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ABSTRACT
Arc-length or natural parametrization of curves traverses the shape with unit speed, enabling uniform sampling
and straightforward manipulation of functions defined on the geometry. However, Farouki and Sakkalis proved
that it is impossible to parametrize a plane or space curve as a rational polynomial of its arc-length, except for the
straight line. Nonetheless, it is possible to obtain approximate natural parameterizations that are exact up to any
epsilon. If the given family of curves possesses a small number of scalar degrees of freedom, this results in simple
approximation formulae applicable in high-performance scenarios. To demonstrate this, we consider the problem
of finding the natural parametrization of ellipses and cycloids. This requires the inversion of elliptic integrals of
the second kind. To this end, we formulate a two-dimensional approximation problem based on machine-epsilon
exact Chebhysev proxies for the exact solutions. We also derive approximate low-rank and low-degree rational
natural parametrizations via singular value decomposition. The resulting formulae have minimal memory and
computational footprint, making them ideal for computer graphics applications.
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1 INTRODUCTION AND PREVIOUS
WORK

The parametrization of a curve is not unique since
there are infinitely many variations that result in the
same shape. However, the analytic derivatives of the
curve do change in the process. Natural or arc-length
parametrization stands out in the sense that the artifacts
of parametrization are absent from the algebraic formu-
lation of derivatives. In other words, the derivatives of
an arc-length parametrized curve only consist of geo-
metric invariants, such as curvature and torsion, and
their derivatives. This is a direct consequence of the
Frenet-Serret formulae [Car18].

Unfortunately, natural parametrization is not a fea-
sible practical representation. This was first proven
rigorously by Farouki and Sakkalis [FS07] when
they showed that no plane or space curve may be
parametrized as a rational polynomial function of its
arc-length, except for the line. However, they have
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identified a subset of polynomials that possess polyno-
mial arc-length functions. This class of polynomials is
referred to as Pythagorean hodographs. Although it is
still not possible to parametrize these by arc-length, the
ability to express the arc-length in closed form proved
to be of merit in various applications [Far08].

Nonetheless, approximate arc-length parametrizations
may offer practical alternatives. Farouki considered
the Möbius transformation to reparametrize degree
n Bézier curves such that the result is approximately
unit speed [Far97]. He showed that there is a unique
reparametrization of this kind that minimizes a
functional that penalizes deviation from unit speed
traversal. A more elementary derivation to this result
was given by Jüttler in [Jüt97].

Sánchez-Reyes and Chacón proposed an approximate
arc-length parametrization of plane curves in [SC15]
that does not rely on optimization. They constructed
second-order geometric Hermite interpolants [BHS87]
to approximate an arbitrary input curve. Quintic poly-
nomials are capable of reconstructing both geometric
invariants and parameterization up to second order at
endpoints [Sch98]. The latter were chosen such that the
interpolant is unit-speed and possesses orthogonal first
and second derivatives, while the former was used to re-
construct position, tangent, and curvature centers at the
parametric endpoints. To achieve the desired accuracy,
they employed multiple geometric Hermite segments.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.91 292



(a) Parameterization from Equation (1) (b) Natural ellipse parameterization.

Figure 1: Ellipse and its natural parameterization

We also consider the problem of approximating arc-
length parametrizations; however, we focus our atten-
tion on adjustable precision and restrict our discussion
to trochoid curves only. To this end, we present a
scaleable framework that may be used to devise high-
accuracy approximate natural parametrizations of tro-
choids by means of rational approximations.

In Section 2, we briefly review how an incomplete ellip-
tic integral of the second kind is derived upon formulat-
ing the natural parametrization of ellipses and trochoids
and what simplifications can be applied to it.

In Section 3, we show that a low-rank separable ap-
proximation may be computed from a properly sampled
simplified formulation, and Section 4 shows that it can
be realized by custom degree rational polynomials.

We show that even degree (2,1) rational polynomial
separable approximations yield high accuracy results
with negligible computational cost in Section 5.

2 APPROXIMATE NATURAL PARAM-
ETERIZATIONS

There are various means to approximate the arc-length
parametrization of a curve. Methods such as Runge-
Kutta provide procedural solutions; however, our aim
is to derive closed-form approximations.

Let us consider how the natural parameterization of an
ellipse with semi-major axis a and semi-minor axis b is
derived. A general parametrization is given as

ppp(φ) =

ñ
acos(φ)
bsin(φ)

ô
, φ ∈ [0,2π), 0 < b < a ∈R . (1)

From Equation (1), the arc-length function is

sppp(φ) =

φ∫
0

»
a2 sin2

ϕ +b2 cos2 ϕ dϕ

= b ·
φ∫

0

√
1−
Ä

1− a2

b2

ä
· sin2

ϕ dϕ .

