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ABSTRACT
Existing works on orthogonal moments are mainly focused on optimizing classical orthogonal Cartesian moments,
such as Legendre moments, Gauss-Hermite moments, Gegenbauer moments, and Chebyshev moments. Research
in this area generally includes accurate calculation, fast computation, robustness/invariance optimization, and the
application of orthogonal moments. This paper presents the inclusion of the integration method proposed by
Holoborodko to calculate the Legendre moments. The results obtained are compared with the traditional equation
and the methods proposed by Hosny and Pawlak to approximate the integration computation.
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1 INTRODUCTION
Image representation is a principal research area in im-
age processing, pattern recognition, and robotics. In
general, there are three types of image representation:
the first is developed to support special devices; the sec-
ond is for the compression of images; and the third is
developed to support special image operations [1, 2, 3].
Orthogonal moments, such as Legendre moments and
Zernike moments, were first introduced in image pro-
cessing by Teague [4] and they have been widely used
in image analysis and pattern recognition [5, 6] due to
their near-zero information redundancy and high dis-
criminative power. Moment-based image representa-
tion has been reported to be effective in satisfying the
core conditions of semantic description due to its bene-
ficial mathematical properties, especially geometric in-
variance and independence [1]. For example, moment
functions of image intensity values have been success-
fully used in object recognition [5, 7, 8, 9, 10], image
analysis [4, 11, 12, 13, 14], object representation [15],
edge detection [16, 17, 18], and texture analysis [19].

Moments and invariant moments were introduced to
the pattern recognition community in 1962 by Hu
[10]. Since then, after almost 60 years of research,
numerous moment-based techniques have been devel-
oped for image representation with varying success
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degrees. For example, researchers has been introduced
Invariant Moments, Rotational Moments, Orthogonal
Moments, Complex Moments, and Standard Moments
[1, 20]. In 1998, Mukundan and Ramakrishnan [21]
surveyed the main publications proposed until then
and summarized the theoretical aspects of several
classical moment functions. In 2006, Pawlak [12]
gave a comprehensive survey on the reconstruction and
calculation aspects of the moments with great emphasis
to the accuracy/error analysis. In 2007, Shu et al.
[22, 23, 24] provided a brief literature review for the
mathematical definitions, invariants, and fast/accurate
calculations of the classical moments, respectively.
In 2009, Flusser et al. [25] presented an overview
of moment-based pattern recognition methods with
significant contribution to the theory of invariant
moments. The substantial expansion [26] of this
book includes more detailed analysis of the 3D object
invariant representation. In 2011, Hoang [27] reviewed
unit disk–based orthogonal moments in his doctoral
dissertation, covering theoretical analysis, mathemati-
cal properties, and specific implementation. For most
of the above reviews, state-of-the-art methods in the
past 10 years are not covered. In 2014, Papakostas et
al. [28] gave a global overview of the milestones in
the 50 years research and highlighted all recent rising
topics in this field. However, the theoretical basis for
these latest research directions is rarely introduced. In
2019, Kaur et al. [29] provided a comparative review
for many classical and new moments. More recently,
in 2023, Qi et al. [1] provided a comprehensive survey
of the orthogonal moments for image representation,
covering recent advances in fast/accurate calcula-
tion, robustness/invariance optimization, definition
extension, and their application.
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Orthogonal moments are shown to be less sensitive to
noise and have an efficient capability to feature rep-
resentation. They allow to reconstruct the image in-
tensity function analytically, from a finite set of mo-
ments, using the inverse moment transform [30]. Leg-
endre and Zernike moments are most widely used be-
cause their minimum redundancy. Indeed, they can
represent the properties of an image with no redun-
dancy or overlap information between the moments.
Unfortunately, these approaches are often character-
ized by a huge computational complexity, making them
unsuitable for real-time applications. This lead many
researchers to develop faster and accurate algorithms
for computing Legendre and Zernike moments [31].
Specifically, the computation of Legendre moments is
in general a time consuming process. In many ref-
erences [32, 33, 34], their computation has been per-
formed using closed form representations for orthogo-
nal polynomials, and taking little care to the accuracy of
the quadrature formulas used to approximate integrals.

In general, the calculation of orthogonal moments suf-
fers from geometric error, numerical integration er-
ror, and representation error (mainly numerical insta-
bility). These errors will severely restrict the quality of
image representation, especially when high-order mo-
ments are required to better image description. Accord-
ing to Qi et al. [1], the accurate computation strategies
of moments are vital for their applicability.

