
A Framework for Art-directed Augmentation of Human

Motion in Videos on Mobile Devices
R. Debski, O. Schmitt, P. Trenz, M. Reimann, J. Döllner, M. Trapp

Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany

A. Semmo, S. Pasewaldt
Digital Masterpieces, Potsdam, Germany

Figure 1: Stills from videos using different motion effects applied to user-generated content in Lumo (from left

to right): Chalky Silhouette, Dotted Silhouette, Light Trails, Dr. Strange, Square, Marionette, Glow Sticks, Glow

Sticks with black background

ABSTRACT

This paper presents a framework and mobile video editing app for interactive artistic augmentation of human motion in videos.

While creating motion effects with industry-standard software is time-intensive and requires expertise, and popular video ef-

fect apps have limited customization options, our approach enables a multitude of art-directable, highly customizable motion

effects. We propose a graph-based video processing framework that uses mobile-optimized machine learning models for hu-

man segmentation and pose estimation to augment RGB video data, enabling the rendering and animation of content-adaptive

graphical elements that highlight and emphasize motion. Our modular framework architecture enables effect designers to create

diverse motion effects that include body pose-based effects such as glow stick or light trail effects, silhouette-based effects such

as halos and outlines, and layer-based effects that provide depth perception and enable interaction with virtual objects.

Keywords: Video Stylization, Mobile Processing, Human Motion, Depicting Dynamics, Video Effects

1 INTRODUCTION

User-generated short-form videos are one of the most

influential formats on social media. While platforms

such as TikTok and YouTube (Shorts) offer a variety

of filters and visual effects, users still like using their

imagination to create their own. Typically, industry-

standard software such as Adobe After Effects or Re-

solve Fusion is used to create video effects and styliza-

tion, but their effective usage often requires in-depth

knowledge and time. To produce especially motion-

based video effects without such software, users require

a significant amount of time and effort, such as in the

#Glowstickdance trend [Cha20], in which participants

adhered glow lights to their bodies to dance in the dark.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The objective of our work is to analyze, design, and

implement a mobile application framework that facil-

itates the development and synthesis of motion visu-

alizations suitable for user-generated content, such as

those shown in Fig. 1. Our primary focus is on enabling

users to film, edit, and share content instantly using mo-

bile devices. To allow for rapid editing, we aim to au-

tomate the effect generation process, while at the same

time retaining creative control over significant portions

of the effect design. Such creative control should man-

ifest in parameterized control over effect variables such

as adjustments of color, range of the glow, or back-

ground modifications. Our ultimate goal is to open up

the world of effect design to new audiences. Addition-

ally, we aim to make the implementation and variation

of effects easier for developers by creating a simple and

flexible framework.

Problem Statement. To achieve our objective, we im-

plement a framework that processes multidimensional

video data to produce art-directed motion visualiza-

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 80



tions. In this endeavor, we identified the following chal-

lenges that our framework should address:

Interactivity / Usability: Most professional video

editing programs, such as Adobe After Effects,

are rich in functionality but also have a steep

learning curve. Creating motion-based effects

is often accomplished through time-consuming

frame-by-frame editing. To ensure our app’s

suitability for user-generated content, we seek

to create an application enabling the creation

of complex effects with excellent visual quality,

even by nonprofessional users. Nonprofessional

video editing of user-generated videos is already

possible with popular mobile apps such as TikTok

or Instagram that offer customization options that

enable users to adjust the size and order of effects.

However, these options are often hidden behind

several menus with different interfaces, leading

to a complicated workflow. To address this issue,

we aim to provide a user-friendly interface that

allows users to apply, customize, and delete effects

quickly and easily. To achieve this, we integrate all

application options into a single menu that displays

all options at once thereby avoiding complicated

workflows while retaining a high level of creative

control. Users can apply effects in sequence, reorder

them, and adjust their timing. They can preview the

effects in real-time and make adjustments to effect

settings while observing the results. We achieve

real-time performance and rendering to ensure that

the preview is accurate and responsive. As our

effect control options are specifically designed for

motion effects, our interface can restrict the number

of available options compared to industry-standard

software.

Exchangeability/Adaptability: Motion effects in ex-

isting mobile apps such as TikTok offer limited cus-

tomization options for the effect designer. To ad-

dress this limitation, we introduce a highly adaptable

framework that provides users with a wide range

of customization options. Users have control over

numerous parameters, such as color scheme, back-

ground color, and stylization. This adaptability is

also reflected in the framework’s design and enables

the developer to create new and exciting effects or

combine existing ones for the user to experiment

with. The framework’s different components, or

processing nodes, can be easily interchanged and

combined to achieve various visual outputs. If a

modification is necessary, the code is simple to mod-

ify for new data and usage scenarios.

Approach & Contributions. Our technical approach

consists of a framework for building video process-

ing pipelines that allows for the real-time synthesis of

content-aware motion visualizations. To this end, the

Red-Green-Blue (RGB) video data is extended by ex-

tracted information such as depth, segmentation, or hu-

man body poses. To achieve real-time performance, our

framework enables concurrent processing and presenta-

tion of such multidimensional data. To summarize, this

paper presents

1. a framework for automatically creating content-

aware video effects to visualize motion. Our

approach uses semantic data such as human body

pose and segmentation information to create

content-aware effects that focus on a subject’s

movement.

