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ABSTRACT
Transformers are emerging as the new gold standard in various computer vision applications, and have already
been used in face anti-spoofing demonstrating competitive performance. In this paper, we propose a network with
the ViT transformer and ResNet as the backbone for anomaly detection in face anti-spoofing, and compare the
performance of various one-class classifiers at the end of the pipeline, such as one-class SVM, Isolation Forest,
and decoders. Test results on the RA and SiW databases show the proposed approach to be competitive as an
anomaly detection method for face anti-spoofing.
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1 INTRODUCTION
While face recognition is the biometric authentication
method of choice in many application domains, it is
still considered extremely vulnerable to presentation at-
tacks. In such attacks, an imposter is trying to gain
unlawful access by presenting in front of the system’s
camera a printed photo, or an electronic screen play-
ing a video of a rightfully registered person. The vul-
nerability of face recognition systems to such spoof-
ing attacks means that they cannot be safely deployed
in security-sensitive applications in uncontrolled envi-
ronments, as for example ATM machines in the high
street. Presentation attack detection (PAD) addresses
this problem by developing binary classification algo-
rithms aiming at distinguishing between the genuine,
bona fide samples presented to the system’s camera,
and the imposter ones.

The most common approach to PAD is to train a bi-
nary classifier on both the bona fide and the imposter
classes. In this case, training and testing are performed
within specialised face anti-spoofing databases, which
due to the high cost of producing imposter samples have
limited variability, raising questions on the generalisa-
tion power of the classifier, especially on unseen at-
tacks in scenarios that have not been covered by the
testing databases. In particular, while the current state-
of-the-art algorithms can show good results on unseen
attacks within the same database, and some general-
isation power between specific databases, a thorough
cross-database validation is expected to show that they
do not always generalise well. For example, in [1] all

the eleven methods under comparison show HTERs be-
tween 24% and 60.6% in cross-database generalisation
task from the Replay Attack database to the CASIA-
MFSD.
An alternative approach aiming at addressing the gen-
eralisation problem is anomaly detection based on one-
class training. We note that in the limited testing envi-
ronments provided by the existing databases, anomaly
detection approaches underperform two-class training
under most testing protocols. However, they have the
conceptually appealing property that they neither at-
tempt to learn specific presentation attacks nor, most
importantly, specific environments where such attacks
where modelled during the creation of the database.
Thus, anomaly detection for face anti-spoofing is still
a very active research area [2, 3].
In this paper, we use the Vision Transformer (ViT) [4]
and the ResNet [5] as backbones for anomaly detec-
tion for face anti-spoofing. Our motivation for using
ViT was the observation that while in several computer
vision tasks Transformers are replacing Convolutional
Neural Networks (CNNs) as the new gold standard, and
they have already been proposed for the PAD problem
under a two-class training setting [6], they have not
been used yet for PAD in the anomaly detection setting.
Regarding the use of ResNet, we note that the size of
the receptive field is one of the primary distinctions
between a CNN-based model and a transformer-based
model. Whereas due to the self-attention mechanism,
the transformer is superior in its ability to capture a
pixel relation over a long distance [7], nonetheless, it
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lacks a reliable way of capturing spatial information
within each patch, so it may overlook a crucial spa-
tial local patterns, such as textures. However, CNNs
are different in this regard, focusing on textures rather
than shapes to identify objects in images [8]. ResNet
in particular is a highly efficient neural network archi-
tecture and its residual learning methodology addresses
the degradation issue which exists in many other CNN
models. Thus, overall, we leverage the strengths of two
state-of-the-art architectures, a transformer and a CNN
to extract reliable features. Our ablation study shows
that the combined ViT ResNet backbone gives signifi-
cant improvement over a single network backbone.

Our main contributions are summarised as follows:

• A novel Anomaly detection Vision Transformer
(AnoFormer), with ViT and ResNet in the backbone,
for presentation attack detection.

• A comparison of various one-class classification
models, showing that a decoder with MSE as a loss
function outperforms the other configurations.

