
Autograsping pose of virtual hand model using the Signed

Distance Field real-time sampling with fine-tuning

Marcin Puchalski

Jan Dlugosz University

Faculty of Science & Technology

Armii Krajowej 13/15

42-200 Częstochowa, Poland

m.puchalski@ujd.edu.pl

Bożena Woźna-Szcześniak

Jan Dlugosz University

Faculty of Science & Technology

Armii Krajowej 13/15

42-200 Częstochowa, Poland

b.wozna@ujd.edu.pl

ABSTRACT

Virtual hands have a wide range of applications, including education, medical simulation, training, animation, and
gaming. In education and training, they can be used to teach complex procedures or simulate realistic scenarios.
This extends to medical training and therapy to simulate real-life surgical procedures and physical rehabilitation
exercises. In animation, they can be used to generate believable pre-computed or real-time hand poses and grasp-
ing animations. In games, they can be used to control virtual objects and perform actions such as shooting a gun
or throwing a ball. In consumer-grade VR setups, virtual hand manipulation is usually approximated by employing
controller button states, which can result in unnatural final hand positions. One solution to this problem is the use
of pre-recorded hand poses or auto-grasping using physics-based collision detection. However, this approach has
limitations, such as not taking into account non-convex parts of objects, and can have a significant impact on per-
formance. In this paper, we propose a new approach that utilizes a snapshot of the Signed Distance Field (SDF) of
the area below the user’s hand during the grab action. By sampling this 3D matrix during the finger-bending phase,
we obtain information about the distance of each finger part to the object surface. Comparing our solution to those
based on discrete collision detection shows better visual results and significantly less computational impact.

Keywords
Grasping; Virtual Reality; Visualization; Interaction; Animation

1 INTRODUCTION

The Virtual Reality (VR) technology has shown signif-
icant potential in studying disabilities, injuries, and re-
habilitation. It can be used to help patients with motor
impairments or neurological disorders regain functions
and improve their quality of life [COC22]. By provid-
ing a virtual representation of patients’ hands, therapists
can design tailored rehabilitation programs that allow
patients to practice movements and exercises in a safe
and controlled environment [IWL+22, FSY+19].

VR technology has demonstrated great promise for use
in education. One study [ŽCJ18] shows how a pro-
totype application can be used to teach mathematics,
while the feedback received reveals new potential re-
search problems and, for example, the importance of
virtual hands.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Visualizing virtual hands in VR has a significant
impact on how users perceive the overall expe-
rience [JYM+20]. Studies [AHTL16, DMF+19,
LKRI20] have shown that, while the resemblance of
human hands is not important for achieving a sense of
agency (the quality of tracking is more important), it is
crucial for achieving a sense of ownership.

Research [EWB20] has shown that even with passive
haptic feedback, low-cost visualization of virtual hands
and snapping them to predefined positions, rotations,
and poses on manipulated objects significantly increase
presence and user experience. Another study [KSF+18]
has revealed that introducing virtual hands while us-
ing a keyboard paired with a VR headset raises typing
speed.

The recent study [CLL22] has demonstrated that pro-
viding feedback using a virtual hand and a virtual tar-
geted object in a virtual environment produces kine-
matic patterns similar to those observed in physical en-
vironments.

To prevent the interpenetration of two dynamic objects
moving in space (such as a virtual hand and the ob-
ject one interacts with), the term God-object was in-
troduced [ORC07]. It can be generalized to individual

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 232

https://orcid.org/0000-0002-7020-0652
https://orcid.org/0000-0002-1486-6572

phalanges [JSF12]. The solution assumes that the vi-
sual representation of the hand pursues the target which
is the position of the user’s hand, as read by any sensors
while maintaining collision detection with other objects
and taking into account constraints between objects.

Another way to increase the realism of a VR experi-
ence is to depict the grasping of virtual objects in a
way that appears more lifelike. One effective tech-
nique for achieving this is to use a realistic hand pose
which shows the hand holding the object as it would be
in the real world [LC21].