2. a software system that processes multi-dimensional

data simultaneously on a frame-by-frame basis. The

framework hides complexity by encapsulating pro-

cessing functionality in easily extendable processing

nodes, organized in a graph-based structure to form

processing pipelines.

3. an intuitive timeline-based user interface for art

directing, applying, customizing, and removing

content-aware effects on multi-dimensional videos

without requiring domain knowledge. Our sup-

plemental video1 demonstrates the interface and

interaction with the app.

The remainder of this work is structured as follows.

Sec. 2 reviews related work with respect to motion vi-

sualization in general and motion-based video effects in

particular. Sec. 3 analyzes popular real-world motion

effects and derives semiotic aspects and designs for our

video effects. Sec. 4 presents a conceptual overview of

the proposed approach. Sec. 6 details implementation

aspects of the framework. Sec. 7 evaluates the system’s

performance, presents a post-deployment user study on

the intuitiveness and usability of the application, and

discusses results and limitations. Finally, Sec. 8 con-

cludes this work and presents ideas for future research.

2 BACKGROUND & RELATED WORK

Motion Visualization. The visualization of motion is a

challenge to artists, scientists, and image creators alike,

as Cutting et al. [Cut02] state in their analysis of con-

temporary artistic motion visualization. They suggest

several effective ways to visualize motion, which in-

clude dynamic balance, multiple stroboscopic images,

affine shear, photographic blur, and action lines. These

techniques are based on principles of physics, percep-

tion, and visual design, and have been widely used in

various applications. Nienhaus et al. [Nie05] propose

an automated depiction system for visualizing dynam-

ics in 3D scenes. They follow design principles found

in visual art, such as those used in comic books, and

1 https://drive.google.com/file/d/1ERgXif9aQDC_

Ug_fVfxAxnUokNfKp89w

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 81

https://drive.google.com/file/d/1ERgXif9aQDC_Ug_fVfxAxnUokNfKp89w
https://drive.google.com/file/d/1ERgXif9aQDC_Ug_fVfxAxnUokNfKp89w


introduce visual metaphors and symbolization, such as

object bending or squashing to depict motion in scenes.

Bouver-Zappa et al. [Bou07] use 3D skeletal motion

capture data to generate motion cues in a still image of

the captured character using arrows, noise waves, and

stroboscopic motion. Kwon et al. [Kwo12] further uti-

lize the skeletal structure of the motion capture for im-

proved motion cues. Schmid et al. [Sch10] introduce

a method for visualizing motion by extending surface

shaders to programmable motion effects with knowl-

edge of the global spatio-temporal trajectory. Their ap-

proach enables the creation of complex motion effects,

such as speed lines and blurring, that can be customized

to different styles.

Motion-based Video Effects. In addition to their

use in 3D scenes, motion visualization techniques, such

as speed and focus lines, motion blur, ghosts, mo-

tion lines, and halos, are also utilized as photo and

video effects. Collomosse et al. [Col03; Col05] present

a system to render such motion cues using a variety

of traditional feature-tracking-based computer vision

techniques, whereas Nienhaus et al. [Nie08] use back-

ground subtraction and focus on the forward lean affine

shear as a motion cue. Umeda et al. [Ume12] em-

ploy such techniques for real-time manga-like depic-

tion in videos and the Vivid [Sem19] mobile app ap-

plies similar visual metaphors for depicting dynamics

in live-photos. Lu et al. [Lu13] convert video sequences

into movement depictions of annotated body parts us-

ing arrows and motion particles. However, these ap-

proaches are either one-shot non-interactive methods

and thus not suitable to perform art-direction [Ume12;

Col05; Lu13] or are only suitable for creating styl-

ized images [Col05; Nie08; Lu13; Sem19]. Mayer

et al. [May21] propose a mobile application for artistic

silhouette visualization in videos that allows for inter-

active effect editing in a timeline-based graphical inter-

face. We adopt a similar interface design for our Lumo

mobile app. However, we enable a much wider range

of content-adaptive effects and customization options,

that allows for the interactive visualization of scenes,

silhouettes, and human body poses. Our proposed pro-

cessing pipeline design furthermore allows for easy ex-

tension and customization of new effects.

3 EFFECT ANALYSIS AND DESIGN

Analysis of Real-world Examples. To characterize

motion-based video effects, we first examined actual in-

stances of artwork that use additional motion graphics

features in their artwork such as those shown in Fig. 2.

We collected a large sample of videos and photos as

reference, identified common semiotic aspects, and an-

alyzed their composition into the video effects. In the

analyzed video effects, common themes include play-

ing with light, video annotations, and addition of arti-

ficial elements into the scene. All of these add new or

Figure 2: Overview of selected artworks that use

motion-based video effects.

enhance already existing strong visual focus points to

the image or video and often make it visually more ap-

pealing and striking.

Semiotic Aspects. Based on the analysis results, 11

semiotic aspects distinguishing motion-based elemen-

tary primitives and mechanisms were identified. They

are visually summarized in Fig. 3 and described in the

following.

