vertical
axis). These critical points split the torus vertices into
four sub-components: green, red, purple, and yellow.
The yellow sub-component corresponds to the propaga-
tion area of the blue minimum, ended by the pink saddle
of birth, giving rise to the arc between the bottom two
nodes in the graph of Figure 8b. For this specific ob-
ject, each sub-component in Figure 8a results in an arc
in Figure 8b. Note that each node is associated with
a critical point drawn with the same color for ease of
visualization.

In the sequel, we use the terms “above”, “below”, and
“topmost” to be understood along u, i.e., as the sign of
the dot product with u.

5.1 Propagation and sub-components
The motivation for a propagation algorithm is to obtain
a construction fully given by the description of a behav-
ior for the mesh vertices. Each vertex propagates some
information related to a given critical point. Intuitively,
the vertex spreads information describing where the
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(a) (b)
Figure 8: Area propagation on a mesh of a torus (a)
the mesh and (b) the resulting graph, our Reeb graph
variant, based on area adjacency.

last change in the connectivity of the level sets comes
from. In practice, this corresponds to the topmost criti-
cal points located below the vertex propagating this in-
formation. Since the computation on vertices exploits
locally retrieved information, it runs in parallel.

(a) (b)
Figure 9: On the left (a), a saddle of birth and its in-
cident edges elevation generates two sub-components.
On the right (b), the same saddle of birth with the ele-
vation of its incident edges grouped by equivalent edges
(using the same color) shows the beginning of red and
purple sub-components.

The information propagated and the propagation used
naturally follows from the semantics associated with
the (non-)critical vertices of the mesh. Let us recall the
meaning of vertex classes concerning the changes to the
local connectivity of the level sets to clarify the propa-
gated labels. A regular point does not change the local
connectivity; therefore, it initially does not own any la-
bel. A maximum ends a level set, meaning it initially
owns no label and does not propagate any. A minimum
creates a new level set, thus initially owning a unique la-
bel spread upwards. Similarly, a saddle of death merges
several level sets into one, so it initially owns a unique
label spread upwards. The more complex case concerns
the saddles of birth. Such critical points split a level set
into several. Therefore, it initially needs to own one
label per created level set. For instance, the saddle of
birth given in Figure 9a is incident to several edges with
positive elevation. We cluster them into connected se-
quences of identical edge elevation around the saddle,
as shown in Figure 9b. Thus, we create one label per

u

v

∅

∅ → ∅

(a)
u

v

X

∅ → X

(b)
u

X

w
Z

x
Y

v
X → Y

(c)
Figure 10: Diffusion pattern of a vertex v. (a) v is un-
labelled and does not receive any label: nothing occurs.
(b) v is unlabelled and receives some label X : v updates
its label to X . (c) v is already labeled by X and receives
the labels Y and Z from neighbors: it compares X , Y
and Z to find that Y is the highest, so v updates its label
to Y .

group of edges with positive elevation. All edges within
a group initially propagate its label.

The partitioning algorithm alternates the propagation of
labels along the edges with positive elevation and the
update of vertex labels. When receiving labels, a ver-
tex always keeps the topmost received label (note that
only regular vertices follow this process). The various
possible patterns are given in Figure 10. Note that the
values of interest correspond to critical points. The al-
gorithm stops when no vertex updates its label. A sub-
component corresponds to the set of vertices sharing the
same label when the algorithm stops. It corresponds to
all regular vertices immediately higher than the critical
point that gave them its label. By construction, a sub-
component is delimited by one critical point below and
at least one but possibly several critical points above.

The propagation in denser parts of the mesh is natu-
rally slower than in sparser parts. Thus, some vertices
may be first labeled by a critical point, which does not
correspond to their final sub-component. Indeed, the al-
gorithm later overwrites the label of these vertices (and
thus of the whole area it propagated to) with one from
a higher critical point, maybe even several times, until
the highest one is found. In practice, an area propagates
from a critical point upwards over a mesh until it can no
longer propagate because the vertices of its boundary
are either connected by edges with a negative elevation
or connected by edges with a positive elevation to ver-
tices labeled by a higher critical point (including critical
points themselves).

The g-map data structure simplifies the algorithm as la-
bels can be stored on darts and propagated along α0-
arcs. Reasoning on darts essentially means that (a) ver-
tices corresponding to saddles of birth store several la-
bels among the darts of their ⟨α1,α2⟩-orbit, and (b) ver-
tex update means choosing the topmost label within the
⟨α1,α2⟩-orbit of regular vertices. The vertex label is
updated via the islet algorithm (see Section 3.2), prop-
agating labels instead of dart IDs.
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5.2 Local to Global Reeb graph construc-
tion

The propagation algorithm terminates when no vertex
updates its label, constructing a mesh partition into sub-
components. We then build the LGRG from the adja-
cency relationships between the subcomponents. If an
edge links two vertices in the mesh belonging to distinct
sub-components, we add an arc to the LGRG between
the associated critical points. Note that only one arc is
added to the LGRG even if several edges in the mesh
link vertices between the same two sub-components. In
the propagation algorithm, saddles of birth create sev-
eral sub-components (identified by a group of consec-
utive edges with positive elevation). Since these sub-
components arise from the same critical point, the in-
duced arcs in the LGRG are all linked to the same node
corresponding to the saddle of birth. This construction
also justifies propagating several identifiers from a sad-
dle of birth. Indeed, had we propagated only one identi-
fier, some arcs would have been missing in the LGRG.
For instance, the two arcs between the saddle of birth
and the saddle of death in the torus of Figure 8b would
have been merged whereas they should remain distinct.

Once again, this step can be parallelized by checking all
edges simultaneously and eliminating redundant pairs
of subcomponents. The islet algorithm directly enables
this computation by identifying a dart within each edge
(⟨α0,α2⟩-orbit) and comparing its label with the one of
its α0-neighbor.

6 RESULTS
Experiments were conducted on an 11th Gen Intel(R)
Core(TM) i7-11850H @2.50GHz with 8 hyper-
threaded cores (16 simultaneous threads) and 32GB
of RAM. We used the implementation of g-maps
provided by Jerboa [6] and Java streams (with JDK
17) for parallelization. We tested our method using the
height function as a scalar field on standard geometric
processing objects, e.g., a tiger, a dragon, etc. (see
Figure 12), and medical vascular trees (see Figure 13)
obtained via the marching cubes algorithm on the
MRI images provided by the MICCAI CROWN
challenge [36].

Table 1 provides statistics about the objects in our
dataset and the critical points found by the three
methods. Our approach finds a distribution of critical
points on the standard objects similar to TTK, while
ReCon produces many additional critical points. The
example of the pegasus highlights that TTK filters
the object and misses a lot of details. We find nearly
5 times more critical points on this object. These
additional critical points come from the base and the
wings, as shown in Figure 12e. Although it may not be
relevant for encoding the topology of the pegasus, such
a fine-grained description of the topological changes

corresponds to the data of interest for the medical staff
in our consortium. In the second half of the table,
statistics are given on twelve cerebrovascular trees
taken from various patients. Recon still finds many
more saddle points than our method and TTK. How-
ever, we detect more minima and maxima, highlighting
that we better capture subtle topological variations
filtered out by the other tools.

Figure 11: Comparison between sequential and parallel
runtimes for LGRG on cerebral trees.

We also compared sequential and parallel executions of
our method on the cerebral trees, i.e., where both the
critical points classification and LGRG construction are
performed as discussed in Sections 4 and 5. Computa-
tion times are given in Figure 11 and show an average
speed up by a factor 2.08.

7 CONCLUSION
We proposed a novel approach for categorizing criti-
cal points by exploiting local topological information
at each vertex and a variant of the Reeb graph built
from a topology-induced information propagation from
the critical points over the mesh. We then leveraged
this local approach to provide a parallel algorithm for
characterizing critical points and the computation of
LGRG on the g-map data structure, which we imple-
mented in Jerboa. In particular, using topological infor-
mation reduces the dependency on geometric features,
thus avoiding excessive filtering and maintaining data
integrity. We plan to apply our LGRG construction for
medical analysis to assist in the diagnosis of strokes. As
of now, we also hope to understand better the topolog-
ical features that need to be detected for the diagnosis
with the help of the medical staff on the one hand and by
exploiting machine learning approaches on our LGRG.
For instance, apart from the circle of Willis, the exis-
tence of a topological cycle in the cerebral vascular tree
is an indicator of a stroke. Still, whether this criterion is
sufficient or even necessary remains unclear. Out of the
medical field, our new LGRG also opens the way for
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(a) (b) (c) (d) (e)
Figure 12: LGRG computed on a torus ((a), a tiger (b), a dragon called "XYZ RGB" (c), Garuda and Vishnu (d)),
and a pegasus (e).

(a) (b)
Figure 13: LGRG computed on the cerebral vascular trees of patient 1 (a), and patient 2 (b).

Object #faces #vert Minimum Maximum Saddles
(∗1000) (∗1000) TTK ReCon Ours TTK ReCon Ours TTK ReCon Ours

Torus 1.1 0.6 2 2 2 1 1 1 3 3 3
Tiger 116.7 58.4 26 191 29 16 230 23 40 419 30

XYZ RGB 199.8 99.9 648 7,768 659 519 14,330 508 1,102 20,875 1,168
G. & V. 222.9 111.4 120 3,903 120 120 7,814 121 307 11,576 308
Pegasus 667.5 333.7 287 3,169 1,164 229 6,605 3,556 517 9,723 584
Patient 1 129.4 65.7 198 385 509 210 685 1246 261 926 167
Patient 2 123.9 62.7 239 - 367 249 - 1,086 263 - 166
Patient 3 100.8 50.9 122 307 272 126 475 624 154 695 114
Patient 4 152.3 77.1 308 469 653 307 807 1,667 458 1127 310
Patient 5 106.3 54.0 155 418 430 163 733 990 194 1023 133
Patient 6 125.7 63.7 166 400 396 192 609 949 238 895 171
Patient 7 137.2 69.5 271 470 448 298 722 1,367 329 971 230
Patient 8 117.0 59.5 235 376 500 256 778 1,386 272 927 170
Patient 9 133.8 67.8 204 477 511 227 767 1,089 280 1097 189
Patient 10 160.0 80.9 212 490 462 231 778 908 279 1118 200
Patient 11 82.1 41.5 130 264 273 127 439 692 159 604 101
Patient 12 101.8 51.6 177 340 419 190 582 1,023 241 803 173

Table 1: Comparison of the critical points computed with TTK, ReCon, and our method.
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locally induced mesh segmentation and data compres-
sion. Furthermore, exploring a C++/CUDA implemen-
tation holds promise for accelerating our parallelization
efforts, potentially leading to significant runtime im-
provements.
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ABSTRACT 
This paper proposes a natural data augmentation method and an anomaly removal artificial neural network for 

accurate anomaly detection. Anomaly detection is important because the provision of high-quality products is vital 

in the manufacturing industry. However, it is difficult to obtain a sufficient number of anomaly samples for the 

detection, which represents a significant challenge when it comes to achieving accurate anomaly detection by 

machine learning. General data augmentation methods generate new anomaly images by combining normal images 

and anomaly images. As an alternative, this paper describes a method that generates new anomaly images by using 

the Eigenspace. More natural anomaly images are generated than with general data augmentation methods. This 

paper also proposes an anomaly removal neural network that utilizes this natural data augmentation. The results 

of an anomaly detection experiment showed that the AUC of 94.7% was achieved for the capsule dataset when 

using anomaly images generated by the proposed data augmentation for training the anomaly removal neural 

network. This is 1.3% higher than the state-of-the-art data augmentation method that has been utilized for training 

the neural network. In the case of the pill dataset, AUC of 99.4% was achieved by proposed method. This is 3.0% 

higher than the state-of-the-art data augmentation method that has been utilized for training the neural network. 