Thus, we can express the arc-length function with the
incomplete elliptic integral of the second kind, denoted
as E(φ |m). Inverting this and substituting back to Equa-
tion (1) leads to the natural parameterization of the el-
lipse:

sppp(φ) = b ·E
(

φ

∣∣∣1− a2

b2

)
=⇒

ppp
Ä

s−1
ppp (s)

ä
= ppp
Å

E−1
(

s
b

∣∣∣1− a2

b2

)ã
.

2.1 Trochoid parameterization
The following trochoid parameterization unifies hy-
potrochoids and epitrohods while also describing
circles, ellipses, hypocycloids, and epicycloids with
only two parameters:

ppp(φ) =

ñ
cosφ +acos(bφ)
sinφ +asin(bφ)

ô
, a,b ∈ R\{0} . (2)

Note that if a = 0 or b = 0 or b = 1, the curve is just a
circle. When b = −1, the above simplifies to an equa-
tion of an ellipse with a+ 1 semi-major axis and 1− a
semi-minor axis. Observe that the curves

pppa,b(φ), ppp−a,b(φ), pppa, 1
b
(φ), ppp−a, 1

b
(φ)

only differ in scale and rotation from each other. Thus,
without the loss of generality, we can assume that a > 0
and 0 ̸= b ∈ [−1,1].
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(a) Epitrochoids with b = 1
5 . (b) Hypotrochoids with b =− 1

5 .

Figure 2: Trochoids with different values of a from Equation (2).

Figure 3: Classification of the trochoid curve family with Equation (2).

Table 1 and Figure 3 classify these trochoids, so we
can relate Equation (2) to the well-known constructive
derivation via rotating circles.

A wide range of plane curves fall into this categoriza-
tion, such as the Tusi couple (a = 1,b = −1) that cre-
ates linear motion from rotational one. The cardioid
(a = 2,b = 1

2 ) that appears in our coffee cups or the
deltoid curve a = 2,b =− 1

2 , limaçon curves b = 1
2 , the

nephroid a = 3,b = 1
3 , the astroid a = 3,b = − 1

3 , and
cycloids in general |ab| = 1 including the tautochrone
and the brachistochrone curves.

We obtain the arc-length parameterization of trochoids
similarly to ellipses:

sppp(φ) =

φ∫
0

»
a2b2 +2ab · cos((b−1)ϕ)dϕ

=

φ∫
0

 
(1+ab)2 −4absin2

Å
b−1

2
ϕ

ã
dϕ

= |1+ab| ·
φ∫

0

 
1− 4ab

(1+ab)2 sin2
Å

ϕ
b−1

2

ã
dϕ

=
2|1+ab|

b−1
·E
Ç

φ
b−1

2

∣∣∣∣∣ 4ab
(1+ab)2

å
(3)
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b =−1 Hypotrochoids b < 0 Epitrochoids b > 0 b = 1
Curtate |ab|< 1 ellipse curtate hypotrochoid curtate epitrochoid circle
Cycloid |ab|= 1 Tusi couple hypocycloid epicycloid circle
Prolate |ab|> 1 ellipse prolate hypotrochoid prolate epitrochoid circle

Table 1: Classification of trochoids and their names.

2.2 Incomplete elliptic integral of the sec-
ond kind

Before we approximate the inverse of the incomplete el-
liptic integral of the second kind, let us review its prop-
erties.

E(φ |m) =

φ∫
0

»
1−m · sin2

ϕ dϕ , φ ∈ [0,2π), m∈ [0,1]

The complete elliptic integral of the second kind
is E(m) = E

Ä
π

2 |m
ä

. Special values: E(0|m) = 0,
E(φ |0) = φ . The incomplete elliptic integral
grows linearly and it is also 2π periodic, that is
E(φ |m) = 2

π
E(m) · φ + E(φ mod 2π | m). Moreover,

we can tile the periodic part with the quarter period.
For trochoids, we can calculate E(φ |m) for negative
m values with m → m

m−1 ∈ (0,1) using the following
formula. A pair of these corresponding values of m are
highlighted in Figure 4a where the incomplete elliptic
integral is visualized.