Motion Effect-Type: The effect may be of a silhou-

ette, skeleton or action line/light-trail, or generic an-

notation type.

Graphical Elements: Outlined shapes (e.g., triangles,

squares, and circles) are formed by (poly) lines and

curves, which can be represented by Bézier curves.

Lines can also be dashed or dotted. Lines and shapes

can appear once or in bigger numbers.

Stroke Weight: Lines may have different widths but

are mostly of medium weight.

Base Color: Lines have saturated colors and hues

mainly in reds, turquoise, blue, purple, greens, and

yellows, which dominate the color palettes. Lines

may exhibit varying degrees of transparency.

Texture: Lines are solid or can have patterns, such as

a sketchy line.

Neon Glow: Lines may have the appearance of neon

lights. This look is achieved by a brighter core in

the line’s center and a transparency gradient fall-off.

Background Brightness: The depicted scene may ap-

pear fully illuminated, dusky, or deeply dark.

Position: Annotations and lines can be offset from a

position such as a point on or outline of a person.

Animation: Effect elements and their attributes can

be animated meaning they change position, shape,

color, etc. over time in a controlled manner.

Attachment: Effect elements such as shapes or lines

appear to be affixed to anchor points on individ-

uals in the scene, with their position dynamically

animated to track the motion of the subjects. As

a result, the elements remain temporally coherent,

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 82



Figure 3: Summarizing presentation of semiotic aspects.

maintaining consistent attributes such as position,

shape, and color, and do not change abruptly or un-

predictably over time.

Occlusion: Effect elements can be occluded by sub-

jects and objects in the depicted scene. The element

thus appears to be behind the subjects or objects re-

sulting in the illusion of depth.

Figure 4: “Glowstick

Effect” Design.

Exemplary Effect Design.

Combining the different

semiotic aspects an exem-

plary effect design can be

achieved as follows. Neon-

colored lines are positioned

on the limbs of a person in

the video, anchored to the

respective joints. Each line

features a neon glow and

medium stroke weight with

a solid texture and opaque

opacity. The lines are not

occluded by the person, move

coherently over time, and are

not animated. The scene ap-

pears to be set at night. This

results in an effect denoted

as “Glowstick Effect”, shown

in Fig. 4, that is similar to glow sticks attached to the

limbs of a person (e.g., [Cha20]).

4 FRAMEWORK

Based on the previous motion-based effect analysis and

design, this section describes preliminaries and require-

ments (Sec. 4.1), the fundamental graph-based process-

ing framework (Sec. 4.2), and the conceptual modeling

of motion-based effects (Sec. 4.3).

4.1 Preliminaries & Assumptions

This section summarizes the functional and non-

functional requirements for the framework’s imple-

mentation.

Functional Requirements. We identified the follow-

ing functional requirements for our framework: The

application should be able to capture, process, and ex-

port multi-dimensional videos, i.e., RGB video streams

with additional information channels. Those multi-

dimensional videos should be loaded and stored per-

sistently. Furthermore, work snapshots should be sav-

able during effect creation and should be subsequently

restorable and editable. The framework should enable

the creation of silhouette and human pose-based video

visualizations. To provide a user-friendly interface to

the user, the application should present a Graphical

User Interface (GUI) that allows to create, edit, and

delete effects. Furthermore, the application should pro-

vide a real-time preview while editing.

Non-functional Requirements. We also identified the

following non-functional requirements: The framework

should be reliable in creating, modifying, deleting, and

consistently reproducing effects. The framework must

prioritize high usability, with an intuitive interface that

requires no professional knowledge of video editing.

From the developer’s perspective, the framework must

be maintainable, easily adaptable to different data and

use cases, and efficiently extendable with new visual-

izations and additional parameters. Finally, the effects

generated by the framework should be visually appeal-

ing, with a fluid and artistic appearance that enhances

the overall visual characteristics of the video.

4.2 Graph-based Video Processing

To efficiently process our captured video frames we use

a pipeline-based approach, i.e., a directed graph of pro-

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 83



Figure 5: An exemplary pipeline that constructs the “Glowstick Effect”.

cessing components similar to Lugaresi et al. [Lug19].

The processing graph allows a high degree of flexibility

and easy implementation of different effects.

Node Port Reactivity. To allow interactivity, the inputs

and outputs of the nodes are reactive, i.e., when a value

at the input changes, the node processes it and passes

the result forward via the output port. This results in a

cascading change in the pipeline, leading to sequential

or concurrent processing of nodes in the graph. To min-

imize processing requirements, a node only processes

when an input value changes. A node can have more

than one input and output port to increase flexibility.

The processing of such multi-input nodes can be con-

figured by the effect developer using a triggering rule.

Common rules include the triggering based on either

the change in any input port, a specific input port, a

group of input ports, or all input ports since the last

time the node underwent processing.

Graph Nodes for Specialized Processing Tasks. To

illustrate the flexibility of the graph-based processing

concept, we provide an exemplary processing pipeline

that creates a stylized Bézier path from an RGB frame.

To this end, we connect the processing nodes as shown

in Fig. 5, and briefly describe them in the following:

Human Body Pose Estimation Node: It receives an

RGB frame as input and transforms it into estimated

human joint point positions in the frame, which are

returned via the output port.