The results of a series of experiments demonstrated that anomaly images generated by the proposed data 

augmentation are effective for training the neural network. 

Keywords 
Anomaly detection, Machine learning, Image generation, Data augmentation, Principal component analysis, 

Eigenspace

1. INTRODUCTION 

Recently, machine learning has shown promise for 

accurate anomaly detection. However, there is a 

shortage of anomaly images for learning due to the 

difficulty to obtaining such images in the 

manufacturing industry. This is a critical issue when it 

comes to achieving accurate anomaly detection.  

Conventionally, three approaches to address this issue 

have been taken. In the first approach, methods use 

reconstruction models based on Generative 

adversarial networks (GANs) [Sch17] [Zen18] 

[Akc19]. These methods aim to successfully 

reconstruct normal images, while unsuccessfully 

reconstructing anomalies. However, they may be able 

to successfully reconstruct an anomaly image because 

the models learn to reconstruct the input image. 

In the second approach, methods utilize pre-trained 
Convolutional neural networks (CNNs) as feature 

extractors [Coh20] [Rip21] [Def21] [Rot22]. These 

methods aim to model the normal features for 

detecting anomaly features. However, since they do 
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not learn anomaly images, they may miss very small 

anomalies. 

In the third approach, methods generate artificial 

anomaly images by data augmentation. For example, 

CutPaste [Li21] trains the one-class discrimination of 

CNNs by using normal images and generated anomaly 

images. StainNoise [Col21], DRAEM [Zav21], and 

NSA [Sch22] train image reconstruction artificial 

neural networks using normal images and generated 

anomaly images and then determine anomalies from 

the input and output of the neural network. These 

methods can generate a lot of anomaly images by 

combining artificial anomalies and normal images. 

However, when the artificial anomalies are unnatural, 

artifacts may occur in the generated anomaly images, 

which affect the learning of the neural networks. In 

other words, if low-quality anomaly images are 

generated by the previous data augmentations, the 

accuracy of the subsequent anomaly detection may 

decrease.  

Thus, Conventional data augmentation methods in the 

image space generate unnatural anomaly images. This 

is problematic for the quality of the training data. In 

this study, we propose a data augmentation method in 

the feature space instead of the conventional approach 

in the image space. Then, we propose a neural network 

for anomaly removal based on the data augmentation. 

2. PREVIOUS DATA 

AUGMENTATION AND BASIC 

CONCEPT OF PROPOSED IDEA 

 In this section, we first describe the general approach 

to data augmentation and its issues. We then present 

our basic idea to address the problems of the previous 

methods. 

2-1. Previous data augmentation methods and 

related problems 

When applying machine learning to anomaly 

detection, it is necessary for the discriminator to learn 

various anomalies. However, there is a shortage of 

anomaly images for machine learning due to the 

difficulty of obtaining a sufficient number of such 

images in the manufacturing industry. 

In the field of anomaly detection, there are methods 

that generate anomaly images by combining artificial 

anomalies with normal images [Li21] [Col21] [Zav21] 

[Sch22]. These methods have the advantage of being 

able to generate the many anomaly images required 

for the training of discriminators. However, when the 

artificial anomalies are unnatural, artifacts may occur 

in the generated anomaly images, which in turn affects 

the learning of the discriminators. In other words, the 

problem here is that discriminators cannot acquire a 

generalizable performance with unnatural data 

augmentation. Our aim in this study is, therefore, to 

improve the quality of anomaly images generated by 

data augmentation. 

2-2. Basic concept 

Real images contain various information, such as the 

position of the object and the size of the anomalies. If 

we can extract and fuse these pieces of information 

from real images, we should be able to generate highly 

realistic anomaly images.  

The basic concept is shown in Fig. 1. First, the images 

are converted into feature values, and next the normal 

feature values and anomaly feature values are fused in 

the feature space. Finally, high-reality anomaly 

images are generated by converting these feature 

values into images. Additionally, various anomaly 

images can be generated by applying transform 

processing to the anomaly feature values in the feature 

space. 

3. PROPOSED METHOD 

In this section, first, we explain our method of 

converting images into feature values using principal 

component analysis. Next, we present our method for 

combining normal feature values and anomaly feature 

values in the Eigenspace, along with our method for 

diversifying the anomaly information in the generated 

images. Finally, we show our method for training an 

anomaly removal neural network using normal images 

and generated anomaly images. 

Figure 1. Basic concept of proposed method. 
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3-1. Feature transformation based on 

principal component analysis 

In our approach, images are transformed into feature 

values by means of principal component analysis. 

There are two advantages to using principal 

component analysis for feature transformation: first, 

the feature values in the Eigenspace obtained in this 

way can be converted into images, and second, the 

feature values in the Eigenspace can be interpreted on 

the basis of the eigenvalues. Image generation 

methods utilizing the feature space include those using 

Variational Auto-Encoder (VAE) [Gar19] and GANs 

[Ant17] [Bow18]. However, since these methods use 

deep learning, it is difficult to interpret the features in 

the feature space. 

Here, we transform images into features as follows. 

Principal component analysis is applied to 𝑁 training 

images comprising many normal images and a small 

number of anomaly images. When the dimensionality 

of the image vectors is 𝐷 dimensions (𝑁 < 𝐷), the 𝑁 

image vectors 𝒙𝑛 (𝑛 = 1, 2, ⋯ , 𝑁) are defined by 

𝒙𝑛 = (𝑥𝑛1, 𝑥𝑛2, ⋯ , 𝑥𝑛𝐷)𝑇 .                         (1) 

Next, the data is centered by taking the difference 

between the 𝑁 image vectors 𝒙𝑛 and the mean vector 

𝒙 . The data matrix of the centered data 𝒙𝑛  (𝑛 =
1, 2, ⋯ , 𝑁) is defined by 

�̅� = (𝒙1, ⋯ , 𝒙𝑛)𝑇 = (𝒙1 − 𝒙, ⋯ , 𝒙𝑛 − 𝒙)𝑇  .   (2) 

Using this data matrix �̅�, the covariance matrix 𝑺 can 

be obtained by 

𝑺 =  
1

𝑁
�̅�𝑇�̅�  .                                (3) 

In the principal component analysis, the eigenvalue 

problem for this covariance matrix 𝑺 is solved. As a 

result, the eigenvalues 𝜆𝑗  and the corresponding 𝐷 

dimensional eigenvectors 𝒂𝑗  are derived. When the 

dimensionality 𝐷 is larger than the number of training 

images 𝑁 , the number of non-zero eigenvalues and 

their corresponding eigenvectors obtained are 𝑁 − 1. 

By selecting the eigenvectors 𝒂𝑗 corresponding to the 

eigenvalues 𝜆𝑗 in descending order, the Eigenspace 𝑨 

is obtained. By projecting the centered image vectors 

𝒙𝑛 onto Eigenspace 𝑨, the image is transformed into 

the feature vectors 𝒔𝑛, which is defined by 

𝒔𝑛 = 𝑨𝑇𝒙𝑛 =  (𝑠𝑛1, 𝑠𝑛2, ⋯ , 𝑠𝑛𝑁−1)𝑇   .         (4) 

3-2. Fusion of anomaly features in Eigenspace 

Next, using pairs of centered normal image vectors 

𝒙𝑛𝑜𝑟 and anomaly image vectors 𝒙𝑎𝑛𝑜, new anomaly 

images 𝒙𝑎𝑛𝑜 are generated. 

First, using Eq. (4) from Subsection 3-1, we project 

the normal image vectors 𝒙𝑛𝑜𝑟 and the anomaly image 

vectors  𝒙𝑎𝑛𝑜  onto Eigenspace 𝑨 . As a result, the 

feature vectors 𝒔𝑛𝑜𝑟 and 𝒔𝑎𝑛𝑜 are obtained. 

The relationship between the eigenvalues 𝜆𝑗  and the 

principal component numbers is shown in Fig. 2. Here, 

we expect the top components with large eigenvalues 

to aggregate normal information correlated with all the 

data, while in contrast, the lower components with 

small eigenvalues are expected to aggregate anomaly 

information, especially for anomaly images. 

Therefore, for the feature vectors 𝒔𝑛𝑜𝑟 obtained from 

the normal images, the top components of the feature 

Figure 2. Relationship between eigenvalues and 

 principal component numbers. 

Figure 3. Fusion of feature components in Eigenspace. 
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vectors are extracted, and for the feature vectors 𝒔𝑎𝑛𝑜 

obtained from the anomaly images, the lower 

components are extracted. In this case, the boundary 

between the top and bottom features is qualitatively 

determined from the cumulative contribution rate 

graph, defining the components up to the 𝑀 -th 

component as the top and the rest as the bottom. 

Finally, new features are generated by combining the 

extracted feature components in the Eigenspace. Fig. 

3 shows the generation of new features by fusing the 

normal and anomaly feature vectors in the Eigenspace. 