Earlier research [BI05] described a spring model in
which the finger parts and the base of a virtual hand
follow the movement of tracked hand parts. This model
includes collision detection, which prevents the spring
hand from penetrating grasped objects. It can also pro-
duce forces and torques for a physically realistic re-
sponse to the grasped objects. Authors assumed that vi-
sual feedback, due to the psychological phenomenon of
visual capture [WW80], which is not an exact represen-
tation of the real hand configuration is less distracting
to users than an exact representation that exhibits the
visual interpenetration artifacts. This was confirmed by
the later study [CNS+19], where the more general term
of outer hand (OH) was used instead of spring hand.

Other research [LGAMB06] proposes, in addition to a
rigid model for dynamic simulation, using a deformable
model to resolve local contact with friction and surface
deformation of fingertips.

These types of auto-grasping solutions are of-
ten referred to as hybrid solutions with physics
hands in VR and are still widely researched with
different approaches, for example, using machine-
learning [TWMZ19]. In the latter by using discrete
collision detection, the preprocessing algorithm is
sampling multi-dimensional grasp space using random
configurations of hand poses. This approach requires
offline preprocessing for each object but produces
plausible online grasp poses after initial user-guided
movement and pre-grasp pose from tracked hand.

The auto-grasping problem also extends to other fields
including robotics where it is important to properly po-
sition and move the robotic arm so that it can achieve a
stable grip and avoid collisions with the environment.

In [BCO+21] authors propose a Volumetric Grasp
Network (VGN) - a 3D convolutional neural network
that can detect the pose of a grasp in real-time with
6 degrees of freedom (DOF). The network takes in a
Truncated Signed Distance Function representation of
a scene and produces a volume of the same spatial res-
olution as the output. Each cell in the volume contains
information about the predicted quality, orientation,
and width of a grasp that would be executed at the
center of the voxel. The network has been trained

on a synthetic grasping dataset created using physics
simulation.

A more recent paper [TWH+22] proposes a method
of synthesis of grasping poses with a machine
learning-enabled gradient method using dense 2563

precomputed Signed Distance Field (SDF) of the
grasped object as an input. Although the proposed
method synthesizes stable poses with a high contact
surface, it is too slow for online usage.

Another recent paper [SHX+22] proposes using a ma-
chine learning approach with novel sampling of the
Voronoi diagram between two close 3D geometric ob-
jects. Although the resulting method yields grips with
high success rate, it is still prone to unnatural final
poses.

In many cases VR environments are implemented using
game engines such as Unity [Uni05] with commercial
autograsping libraries ([Clo20], [Ear20]). For perfor-
mance reasons, these libraries rely on a method using
discrete physics collision and overlap detection based
on approximating the physical collision of each grasped
object using one or many simple shapes or proxy con-
vex meshes. For more complex concave objects, for ex-
ample, introducing holes, it is necessary to decompose
their surface into f.e. a set of convex shapes [Uni16].
This preprocessing step is required for each interactive
object in the virtual environment. Due to its offline na-
ture, this method is not suitable for animated skinned
meshes.

Taking all of this into consideration, we ask whether
it is possible to skip the preprocessing stages and use
an online method that will work with animated skinned
meshes while still working in a real-time environment.

In this paper, we propose an approach to autograsping
that, unlike existing methods that use discrete physical
collision and overlap detection, uses a snapshot of the
SDF of the grasped object. In addition, unlike other
methods using the SDF, we propose to use only a snap-
shot of a closed region under the virtual hand. We
compare our method with existing methods based on
discrete physical collision and overlap detection. We
also indicate possible future work that can be developed
based on our approach.

The paper is organized as follows. In Section 2, we
define the research problem and existing physics-based
method; in Section 3, we describe the proposed method
and its implementation; and in Section 4, we report on
the simulation results. Section 5 discusses possible lim-
itations of proposed method and current implementa-
tion. Finally, in Section 6 we conclude the paper.