Skeleton Construction Node: It receives estimated

joint point positions at its input port, filters out the

relevant points, and subsequently creates a Bézier

path, which is passed on via the output port.

Path Stylization Node: It receives a Bézier path at the

input port, renders it, and stylizes it using parame-

ters such as color, stroke type, or stroke style, which

are provided at the other input ports, and returns the

rendered and styled path. As the nodes are reactive,

changing the color input of the line styling node will

immediately change the line color in the resulting

image after a cascade of processing.

Blending node: It receives two RGB frames as input,

and returns the blended result. One of the inputs can

be the output of the path stylization node and the

other input can be the initial RGB frame.

To fetch input data and write output results of the pro-

cessing graph to video file, read and write nodes are em-

ployed. The reader node reads multi-dimensional video

from the disk frame by frame and provides the indi-

vidual data as typed frame data at its output port. As

nodes are reactive, the read results in a processing pass.

Thus, the reader node can determine the frequency of

processing passes and thus affects the video frame rate.

To achieve the desired video frame rate, a scheduler is

added to the read node. The write node ends a pipeline

and writes the processed image to disk or allows dis-

playing it in real-time.

Asynchronous processing. By offloading image data

processing from the Central Processing Unit (CPU)

to specialized hardware, such as Graphics Processing

Units (GPUs) or Neural Processing Units (NPUs), and

using the asynchronous programming paradigm, CPU

resources can be freed up. While waiting for the GPU

or NPU to finish processing and return results, the CPU

can continue processing. The reactive node ports en-

sure a sequential flow of data, as calculation results are

passed to subsequent nodes as soon as data is avail-

able. This asynchronous processing approach allows

for flexibility in effect development and performance

optimization. We could further improve performance

by implementing a caching mechanism for output ports

that allows results to be retrieved without re-processing

the node if there have been no changes to its input port.

Precomputation Task. Processing-intensive steps,

such as segmentation mask estimation in a video frame,

can result in non-interactive processing performance if

a user’s hardware resources are insufficient. To solve

this problem, precomputed human segmentations can

be stored in the multi-dimensional video file before ef-

fect processing. The multi-dimensional video frame

reader node can then read these frames along with the

RGB frame and a segmentation estimation node is no

longer required. We note that modern Apple mobile

devices already run at interactive frame rates without

such precomputations.

4.3 Modeling Motion-based Video Effects

A video effect is temporally divided into Intro, Main,

and Outro stages (Fig. 6). Keyframes K0 to K3 are used

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 84



Figure 6: Keyframe-based parameterization of a

motion-based video effect.

to define the start and end of an effect and the transi-

tions between effect stages. The total duration of an

effect is the time difference between K0 and K3. Ani-

mations of video effects can be created by interpolating

visual variables between keyframes. The interpolation

functions can be chosen from standard presets or de-

fined using parameterized curves.

The additional video data generated from the Com-

puter Vision (CV) framework, e.g., joint points, and

segmentation mask can be used in several different

ways to create a motion-based video effect, of which

four will be explained in the following.

Connecting: We utilize joint point data and connect

the points using Bézier curves, resulting in a

skeleton-like effect. By adding an offset between

the lines and post-processing the Bézier curves

with a glow effect, an effect similar to attaching

glow-sticks to the persons can be achieved.

Buffering: To create time-dependent effects, we buffer

data over multiple frames, such as the data from the

left and right wrists. We then draw a line through

all of the joint points detected from previous frames.

This results in a visual effect that resembles a light

painting, with the line capturing the motion of the

hand over time.

Constructing: We utilize detected human body poses

as anchor points for further effect placement. For

example, we use the detected root and neck points

of a person to estimate the head placement, creating

a convincing stick figure effect without the need for

knowledge about the actual head rotation and place-

ment. This is necessary because head rotation and

placement might be partially obscured, making it

difficult to place and size an ellipse around the head

accurately.

Animating: We calculate metrics such as the distance

between two points in the view space using joint

points. The distance can then be used as an offset to

change the position of Bézier curves already existing

for the effect in the processed image. This results in

an animation effect driven by the movement of the

person in the video and thus motion visualization.

Figure 7: Diagram of the view hierarchy for individual

views of our mobile application.

5 GRAPHICAL USER INTERFACE

To provide access to different functionality, the mobile

app is structured into several views. Fig. 7 shows the

view hierarchy of the mobile application, which we de-

tail in the following.

Figure 8: Main View

Entry Point: The Main

View, shown in Fig. 8, rep-

resents the entry point of

the app, which provides

buttons to navigate to the

subordinate views. The

Files View allows the user

to load an existing video

from the camera roll for

editing. Saved projects

can be opened again in the

Projects View, accessed by

the load projects button.

Furthermore, the user can record a new video using the

device’s camera in the Capture View.

Trim View: Provides a video preview interface and

allows to shorten a captured or loaded video.