These features are transformed into images by adding 

the mean vector 𝒙 to the linear combination of their 

components and each eigenvector, as 

 𝒙𝑎𝑛𝑜 =  𝒙 + ∑ 𝑠𝑛𝑜𝑟(𝑖)𝒂𝑖

𝑀

𝑖=1

+  ∑ 𝑠𝑎𝑛𝑜(𝑖)𝒂𝑖

𝑁−1

𝑖=𝑀+1

   .   (5) 

By this operation, a new anomaly image 𝒙𝑎𝑛𝑜  is 

generated by fusing the defect features of defective 

image 𝒙𝑎𝑛𝑜 into the normal image 𝒙𝑛𝑜𝑟. 

3-3. Diversification processing of anomaly 

information 

Using Eq. (5) from Subsection 3-2, new anomaly 

images are generated by fusing anomaly information 

from anomaly images into normal images. However, 

the position and size of anomalies in the generated 

images depend on the anomaly images used for the 

image generation. Therefore, variation in the 

generated images is limited to the number of 

combinations of normal and anomaly images. In this 

subsection, we modify Eq. (5) to variate the generated 

anomalies. There are two targets for diversifying 

anomalies: anomaly intensity and geometric 

information. 

First, we diversify the anomaly intensity in the 

generated images by multiplying the weight 

coefficient 𝑤, as 

 𝒙𝑎𝑛𝑜 =  𝒙 +  ∑ 𝑠𝑛𝑜𝑟(𝑖)𝒂𝑖

𝑀

𝑖=1

+ 𝑤 ∑ 𝑠𝑎𝑛𝑜(𝑖)𝒂𝑖

𝑁−1

𝑖=𝑀+1

 .  (6) 

Next, we describe the diversification of geometric 

information about anomalies. In Eq. (5), the linear 

combination of anomaly features and lower 

eigenvectors represents anomaly information. 

Therefore, this anomaly information vector is 

transformed into the image-size matrix. Then, 

geometric transformations such as mirroring and 

reduction are applied to this matrix. Then, this matrix 

is transformed into a vector and added to the normal 

information vector. As a result, the geometric 

information of the anomaly in the generated image 

changes. 

3-4. Anomaly removal neural network 

By using the data augmentation method described in 

Subsection 3-1 to Subsection 3-3, pairs of normal 

images and artificially generated anomaly images can 

be obtained. The artificially generated anomaly 

images in this pair are identical to the normal images 

except for the anomaly parts. 

We then use this pair of images to train the anomaly 

removal neural network, as shown in Fig. 4. The 

neural network architecture utilizes U-Net [Ron15], 

which is a type of autoencoder. During the training, 

when a normal image is input, the Mean Squared Error 

(MSE) loss is calculated between the output 𝒚 of the 

neural network and the normal image 𝒙𝑛𝑜𝑟 (Fig. 4(a)). 

When an artificial anomaly image generated using the 

proposed data augmentation is input, the MSE loss is 

calculated between the output 𝒚 of the neural network 

and the normal image 𝒙𝑛𝑜𝑟 paired with this artificial 

anomaly image 𝒙𝑎𝑛𝑜  (Fig. 4(b)). The equation is 

shown below. As a result of this training, the anomaly 

removal neural network is obtained. 

𝑀𝑆𝐸 =
1

𝑛𝑚
∑ ∑ [𝒚(𝑗, 𝑖) − 𝒙𝑛𝑜𝑟(𝑗, 𝑖)]2

𝑚 − 1

𝑖= 0

𝑛−1

𝑗=0

       (7) 

During the testing of the neural network, the anomaly 

score is defined as the sum of the absolute differences 

Figure 4. Training of anomaly removal neural 

network. 

Figure 5. Example images of each dataset. 
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between the input image 𝒙 and the output image 𝒚 of 

the neural network. The equation is shown below. 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 = ∑ ∑ |𝒚(𝑗, 𝑖) − 𝒙(𝑗, 𝑖)|

𝑚 − 1

𝑖= 0

𝑛−1

𝑗=0

      (8) 

4. IMAGE GENERATION 

EXPERIMENT 

We performed an image generation experiment in 

which new anomaly images were generated by the 

proposed data augmentation method using many 

normal images and a few anomaly images. Our 

objectives are to determine whether (1) various 

anomaly images can be generated by the fusion of 

normal and anomaly features in the Eigenspace and 

(2) the anomaly areas in the generated images appear 

natural. 

4-1. Settings 

We utilized the capsule dataset and the pill dataset 

comprising grayscaled images sized 128 × 128. 

Example images are shown in Fig 5, depicted in color 

for display purpose. Note that, since principal 

component analysis is used for image generation, the 

position of the objects has been aligned in advance. 

In this experiment, we utilized 300 normal images and 

15 anomaly images from the capsule dataset. We 

utilized 1200 normal images and 15 anomaly images 

from the pill dataset. New anomaly images were 

generated using the proposed data augmentation 

method. We checked a graph of the cumulative 

contribution rate obtained by principal component 

analysis. We determined to be the top component up 

to a cumulative contribution rate of 99.0% for the 

capsule dataset and determined to be the top 

component up to a cumulative contribution rate of 

90.0% for the pill dataset. Regarding the 

diversification process applied to anomaly 

information, a combination of scalar transformation 

was utilized. The value of the scalar multiplication 

was determined randomly within the range of 0.8 to 

1.0. The mirror transformation was randomly selected 

from among three types (vertical, horizontal, and 

combined vertical and horizontal). The reduction 

transformation ratio was set randomly within the range 

of 0.8 to 1.0. 

Figure 6. Results of image generation. 
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4-2. Results 

Fig. 6 shows examples of pairs of normal images and 

anomaly images used for image generation, along with 

the generated images from those pairs. Note that, as in 

Fig.5, the images here are actually grayscale, but are 

depicted in color for display purpose. In terms of 

computation time (CPU: Intel Core i7-12700KF, 

Memory: 32 GB), Principal component analysis took 

1566 sec, and generating 300 images took 442 sec for 

the capsule dataset. 

The results of the capsule dataset in Fig. 6 show that 

new images have been generated by fusing the 

anomaly information from anomaly images onto 

normal images. Specifically, when the anomaly 

intensity is diversified, the anomaly intensity of the 

generated images changes compared to that of the 

anomaly images used for the data augmentation. 

Additionally, when the position of the anomaly is 

diversified by mirror transformation, the position of 

the anomaly in the anomaly images used for the data 

augmentation differs from in the generated images. At 

this time, only the position of the anomaly has 

changed, while the position of the capsule remains 

unchanged. When the size of the anomaly is 

diversified by reduction transformation, the anomalies 

in the generated images are smaller compared to those 

in the anomaly images used for the data augmentation. 

At this time, only the size of the anomaly has changed, 

while the size of the capsule itself remains unchanged. 

This is because the normal information and anomaly 

information have been appropriately extracted in the 

Eigenspace. Further, focusing on the anomaly area of 

the generated images, we can see that the boundary 

between the anomaly and the object is natural and that 

highly realistic anomaly images have been generated. 

Similar results were confirmed from the pill dataset. 

These results demonstrate natural data augmentation 

has been achieved by the fusion of normal and 

anomaly information in the Eigenspace. 

5. ANOMALY DETECTION 

EXPERIMENT 

In the next experiment, we investigated whether the 

anomaly images generated by the proposed data 

augmentation are effective as training data for the 

anomaly removal neural network. 

5-1. Settings 

We utilized the same capsule and pill datasets here as 

in Section 4 and compared the following four cases. 

1) The discriminator has been trained using 

anomaly images generated by the proposed data 

augmentation.  

2) The anomaly removal neural network has been 

trained with only normal images. 

3)  The neural network has been trained using 

anomaly images generated by previous methods. 

4)  The neural network has been trained using 

anomaly images generated by the proposed data 

augmentation.  

The previous methods we compared are CutPaste 

[Li21], StainNoise [Col21], and DRAEM [Zav21]. 

DRAEM is a state-of-the-art anomaly detection 

method using data augmentation.  

Fig. 7 shows a comparison of the images generated by 

each method. CutPaste generates anomaly images by 

cutting out any rectangular region of a normal image 

and pasting it onto another area. StainNoise generates 

elliptical anomalies and synthesizes them into normal 

images to generate anomaly images. DRAEM 

generates anomalies from texture images of other 

Table 1. Number of images in anomaly 

detection experiment. 

Figure 7. Qualitative comparison of proposed 

and previous methods. 
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domains and synthesizes them into normal images to 

generate anomaly images. In this experiment, the 

previous methods used only the data augmentation 

part and used the same model as the proposed method 

for the training. 

Table 1 breaks down the number of images used for 

training and testing the discriminator and the proposed 

method used 300 normal images and 300 artificial 

anomaly images for training the neural network in the 

case of the capsule dataset. The 300 artificial anomaly 

images were generated using 15 real anomaly images 

and 300 normal images. In the case of the pill dataset, 

the proposed method used 1200 normal images and 

1200 artificial anomaly images for training the neural 

network. The 1200 artificial anomaly images were 

generated using 15 real anomaly images and 1200 

Figure 8. Anomaly score maps output from the anomaly removal neural network for capsule dataset. 

Table 2. Results of the anomaly detection experiment for the capsule dataset. 

Table 3. Results of the anomaly detection experiment for the pill dataset. 

Figure 9. Anomaly score maps output from the anomaly removal neural network for pill dataset. 

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

97https://www.doi.org/10.24132/JWSCG.2024.10



normal images. During testing, 300 normal images 

and 300 anomaly images were used. 

Regarding the learning conditions, ResNet18 [He16] 

was used as the discriminator, and U-Net [Ron15] as 

the anomaly removal neural network. The batch size 

was set to 32 and the number of epochs was 300. The 

loss function for the discriminator was Binary Cross 

Entropy (BCE) loss. The loss function for the anomaly 

removal neural network was MSE loss. The 

optimization method was Adam [kin14] with the 

learning rate set to 0.0001. The anomaly detection 

performance was evaluated by the Area Under the 

Curve (AUC) during testing. AUC is the area under 

the ROC (Receiver Operating Characteristic) curve, 

which is created by calculating the true positive and 

false positive rates from the anomaly scores output 

from the neural network. Although the accuracy is also 

available as an evaluation indicator, AUC is more 

suitable from the viewpoint of threshold determination. 

5-2. Results 

The results of the anomaly detection experiments are 

listed in Table 2 and Table 3. Table 2 shows the 

experimental results for the capsule data set. Table 3 

shows the experimental results for the pill dataset. 