The rest of the paper is organized as follows: In Section
2, an overview of Legendre moments is given. The ac-
curacy computation of Legendre Moments is described
in Section 3. Section 4 presents an experimental re-
sults of the diferent methods used to compute Legen-
dre Moments, including the Holoborodko method that
is proposed in this paper. Conclusions are presented in
Section 5.

2 LEGENDRE MOMENTS
Legendre moments suggested by Teague [4] are one of
the important continuous orthogonal moments defined
in a rectangular region and have been well researched
since the early years of moment-based descriptor stud-
ies [4, 14, 35, 36, 37]. In general, Legendre moments
form an orthogonal set, defined in Cartesian coordinate
space [21, 38] and have been used to analyze and ex-
tract features, for example, in facial recognition, image
indexing, pattern recognition, etc.

Legendre moments usually contain Legendre polyno-
mials as the kernel which approximated by sampling
at fixed intervals, so, the resulted moments have ap-
proximated values. In Addition, Legendre moments are
orthogonal and scale invariants hence they are suitable
for representing the features of the images [39]. In this
case, the image intensity distribution can be analytically
reconstructed from its orthogonal moments.

2.1 Definitions and Properties
The kernel of Legendre moments are products of Leg-
endre polynomials defined along rectangular image co-
ordinate axes inside a unit circle [3, 4, 21, 38, 40]. The
Legendre moments of order (p+q) are defined as

Lpq =
(2p+1)(2q+1)

4

∫ 1

−1

∫ 1

−1
Pp (x)Pq (y) f (x,y)dxdy

(1)

where the functions Pp (x) and Pq (y) denote Legendre
polynomial of order p and q, respectively. The Leg-
endre moments Lpq generalizes the geometric moments
mpq, in the sense that the monomial xpyq is replaced
by the orthogonal polynomial Pp (x)Pq (y) of the same
order.

In order to evaluate the Legendre moments, the image
coordinate space has to be necessarily scaled so that
their respective magnitudes are less than 1. If the image
dimension along each coordinate axis is N pixels, and
i, j denote the pixel coordinate indices along the axes,
then 0 ≤ i, j ≤ N, and the discrete version of the Legen-
dre moments can be written as

Lpq =
(2p+1)(2q+1)

(N −1)2

N

∑
i=1

N

∑
j=1

Pp (xi)Pq (y j) f (i, j)

(2)

where xi,y j denote the normalized pixel coordinates in
the range [−1,1], given by

xi =

(
2i
N

)
−1; y j =

(
2 j
N

)
−1 (3)

The functions Pp(x) form a complete orthogonal basis
set inside the unit circle, and the function f (i, j) can
be approximated by a truncated series of Legendre mo-
ments as:

f (i, j)∼= ∑
p

∑
q

LpqPp (xi)Pq (y j) (4)

The above equation represents the inverse moment
transform used for image reconstruction from a finite
set of Legendre moments [3, 38].

Teague [4] derived a simple approximation to the in-
verse transform for a set of moments through order N.
Additionally, Teh and Chin [14] indicated that, if only
Legendre moments of order ≤ N are given, then the
function f (x,y) can be approximated by

f (x,y)∼=
N

∑
p=0

p

∑
q=0

Lp−q,qPp−q (x)Pq (y) (5)
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Figure 1: Legendre Polynomials

2.2 Legendre Polynomials
The Legendre polynomials Pp (x)can be given by the
equation [40, 41]:

Pp (x) =
1

2p p!
dp

dxp

(
x2 −1

)p
(p ≥ 0) (6)

where x ∈ [−1,1], and the Legendre polynomial Pp (x)
obeys the following recursive relation [33, 42, 43, 44,
45, 46, 47, 48]:

Pp+1 (x) =
(2p+1)
(p+1)

xPp (x)−
p

(p+1)
Pp−1 (x) (7)

The Eq. (7) also can be rewritten by replacing p with
p−1 as [2, 21, 35, 49]:

Pp (x) =
(2p−1)

p
xPp−1 (x)−

(p−1)
p

Pp−2 (x) (8)

with P0 (x) = 1, P1 (x) = x and p > 1. The set of Legen-
dre polynomials

{
Pp (x)

}
forms a complete orthogonal

basis set on the interval [−1,1].

The plots of the functions Pp (x), with p = 0, . . .10, are
given in Fig. (1).