2 BACKGROUND

2.1 Visual representation of hands

Several software platforms are commonly used to cre-
ate VR experiences, including Unity [Uni05] and Un-

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 233

real Engine. Virtual hand presence is widely imple-
mented in most of them using popular VR frameworks
like SteamVR [Val20] and OculusSDK [Met22b].

Virtual hands are displayed instead of or along with
controller models. The movement of the controllers is
translated into the approximate movement of the hand
relative to the position and orientation of the controller
in question. The pose of the virtual hand when the con-
troller itself is also displayed is set to resemble the pose
of the hand wrapping around the given controller. How-
ever, in order to increase the immersion, the display of
the controller is usually omitted while using the dis-
play of the virtual hand in a neutral pose, such as an
open palm. This is somewhat counter-intuitive as the
user’s hand is clamped around the controller. After a
while, the impression of detachment from the experi-
ence blurs, but VR hardware manufacturers are mak-
ing attempts to create controllers that would solve this
problem. An example of this is the Valve Index Con-
troller [Val19], which, with the help of a suitable hand
strap, allows the user to relax and open his hand.

2.2 Physics Based Hands

Physics-based hands are used in VR applications to pre-
vent virtual hands from intersecting with virtual ob-
jects [PZ05]. These hand models consist of a visual
model that is visible to the user, and a physics model
that is made up of simple 3D shapes (such as capsules
and boxes) implemented into the physics engine. The
physics model follows the movements of the tracked
hand (i.e. controller). Simulated as a non-kinematic
object it is not penetrating static objects while exerting
forces on other dynamic objects upon collision.

2.3 Hand poses

Visualization of the selected hand pose is done with the
help of a rigged skinned mesh hand model. The rig usu-
ally consists of 3-4 bones for each finger (one for each
phalanx and metacarpal bone) and at least one bone for
the base of the hand. As for the movement proximal
phalanges joints’ have 2DOF, while intermediate and
distal phalanges have 1DOF.

Commonly used VR libraries [Val20, Met22b] also
allow us to customize the appearance and animating
poses of the virtual hand. These poses must be pre-
defined for a given 3D hand model and its skeleton.
The defined poses most often include closed and
open hand poses, between which one blends the hand
configuration. For example, depending on the state
readings of the controller’s buttons and of touchpads,
we simulate the user’s hand poses such as fist clench-
ing, finger pointing, and palm waving. These libraries
also allow for the creation of predefined poses used
when detecting the action of grasping various objects.
However, these poses must be predefined for each

object with similar shapes and sizes (e.g., a sphere and
an apple). It involves setting the hand model in the
target position and orientation relative to the object
and then adjusting the rotation of the individual finger
bones to reflect the grasping pose. In some cases, we
can achieve mirror poses for the left and right hands
through symmetry.

The OculusSDK library [Met22a] provides a tool for
recording predefined poses for grasping objects using
hand tracking, which has been implemented in the Meta
Quest software. Thanks to it developers can quickly
define natural hand configuration for the grasping pose
of selected objects without the need for their manual rig
setup.

Several possible grasping positions and poses can be
defined for a single object but in each case, the entire
process of manual posing must be repeated. Further,
when grasping a virtual object in runtime, the hand pose
is adjusted, with the position and orientation of the ob-
ject snapped to the hand to match the defined pose (e.g.,
the handle of a cup should wrap around the index fin-
ger) or the hand to the object when the object is static
or attached to environmental elements (e.g., a door han-
dle). Snapping a dynamic object to the hand may result
in the abrupt movement of other objects in clutter due
to the immediate change in position and orientation of
the grasped object.

2.4 Virtual hand auto-grasping

Auto-grasping is a method that allows the automation
of grasping tasks, eliminating the need for manual
preparation of specific poses for different types of
objects in a variety of grasping configurations. It can
heavily speed up the creation of predefined grasping
poses and, more importantly, enable the online gener-
ation of the poses. It also means that virtual objects
can be grasped from any position, eliminating the
need to align them with predetermined positions and
orientations, which can be cumbersome in cluttered
environments.