From Table 2 (the capsule dataset), we can see the 

highest AUC of 94.7% was achieved when U-Net was 

trained using the proposed data augmentation. In 

contrast, the lowest AUC of 85.2% was achieved 

when ResNet18 was trained for class classification 

using the proposed data augmentation. From Table 3 

(the pill dataset), we can see the highest AUC of 

99.4% was achieved when U-Net was trained using 

the proposed data augmentation. In contrast, the lower 

AUC of 97.0% was achieved when ResNet18 was 

trained for class classification using the proposed data 

augmentation. The reason for the low result with 

ResNet is that, since its learning task is class 

discrimination, it was influenced by the number of real 

anomaly images used for the proposed data 

augmentation. Conversely, the anomaly removal 

neural network utilizing U-Net learns the task of 

removing anomalies from input images based on pairs 

of normal images and artificial anomaly images, so the 

influence of the number of real anomaly images used 

for the proposed data augmentation was minimal. 

These results indicate that when there are only a few 

real anomaly samples, training the proposed anomaly 

removal neural network can detect anomalies more 

accurately than class discrimination. 

Furthermore, the proposed method had the highest 

AUC when compared with the case where the 

anomaly removal neural network was trained using 

artificially generated anomaly images by previous 

data augmentations. In the case of the capsule dataset, 

the proposed method is 1.3% higher than the result of 

DRAEM which is the state-of-the-art data 

augmentation method.  For the pill dataset, the 

proposed method is 3.0% higher than the result of 

DRAEM. Fig. 8 and Fig. 9 show the anomaly score 

map for input images when the anomaly removal 

neural network was trained using only normal images 

and when it was trained using each data augmentation 

method. First, when the anomaly removal neural 

network was trained only with normal images, the 

anomaly score map does not show any heat even when 

an anomaly image is input. This is because training the 

neural network only with normal images has given it 

the ability to output the same image as the input image. 

Next, when the anomaly removal neural network was 

trained using previous data augmentation methods, 

anomalies can be detected, but the anomaly score map 

also shows heat even when a normal image is input. In 

contrast, when the anomaly removal neural network 

was trained using the proposed data augmentation, 

anomalies can be detected and the anomaly score map 

does not show heat for the normal image. This is 

because the anomaly images generated by the 

proposed data augmentation are more natural than 

those generated by the previous data augmentation 

methods. 

CONCLUSION 

In this study, we proposed a natural data augmentation 

method that generates natural anomaly images by 

fusing normal and anomaly features in the Eigenspace, 

along with an anomaly removal neural network based 

on this natural data augmentation. The results of an 

image generation experiment, demonstrate that natural 

anomaly images can be generated from pairs of many 

normal images and a few anomaly images. In addition, 

by applying transform processing to the anomaly 

features in the Eigenspace, various anomaly images 

can be generated. The results of an anomaly detection 

experiment show that the AUC of 94.7% was achieved 

for the capsule dataset when utilizing anomaly images 

generated by the proposed data augmentation for 

training the anomaly removal neural network, which 

is 1.3% higher than the state-of-the-art data 

augmentation method that was utilized for training the 

neural network. In the case of the pill dataset, the 

results of an anomaly detection experiment show that 

the AUC of 99.4% was achieved when utilizing 

anomaly images generated by the proposed data 

augmentation for training the anomaly removal neural 

network, which is 3.0% higher than the state-of-the-

art data augmentation method that was utilized for 

training the neural network. These findings 

demonstrate that anomaly images generated by the 

proposed data augmentation are effective for training 

the anomaly removal neural network. 
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ABSTRACT
Deep Neural Networks (DNNs) require large amounts of annotated training data for a good performance. Often
this data is generated using manual labeling (error-prone and time-consuming) or rendering (requiring geometry
and material information). Both approaches make it difficult or uneconomic to apply them to many small-scale
applications. A fast and straightforward approach of acquiring the necessary training data would allow the adoption
of deep learning to even the smallest of applications. Chroma keying is the process of replacing a color (usually
blue or green) with another background. Instead of chroma keying, we propose luminance keying for fast and
straightforward training image acquisition. We deploy a black screen with high light absorption (99.99%) to record
roughly 1-minute long videos of our target objects, circumventing typical problems of chroma keying, such as color
bleeding or color overlap between background color and object color. Next we automatically mask our objects
using simple brightness thresholding, saving the need for manual annotation. Finally, we automatically place the
objects on random backgrounds and train a 2D object detector. We do extensive evaluation of the performance
on the widely-used YCB-V object set and compare favourably to other conventional techniques such as rendering,
without needing 3D meshes, materials or any other information of our target objects and in a fraction of the time
needed for other approaches. Our work demonstrates highly accurate training data acquisition allowing to start
training state-of-the-art networks within minutes.

Keywords
Machine Learning, Object Detection, Object Segmentation, Deep Neural Networks.

1 INTRODUCTION
Modern machine learning (ML) is dominated by
deep neural networks (DNNs). Training DNNs to
state-of-the-art performance levels tends to require
large amounts of training data to perform well. In
many cases the lack of annotated data prevents the use
of these networks. In the case of object segmentation
and object detection a common approach - aside of
costly manual labeling - is to resort to rendering
to generate the required training images. To do so
3D meshes, textures, and material properties of the
target objects are required, which is another barrier
for many applications. In contrast, we only require
the availability of the objects in question, a camera,
a sufficiently large piece of special black cloth, and
some lights. We completely circumvent many of
the problems with traditional chroma keying such as
color bleeding, same foreground/background color
and similar, by utilizing a very low reflectance cloth
and demonstrate its applicability in a fast, low-cost,
high-quality setup, comparing favorably to much more
complex data generation regimen.

Our contributions are the following:

• We propose a straightforward, easy to use setup to
record high-quality training datasets for object seg-
mentation and object detection.

• We present extensive evaluation and show the per-
formance of our approach in comparison with other
conventional data generation methods that require
more information, such as meshes, textures, and ma-
terials, and/or much more processing time. To make
our results more meaningful for the research com-
munity, we do all our evaluation on the common
YCB-V dataset.

• We provide code, which automatically converts the
recordings to datasets in COCO format for use with
segmentation and 2D object detection algorithms, as
well as our black screen recordings of the YCB-V
objects.
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Figure 1: A qualitative sample of all 21 YCB-V objects, that were recorded with a handheld smartphone and our
proposed black background. It can be seen that the objects are well silhouetted against the background and can
therefore be segmented in an easy way and many typical chroma key-associated problems are circumvented.

2 RELATED WORK
2.1 Data Generation for ML
Insufficient training data is a well documented problem
in Machine Learning. In the domain of Computer Vi-
sion practitioners soon adopted rendering for data gen-
eration. Rendering has many suitable attributes, such
as perfect ground truth, potentially unlimited amounts
of data, and total control of scene composition, such as
object pose and scene lighting. [TTS+18] demonstrates
the combination of rendering on random backgrounds,
as well as realistically placed objects in 3D scenes,
while [HPH+19] shows another purely rendering-based
approach. Another very common tool for data gen-
eration is BlenderProc [DSW+20], a pipeline extend-
ing Blender that allows for physically-based render-
ing. For a long time, the gap in feature representations
between synthetic and real-world images was a prob-
lem [TFR+17, TPA+18, WGS+21]. With the use of
physically-based rendering and the emergence of large
foundation models such as CLIP [LLSH23, ODM+23,
RKH+21], this problem is greatly reduced [SHL+23].
Another problem is not to be solved that easily how-
ever: In order to render you need 3D meshes of the ob-
jects in questions. There are approaches to estimate 3D
shape [LGL+23] or additional views [VYB+24] based
on a single image, but their quality is not on par with re-
ality and their reconstruction is often purely probabilis-
tic. Reconstructing 3D meshes with traditional methods
such as photogrammetry [Sch05] is a very time con-
suming process. There is a move towards zero-shot ap-

proaches such as [NGP+23], which does not need im-
ages of the target objects for training, though still re-
quires 3D meshes.

2.2 Significance of Reliable Data

The use of modern DNNs in computer vision improved
solutions for a large variety of challenging tasks,
provided sufficient training data. A prominent modern
example would be Segment Anything (SAM), which is
able to segment a very large amount of different objects
in the wild [KMR+23]. However, ML processes come
with significant risks and difficult to detect silent
failures, if not handled correctly [HJS+20]. This is
especially crucial in settings, where reliability and
robustness is mandatory, such as in an industrial,
clinical or dangerous contexts, which in turn can
task-invalidate large unsupervised networks like SAM,
due to its own limitations. One predominant challenge
is, that trustworthy ML models need high-quality base
data [LTH+22]. Many datasets are not task suited
due to their size, inherent bias, dirtiness, or even just
partial unfairness\incorrectness [WRSL23]. While
these issues can be partly mitigated or worked around
[RHW19, WRSL23], the relevant techniques introduce
new layers of complexity and potential error sources.
Albeit, all of these challenges can be overcome with
manual labour and diligence, this can lead to the
preemptive end for startups [BIRS22] and drive up cost
for large companies.
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2.3 Chroma Keying
Chroma Keying is a well established movie produc-
tion technique from the 1920’s, to segment objects
in front of fixed mono-color backgrounds. In the
beginning, a variety of different colors and shades
like black/white, yellow, blue and green were popular
[Fos10, Ram15]. Over time, the color green became
the predominant background color for a variety of
pragmatic reasons. It is easily distinguishable from
human skin, rarely occurs outside of nature, does not
require much lighting and is favourable for modern
digital camera sensors because of higher sensitivity.
However, some significant challenges remain: Green
objects lead to falsely segmented foreground, which
can also happen as a byproduct of color-bleeding or
reflection. These effects strongly reduce segmentation
quality for reflective materials, such as in metallic,
transparent, and bright objects. Furthermore, object
borders can become fuzzy due to lighting and merging
effects with the background. While there are tech-
niques to remedy drawbacks of conventional green
screen, like color-unmixing [AAPS16], specialised
capturing processes [BRS+22], color spill neutraliza-
tion [GKTB10], threshold optimization [PJS17] and
multiple background colors [SB96], they open up new
problems and do not yet completely solve the inherent
challenges while introducing additional capturing
and/or post-processing effort.