Edit View: Provides a timeline-based video preview

interface and allows to place video effects on the video

(Fig. 9(a)). The top half of the screen displays the

video preview and applied effects in real time allow-

ing for interactive tweaking of effects. On the bottom

of the screen the user can find various buttons to apply

effects, represented by an icon and effect name. The

user can find effects easily by horizontal scrolling of

the effect button bar. Pressing and holding an effect

button applies the effect to the video starting at the cur-

rent video position for the duration of the button press

while live previewing the video effect. The applied ef-

fect appears as a colored bar in the video effect time-

line, found above the effect button row. To aid mobile

usability there is a minimum effect length, that ensures

effect bars are still easily visible and clickable in the

timeline. Since only one effect can be active at a given

time, an effect can only be applied if there is enough

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 85



(a) Edit View (b) Parameter View

Figure 9: Screenshots of the user interface. The Edit View allows the user to apply, shorten, expand or delete

effects. The Parameter View enables changing the effect parameters.

space in the video timeline. Applied effects can be pro-

longed or shortened by adjusting the end handles of the

effect bars in the timeline. Clicking or tapping on an

effect bar opens a modal allowing the user to delete the

effect from the timeline or to switch to the parameter

view. Pressing the export button in the top right screen

results in a high quality rendering of the video with the

applied effects for exporting and saving to the device.

Parameter View: Allows the user to customize effect

appearance by adjusting effect parameters (Fig. 9(b))

and preview the results in real time. Every parameter

is symbolized by an icon and a label with the parame-

ter’s name, where adjusted parameters are highlighted

in a different color while the default setting is marked

with a point below the value. Depending on the param-

eter type, different user interface elements for param-

eter adjustments, such as integer, float and color slid-

ers, switches, icon buttons or effect icon buttons, are

used for interaction. The parameter changes can be dis-

carded, applied to the current effect, or applied to all

effects of the same type using the three buttons on the

bottom of the screen.

Export View: Allows the user to export the resulting

video and save or share it with other users.

6 IMPLEMENTATION ASPECTS

Our mobile processing framework requires sensor and

processing hardware to capture and process multidi-

mensional videos, such as provided by the iPad Pro

3rd generation, which we used as our main validation

platform. The mobile app is developed in the Swift

programming language (version 5) and makes use of

several Apple software libraries and frameworks. Our

system is encapsulated in several components, see the

supplementary material for a component diagram, they

are briefly described as follows:

User Interface component. The GUI component

implements the graphical representation and is imple-

mented using the SwiftUI framework and a reactive

programming paradigm in the form of the Apple Com-

bine Framework. The AVKit library is utilized to enable

and control media playback.

Pipeline component. The pipeline implements the

multidimensional video processing architecture. It rep-

resents the core component of the framework, enabling

the video frames to step through all executing steps and

use their multidimensional video data to create differ-

ent effects. The pipeline consists of multiple compo-

nents to implement nodes and effects. The Apple Vi-

sion, CoreImage, and AVFoundation libraries are used

in the processing nodes to implement computer vision

techniques, Input/Output (IO)-related operations, and

image manipulation. Furthermore, the Combine frame-

work is employed to implement the data flow between

processing nodes, which empowers the reactivity of in-

terfaces between nodes and the implementation of asyn-

chronous processing routines.

IO & Processing Components. The IO component of-

fers data access to the device’s media collection, local

memory, and sensors, enables the recording and stor-

ing of multidimensional data and enables the user to

permanently save processed content as a compressed

project. The processing component includes custom-

developed processing routines to create varied motion-

based effects and uses Apple’s MetalKit library for

GPU-accelerated processing.

7 RESULTS & DISCUSSION

This section qualitatively evaluates our approach by

means of different application examples (Sec. 7.1) and

a performed User Study (Sec. 7.2) as well as quantita-

tively regarding runtime performance (Sec. 7.3). Fur-

thermore, it discusses limitations (Sec. 7.4)

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 86



(a) Silhouette-based Effects (b) Body Pose-based Effects (c) Combined Effects

Figure 10: Stills from exemplary videos generated using the presented mobile application.

7.1 Application Examples

Fig. 10 shows stills from selected application examples

generated using Lumo.

Silhouette-based Effects. These effects emphasize

the contour of an individual’s silhouette (Fig. 10(a)).

They are produced by identifying the silhouette of an

individual in the frame as a binary bit-mask. The effects

may be portrayed as a continuous, dotted, dashed, or

animated line. Additionally, attributes such as the color

or glow of the line can be adjusted.

Body Pose-based Effects. To create body pose-based

effects, we detect the joint positions of an individual

as screen coordinates and connect them in a specific

sequence with lines (Fig. 10(b)). Different sequences

can produce various interpretations, such as a “Glow-

stick effect”, where the person’s body joints are dis-

connected, or a “stick-figure effect”, where all body

lines are connected. Furthermore, altering properties

such as line color and background brightness can mod-

ify the appearance of the effects. Additionally, different

sequences for connection enable us to create differing

body types. We are also able to create effects by buffer-

ing joint information over several frames to create ef-

fects like the light trails effect.

Combined Effects. We also created combined effects,

that simulate a person being placed in a 3D scene, by

fusing silhouette and joint point detection. First, a per-

son’s silhouette is detected as a bit-mask and used to

crop the individual from the scene. Layering methods

are then applied to create the illusion that the subject is

situated within a three-dimensional setting ((Fig. 10(c),

right). Adding the joint detection allows us to animate

the scene by positioning scene objects depending on

body coordinates and movements. This allows for the

creation of various effects, such as “laser eyes” or “Dr.