2.3 Error Analysis
Only in the case of continuous moment functions, their
computation over a discrete pixels space (image) is en-
counters some inaccuracies. These errors are of two
types called geometric and numerical errors [1, 50].
The first type of error is caused by the projection of
a square discrete image onto the domain (e.g. the unit
disc for the radial polynomials) of the polynomial basis,
while the numerical error is generated due to the calcu-
lation of the double integral over fixed sampling inter-
vals. This case is presented by Papakostas [28] when
zeroth-order approximation (ZOA) is applied.

Several approaches have been proposed in the litera-
ture towards the minimization of both error types. More

precisely, the geometric errors are minimized by apply-
ing specific mapping techniques from the image space
to the polynomials domain and appropriate pixels ar-
rangement methodologies [50]. The numerical inte-
gration errors are decreased by applying either analyti-
cal or approximate iterative integration algorithms (e.g.
Simpson, Gauss) [50, 51, 52]. Currently, by using the
aforementioned techniques, the values of the derived
moments are very close to their theoretical values and,
therefore, the level of accuracy achieved is satisfactory
[28]. The following section presents the techniques that
will be used to analyze the accuracy in the Legendre
moments computation and, therefore, in the image re-
construction.

3 ACCURACY COMPUTATION OF
LEGENDRE MOMENTS

Liao [36] indicated that the problem of the discretiza-
tion error for moment computing has been barely in-
vestigated though some initial studies into this direction
for the case of geometric moments were performed by
Teh and Chin [14]. In addition Liao, presents a signifi-
cant improvement on image reconstructions using Leg-
endre and Zernike Moments. The numerical integration
error is decreased by applying either analytical or ap-
proximate iterative integration algorithms [40, 50, 51,
52]. Currently, by using classic Newton-Cotes formu-
las such as Trapezoid, Simpson’s, Extended Simpson’s,
Simpson’s 3/8 and Boole’s, the derived moment values
are very close to their theoretical values and thus, the
achieved accuracy level. However, the accuracy in the
signals reconstruction (1D, 2D or 3D) is an important
challenge today. For example, Table (1) shows the de-
gree, formula, and error term of the classical Newton-
Cotes techniques. Specifically, the accuracy degree is
the largest positive integer that gives and exact value
for xk, for every k-value.

In addition, approximated Legendre moments defined
by Eq. (1) are not accurate, where the double integra-
tion is replaced by double summation. Based on the ba-
sis of mathematical analysis, double summation is iden-
tical to the double integration only when the indices are
reaching to infinity. In computing environment, this is
not possible [51].

Generalizing, a digital image of size M×N is an array
of pixels. Centers of these pixels are the points (xi,y j),
where the image intensity function is defined only for
this discrete set of points (xi,y j) ∈ [−1,1]× [−1,1].
Where △xi = xi+1 − xi,and △y j = y j+1 − y j are sam-
pling intervals in the x− and y−directions respectively.
In the literature of digital image processing, the inter-
vals △xi and △y j are fixed at constant values △xi =
2/M, and △y j = 2/N, respectively. Therefore, the points
(xi,y j) will be defined as follows [40, 51]:
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Integration
Technique Degree Step Size

(△x) Formula Error Term

Trapezoid 1 b−a △x
2 ( f0 + f1) − 1

12 (△x)3 f (2) (ξ )
Simpson’s 2 b−a

2
△x
3 ( f0 +4 f1 + f2) − 1

90 (△x)5 f (4) (ξ )
Simpson’s 3/8 3 b−a

3
3△x

8 ( f0 +3 f1 +3 f2 + f3) − 3
80 (△x)5 f (4) (ξ )

Boole’s 4 b−a
4

2△x
45 (7 f0 +32 f1 +12 f2 +32 f3 +7 f4) − 8

945 (△x)7 f (6) (ξ )
Table 1: Newton-Cotes techniques

xi =−1+
(

i− 1
2

)
△xi, y j =−1+

(
j− 1

2

)
△y j

(9)

With i = 1,2,3, . . . ,M, and j = 1,2,3, . . . ,N. Eq. (2)
could be rewritten as follows:

Lpq =
(2p+1)(2q+1)
(M−1)(N −1)

M

∑
i=1

N

∑
j=1

Pp (xi)Pq (y j) f (i, j)

(10)

Eq. (10) is so-called direct method for Legendre mo-
ments computations, which is the approximated version
using zeroth-order approximation (ZOA). As were indi-
cated by Liao and Pawlak [37], Eq. (10) is not a very
accurate approximation of Eq. (1).