The auto-grasping technique can be found in com-
mercial toolkits for Unity [Uni05] such as Auto-
Hand [Ear20] and HurricaneVR [Clo20]. These
implementations require specifying only two hand
configurations: an open, slightly exaggerated pose (like
with muscles of the back of the hand clenched) and a
fully closed one - opposite from the former one (like a
clenched fist).

To enable the auto-grasping of a selected virtual object,
it is necessary to define one or more colliders for the
grasped object. These colliders can be simple shapes
such as spheres, cubes, or proxy convex mesh collid-
ers. It is not possible to use a convex mesh collider
for skinned meshes, like those of animated characters.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 234

Algorithm 1: Physics-based auto-grasping pose esti-
mation

Input : f ingers list of finger objects. Each object
contains Squish property taking values 0..1
and is responsible for bending a given
finger from open to closed pose, and Tip

property referencing to finger’s tip object
∆α step from open to closed pose in

normalized time
rtip - radius of the area around fingertip in game units,
typically in meters
foreach f inger in f ingers do

for α ← 0 to 1 step ∆α do

// bend current finger to

α value

f inger.Squish← α;
// Check if tip overlaps the

grasped object

if OverlapSphere(f inger.Tip.Position, rtip)

then
break

end

end

end

Additionally, single convex mesh colliders do not accu-
rately reflect the details of virtual objects, such as cavi-
ties and holes.

Algorithm 1 illustrates the simplified process of the
grasping phase of the virtual object within the hand
range using physics-based method. During this phase,
an interactive blending between the open and closed
poses occurs for each finger. This blending is mapped
to α ∈ [0,1], where 0 means open pose, and 1 means
closed pose. We change this value by a small step
∆α ∈ (0,1), typically 0.1, and using discrete overlap-
ping detection, we check if the target object enters the
sphere around the fingertip, then we stop bending the
finger. It is repeated for each finger individually. In-
tuitively, we can identify two factors affecting perfor-
mance - finger pose blending and subsequent collision
detection.

The method proposed in this paper does not rely on
physics, discrete overlapping detection, iterative pose
blending, or multiple proxy convex meshes to model
mesh holes. It can also work with animated skin meshes
as shown in one of the attached video files.

3 THE SDF SAMPLING-BASED

METHOD

In contrast to the physics-based approach (Algorithm 1)
we do not rely on discrete overlap detection. Instead,
we sample the SDF of the grasped object at voxel posi-
tions mapped to fingers’ tips positions during the bend-
ing of each finger. Subsection 3.1 describes the initial

Figure 1: Hand model with an area of SDF generation
and with fully closed pose

setup and prerequisites for the hand model we use for
our method. At the start of the grasp phase, we com-
pute the SDF (Subsection 3.2) of the grasped object
but, for performance reasons, only in the clipped area
around the virtual hand and in relatively low resolution.
For optimizations, we also cache all possible fingertips
positions mapped to the SDF texture space (Subsec-
tion 3.3). Values sampled from SDF at these positions
(Subsection 3.4) are the Euclidean distances to the ob-
ject’s surface, and by comparing them with a minimum
threshold we can determine when each fingertip pene-
trates the object and stop bending the finger. This is
further described in Subsection 3.5. However, as op-
posed to the discrete overlap detection the sampled dis-
tance values can be used in a broader way to fine-tune
the bending of the finger (Subsection 3.6).

3.1 Virtual hand configuration

For visualization, the 3D model of the hand provided
with the OculusSDK library was used and further con-
figured (Figure 1). Although we can use any rigged
hand model even with a different number of fingers than
the human hand. There is an added component on each
finger responsible for bending the finger from the open
to close position and for storing the finger’s tip position.