Lemma 1. For any φ ∈ R and 0 ̸= m ∈ R,

E(φ |m) =
√

1−m
(

E
Ä

m
m−1

ä
−E
Ä

π

2 −φ | m
m−1

ä)
. (4)

Proof. Subtitute φ = π

2 −θ as if we rotated the trochoid
by 90◦ degrees:

E(φ |m) =

φ∫
0

»
1−msin2

ϕ dϕ

=

π/2∫
π/2−φ

√
1−mcos2 θ dθ

=
√

1−m

π/2∫
π/2−φ

»
1− m

m−1 sin2
θ dθ

=
√

1−m
(

E
Ä

m
m−1

ä
−E
Ä

π

2 −φ | m
m−1

ä)
Lemma 2. If ξ ·E(m) = E(φ |m) for any ξ ,φ ∈ R and
0 ̸= m ∈ R, then

φ =
π

2
−E−1

(
E
Ä

m
m−1

ä(
1−ξ

) ∣∣∣ m
m−1

)

Proof. Substitute ξ · E(m) into the left side of Equa-
tion (4) and rearrange to obtain

E
Ä

π

2 −φ

∣∣∣ m
m−1

ä
= E
Ä

m
m−1

ä
− E(m)√

1−m
·ξ .

Using the same Lemma 1 for θ = π

2 , we get the for-
mula for the complete elliptic integral E(m) =

√
1−m ·

E
Ä

m
m−1

ä
which when applied for the above leads to

E
Ä

π

2 −φ

∣∣∣ m
m−1

ä
= E
Ä

m
m−1

ä
−E
Ä

m
m−1

ä
ξ .

Rearranging the above completes the proof of
Lemma 2.

Figure 4 illustrates the geometry of the direct and in-
verse elliptic functions.

2.3 Simplifying E−1(ξ |m)

Note that if m < 0, Lemma 2 shows that we can remap
into the (0,1) range. Thus, let us now assume that m ∈
[0,1],ξ ∈ [0,1) so we can compute θ ∈ [0, π

2 ] from

θ = E−1 (E(m) ·ξ |m)
)
,

provided we have a good approximation of the right-
hand side over the (ξ ,m) ∈ [0,1]2 domain. To aid with
the approximation, let us remove the linear term as in
Figure 4b, square the function, and apply a W (ξ ,m)
weight function:(

E−1 (E(m)ξ |m
)
− π

2
ξ

)2
≈ W (ξ ,m) ·G(ξ ,m), (5)

W (ξ ,m) =
m ·ξ ·

(
1−ξ

)√
2−ξ −m

, (6)

where G(ξ ,m) is the function we approximate with.
The weight function is used to smooth out the pole in
the derivative at (ξ ,m) = (1,1) and zero out the func-
tion at m = 0, ξ = 0, or ξ = 1 values where it should be
zero. Figure 5a visualizes this approximation problem.

The computation of G(ξ ,m) can be carried out in mul-
tiple ways, but we found the above transformations
helped the most to obtain a higher precision low-rank
and low-degree approximation.
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(a) θ 7→ E(θ |m) functions for m ∈ (− inf,1]. Lemma 1 relates
the m = 0.5 and m =−1 teal curves.

(b) ξ 7→ E−1 (E(m)ξ |m
)
− π

2 ξ functions for various m ∈ [0,1]
values show the deviation from the linear function.

Figure 4: The incomplete integral of the second kind and its modified inverse that we need to approximate.

(a) Transformed incomplete elliptic inverse orange curves ap-
proximated with the blue surface with weight function.

(b) Low-rank component functions of the transformed inverse
incomplete elliptic integral.

Figure 5: Transformation and low-rank approximation of the inverse elliptic integral of the second kind

3 LOW-RANK APPROXIMATION
We want to find a k-rank approximation first, that is, a
pair of ci and ri functions such that

G(ξ ,m) =
k

∑
i=0

ci(ξ ) · ri(m) ci,ri : [0,1]→ R (7)

Figure 5b visualizes the G(ξ ,m) function with ci(ξ )
and ri(m) component functions drawn on the back
walls. If we evaluate the functions in Equation (5) at
ξ1, . . . ,ξM and m1, . . . ,mN values to get the matrix of
function values we want G to reproduce, we can per-

form a k-rank Singular Value Decomposition (SVD),
that is,

G =UDVT, U ∈ RM×k,D ∈ Rk×k,V ∈ RN×k

where we just have to find ci and ri functions that repro-
duce the i-th column of U ·

√
D, and V ·

√
D matrices to

extend G as a function with Equation (7). More specif-
ically, for i = 1, . . . ,k, j = 1, . . . ,M, and l = 1, . . . ,N:

ci(ξ j)≈ U ji

»
|Dii|,

ri(ml)≈ Vli sgnDii

»
|Dii| .
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Figure 6: Component functions ci(ξ ),ri(m) and their rational approximations ci(ξ )
ci(ξ )

and ri(m)
ri(m) where the nominator

polynomials are cubic, and the denominators are quadratic.