• An ablation study showing that the use of a combi-
nation of ViT and ResNet in the backbone outper-
forms the use of single networks.

The rest of the paper is organised as follows. In Sec-
tion 2 we review the related work. In Section 3 we
present the proposed AnoFormer and its implementa-
tion details. In Section 4 we present the results, and we
briefly conclude in Section 5.

2 RELATED WORK
2.1 Face Anti-spoofing
The earlier machine learning approaches to PAD were
based on the extraction of handcrafted features such as
Histograms of Oriented Gradient (HOG) [9], Differ-
ences of Gaussians (DoG) [10, 11], and Local Binary
Patterns (LBP) [12, 13, 14]. Recently, deep learning has
replaced traditional feature extraction, and the research
focus has shifted towards the design of the most suitable
neural network architectures. Yang et al. [15] were the
first to use CNNs in face anti-spoofing, while, [16, 17],
followed by [18, 19], proposed approaches competitive
to the then state-of-the-art.

Better approaches were found to enhance results
such as including Central Difference Convolutional
Networks (CDCN), and transformers [1, 20, 21],
and the use of a combination of more than one deep
network type as in [22]. A newer approach is to rely
on the use of independently trained neural networks to
infer depth information [23, 24, 25], or Near Infrared
(NIR) information [26]. Most recently, in this direction
of work, [27] proposed the use of a dual-stream CNN

framework. One stream uses learnable frequency filters
to extract features in the frequency domain that are
less influenced by variations in sensors and lighting,
while the other stream uses standard RGB images to
supplement these features. A hierarchical attention
module is used to combine the information from these
two streams at different stages of the CNN.

2.2 Anomaly detection in face anti-
spoofing

In principle, applying anomaly detection to face anti-
spoofing problems should lead to improved generaliza-
tion capabilities, since it makes no assumptions about
the type of attack or the environment in which it took
place. Arashloo et al. [2] was the first to use anomaly
detection for face anti-spoofing, using One-Class SRCs
and One-Class SVMs as generative and non-generative
classifiers respectively. One class GMMs were used
in [28] and [29], while combinations of CNNs with
one class classifiers were proposed in [30, 31, 32, 33].
Baweja et al. [34] introduced in the training a normally
distributed pseudo-negative class and a pairwise confu-
sion loss. Feng et al. [3] proposed a residual learning
framework with a spoof cue generator and an auxiliary
classifier. Abduh and Ivrissimtzis [35] used a convolu-
tional autoencoder and augmented the training set with
images from the in-the-wild.

2.3 Transformers
Transformers are for some years now the de facto stan-
dard in natural language processing (NLP) applications
and recently have been established as a state-of-the-
art computational technique in many computer vision
problems too. The potential of the transformers in com-
puter vision tasks was demonstrated by the ground-
breaking Vision Transformer (ViT) [4], which is still
in wide use, and it is the network that we use here. Liu
et al. [36], introduced the Hierarchical Vision Trans-
former Using Shifted Windows, showing that it works
very well as a general-purpose backbone for computer
vision problems.

Regarding the use of transformers for anomaly detec-
tion in computer vision tasks, Mishra et al. [37] pro-
posed a transformer based network for detecting and
locating anomalous regions in images. By incorporat-
ing transformers, their method is sensitive to the spatial
details of the patches, which are analyzed by a Gaussian
mixture density network to identify anomalous regions.
Lee et al. [38] proposed AnoVit, a ViT-based encoder-
decoder for anomaly detection and localization, while
Mukherjee et al. [39] proposed OCFormer, a one-class
transformer for image classification.

Regarding the use of transformers in face anti-spoofing,
George and Marcel [6] proposed a ViT-based model
for the zero-shot PAD. Wang et al. [20] cross-layer
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relation-aware attentions (CRA) and hierarchical fea-
ture fusion (HFF). Liu and Liang [40] proposed the
Modality-Agnostic ViT (MA-ViT), using early fusion
to aggregate data from all training modalities, improv-
ing the model’s performance on arbitrary modal at-
tacks. Finally, Huang et al. [41] use an adaptive
transformer model for few-shot PAD across various
databases. To the best of our knowledge, there is
no study of transformer-based anomaly detection tech-
niques for PAD.