Around the hand, we have defined an area with two pur-
poses in mind. First, it acts as a trigger to detect a vir-
tual object under the palm and to start interactive SDF
computation of that object relative to hand position and
orientation. Secondly, it is the clipping area of the com-
puted SDF.

3.2 SDF computation

SDFs and implicit surfaces have been used for many
years in computer graphics for creating and displaying
shapes [Bli82, BW97, Har95, WGG99]. SDF can be
described by the following mathematical function:

φ(x) : R3→ R (1)

that maps a point x in 3D space (represented in some
predefined coordinate frame) to a real number. The
value of φ(x) at a given point is the signed Euclidean
distance from that point to the nearest point on a sur-
face, where φ(x) = 0. Points that are outside of the ob-
ject being represented by the SDF have a value of

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 235

Figure 2: Hand model with all possible fingers’ tip po-
sitions during auto-grasping

φ(x) > 0, while points inside the object have a value
of φ(x)< 0.

In this paper, we’ve used Unity’s light and fast real-time
SDF generator Mesh-to-SDF [Uni22] that implements
an algorithm from AMD TressFX library [Adv20]. Its
main optimizations rely on taking into account the area
near each triangle and then filling the rest of the SDF
using linear or jump flood algorithm [RT06]. It is fast
enough for real-time, especially for meshes with less
than 10k triangles. In our implementation, we have as-
sumed the SDF volumes size to be 163, which in tests
turned out to be sufficient and resulted in a fast compu-
tation.

3.3 Fingertip positions cache

During the auto-grasp, each finger’s configuration
blends from a fully open to a closed pose. The blend
happens on each part of the finger by changing its local
positions and orientation relative to the parent bone in
the hierarchy. As a result of this blending, the finger’s
tip travels on a constant curve. For our implementation,
we sample the tip positions on that curve by constant
step ∆α = 0.1, where α = 0 is the start of the curve,
and α = 1 is its end. All tip positions are stored in a
1D vector of positions. Each position in this vector is
then transformed using Equation 2 from the hand local
space to the SDF 3D texture space, where x,y,z ∈ R

are the coordinates of transformed position, bbox is the
local bounding box size reflecting the area from which
the SDF is created. This results in the constant cache of
all possible fingertips’ positions in SDF texture space.

T : R3→ R
3
,T

(

x

y

z

)

=

2x
bboxx

2y
bboxy

2z
bboxz

+

0.5
0.5
0.5

 (2)

3.4 SDF sampling

To retrieve values stored in the SDF created by
the Mesh-To-SDF algorithm we use a simple

multi-threaded GPU compute shader described by
Algorithm 2. It takes a vector cache of possible tips’
positions in 3D texture space and returns a 1D vector
of sampled SDF values. By running this code on GPU
we do not need to transfer the whole SDF texture from
GPU memory to computer memory, and then do the
linear sampling for non-integer texture coordinates
on CPU. Additionally, we can sample many SDF
values parallel using multiple GPU threads. After
dispatching SDF sampling on GPU we use Unity’s
AsyncGPUReadback class allowing the asynchronous
readback of sampled values without any stall on the
CPU or GPU side.

Algorithm 2: Multithreaded SDF Sampling Compute
Shader

Input : tex - SDF 3D texture;
input_bu ff er - holding texture coordinates
to sample;
threadID - vector of three unsigned integer
components x,y,z with thread indexes.

Output : out put_bu ff er - holding sampling results
id← threadIDx

coord← coordinate at(id) in input_bu ff er

texel← Sample3DTexture(tex,coord)
out put_bu ff er[id]← texel

3.5 SDF based auto-grasping

Algorithm 3: SDF based auto-grasping

Input : resultArr - result of the SDF sampling
compute shader;
∆α - the predefined step of finger on
bending curve;
minTipDistance - threshold value of SDF
sample;
f ingers - list of finger objects.