2.4 Differentiation from similar works
LeCun et al. [LHB04] use a gray turn table to record
objects and rely on chroma keying to replace fore-
and background, while Dirr et al. use a white back-
ground [DBGD24]. Though a brighter background, like
grey or white, would also satisfy the idea of luminance
keying, they have major drawbacks in comparison to
99,99% light absorption black. First of all, they intro-
duce far greater challenges for correct lighting condi-
tions, arising from background shadows, background
reflections and possible fuzzy edges, due to light scat-
tering. Furthermore, it is harder to differentiate brighter
object colors with bright backgrounds. In some cases,
e.g. metallic or transparent objects, a non-black back-
ground is also prone to light shining partly through an
object, reflections and refractions. These challenges
are all naturally solved by our proposed solution, as
no light is reflected or visible on the background by
any relevant measure. Knauthe et al. use a captur-
ing system, which foregoes a background for a white
light source in a turn-table setup, which diminishes
some of the challenges of a normal white background
[KKvB+22]. However, this setup is very constrained
in its rotation invariant use-case, due to the difficul-
ties of building suitable shaped large light backgrounds.
Agata et al. introduce dual color checker pattern back-
grounds [AYK07, YAK08]. While this approach solves

foreground\background color confusion, the other is-
sues presented earlier still persist. Additionally, the
method requires more specialized backgrounds and in-
troduces further complexity in the processing step, such
as parameter tuning. Jin et al. developed a deep learn-
ing method for automatic real-time green screen keying
[JLZ+22]. However, it is still limited by shadows and
green spilling and requires a deep learning method with
all inherent benefits and challenges.

3 APPROACH
3.1 Chroma and Luminance Key
We propose a simple yet effective data recording pro-
cess: we place the objects on a very low-reflectance
cloth, and record around 1-minute long video clips with
a smartphone. These clips are processed via a cut and
paste process, that uses the easily masked objects and
places them on random backgrounds. Details on the
processing are discussed in section 3.3.

3.1.1 Chroma Key with Green Screen

For comparison, we include recordings and experi-
ments with the more common chroma keying approach.
Arguably the most common colors are blue and green,
with green being the most widely used color. Therefore
we include a green screen in our evaluation.

3.1.2 Luminance Key with Black Screen

We propose Luminance Keying for fast and straightfor-
ward data acquisition for machine learning. This tech-
nique utilizes the brightness difference between an ob-
ject and the background, instead of a designated color
as with chroma keying. In practice, this is possible due
to a textile background, which absorbs 99,99% of vis-
ible light. This leads to high contrast between object
and background, even for very dark objects, allowing
for high quality masking as illustrated in Figure 1. The
recording process is exactly the same as with the con-
ventional green screen described in section 3.1.1.

3.2 Baselines and Experiments
For our evaluation we include different data sources, all
visualized in Figure 2: First, we include the real-world
recordings of the YCB-V dataset as used in the promi-
nent BOP Challenge [SHL+23]. However, there is a
problem with the YCB-V test images: one could argue,
that the limited number of scenes and camera poses
reduces the expressiveness in terms of generalization.
Therefore we also evaluate on the physically-based
rendering (pbr) dataset provided by BOP. This dataset
uses the reconstructed textures, leading to a high
similarity in appearance compared to the real images,
but has a much wider range of camera poses, object
configurations, and lighting situations. These two
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(a) REAL (b) RBG (c) PBR (d) PBG

(e) PBR-rTex (f) CHROMA (g) LUMA (Ours)
Figure 2: Samples from a subset of our evaluated training datasets. REAL are real images, RBG are real images
with replaced backgrounds, PBR are physical based renderings, PBG are physical based renderings with back-
ground replacement, PBR-rTex are PBRs with randomized textures and CHROMA, as well as LUMA (Ours)
stand for different capturing methods.

datasets, namely REAL and PBR, are used as a base-
line on which all other data sources have to be tested.
Also, we test all of our approaches on in-distribution
samples, that is, on disjoint splits from the dataset, i.e.
when training on our luminance images, we test on
REAL, PBR, as well as on a disjoint set of luminance
images. This should serve as a measure on how well an
experiment generalizes to out-of-distribution samples.
In more detail we use the following data representa-
tions:
Real-world images (REAL). Real-world recordings
as described above.
Real-world images with background replacement
(RBG). Real-world recordings. To test the influence of
our background replacement script, we apply it to the
real images as well. This gives us an idea on how much
performance we loose because of our simple crop and
paste approach of data generation.
Physically-based renderings (PBR). PBR renderings
with reconstructed textures, realistic object placement,
and light transport, as well as a high degree of camera
and object pose variation.
Physically-based renderings with background
replacement (PBG). Same as above, but again using
background replacement for measuring its influence on
performance.
Physically-based renderings with randomized
textures (PBR-rTex). To simulate cases in which
geometry is available, though we lack realistic textures

and materials, we include a set of pbr images with
randomized surface attributes. Namely we randomize
texture and surface details such as reflectance behavior.
Chroma key images using green screen (CHROMA).
A set of green screen recordings to illustrate what re-
sults one can expect from using run-of-the-mill chroma
keying methods. We use the green screen for segmen-
tation and paste the crops on random photographs.
Luminance key images using black screen (LUMA).
Our proposed method. A set of recordings utilizing the
low-reflection black screen. Again, we have to crop
and paste the objects on random backgrounds using
our replacement script.

3.3 Training
We demonstrate the applicability of our approach on
the 2D object detection use case and train YOLOX
[GLW+21] networks.
Data Generation using cut and paste background re-
placement. To achieve technically good replacement re-
sults, we use a variety of probabilistic mechanisms that
are applied during the replacement process inspired by
[DMH17]. First, based on the masks provided, we fil-
ter out all objects in an image that are overlapped by
others. This is trivial for luma, because there is no
overlap during the acquisition, giving us near-perfect
masks. In addition, we also make sure that the objects
are not cut off at the edge of the image and finally do
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a crop, centered around the object. Next we apply ran-
dom affine transformations such as scaling, rotation and
translation to the objects where the variable scaling, ro-
tation and translation ensures variety in the appearance
of the objects. After this process, the objects are placed
on the background image based on randomly generated
positions. We allow an overlap among objects of up
to 20% in order to come closer to the real scenarios of
YCB-V and make the network learn to deal with oc-
clusion. For bleding and to remove jaggies, the object
masks are eroded and Gaussian noise is applied. As
for the backgrounds we used random crops of images
from the 50k HQ-data set [YCT+23]. Random crop-
ping prevents the same background from being used
more than once. Parameterization. To evaluate the
practicability of our proposed method, we do an exten-
sive comparison of different training sets. As shown
in [HLWK18] freezing the backbone layers is useful
for reducing the impact of domain shift. Since we in-
troduce additional domain discrepancy with our back-
ground replacement, we add freezing to our evaluation
of training from scratch, and using COCO-pretrained
weights for initialization. As for the parameterization
of YOLOX, we stick closely to the values and process
as presented in their paper [GLW+21]. Most impor-
tantly for our comprehensive quantitative analysis we
train model size "tiny" with image size 512x512, batch
sizes of 64, half precision, multiscale range of 13, and
for 300 epochs.

4 RESULTS
We report quantitative results on the common YCB-V
object set and show samples of the achievable visual
quality of the approach. In addition we show some
problems of chroma keying, which luminance keying
does not have in section 4.2.

4.1 Quantitative Results
In our first experiments we looked into answering the
question, whether we want to train from scratch or
load pre-trained weights, as well as whether to freeze
the backbone. For a comprehensive list of all results,
especially for unfreezed backbones, please refer to our
tables presented in the appendix. Here we report results
when freezing the backbone, as these led to best perfor-
mance with our cut and paste background replacement.
For evaluation we report both the Average Precision
(AP) and the Average Recall (AR) metric in Tables 1
and 2. Since the currently available set of YCB-V ob-
jects has three modified objects (002_master_chef_can
has a modified texture, for 019_pitcher_base the color
changed from blue to a transparent color with a red
lid, and for 035_power_drill there are some slight
changes to the model), we report results on the subset
of unchanged objects and call it YCB-V18, as well as

the results of the complete set.
As expected training and evaluating on REAL lead to
best performance overall. This is no surprise since,
among all data representations tested, features in the
REAL training set are closest to the features found in
the REAL test set. Physically-based rendering (PBR)
comes in second place. The good performance of PBR
can be explained with the photo-realistic depiction,
wide range of physically-correct object placements,
and lighting variations. Surprisingly the PBR set with
randomized textures has very poor performance, far
worse than expected. While we assumed a big drop,
the extent might have to do with model size and might
be less pronounced with more trainable parameters. As
the 4 remaining approaches all build upon the cut and
paste approach, we can directly compare the quality
of the segmentation, as well as image fidelity. Here
we find an outlier in the PBG (real photographs with
background replacement) set: it under-performs the
other approaches by a wide margin. Our assumption
is that the reason is the comparatively poor masking
quality. Masks are not pixel perfect and sometimes
include background pixels or pixels belonging to an
occluding object. Mask quality is no problem for RBG
(pbr images with background replacement), having
perfect masks by virtue of complete scene knowledge,
but we argue RBG is held back by other problems,
some similar to the ones found with chroma keying
with color bleeding being the most obvious. Realistic
light transport is a feature in fully rendered scenes, but
becomes a detriment with cutting and pasting. Also,
the textures, while being high fidelity, are not as good
as real photographs. Finally, comparing LUMA with
CHROMA we see an outperformance of more than
11% on both YCB-V18, as well as on the complete
YCB-V set.

4.2 Qualitative Results
We depict some of the problems of chroma keying in
Figure 3 and show the quality of our approach in Fig-
ure 1. In direct comparison with chroma keying using
the green screen we note a significant improvement in
mask quality. At the same time the process becomes no-
ticeably faster and less error-prone since we do not have
to match a specific color when thresholding to generate
our masks. This problem is illustrated in Figure 4.