Strange”-like effects (Fig. 10(c), left).

7.2 Usability Evaluation

One of our non-functional requirements for Lumo is us-

ability. We aim to ensure that the software is both error-

free and user-friendly, even for non-professional users.

To achieve this, we conducted a user study focused on

determining the following: (1) whether the users found

the GUI intuitive, (2) whether the effect appliance was

perceived as fast and easy and (3) whether users were

satisfied with the level of creative control they had over

the effect design.

Participants & Apparatus. For our study, we re-

cruited 18 volunteers (9 female and 9 male) between

the ages of 17 and 55 years to test our Lumo application

for the first time. The participants had no or little prior

experience with video editing and stylization, and only

four of them reported editing videos professionally or

as a leisure activity. All participants were conceptually

familiar with video filters and effects. We conducted

a supervised in-person study where every participant

used an iPad Pro (11", 3rd generation with M1 GPU and

8 GB Random Access Memory (RAM), running iPad

OS 15.6.1) and was given a document providing a list

of tasks. Each study session followed the same struc-

ture: (i) a quick overview of the study’s methodology

was provided; then, (ii) the participant received a docu-

ment containing a brief app description, as it would be

typically seen in an App/Play Store; following that, (iii)

the participant received three tasks to complete sequen-

tially. The study sessions lasted approx. 20 min.

User Tasks. We designed three tasks to cover the main

functionalities of Lumo, arranged in increasing levels

of difficulty.

Task 1 (T1): The user was given a 7 s video, which he

was asked to load and edit. The given task involved

applying a specific effect (“Glow Stick Effect”) for a

certain amount of time and extending or shortening

the application time afterwards. The task concluded

with exporting the video. The objective of this task

was to help participants understand the concept of

the effects in Lumo and the app workflow. On av-

erage, the participants took 143 s (excluding export

time) for this task.

Task 2 (T2): The user was given a video with one ap-

plied effect and was tasked to change its parame-

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 87



ter values. We provided two GUI elements to mod-

ify these parameters: a slider and a switch, both of

which users were asked to utilize to customize the

given effect. The objective of this task was to help

participants understand different kinds of effect cus-

tomization. On average, participants completed this

task in 112 s.

Task 3 (T3): For the last challenge we asked the par-

ticipants to delete the applied effect and apply at

least two different new effects to the video. Partici-

pants were also required to switch between the two

effects when the dancing person did an eye-catching

move and adjust the parameters of both effects ac-

cording to their judgment. The objective of this task

was to test whether participants could reuse their

learnings from the previous tasks and understand the

variability of effects. On average, participants com-

pleted this task in 151 s.

Data Collection and Analysis. After the study each

user was asked to fill out a questionnaire, based on the

Questionnaire for User Interface Satisfaction (QUIS)

[Chi88] and the Computer System Usability Question-

naire (CSUQ) [Lew95] without time constraints.

Task 1 was successfully completed by all partici-

pants. They were satisfied with the visual results and

expressed interest in exploring more of the app’s func-

tionalities. However, it was noticeable that nearly all

of the users tried to apply the effects using a drag-and-

drop metaphor instead of tap-and-hold, even after be-

ing shown a help message. In the qualitative part of

the questionnaire, participants expressed a desire for a

drag-and-drop functionality to be implemented.

Task 2 was completed the fastest and the option to ad-

just effects was found easily by the participants. They

were fascinated by the control they had over the appear-

ance of the effect. Nevertheless, some participants re-

marked that the terminology of the effect parameters is

too technical for the non-professional target user group.

Further, 33.3 % of the participants rated the applica-

tion’s flexibility with 5/5 points on the Likert scale,

27.8 % with 4 points, and the remaining gave 2 or 3

points. This might indicate that users wish for more op-

tions to customize effects, while also desiring greater

clarity in the existing options.

Task 3 was the most enjoyable for participants, who

relished the opportunity to try out different effects and

parameters. This challenge took the longest on aver-

age, not because of its complexity, but due to the users’

tendency to explore all the options for customizing the

effects. Furthermore, participants expressed a desire for

a feature that enables layering of effects, which is cur-

rently possible in the software with the use of blending

but not available in the GUI.

The primary goal of the user study was to evaluate

the usability of Lumo. In terms of usability, (i) all of

the users were able to find the app’s functionalities rel-

atively fast, 72.2 % of the participants agreed that per-

forming tasks in Lumo is straightforward, and 66.7 %

rated the interface as pleasant. However, most of the

users were dissatisfied with the number of help and er-

ror messages. Further, the size of the text and icons

was too small for the majority of the users. Regard-

ing learnability, (ii) 83.3 % of the users found it easy to

learn how to use the application and 83.3 % were satis-

fied with the reliability of the app. Finally, (iii), 50 %

rated the application’s experience as stimulating. Most

participants were able to find all the functions in the

app that they expected to find (66.7 %). The overall sat-

isfaction was rated 55.6 % with 5/5 points on the Likert

scale and 44.4 % with 4/5 points.