α ← 0
stopped← f alse

eFinger← f ingers.GetEnumerator()
eFinger.MoveNext()
foreach result in resultArr do

if !stopped & result < minTipDistance then
stopped← true

eFinger.Current.Squish← α

end

α ← α +∆α

if α > 1.0 then

if !stopped then
eFinger.Current.Squish← 1.0

end

α ← 0
stopped← f alse

eFinger.MoveNext()
end

end

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 236

Figure 3: Index finger bending phase before and after
penetrating object

After receiving a callback with sampled SDF values
they can be processed on the CPU side by Algorithm 3.
Its main loop iterates through the resultArr array hold-
ing the sampled SDF values in discrete positions on
each finger’s bending curves traversed by the ∆α step.
During this iteration, our algorithm also iterates through
each finger component responsible for its bending. If
the current SDF value from the resultArr is less than
the specified minimum threshold value, then the cur-
rent finger is bent to the corresponding position on the
bending curve, any remaining samples for that finger
are skipped, and the algorithm iterates to the next fin-
ger.

3.6 Fine tuning using SDF sample

The fingertip bend value is stored in the α variable tak-
ing a normalized value in the range 0..1 (from a fully
open pose to a close one). Assuming the value of
∆α = 0.1 as in Figure 3, it may happen that for succes-
sive discrete positions, the fingertip is above the surface
of the object (point A), and in the next step it is inside
the object (point B). In methods using discrete overlap
detection, one retracts the finger to point A by changing
the value of the bend α ← α −∆α . The finger bend-
ing is then repeated but this time for a smaller step, e.g.
∆α = 0.01.

This approach is not suitable when using SDF, as it
would require another cache of fingertip positions and
another round of SDF sampling. Fortunately, SDF sam-
ples give us more information than just discrete colli-
sion - specifically the distance to the nearest surface. In
the proposed method, we use the SDF value x read at
the time of penetration into the object. AB is the seg-
ment between the last position of the fingertip before
penetrating the object and the current position inside

the object.
⌢

AB denotes the arc between two points on
the bending curve of the current finger. When ∆α → 0

then |AB| = |
⌢

AB|, so we can assume for small values

of ∆α that |AB| ≈ |
⌢

AB|. If |AB| is the approximated
distance the finger traveled from point A to B on the
curve, then the correction of α value to push the finger
from the surface can be approximated with the follow-
ing equation:

αcorr =
x− rtip

|AB|
∆α (3)

4 RESULTS

The proposed method was implemented and tested
in the Unity Editor environment [Uni05]. Our
implementation is available online as a GitHub repos-
itory [SDF23]. Screenshots and timing measurements
were done on the Apple MacBook Air M1 laptop.

METHOD Bunny Armadillo Dragon Pixel
Physics 0.08ms 0.04ms 0.1ms 0.08ms
Ours 0.01ms 0.02ms 0.03ms 0.02ms

Table 1: Avg timings of grasping methods for test ob-
jects

Figure 4 shows the comparison of the physics-based
and the SDF sampling-based grasps on test objects. The
first image in each set shows a physics-based grasp re-
lying on overlap detection. The second image shows a
simple convex mesh collider used for overlap detection.
The third image shows the result of the proposed SDF
sampling-based method, and the last one adds a visual-
ization of the SDF sample. As we can infer from ex-
amples, the physics-based grasp produces worse grasps
than the SDF sampling based. In most distinctive exam-
ples, the fingers stop before reaching the object’s sur-
face because they overlap already with a simple convex
mesh collider.

Table 1 shows the average timings of physics-based
and SDF sampling-based grasping methods for each of
the tested models. On a note, the latter does not in-
clude the timings of SDF computation as it is not a part
of the proposed method, depends on the selected im-
plementation, and heavily relies on a specific model’s
triangle count. For a Pixel test model (with 499,548
triangle count) online SDF computation can result in
>0.6ms overhead while for models with ≤ 10k triangle
count the overhead is insignificant. Additionally, each
GPUAsyncCallback can stall SDF sampling results for
an additional frame.