4.3 Discussion
We see a noticable drop in performance related to our
background replacement. This is to be expected since
we remove relevant cues for the 3D scene understand-
ing, such as global illumination, shadows, color bleed-
ing, and realistic occlusion. However, when consider-
ing the subset of data representations utilizing the back-
ground replacement, namely REAL, PBR, CHROMA,
and LUMA, we see the overperformance of LUMA.
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TRAIN SET: PBR-rTex PBR PBG REAL RBG CHROMA LUMA (Ours)

002_master_chef_can* 0.19/1.47/- 44.65/62.13/44.65 21.74/53.56/17.35 6.29/73.76/73.76 2.2/2.84/0.0 9.54/46.75/1.56 11.74/46.17/3.64

003_cracker_box 0.09/0.0/- 46.86/20.65/46.86 16.33/5.15/14.3 12.54/43.34/43.34 10.06/9.65/0.0 5.31/10.2/0.02 13.68/20.9/0.51

004_sugar_box 0.23/0.02/- 32.95/48.36/32.95 11.77/44.75/13.03 5.62/49.54/49.54 9.37/9.26/66.26 9.42/38.23/0.13 14.97/52.64/0.48

005_tomato_soup_can 0.08/0.3/- 38.04/55.53/38.04 9.59/59.13/10.47 5.75/70.21/70.21 9.44/9.43/78.67 4.73/36.42/0.46 10.27/29.17/1.42

006_mustard_bottle 0.65/0.14/- 38.86/78.2/38.86 14.19/76.07/7.38 10.68/88.82/88.82 12.7/12.45/9.72 16.75/73.42/2.48 17.63/79.9/5.3

007_tuna_fish_can 0.24/0.2/- 45.98/70.77/45.98 11.04/65.36/19.02 12.55/79.35/79.35 10.69/10.74/72.85 5.8/53.93/0.23 11.34/60.97/1.15

008_pudding_box 0.11/0.0/- 28.54/4.48/28.54 17.19/1.2/22.23 1.77/6.64/6.64 9.88/9.84/0.0 4.05/2.43/1.16 5.46/0.92/2.5

009_gelatin_box 0.11/0.0/- 36.82/71.21/36.82 15.61/5.73/22.94 6.11/65.41/65.41 11.61/11.12/66.94 2.26/0.52/0.6 1.33/0.55/2.41

010_potted_meat_can 0.31/0.27/- 36.28/37.64/36.28 11.4/18.3/11.33 4.04/54.23/54.23 9.06/9.04/40.73 1.29/0.27/2.83 11.52/26.22/0.88

011_banana 5.79/6.58/- 34.84/54.24/34.84 14.91/40.67/20.34 15.62/50.18/50.18 14.18/14.28/88.81 17.17/51.06/3.16 14.95/48.64/0.63

019_pitcher_base* 4.27/3.12/- 54.15/55.57/54.15 1.08/29.29/0.55 13.56/80.89/80.89 0.0/0.0/0.0 6.68/0.38/0.67 6.28/0.32/0.09

021_bleach_cleanser 0.92/2.56/- 33.82/43.58/33.82 8.23/36.19/6.22 2.42/61.31/61.31 2.09/2.15/8.35 8.03/47.44/1.56 10.53/54.61/5.26

024_bowl 2.14/0.22/- 54.84/46.75/54.84 4.96/0.01/5.24 9.04/56.9/56.9 2.47/1.93/0.0 0.06/0.21/0.08 6.99/14.44/1.3

025_mug 0.18/3.3/- 46.37/58.14/46.37 10.89/1.87/1.72 4.0/67.35/67.35 3.01/3.01/0.0 5.45/31.17/1.02 2.04/14.37/0.05

035_power_drill* 0.3/0.0/- 23.28/13.26/23.28 3.24/0.76/1.39 2.28/43.72/43.72 0.0/0.0/0.0 3.87/5.71/0.03 4.46/13.23/0.04

036_wood_block 2.1/0.37/- 45.99/24.57/45.99 15.57/8.22/14.56 8.42/34.06/34.06 5.85/5.8/0.0 10.28/12.75/0.64 14.1/17.32/2.53

037_scissors 0.67/0.0/- 19.32/5.48/19.32 0.67/0.16/3.42 5.98/1.96/1.96 1.36/1.32/0.0 1.4/0.33/0.69 1.35/0.52/0.01

040_large_marker 0.04/0.0/- 16.1/47.65/16.1 2.54/22.2/9.52 1.83/56.73/56.73 0.47/0.41/8.58 0.87/31.87/0.23 0.16/5.42/0.4

051_large_clamp 0.85/0.0/- 18.2/47.43/18.2 0.07/0.25/2.5 2.96/6.4/6.4 0.07/0.09/0.01 1.85/0.28/2.01 2.93/17.75/0.07

052_extra_large_clamp 0.38/0.17/- 19.27/7.21/19.27 0.01/0.0/2.45 2.38/9.8/9.8 0.5/0.08/0.0 8.79/11.31/1.13 2.95/0.29/1.82

061_foam_brick 0.71/0.01/- 36.94/55.61/36.94 15.86/3.38/24.54 8.09/67.82/67.82 6.99/6.63/0.0 6.43/1.64/1.11 6.01/5.22/0.91

AVERAGE YCB-V 0.97/0.89/- 35.81/43.26/35.81 9.85/22.49/10.98 6.76/50.88/50.88 5.81/5.72/21.0 6.19/21.73/1.04 8.13/24.27/1.49

AVERAGE YCB-V18 0.87/0.78/- 35.0/43.19/35.0 10.05/21.59/11.73 6.66/48.34/48.34 6.65/6.51/24.5 6.11/22.42/1.09 8.23/24.99/1.54

Table 1: AP (higher is better) of all evaluated data representations, each tested on PBR, REAL, and in-distribution.
In-distribution means the test set stems from the same data source (e.g. photograph, rendering, crop and paste)
as the training set. Results on REAL in bold font. As expected, we see best results when training on the train
split of the real data (REAL), followed by the physically simulated 3D scenes (PBR). Most importantly, among
all 4 methods using the cut and paste approach for background replacement (PBG, RBG, CHROMA, LUMA),
luminance (our proposed method) outperforms all others when tested on the real test data (REAL).

TRAIN SET: PBR-rTex PBR PBG REAL RBG CHROMA LUMA (Ours)

002_master_chef_can* 8.05/18.8/- 63.67/77.07/63.67 39.66/71.67/54.88 14.9/79.0/79.0 4.59/4.63/0.0 34.94/74.8/9.17 33.24/71.97/16.74

003_cracker_box 7.51/0.22/- 62.82/66.44/62.82 34.83/49.02/56.82 22.93/62.89/62.89 15.5/21.64/0.0 13.62/36.22/1.14 26.64/48.53/4.63

004_sugar_box 6.75/2.61/- 53.39/66.8/53.39 31.07/74.37/48.63 18.53/61.63/61.63 27.76/75.68/77.14 22.13/52.69/5.68 32.84/69.07/7.23

005_tomato_soup_can 4.2/5.96/- 54.06/69.71/54.06 22.89/66.91/35.95 20.81/75.09/75.09 26.39/68.96/84.03 25.11/54.96/7.86 30.4/61.8/14.32

006_mustard_bottle 11.46/8.27/- 57.22/87.6/57.22 27.01/83.87/34.08 23.68/91.27/91.27 28.38/82.33/55.56 30.54/83.87/13.41 32.17/84.13/21.22

007_tuna_fish_can 7.29/4.37/- 57.74/78.83/57.74 26.17/72.1/51.98 30.23/83.77/83.77 30.72/75.17/84.8 24.34/72.77/7.5 24.88/73.3/11.4

008_pudding_box 3.31/0.27/- 48.6/56.4/48.6 33.25/23.73/65.56 14.17/48.93/48.93 24.87/54.27/0.0 26.21/43.6/8.24 27.76/27.07/10.97

009_gelatin_box 2.96/0.0/- 49.85/78.4/49.85 26.41/50.8/60.06 21.31/74.27/74.27 28.77/72.4/85.1 10.21/23.87/4.89 8.33/16.27/9.05

010_potted_meat_can 6.69/0.84/- 53.21/64.98/53.21 28.8/48.09/38.76 19.73/59.6/59.6 28.64/54.31/78.69 7.47/10.4/7.67 26.99/52.93/5.43

011_banana 26.99/31.8/- 49.23/70.87/49.23 24.18/55.27/46.25 28.16/61.4/61.4 23.91/54.07/90.0 25.33/58.27/15.58 22.91/55.33/10.21

019_pitcher_base* 29.3/28.53/- 71.89/77.33/71.89 4.47/34.76/9.04 26.38/84.22/84.22 0.0/0.0/0.0 27.79/8.18/5.28 25.67/6.44/3.86

021_bleach_cleanser 16.59/17.13/- 54.95/60.43/54.95 22.5/58.4/33.01 13.72/71.0/71.0 2.78/17.27/24.38 20.38/59.2/11.14 20.94/63.1/13.81

024_bowl 25.35/9.47/- 66.4/73.07/66.4 16.25/1.13/29.93 14.96/63.13/63.13 2.67/18.47/0.0 0.58/5.0/4.0 12.03/55.6/11.33

025_mug 7.74/29.13/- 60.39/74.13/60.39 17.04/11.47/22.32 18.81/71.93/71.93 15.77/72.2/0.0 19.77/72.53/10.26 6.37/45.8/2.7

035_power_drill* 7.57/0.07/- 47.82/44.43/47.82 11.34/7.3/25.11 14.38/54.23/54.23 0.0/0.0/0.0 24.05/41.73/1.92 20.71/54.23/0.96

036_wood_block 15.6/19.87/- 62.63/65.73/62.63 32.68/32.93/46.97 20.44/50.8/50.8 12.61/28.67/0.0 26.27/56.67/8.75 28.67/57.07/9.82

037_scissors 7.87/0.27/- 34.22/20.8/34.22 4.53/1.73/35.71 12.38/6.4/6.4 9.77/8.27/0.0 9.97/6.27/3.09 7.06/3.73/1.22

040_large_marker 2.72/0.13/- 30.6/62.0/30.6 8.85/39.67/38.86 7.12/63.33/63.33 8.13/60.53/33.79 6.54/59.8/5.68 3.54/31.47/3.1

051_large_clamp 6.62/0.0/- 43.2/69.8/43.2 3.06/12.47/28.43 10.62/32.8/32.8 0.35/11.47/3.33 12.01/9.8/10.44 13.17/36.53/2.86

052_extra_large_clamp 8.39/4.2/- 47.61/45.87/47.61 0.77/0.0/30.26 9.41/35.87/35.87 0.07/0.07/0.0 21.33/26.93/6.18 12.54/9.07/4.32

061_foam_brick 6.92/3.47/- 52.27/72.93/52.27 25.99/59.87/56.78 23.88/76.27/76.27 19.89/71.73/0.0 22.89/25.47/4.77 22.8/54.4/6.92

AVERAGE YCB-V 10.47/8.83/- 53.42/65.89/53.42 21.04/40.74/40.45 18.41/62.28/62.28 14.84/40.58/29.37 19.6/42.05/7.27 20.93/46.56/8.2

AVERAGE YCB-V18 9.72/7.67/- 52.13/65.82/52.13 21.46/41.21/42.24 18.38/60.58/60.58 17.05/47.08/34.27 18.04/42.13/7.57 20.0/46.96/8.36

Table 2: AR (higher is better) of all evaluated data representation, corresponding to Table 1. Results on REAL in
bold font. LUMA (Ours) compares favourably, outperforming PBG, RBG, and CHROMA.
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Figure 3: Some of the problems with chroma keying.
Color bleeding leads to part of the object appearing
greenish, which leads to imperfect masking (top left).
Luminance keying (top right) in contrast gives much
improved masking. Other problems with chroma are
the high reflectivity of conventional backgrounds, that
lead to a "halo" effect at the edges (bottom left), and the
cutting out of object parts close to the background color
(bottom right).