7.3 Run-time Performance Evaluation

We tested the performance of Lumo with the following

setup. Tests on mobile were performed in live preview

mode, tested on a 3rd generation Apple iPad Pro 11-

inch, equipped with an Apple M1 Chip and 8 GB RAM.

We conducted a run-time analysis using a test dataset

comprising three 7-second-long, H.264/MPEG-4

AVC encoded RGB-videos with a frame rate of 24.86

Frames-per-Second (FPS) in three different resolutions:

High Definition (HD) at 1280× 720 pixels, Full High

Definition (FHD) at 1920×1080 pixels and Ultra High

Definition (UHD) at 3840×2160 pixels.

Tests were performed by applying a Skeleton ef-

fect, a Silhouette effect, and a Combined effect, which

uses both body pose and segmentation estimation in

its pipeline. For the final evaluation, we sampled 120

frames uniformly from the measurements. This step

was necessary because the app’s preview system skips

frames to ensure interactivity when processing times

exceed a certain threshold. Please view the supplemen-

tary material for details on the measurement setup and

a per-node breakdown of timings.

The performance measurement in Fig. 11 demon-

strates the real-time processing capabilities of the pro-

totype app in HD and FHD, while maintaining interac-

tivity at UHD resolution by dropping frames. We ob-

serve an initial spike in processing time in Fig. 11(a)

attributed to loading the neural networks for body pose

and segmentation detection. Processing time per frame

is not strictly linear with increased input resolution,

and could be influenced by proprietary Apple libraries

used for up- or downsampling, tile-based rendering, and

caching mechanisms.

In Fig. 11(b) we observe that processing time per

frame increases with the effect complexity and detec-

tion of features required. Our approach is implemented

in a pipeline-parallel manner. Thus, during the process-

ing and rendering of one frame the segmentation and

pose detection can already be performed for the next

frame, which results in a noticeably more fluid experi-

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 88



(a) Processing time per frame (b) Average processing time

Figure 11: Processing performance graphs for the applied effects by resolution. In (b), the processing time per

frame is broken down by processing step. The processing nodes included in the "Other processing" category de-

pend on the effect, and include nodes responsible for neon glow, day-to-night, line rendering, skeleton construction,

silhouette detection, and blending and compositing.

Table 1: Peak RAM consumption of the app for differ-

ent video resolutions (in pixels) and applied effects.

Video Silhouette Skeleton Combined

Resolution Effect Effect Effect

1280×720 113.96 MB 150.30 MB 133.23 MB

1920×1080 175.50 MB 125.80 MB 278.93 MB

3840×2160 444.96 MB 460.77 MB 2.43 GB

ence for the user, particularly when applying complex

effects. We observe a shorter average segmentation de-

tection time in the Combined Effect compared to the

Silhouette effect, possibly due to internal resource opti-

mizations in the Apple Vision Framework.

In Tab. 1 we observe, that the peak RAM consump-

tion of the app increases with the input video resolution

and effect complexity overall, but may display unex-

pected variations due to device-internal optimizations.

Processing easily fits into the test system’s RAM even

at UHD resolutions.

7.4 Limitations

The presented approach has conceptual and technical

limitations that can be addressed in future work.

The quality of the achieved effect is dependent on the

detection accuracy of the computer vision models used

for body pose estimation and segmentation provided by

the Apple Vision framework. However, the detection

performance for human body pose may be reduced un-

der certain conditions. For instance, if some limbs are

not visible in the frame, if the scene is was created from

an unusual camera perspective (e.g. top-down), if sub-

jects wear flowy garments (e.g. a wedding dress) or if

the input video footage is very dark, body pose estima-

tion accuracy is often degraded as Apple’s developer

documentation [Doc23] states. In some cases, shadows

are mistakenly detected as humans resulting in undesir-

able artifacts when the effect is applied. In the case of

body pose-based effects, the order of bone rendering is

not depth-aware, which can result in skeleton joints or

light trails being rendered in front of the body, even if

they are occluded by other body parts.

8 CONCLUSIONS & FUTURE WORK

We presented a mobile framework for capturing and

processing multi-dimensional videos to synthesize

motion-based video effects. Our approach provides

an exceptional level of artistic control and flexibility

in creating motion-based video effects. We believe

that our framework and mobile app will prove to be

a valuable tool for professionals and amateurs alike,

opening up new possibilities for artistic expression and,

in particular, enabling non-professional users to design

and share their own content-aware video effects.

While we currently extract segmentation and pose in-

formation from videos, the advanced sensor and pro-

cessing capabilities of modern mobile devices offer ex-

citing avenues for future work. Incorporating 3D data

and (estimated) depth information is one such area that

we plan to explore. By leveraging depth data obtained

from sensors or depth estimation techniques, we can ex-

pand our range of visual effects by using the depth in-

formation to blend layers and simulate interactions with

3D elements. This addition has the potential to pro-

vide new opportunities for artistic expression and fur-

ther variation in the possible visual effects.

REFERENCES

[Bou07] Simon Bouvier-Zappa, Victor Ostro-

moukhov, and Pierre Poulin. “Motion cues

for illustration of skeletal motion capture

data”. In: Proceedings of the 5th interna-

tional symposium on Non-photorealistic

animation and rendering. 2007, pp. 133–

140.