3 THE ANOFORMER
The proposed method uses feature vectors provided
by the pre-trained ViT and ResNet[5], which are then
processed by a one-class classification technique. In
our experimental study in Section 4 we show results
obtained by the use of isolation forests and one-class
SVMs. However, our focus is on training a decoder of
the feature vectors and then comparing the reconstruc-
tion error against a threshold to take the classification
decision.

3.1 Architecture
The architecture of the Anoformer is illustrated in
Fig. 1. The backbone networks are ViT, which, has
already demonstrated its potential as an embedding
extractor for the face PAD problem in [6] where a two-
class training of the ViT feature vectors gave results
competitive to the state-of-the-art, and ResNet-18, both
pre-trained on ImageNet [42].

Regarding the choice of specific ViT architecture,
we first note that our proposed model can work with
any version of ViT, providing compatibility with
future improvements to ViT. Here, we employed the
Data-Efficient Image Transformer [43] (DeiT-Base),
which is an improved version of ViT of lightweight
design. To learn diverse features, the training dataset’s
bona fide images are fed into the ViT and ResNet
networks. The ViT divides the input image into patches
and uses the extracted features as the sequence input
for the transformer, followed by transformer layers.
The transformer encoder layer is composed of multiple
encoder blocks, each with multi-head self-attention
(MSA) and multi-layer perceptron (MLP), as in [4].

The image patches undergo linear transformation to
produce the queries (Q), keys (K), and values (V) of the
self-attention mechanism, with position encoding (PE)
added to keep track of each input token’s position. The
MLP contains two linear layers with a GELU activation
function. Finally, the encoded patches are reshaped and
projected into a reconstruction vector via a learned pro-
jection matrix.

Attention(Q,K,V ) = Softmax
(

Q ·KT
√

dk

)
V (1)

The ViT leverages the attention mechanism which gath-
ers information from the entire input sequence. Self-
attention layers scan through a sequence of elements
and update them based on the information obtained
from the entire sequence. In essence, they simulate ex-
plicitly every pair-wise interaction that occurs between
the components of the input sequence. Thus, the self-
attention maps, which are learned separately for each
layer, are necessary for a transformer model to encode
the dependencies between input tokens.

Fig. 2 shows attention maps from different ViT layers
for a bona fide and an imposter input. We note the dif-
ference in ViT’s behaviour between the two classes, in
that certain prominent facial features such as eyes, nose,
and mouth are more prominent in the imposter attention
maps.

The decoder decodes the 768 × 1 reconstruction vec-
tor back to the original image shape. We used 4 trans-
posed convolutional layers, with ReLU in between, ex-
cept for the last layer, which is followed by a sigmoid
as the final activation function. The decoder part of the
Anoformer was trained with the features of the bona
fide images extracted from ViT and ResNet. The de-
coder is trained with the objective of minimizing the
error between the input and the output of the network,
aiming at reconstructing bona fide images with high fi-
delity.

3.2 Implementation
To avoid contributions from the input image’s back-
ground, we use the MTCNN algorithm for face de-
tection, and cropped the images, retaining the face re-
gions only. Then the images are rotated to have the
eye centres horizontally aligned and finally resized to
224 × 224, which is the native resolution of the ViT
transformer pre-trained on ImageNet.

In the final binary classification section, we used an
Adam optimizer with initial learning rate of 1e-4 and
batch size 16. A label smoothing cross entropy loss
function was used to train the classifier. The MLP
head is the binary classifier which contains two fully-
connected layers of dimensions 512 and 2. The devel-
opment environment was the PyTorch running on a PC
with an Intel CPU, 64 GB of RAM, and Google Colab
GPU.