Figure 5 illustrates the transformation of the elliptic in-
verse integral and its decomposition into a low-rank ap-
proximation. Figure 6 shows the component functions
of an approximation.

4 RATIONAL POLYNOMIAL AP-
PROXIMATION

To approximate the above ci and ri functions at ξ j and
ml values, we can apply low-degree rational polynomial
approximations to find ci, ci, ri, and ri polynomials.

G(ξ ,m) =
k

∑
i=0

ci(ξ ) · ri(m) (8)

=
k

∑
i=0

ci(ξ )

ci(ξ )
· ri(m)

ri(m)

For these last steps, we employed the Chebfun Matlab
library [Dri14] for their state-of-the-art polynomial ap-
proximation algorithms. Figure 7 plots the error of a
degree (3,2) and rank 3 approximation.

5 RESULTS
Let us consider finding a separable (2,1) rational ap-
proximation solution to the arc-length parametrization
problem of trochoids using Matlab and Chebfun. Since
Chebfun relies on the Chebyshev basis, our sample
points are on the Chebyshev grid of

ξ j =−cos
Å

π
j−1

M−1

ã
,

ml =−cos
Å

π
l −1
N −1

ã
,

Figure 7: W (ξ ,m) ·G(ξ ,m)−W (ξ ,m) · Ĝ(ξ ,m) ap-
proximation error for a 3-rank and (3,2)-degree decom-
position.

for j = 1, . . . ,M and l = 1, . . . ,N. The resulting approx-
imation is

Ĝ(ξ ,m) =
ξ 2 −0.9553 ·ξ −0.04578

1.539 ·ξ −1.5626
(9)

· m2 +0.3193 ·m−0.09471
−23.993 ·m+26.213

Ê(m) =
m2 −5.5788 ·m+5.3188
−2.6429 ·m+3.3811

Figure 8 illustrates the error of this approximation com-
pared to the exact arc-lengths for trochoids correspond-
ing to a = 1 and b = 1,2, . . . ,16. The error is within
3 ·10−3 even at the arc-length of 60.

To evaluate our explicit approximate natural parameter-
ization for any (a,b) trochoid at any s ∈ R parameter,
we derive the inverse arc-length function from Eq. (3):

s−1
ppp (s) =

2
b−1

·E−1

Ç
s

b−1
2|1+ab|

∣∣∣∣ 4ab
(1+ab)2

å
. (10)
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Figure 8: Precise s−1
ppp compared to 1-rank separable (2,1)-degree rational approximation for trochoids with a =

1,3 . . . ,13, and b = 0.5. Albeit the error is not small, the approximation here is a crude quadratic over linear
rational separable approximation using the code seen in Fig. 9. Note that only one global approximation is needed
to evaluate the arc-lengths of any trochoid.

Therefore, we can calculate

ξ :=
s

Ê(m)

b−1
2|1+ab|

, m :=
4ab

(1+ab)2 . (11)

Since the approximant below has a period of 4 and a
quarter period of 1 that we can tile with, that is

E−1 (E(m)(2−ξ )|m
)
= π −E−1 (E(m)ξ |m

)
.

Assuming ξ ∈ [0,1], we compute Ĝ with Eq. (8), for
example with Eq. (9). Finally, evaluate W (ξ ,m) and
E−1(s|m) which is obtained from Eq. (5) as

E−1(E(m)ξ |m
)
=

π

2
ξ −
»

W (ξ ,m) ·G(ξ ,m) . (12)

Figure 9 provides an example implementation for a
purely separable approximation g(ξ ,m) = c(ξ ) · r(m)
where the c(ξ ), r(m), E(m) functions are approximated
with (2,1) rational polynomials.

6 CONCLUSIONS
We derived an algorithmic framework to com-
pute high-accuracy approximate trochoid natural
parametrizations. This family of curves includes
circles, ellipses, and a variety of well-known shapes.
We demonstrated that our formulation may be used to
derive low-degree rational polynomial parametrizations
that approximate unit-speed traversal. Nevertheless, for
optimal results, we had to apply an appropriate simpli-
fication and weighting of the approximated function.
Even though we restricted the number of degrees of
freedom to two by choice of trochoids, our construct
may be generalized to higher dimensions, in other
words, to curves of higher flexibility; this is a future
research direction.
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