Therefore, to improve the accuracy, in 1996, Liao and
Pawlak [37] proposed to use the following approxi-
mated form:

Lpq =
(2p+1)(2q+1)

4

M

∑
i=1

N

∑
j=1

hpq (xi,y j) f (xi,y j)

(11)

where

hpq (xi,y j)=
∫ xi+(△xi/2)

xi−(△xi/2)

∫ y j+(△y j/2)

y j+(△y j/2)
Pp (xi)Pq (y j)dxdy

(12)

Liao and Pawlak proposed the Alternative Extended
Simpson’s Rule (AESR) method to evaluate the dou-
ble integral defined by Eq. (12), and then they use it to
calculate the Legendre moments defined by Eq. (11).
AESR method is shown in Eq. (13).

∫ b
a f (x)dx ∼= h

48 [17 f0 +59 f1 +43 f2+

49 f3 +48∑
n−4
i=4 fi +49 fn−3

+43 fn−2 +59 fn−1 +17 fn]

(13)

Then, in 2005, Yap and Paramesran [39] indicated that
the approximation of the integral terms in Eq. (12)

is responsible for the approximation error of Legen-
dre moments. These integrals need to be evaluated ex-
actly to remove the approximation error of the Legen-
dre moments computation and they proposed a method
to compute the exact values of the Legendre moments
by mathematically integrating the Legendre polynomi-
als over the corresponding intervals of the image pixels.
In 2007, Hosny [40] proposed a new accurate and fast
method for exact Legendre moments computation. The
set of Legendre moment can be computed exactly by:

Lpq =
M

∑
i=1

N

∑
j=1

Ip (xi) Iq (y j) f (xi,y j) (14)

where

Ip (xi) =
(2p+1)
(2p+2)

[xPp (x)−Pp−1 (x)]
Ui+1
Ui

(15)

Iq (y j) =
(2q+1)
(2q+2)

[
yPq (y)−Pq−1 (y)

]V j+1
V j

(16)

This kernel is independent of the image. Therefore, this
kernel can be pre-computed, stored and recalled when-
ever it is needed to avoid repetitive computation.

In 2011, Holoborodko [53] indicated that there are sev-
eral ways on how to improve high-order Newton-Cotes
formulas. The most obvious is to re-target some of
the degrees of freedom in the system from contribut-
ing to highest approximating order to regularization and
stronger noise suppression. Natural way of doing this
is to use least squares approximation instead of inter-
polation. On the contrary to interpolation, least squares
make possible to derive several integration filters of the
same approximation order. Table (2) shows the formu-
las derived by Holoborodko of O(h5) and O(h7) [53].
In this paper, the formula of order 9 will be used seek-
ing to obtain a greater accuracy in the numerical inte-
gration.

In general, given the large number of possible ways to
compute the integrals associated with the Legendre mo-
ments, in this paper is proposed to use the Holoborodko
formula of order 9. In addition, it is compared with a
traditional one (Composite Simpson’s 1/3 rule), AESR
proposed by Pawlak, and the one proposed by Hosny.
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N Stable/Low Noise Newton-Cotes Formulas of O(h5 f (4)) and O(h7 f (6)) Error Term

5 4△x
105 (11 f0 +26 f1 +31 f2 +26 f3 +11 f4)

34(△x)5

315 f (4) (ξ )

6 5△x
336 (31 f0 +61 f1 +76 f2 +76 f3 +61 f4 +31 f5)

265(△x)5

1008 f (4) (ξ )

7 △x
14 (7 f0 +12 f1 +15 f2 +16 f3 +15 f4 +12 f5 +7 f6)

39(△x)5

70 f (4) (ξ )

7 △x
770 (268 f0 +933 f1 +786 f2 +646 f3 +786 f4 +933 f5 +268 f6)

17(△x)7

308 f (6) (ξ )

8
7△x

31680 [1657( f0 + f7)−5157( f1 + f6)+
4947( f2 + f5)+4079( f3 + f4)]

11767(△x)7

6400 f (6) (ξ )

9
8△x
6435 [309( f0 + f8)+869( f1 + f7)+

904( f2 + f6)+779( f3 + f5)+713 f4]
2696(△x)7

1971200 f (6) (ξ )

Table 2: Newton-Cotes Formulas derived by Holoborodko

a) b)
Figure 2: Testing data. a) unidimensional signal b) lena
image

4 EXPERIMENTAL RESULTS
To compare the reconstructed signals and images with
the originals, here is adopted the Mean Square Error
(MSE) and the Peak Signal to Noise Ratio (PSNR) as
the measurements, which are signal or image indepen-
dent and can be used to evaluate the reconstruction sig-
nal performance [36]. PSNR is the ratio between the
maximum power of the signal and the affecting noise,
and is defined as

PSNR = 10log10

(
G2

Max
MSE

)
(17)

where G2
Max is the maximum value of the signal or gray

level of the image, which is 255 in our case, and MSE
is defined by

MSE =
1

MN

M

∑
i=1

N

∑
j=1

∣∣ f (xi,y j)− f̂ (xi,y j)
∣∣2 (18)

Figure (2) shows the test data (signal and image) used in
this paper. The signal is artificially constructed, while
the image (Lena) is taken from the traditional images
used in digital image processing. The image resolution
is 170x170 and has 256 gray levels.