Our backbone consists of two parts, the first part is
the Deit-Base [43] which spatial position embeddings,
to improve image processing capabilities which has an
output embedding dimension of 768. The second com-
ponent is a ResNet-18 network with 18 layers that have
once more been trained on ImageNet. The size of the
output from the ResNet is 2048. Therefore, in order
to bring the size of the outputs (features) produced by
ResNet down to the same level as those produced by
transformer 768, we add one dense layer at the very end
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Figure 1: Architecture of the Anoformer.

Figure 2: Visualisation of input faces from the Replay
Attack database, and the attention maps of several ViT
layers. Top two rows: a bona fide face. Bottom two
rows: an imposter face.

of the network. Finally, then concatenate the two fea-
ture sets, the one from Deit-Base and that from Resnet-
18, to create a vector of 1536 features. This data is then
compressed to a size of 768 by adding one dense layer
before being sent to the decoder.

The decoder was trained under the Mean Squared Er-
ror (MSE) loss function. While it is a pixel-level loss,
assuming independence between pixels, it has been re-
peatedly shown that it works very well in practice, and
its simplicity and the fact that it was supported by our
development environment led to fast training times.

Regarding the computation of the anomaly score, that
is, the error between the input and the reconstructed im-
age, the natural choice is to use the loss function itself,
and thus, we use MSE as our default. We experimented
with other error metrics, such as Cosine Similarity, the
Structural Similarity Index (SSIM), and the Frechet In-
ception Distance (FID) score [44]. We found that FID
performed comparably to MSE, even though the de-
coder was trained with MSE, and thus, we include some
relevant results in Section 4.

4 RESULTS

4.1 Databases
Our experiments were performed on two commonly
used face anti-spoofing databases, the Replay-Attack
(RA) [13], and the Spoof in the Wild (SiW) [17]. RA
is a low-resolution dataset, containing live and spoof
videos from 50 subjects, comprising three different pre-
sentation attack species, while SiW is a high-resolution
dataset with live and spoof videos from 165 subjects,
comprising eight different presentation attack species.
The larger number of subjects, the larger number of
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presentation attack species, and the higher variabil-
ity in subject poses and lighting conditions, mean that
SiW poses a more challenging classification problem
to tackle. We also note that another advantage of SiW
over other publicly available anti-spoofing datasets is its
racial variety, including a sufficient number of African,
Asian, Caucasian, and Indian subjects. It also has a
good split between male and female subjects.

We divided the RA and SiW databases into training,
validation, and testing sets with non-overlapping sub-
jects. In the validation and testing datasets of the
RA database, we included all three presentation attack
species; printed photo, video, and digital photo. In the
training and validation datasets of the SiW database,
we included three representative attack species; printed
photo, replay attack using iPhone, and replay attack us-
ing a tablet.

4.2 Evaluation Metrics
We report our results using the APCER, BPCER and
ACER metrics, which are the most commonly used er-
ror metrics in face anti-spoofing, recommended by the
ISO/IEC 30107-3:2023 [45] protocol for testing and re-
porting on biometric PAD.

The Attack Presentation Classification Error Rate
(APCER) measures the performance of the system on
attack images, that is, its ability to identify correctly
spoof images. Unlike the most commonly used in
binary classification problems False Positive Rate
(FPR), to compute the (APCER), we compute mis-
classification rates separately over each attack species,
and take the maximum. That is, APCER measures
the system’s performance under the most challenging
type of attack, rather than under the average attack.
The bona fide classification error rate (BPCER) is
the misclassification rate over the bona fide samples.
Finally, the ACER, which is considered a good measure
of the overall performance of an algorithm, is just their
average ACER=(APCER+BPCER)/2.

The definition of APCER as the maximum of the mis-
classification rates that are computed separately over
each attack species brings to the fore an important
methodological problem. When we measure the mis-
classification rates, do we use a single threshold for all
attack species, or do we choose a different threshold for
each one of them?