Figure 4: Another problem of chroma keying. While
the lighting did not change, a slight change in camera
settings between two video clips lead to very different
tones of green, making the thresholding much harder
compared to luminance keying.

At the same time this relative gain in performance of
REAL and PBR comes at a cost: creating a suitable big
dataset to be able to train on REAL requires (usually
manual) labeling, while the creation of a PBR dataset
presumes the existence of 3D meshes or requires the
scanning of the objects. Also, we have a throughput
of roughly 50 images rendered per minute on a single
A100 GPU, making the PBR dataset costly in terms of
resources and time.

5 CONCLUSION
In conclusion, we propose a luminance keying method
using a black screen with 99.99% light absorption

for efficient training data acquisition, significantly
simplifying the process of training deep neural net-
works for object segmentation and detection. Our
technique overcomes the limitations of manual annota-
tion and rendering, traditionally required for creating
annotated datasets, by employing a high-absorption
black background to facilitate quick video recording
and brightness-based automatic masking of objects.
This approach not only expedites the data preparation
process but also eliminates common issues associated
with chroma keying, such as color bleeding and color
overlap. We did extensive evaluation and find that our
method compares favourably to much more involved
data generation approaches on the YCB-V object set.
Overall, this work enables the rapid deployment of
deep learning applications across various scales, de-
mocratizing access to state-of-the-art object detection
and segmentation technologies. For reproducabil-
ity and further research we publish our processing
code, as well as our black screen YCB-V recordings
at https://huggingface.co/datasets/
tpoellabauer/YCB-V-LUMA.
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ABSTRACT
Personality traits are characteristics that can describe a person’s behavior, also reflecting their thoughts and feel-
ings. There are those who support the idea that traits can be strong predictors of leadership, implying emotional
stability of the individual. Knowing the importance of the subject, areas such as psychology and neuropsychol-
ogy have been studying and analyzing personality, aiming to better understand such patterns that guide behavior.
A model widely accepted to categorize personality traits is known as Big Five and uses the acronym OCEAN:
Openness, Conscientiousness, Extroversion, Agreeableness and Neuroticism. On the other hand, new approaches
that emerged from the field of computer vision allow to analyzing personality from visual data, making this new
area of research quite attractive for researchers. This work presents an initial study of the use of the Transformer
architecture to analyze personality traits, with a specific focus on extroversion, using digital videos of human faces.
A literature review was carried out focusing on the application of computational techniques in this issue involving
deep learning and Transformers. We also accomplished an experiment analysing Extroversion personality trait, as
a starting point for our studies, using the ChaLearn dataset. An AUC (Area under the ROC Curve) value of 71.04%
was obtained, with fine adjustment of parameters in the transformer, demonstrating the robustness of the proposed
architecture.

Keywords
Personality trait Recognition, OCEAN model, Affect Computing, Video Processing.

1 INTRODUCTION

To understand what Personality Traits are, we first
need to understand what are the dimensions that define
them. The theory of personality traits is an approach
based on the definition and evaluation, and it is related
to habitual patterns of behavior, thoughts and emotions
that are relatively stable over time [costa1998trait].
They are important for psychology because they help
to describe and explain how people behave and react
to different situations [thoresen2004big]. They also
provide a structure to understand the consistency and
stability of an individual’s psychological characteristics

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

in different contexts [chioqueta2005personality]. To
understand human personality, theorists and psychol-
ogists have developed frameworks for organizing this
vast amount of information, often using personality
scales. Different feature models have been proposed
in order to represent personality traits such as 16PF
[cattell1986number], Big-Two [abele2007agency],
HEXACO [ashton2007empirical], NEO-PI-R and
NEO-FFI [sharpe2001revised]. Nevertheless, in 1961,
Tupes and Christal [tupes1992recurrent] found five
recurring factors in analysis of personality classifica-
tions. This model became known as the Five Great
Traits, or simply Big Five, represented by OCEAN
Acronym: Openness, Conscientiousness, Extroversion,
Agreeableness and Neuroticism. The Big Five became
the most adopted and influential model in the field of
psychology. Among the various application areas of
using a personality trait representation model, we have:
Psychology: used to better understand human behavior
and help in the diagnosis and treatment of mental
disorders; Human Resources: evaluation of job
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candidates, helping in the selection of those who best
fit the needs of the company; Marketing: Identifying
consumer profile and personalizing of strategies, and
Artificial Intelligence Systems: Considered one of
the most promising areas of the moment, helping to
improve the interaction between humans and machines.

Currently, the assessment of personality traits is
performed mainly through questionnaires and struc-
tured interviews conducted by psychologists or
other mental health professionals. Psychological
studies have shown that the face can also play a
central role in everyday interpersonal assessments,
being of great importance for the identification
of personality traits [todorov2008understanding].
Several papers have established a correlation be-
tween facial appearance and personality traits
[kramer2010internal] [penton2006personality]
[little2007using] [sutherland2015personality]
[junior2019first] [gucluturk2017visualizing]. In
this context, computer vision techniques can play
an important role in supporting the assessment of
personality traits.

In recent years, advances in the area of natural
language processing and, in particular, the use of
Transformer architecture achieved high effectiveness
in textual analysis tasks. The most popular Trans-
former architectures include Bidirectional Encoder
representations of transformers BERT [devlin2018bert]
and Generative Pretrained Transformer (GPT) v1-3
[radford2018improving] [radford2019language], for
instance. These models have the ability to understand
and process large volumes of text, identifying complex
semantic patterns and relationships. For this reason,
many researchers directed their efforts to the appli-
cation of this new approach in their computer vision
problems, in order to obtain the first impressions about
an individual’s personality trait.

Transformer is based on two components, where the
first encodes a source sentence x and the second de-
codes a target sentence y. The Encoder-Decoder struc-
ture is used in most neural sequence transduction mod-
els. The Transformer architecture proposed by Vaswani
[vaswani2017attention], is an innovative approach to
sequence processing, which overcame many limitations
of previous approaches in Natural Language Processing
(NLP). Its ability to model long-range relationships and
complex contexts revolutionized the field and led to the
development of powerful models such as BERT, GPT
and others that achieved exceptional results. Multi-head
attention is the backbone of the Transformer architec-
ture.

This paper presents an initial study of the application
of Transformers Architecture to identify extroversion
personality trait through face analysis in digital videos.
We intend to answer the following research question:

Do Transformers offer significant benefits in the con-
text of identifying personality traits due to their con-
textual learning capability, long-term representation,
generalization, and interpretability? We also describe
and present a systematic review of the literature in the
area, summarizing gaps and opportunities, citing exist-
ing datasets and the approaches used to treat the prob-
lem of identifying personality traits. The rest of this pa-
per is organized as follows: Section 2 presents a brief
review of related works and the systematic review car-
ried out. The approach adopted is presented in Section
3. Section 4 shows initial results and presents the per-
formance evaluation by means of accuracy metric. Fi-
nally, in Section 5, we present the main conclusions and
future work.

2 RELATED WORKS
We obtained the state-of-the-art through a systematic
review of the literature (SRL) and were used these
key-words: personality traits, computational Tech-
niques, computer vision, images, videos, machine
learning and deep learning, following the proce-
dures established in the methodology proposed by
[kitchenham2009systematic]. The initial survey of this
systematic review resulted in 281 papers, of which 219
works analyzed were identified as not being duplicated,
from these, 39 were selected. However, to cover the
most recent work, an update to the SRL was carried
out in May 2024, resulting in an increase of 17 new
articles, bringing the total to 56. The papers were
collected from 7 different databases, as can be seen
in Table 1. We can see that most of the papers were
selected from the IEEE database.
The analysis step of each of the selected articles was
guided by three research questions:

• What computational approaches and data modalities
were used to assess personality traits?

• What classification or regression models were used?

• Which dataset was used for Training and Testing?

Searched databases Number of Papers
Web of Science 7
Science Direct 5
Springer 3
Engineering Village 3
IEEE 23
ACM 4
Scopus 10
Willey 1
Total 56

Table 1: Number of articles extracted per search base.

The SRL was carried out at the end of 2022 and up-
dated in May 2024, thus considering works published
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between 2017 and 2024. Figure 1 shows the distribu-
tion of these articles over the years researched.

Figure 1: Papers published per year. Source: Author.

Table 2 shows some of the most relevant papers that
are related to our work. In addition to highlighting the
adopted approach, it also shows the modalities concern-
ing the type of data used to assess personality traits.

Paper Year Approach Modalities
Zhang et al. 2017 CNN I
Rai, Nishant. 2016 CNN A+I
Wei et al. 2017 CNN A+I
Agastya et al. 2019 CNN V+I
Yesu et al. 2021 CNN V+I
Moreno et al. 2020 DCNN I
Xu et al. 2021 DNN I
Ventura et al. 2017 DAN I
Ibrahim et al. 2023 CNN I
Gucluturk et al. 2017 Resnet V+I
Bounab et al. 2024 LSTM V

Table 2: Main Features Paper | A-Audio, I-Image, V-
Video

Within the established period of the SRL, we
noticed a large presence in the approach to the
modalities of Images and Videos. Both Ventura
[Ventura2017CVPRWorkshops] and Gucluturk
[gucluturk2017visualizing] in 2017 used the Regres-
sion technique for their works. While Ventura’s work
used the interpretability of the video modality and
worked with the architecture called DAN+, which is
an extension of the Descriptor Aggregation Networks
(DAN), Gucluturk’s model [gucluturk2017visualizing]
used a ResNet Deep learning methodology, which
took advantage of the visual and auditory informa-
tion available in the dataset. Still in 2017, Zhang
[zhang2017physiognomy] published a paper that
aimed to evaluate the personality traits and intelligence
of individuals from their faces, using images. They
explained that the face can play a crucial role in
interpersonal relationships, thus being able to impact
important social events, such as elections and court
decisions. The authors study uses Convolutional Neu-
ral Networks (CNN) to recognize personality traits.