[Cha20] Sammi Chan. “Latest trend in China: Glow

Stick Dance Challenge”. In: South China

Morning Post (May 2020).

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 89



[Chi88] John P. Chin, Virginia A. Diehl, and

Kent L. Norman. “Development of an

Instrument Measuring User Satisfaction

of the Human-Computer Interface”. In:

Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems.

CHI ’88. Washington, D.C., USA: Asso-

ciation for Computing Machinery, 1988,

pp. 213–218. ISBN: 0201142376. DOI:

10.1145/57167.57203.

[Col03] J.P. Collomosse and P.M. Hall. “Cartoon-

Style Rendering of Motion from Video”.

In: Vision, Video, and Graphics (VVG)

2003. Ed. by Peter Hall and Philip

Willis. The Eurographics Associa-

tion, 2003. ISBN: 3-905673-54-1. DOI:

10.2312/vvg.20031016.

[Col05] John P Collomosse, David Rowntree, and

Peter M Hall. “Rendering cartoon-style

motion cues in post-production video”. In:

Graphical Models 67.6 (2005), pp. 549–

564.

[Cut02] James E Cutting. “Representing motion in

a static image: constraints and parallels in

art, science, and popular culture”. In: Per-

ception 31.10 (2002), pp. 1165–1193.

[Doc23] Apple Developer Documentation. Detect-

ing Human Body Poses in Images. Feb.

2023.

[Kwo12] Yunmi Kwon and Kyungha Min. “Motion

Effects for Dynamic Rendering of Charac-

ters”. In: Lecture Notes in Electrical Engi-

neering 181 (2012), pp. 331–338.

[Lew95] James Lewis and James R. “IBM Com-

puter Usability Satisfaction Question-

naires: Psychometric Evaluation and

Instructions for Use”. In: International

Journal of Human-Computer Inter-

action 7 (Feb. 1995), pp. 57–. DOI:

10.1080/10447319509526110.

[Lu13] Yijuan Lu and Hao Jiang. “Human move-

ment summarization and depiction from

videos”. In: 2013 IEEE International Con-

ference on Multimedia and Expo (ICME).

IEEE. 2013, pp. 1–6.

[Lug19] Camillo Lugaresi et al. “Mediapipe:

A framework for building percep-

tion pipelines”. In: arXiv preprint

arXiv:1906.08172 (2019).

[May21] Maximilian Mayer et al. “MotionViz: Artis-

tic Visualization of Human Motion on Mo-

bile Devices”. In: ACM SIGGRAPH 2021

Appy Hour. SIGGRAPH ’21. Virtual Event,

USA: Association for Computing Machin-

ery, 2021. ISBN: 9781450383585. DOI: 10.

1145/3450415.3464398.

[Nie05] M. Nienhaus and J. Döllner. “Depicting dy-

namics using principles of visual art and

narrations”. In: IEEE Computer Graphics

and Applications 25.3 (2005), pp. 40–51.

DOI: 10.1109/MCG.2005.53.

[Nie08] Marc Nienhaus, Holger Winnemöller, and

Bruce Gooch. “Forward Lean–Deriving

Motion Illustrations from Video”. In: Proc.

SIGGRAPH Asia Sketches (2008).

[Sch10] Johannes Schmid et al. “Programmable Mo-

tion Effects”. In: ACM Trans. Graph. 29.4

(July 2010). ISSN: 0730-0301. DOI: 10 .

1145/1778765.1778794.

[Sem19] Amir Semmo et al. “ViVid: Depicting

Dynamics in Stylized Live Photos”. In:

ACM SIGGRAPH 2019 Appy Hour. SIG-

GRAPH ’19. Los Angeles, California:

Association for Computing Machin-

ery, 2019. ISBN: 9781450363068. DOI:

10.1145/3305365.3329726.

[Ume12] Daiki Umeda, Tomoaki Moriya, and Toki-

ichiro Takahashi. “Real-Time Manga-like

Depiction Based on Interpretation of

Bodily Movements by Using Kinect”.

In: SIGGRAPH Asia 2012 Technical

Briefs. SA ’12. Singapore, Singapore:

Association for Computing Machin-

ery, 2012. ISBN: 9781450319157. DOI:

10.1145/2407746.2407774.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu

Vol.31, No-1-2, 2023 

https://www.doi.org/10.24132/JWSCG.2023.9 90

https://doi.org/10.1145/57167.57203
https://doi.org/10.2312/vvg.20031016
https://doi.org/10.1080/10447319509526110
https://doi.org/10.1145/3450415.3464398
https://doi.org/10.1145/3450415.3464398
https://doi.org/10.1109/MCG.2005.53
https://doi.org/10.1145/1778765.1778794
https://doi.org/10.1145/1778765.1778794
https://doi.org/10.1145/3305365.3329726
https://doi.org/10.1145/2407746.2407774

	Introduction
	Background & Related Work
	Effect Analysis and Design
	Framework
	Preliminaries & Assumptions
	Graph-based Video Processing
	Modeling Motion-based Video Effects

	Graphical User Interface
	Implementation Aspects
	Results & Discussion
	Application Examples
	Usability Evaluation
	Run-time Performance Evaluation
	Limitations

	Conclusions & Future Work