For example, in [6] different thresholds were used, and
thus different BPCERs are reported as corresponding to
each attack species, even though the dataset of bona fide
presentations is one. Here, we use a single threshold for
all attacks, firstly because in practice it is unrealistic to
expect prior knowledge of the attack species that will
inform the choice of threshold, and secondly, because
we think it is closer to the spirit of the ISO definition
of APCER, that is, to consider the worst case outcome

over all attack species, rather than splitting the problem
into smaller, easier to tackle sub-problems. In partic-
ular, we used the threshold corresponding to the Equal
Error Rate (EER) on an independent validation set from
the same database as the testing set.

4.3 Anoformer validation
In Tables 1 and 2 we report the results for four differ-
ent classifiers over the ViT+ResNet backbone, tested on
the RA and SiW databases, respectively. The one-class
SVM (OC-SVM) is a widely used one-class classifi-
cation method, being essentially an SVM trained with
positively labelled data only, and aiming at maximising
the separation of their class from the origin of the coor-
dinate system. The second classifier we used is the Iso-
lation Forest, which is based on decision trees and it is
theoretically justified under the assumption that anoma-
lies are “few and different”. We note that while this is
a very realistic assumption for the face anti-spoofing
problem, it is not reflected in the usual PAD evalua-
tion protocols that we also use here. Finally, in the
last two rows of the tables, we report error rates for
the Anoformer and the Anoformer with the FID met-
ric for the computation of the anomaly score as dis-
cussed in Section 3. We notice that the combination of
Anoformer with MSE in the reconstruction gives lower
ACERs on both databases, and it is the configuration
that we will evaluate.

Table 1: ViT + ResNet backbone with various one-class
classifiers tested on RA

ACER APCER BPCER
OC-SVM .31 .26 .36

Isolation Forest .33 .27 .40
Anoformer MSE .13 .23 .03
Anoformer FID .19 .23 .16

Table 2: ViT + ResNet backbone with various one-class
classifiers tested on SiW.

ACER APCER BPCER
OC-SVM .31 .16 .46

Isolation Forest .33 .11 .55
Anoformer MSE .21 .33 .10
Anoformer FID .22 .35 .10

Table 3 shows the results of the ablation study on the
backbone of the Anoformer. The ViT + ResNet combi-
nation gives on both databases lower ACERs than ViT
or ResNet alone, and notably the APCERs and BPCERs
are both lower in both cases.

4.4 Performance evaluation
In Table 4, we compare the error rates of the proposed
Anoformer against [34], which is a recently published
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Table 3: Ablation study for the Anoformer backbone.

RA SiW
ACER BPCER APCER ACER BPCER APCER

ViT .16 .07 .25 .38 .42 .34
Res .19 .07 .31 .44 .36 .52

V+R .13 .03 .23 .21 .10 .33

anomaly detection method that reported results on the
same databases and with the same error metrics as us.
The results show that the Anoformer gives a lower
ACER on both RA and SiW.

Table 4: Performance comparison against [34]

ACER APCER BPCER
RA [34] .21 .25 .17
RA ours .13 .23 .03

SiW [34] .23 .23 .23
SiW ours .21 .33 .10

Finally, in Table 5, we report cross-database testing re-
sults for the Anoformer with threshold-specific metrics.
As expected cross-database testing gives significantly
higher ACERs. However, we note that this is mostly
due to the higher APCERs.

Table 5: Intra- and cross-database testing of the
Anoformer with threshold-specific metrics.

ACER BPCER APCER
RA/RA .13 .03 .23
SiW/RA .26 .03 .50
RA/SiW .27 .13 .42
SiW/SiW .21 .10 .33

5 CONCLUSION
We proposed Anoformer, an anomaly detection model
for PAD, with the pre-trained transformer ViT and the
deep CNN Resnet in the backbone, and a one-class
trained convolutional decoder for reconstruction. Our
experimental results show that the performance of the
model is competitive with the current state of the art in
anomaly detection for generalised face anti-spoofing.

In the future we would like to test the Anoformer on
more databases, and even use test bona fide image from
outside the specialised PAD databases. Our aim would
be to further demonstrate the generalisation power of
anomaly detection.
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