The work presented by Rai Nishant in 2017[rai2016bi]
used Regression Assignments and CNN. Their ap-
proach aimed to predict features by combining several
models including Deep Neural Networks that fo-
cused on leveraging visual information on faces.
In addition to observing face information through
images, this work also combine the use of audio in
order to provide a more precise accuracy. In 2019,
Agastya[agastya2019systematic] presented a significa-
tive systematic review of the literature, analyzing 25
papers. This work sought to understand the approaches
in the recognition of personality traits using deep learn-
ing algorithms. Yesu’s work in 2021[yesu2021big]
has focused on image observation using Convolutional
Neural Networks. His work aimed to explore the
possibility of mapping the Big Five personality traits,
generating a score for each of the personalities. The
goal is training computers to understand the personality
traits of human beings based on their facial shapes.
At the end of reading the works, we identified the lack
of datasets with videos labeled with personality traits
to be used in the assessments. Another point is that
several Deep Learning techniques such as CNN, SVM,
DAN, DNN, etc are being used, however, no work
using the transformers architecture was found. This
was the main motivation for pursuiving this work. The
Figure 2 illustrates the distribution of the most used
datasets in the articles, reflecting the papers that were
selected during the SLR.

Figure 2: Dataset used by Papers selected during the
SLR. Source: Author.

3 PROPOSED APPROACH

In this section we present our proposed approach to
classify the extroversion personality trait. It consists of
three main steps: Dataset preparation, Pre-processing
and Classification, according to the pipeline shown in
Figure 3. Each step is described through the remainder
of this section.
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Figure 3: Proposed Methodology approach using Transformer for extroversion personality trait recognition.
Source: Author

3.1 Dataset preparation
This step is responsible for presenting dataset charac-
teristics and how its preparation was implemented.

3.1.1 First Impressions dataset
First Impressions is a personality trait dataset com-
prising 10,000 clips (average length 15 seconds) ex-
tracted from over 3,000 different high definition (HD)
YouTube videos of people looking and speaking in
English into a camera. Videos are split into train-
ing, validation, and testing sets with an aspect ratio
of 3:1:1. People in the video have different gender,
age, nationality and ethnicity[escalante2020modeling].
Videos were labeled using Amazon MechanicalTurk
(AMT) service; Its post processing generate the val-
ues for the different personality traits. Some princi-
ples were adopted to guarantee the reliability of the
labels[escalante2020modeling]. The personality traits
considered were those of the Big Five model.

3.1.2 Frame Extraction
In this step we extracted the ChaLearn dataset package
First Impressions V2 (CVPR’17) 1. Also, we selected
frames taken from the videos at regular intervals. For
our analyses, we developed a Frame extractor from the
labeled videos of the ChaLearn dataset and we set the
Number of Frames as 8 and the frame format as (224,
224, 3). Figure 4 illustrates a frame extraction for the
"zEyRyTnIw5I.005.mp4" video, classified as Extro-
verted.

1 https://chalearnlap.cvc.uab.cat/

Figure 4: Resulting frames obtained from video extrac-
tion step. Source: Author.

3.2 Preprocessing
This step consists of two data preparation tasks for
the classification model: Face Recognition CutOut,
and Fiducial Point Map. In our proposed work, Face
Recognition CutOut from video frames is performed
by Google Media Pipe Face Mesh Library. Google
MediaPipe is able to predict and return landmarks
of a human face based on only one perspective with
high accuracy [ali2021classical]. Human face identi-
fication through facial alignment is one of the main
challenges of the pre-processing stage in the general
facial recognition process. So, Google’s MediaPipe
library uses a deep learning model trained on a large
amount of data to perform facial mapping using
landmarks. Specifically, MediaPipe Face Detection
and MediaPipe Face Mesh are two CNN models
used to detect faces and estimate facial landmarks,
respectively. In the second preprocessing task, to
perform the Fiducial Point Map, we defined a list with
just 68 landmarks that contains the indices of the facial
landmarks that will be extracted from the detected face
[zhang2022applications]. These indices correspond to
the fiducial points identified by MediaPipe’s Face Mesh
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model. The Face Mesh model is capable of detecting up
to 468 facial landmarks in an image. Thus, only 68 of
the 468 points are selected for extraction. These points
were chosen because they are the most relevant points
for face recognition analysis. This list of fiducial points
is essential for extracting relevant facial features from
an image, such as the contours of the face, the position
of the eyes, mouth, etc [samaan2022mediapipe]. These
features can be used for a variety of purposes, such
as facial recognition, facial expression analysis, blink
detection, among other computer vision applications.

3.3 Classification
The classification of personality traits is performed
using the Transformers architecture. The Trans-
formers architecture was proposed by Vaswani
and his team, in the article Attention is All You
Need[vaswani2017attention], and it is the approach
of a new simple network architecture, based only on
attention mechanisms, not requiring recurrence and
convolutions. Attention mechanisms in neural net-
works, such as Transformer, allow the network to focus
on specific parts of the input during processing. Instead
of treating all input at once, these mechanisms priori-
tize certain parts, giving them more "attention" during
calculation. Thus, in the context of images or videos,
attention mechanisms allow the network to focus on
specific regions of the image or specific frames of the
video. Instead of processing the image as a whole at
once, the network with attention mechanisms can direct
its attention to specific parts of the image that are most
relevant to the task at hand. This allows for a more
focused and adaptive approach to processing visual
information, which can lead to better performance in
tasks such as object recognition, image segmentation
or video analysis. This third block is divided into two
stages. The first one, is the Transformer Model: Step
where we will apply the Transformer architecture in
Image Classification to identify personality traits and
the second, is the Personality Traits Classification:
Results of image classification, according to their
respective personality traits.

4 INITIAL EXPERIMENT & RESULTS
In this section we show our initial results obtained for
the extroversion personality trait through the proposed
approach described in the previous section. Table 3
shows the Hyperparameters that were used in this first
experiment.

• N HEADS (Number of Heads): This parame-
ter refers to the number of attention heads in a
Transformer model.

• N LAYERS (Number of layers): Indicates the num-
ber of layers stacked in the Transformer model.

Hyper Parameter Value
N_HEADS 2
N_LAYERS 5
DROPOUT 0.3
MLP 256
BATCH SIZE 1280
ACTIVATION gelu
D_MODEL 128
D_FF 512
EPOCHS 5000

Table 3: Main Feature parameters

• DROPOUT: Dropout is a regularization technique
commonly used in neural networks to prevent over-
fitting. This value represents the dropout rate, that is,
the proportion of units that will be temporarily deac-
tivated randomly during training to prevent the net-
work from becoming too dependent on certain neu-
rons.

• MLP (Multilayer Perceptron): This is the size of the
hidden layer of the feedforward neural network in-
side the Transformer.

• BATCH SIZE: The batch size indicates the number
of training examples used in one iteration.

• ACTIVATION: Refers to the activation function
used in the hidden layers of the neural network.

• D MODEL (Model dimension): It is the dimension
of representation of the input and output vectors in
each layer of the model.

• D FF (Feedforward Dimension): It is the dimension
of the hidden layer in the feedforward neural net-
work inside the Transformer.

• EPOCHS (Epochs): Represents the number of times
the entire dataset is passed through the model during
training.

We employ the TensorFlow framework to train the pro-
posed network on a server with 64-GB RAM, Xeon
12x 2.4GHz (computer equipped with a Xeon processor
with 12 processing cores), and 1x TITAN X (computer
capable of handling advanced graphics and computa-
tionally intensive tasks). Each video in First Impres-
sions Dataset receives a score associated with each of
the personality traits: extroversion, neuroticism, agree-
ableness, conscientiousness and openness. In this way,
and taking into account the 6000 videos destined for
the training stage, we create a new dataset designed
for a binary classification, in which these videos were
separated into two distinct classes: Extroversion and
non-Extroversion. In our case, we used a threshold of
0.5 for the extroversion attribute, as recommended by
[escalante2020modeling].
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Figure 5: Accuracy obtained in the proposed approach. Source: Author.

Table 4 shows the number of videos per class in this
initial experiment.

Personality Trait Quantity %
Extraversion 2.688 44.8
Non-Extraversion 3.312 55.2
Total 6.000 100.0

Table 4: Number of Videos for Extraversion class

Finally, following the training stage, we implemented
the classification stage for a total of 2000 videos from
the validation set. Figure 5 presents the Accuracy met-
ric obtained from the both training and validation sets
according to the number of epochs. We observe that the
training convergence in 750 epochs demonstrates that
the model is learning the patterns in the training data,
from this moment on. This is positive, as it implies
that the model can generalize and adjust its weights
to achieve stable performance for unknown data. A
validation AUC accuracy of 71,04% is very positive,
demonstrating satisfactory performance, indicating that
the model is generalizing well to data not seen during
training. It is also possible to verify that validation ac-
curacy followed training accuracy. When this happens

in a machine learning model, it is generally a positive
sign as it suggests that the model is generalizing well,
which is one of the main goals in model training.

Table 5 shows a comparison of the AUC accuracy re-
sults for related works, exclusively to the Extroversion
personality trait, comparing to the accuracy obtained
in the first experiment carried out in our proposed ap-
proach.

Paper Approach AUC
Proposed Approach Transformer 71.04%
NJU-LAMDA CNN 83.91%
Evolgen LSTM 82.50%
DCC ResNet 81.78%
Ucas CNN 84.21%
BU-KNU CNN 84.38%
Pandora CNN 80.97%
Pilab CNN+DAN 71.39%
Kaizoku CNN 72.86%
ITU-SiMiT CNN 44.10%

Table 5: Performance comparison: AUC results for the
Extroversion personality Trait [ponce2016chalearn]
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5 CONCLUSIONS
This work carried out extroversion personality trait
classification using a Transformer architecture. A
dataset widely adopted in the literature was used in
the experiments, obtaining an initial AUC of 71,04%,
with few adjustments in the hyperparameters of the
classification model. For now, the goal was to vali-
date the proposed pipeline. In a scenario of binary
classification of personality traits, extroversion or not,
Transformers emerge as a powerful and innovative tool.
Its ability to capture complex contexts, learn mean-
ingful representations and deal with image sequences
opens opportunities to a deeper understanding of the
relationship between video and personality. Therefore,
in this context, the main contributions of our paper
was providing a systematic literature review of the
use of computational techniques in order to classify
personality traits. In addition, we present a pipeline in
a novel approach able to classify personality traits. As
future works, the challenges we hope to face are related
to three tasks: 1. Descriptors - Use of new descriptors
that combine facial landmarks; 2. Personality Traits
- Obtain satisfactory accuracy results involving the
five great personality traits that make up the Big Five
model; and, 3. Data Analysis - Analyze distinct
datasets, allowing personality traits to be identified on
a large scale.
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