First, the reconstruction of the one-dimensional signal
shown in Fig. (2)a is carried out using the different in-
tegration techniques mentioned. Signal reconstruction

is generated by varying the number of Legendre Mo-
ments and for each of them the MSE and PSNR are
calculated respectively. The results obtained from MSE
and PSNR for the signal using the four integration tech-
niques to calculate the Legendre moments are shown in
Fig. (3). In Fig. 3a can be seen that the values for
MSE are very similar and have a decreasing behavior
and tend to zero, which implies a good signal recon-
struction. Regarding the PSNR, Fig. 3b shows that the
best result corresponds to the Hosny technique. Addi-
tionally, it can be seen that the four techniques reach
a stable state from the fifth order of the Legendre Mo-
ments.

Fig. (4) shows the reconstructed signals using five Leg-
endre moments. The original signal is also presented to
compare the behavior of the integration techniques and
the reconstructed signal from the computation of the
Legendre moments. It can be concluded that the recon-
structed signals present a high precision with respect to
the original signal. However, the biggest error corre-
sponds to the AESR-based technique, which generates
differences in the initial part of the reconstruction. The
ZOA, Holoborodko and Hosny techniques present bet-
ter precision in the reconstructed signal.

Figure 4: Signal reconstruction.

Regarding image reconstruction, Fig. (5) shows the re-
sults of MSE and PSNR. It can be observed that the be-
havior of the MSE is decreasing for the four techniques
applied in the first 90 Legendre Moments, however, this
situation begins to change for the Holoborodko, AESR
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Figure 3: MSE and PSNR for one-dimensional signal.

and Composite Simpson 1/3 techniques. These tech-
niques become unstable and increasing, generating pos-
sible results of low precision in the image reconstruc-
tion. For its part, the technique proposed by Hosny
keeps the MSE decreasing and with a tendency to sta-
bilization, from the Legendre Moment 160, approxi-
mately.
Fig. (5) also presents the PSNR behavior for Lena
image, where it can be seen that the stability of the
technique proposed by Hosny is high, regardless of
the order of the Legendre Moments degree. For its
part, the PSNR precision using the other techniques
(AESR, ZOA and Holoborodko) is reduced from order
90, which implies a possible reduction in the image re-
construction accuracy.
In Fig. (6) three images reconstructed by each of
the techniques used (ZOA, AESR, Holoborodko, and
Hosny) are presented. Images reconstruction were cal-
culated using Legendre Moments with order between
10 and 300 with steps of 10. Based on the behavior of
the MSE and the PSNR, those of order 90, 100 and 110
were selected (see Fig. (5)). As can be seen for the
different orders, the images present accuracy problems,
mainly at the edges, where pixels with incorrect gray
levels appear. Additionally, for the order 110, the ac-
curacy problems are resolved in all cases, but the MSE
and PSNR values are better for the Hosny technique. In
the particular case of Holoborodko technique, it can be
observed that it presents good results, but it does not
exceed those obtained using the technique proposed by
Hosny.

5 CONCLUSIONS
For the computation of Legendre Moments there are
different techniques with different levels of precision.
The use of the numerical integration formulas for uni-
formly spaced data proposed by Holoborodko, derived
from the stable Newton-Cotes quadrature rules that are
based on the least squares approximation instead of in-
terpolation, was proposed. The Holoborodko technique
was compared with respect to techniques such as ZOA,
AESR and the one proposed by Hosny, reaching satis-
factory results. The results were better than using ZOA

and AESR, but it is necessary to continue exploring
the Holoborodko technique using more test images to
obtain conclusive information about its strengths and
weaknesses. In future works it is necessary to identify
the causes of loss of precision after a certain order of
the Legendre Moments, because initially it can be seen
that precision is lost since many values of the orthogo-
nal product of the legendre polynomials become close
to zero. This causes deterioration in the reconstructed
images, as can be seen in the MSE and PSNR figures.
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