5 LIMITATIONS

In addition to the last note, it is worth mentioning other
limitations of the proposed method. First, the results
are highly dependent on the initial position of the vir-
tual hand. In the context of this paper, however, we do
not elaborate on the stage of hand approach to the ob-
ject surface. The proposed method and implementation
focus only on detection around the fingertips and is sub-
ject to, for example, interpenetration of other parts of
the fingers with grasped objects. We can also imagine a
situation in which, during the bending phase of a finger
with ∆α = 0.1, the fingertip misses a small obstacle on

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 237

Figure 4: Example grasps of test objects including Stanford Bunny, Stanford Dragon, Stanford Armadillo, and
Pixel mascot presented in four configurations: physics-based grasp, convex collider used for physics-based grasp,
SDF sampling based grasp and SDF visualization

Figure 5: Examples of interpenetration

it’s bending curve. This, however can be resolved by
using smaller ∆α values.

Figure 5 shows examples of results failed due to the
above limitations.

6 CONCLUSIONS

In this paper, we have proposed the SDF sampling-
based auto-grasping method as a replacement for the
physics-based one used for example in popular com-
mercial auto-grasping toolkits for the Unity game en-

gine. Using SDF sampling produces better visual re-
sults and the sampling method implementation is faster
than the one based on discrete sphere overlap detection.
The trade-off is that we also need to implement a se-
lected SDF computation algorithm that for 3D models
with bigger triangle counts can have an impact on per-
formance. But taking into account the dynamic devel-
opment of new SDF computation methods and that SDF
computation can be tailored for our specific usage (low
resolution and small clipped area of SDF computation)
we can assume future improvements in this field.

Regarding possible interpenetration, in future work, we
can focus on sampling SDF values for multiple contact
points on the hand. We could also benefit from using
different bending strategies like bending parts of each
finger separately, using SDF sample values for wider
optimizations, and leveraging more GPU-side compu-
tations.

As for the hand approach phase, it can also be solved
using sampling the SDF around, for example, the

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 238

hand’s palm center. Additional calculation of the SDF
derivative at the same point will result in a near-surface
normal that can be used to determine the orientation
of the whole hand. For this reason, we do not present
Q-distance comparisons as these depend strongly on
the aforementioned stage.

Our auto-grasping method is not the first one using
SDFs, but in opposition to other methods [BCO+21,
TWH+22], it does not need any precomputations. It
targets online usage, can be used with dynamic skinned
meshes, and focuses only on the small clipped area for
the SDF computations, not the entire object or environ-
ment. In future work, we would like to study the con-
textless clipped SDF samples as an input for a general-
ized machine learning approach to auto-grasping. Ad-
ditionally, it can leverage from using imitation learning
with grasping poses obtained using, i.e., Meta Quest
hand tracking.

7 REFERENCES

[Adv20] AMD, Inc. TressFX (2020). URL: https://
github.com/GPUOpen-Effects/TressFX.

[AHTL16] Argelaguet, F., Hoyet, L., Trico, M., and
Lecuyer, A. The role of interaction in virtual embod-
iment: Effects of the virtual hand representation. In
2016 IEEE Virtual Reality (VR), pages 3–10. IEEE,
New York (2016). DOI: 10.1109/VR.2016.7504682.

[BCO+21] Breyer, M., Chung, J.J., Ott, L., Siegwart,
R., and Nieto, J. Volumetric Grasping Network:
Real-time 6 DOF Grasp Detection in Clutter. In
J. Kober, F. Ramos, and C. Tomlin, editors, Pro-

ceedings of the 2020 Conference on Robot Learn-

ing, volume 155 of Proceedings of Machine Learn-

ing Research, pages 1602–1611. PMLR, Cambridge
MA (2021). DOI: 10.48550/arXiv.2101.01132.

[BI05] Borst, C. and Indugula, A. Realistic virtual
grasping. In IEEE Proceedings. VR 2005. Vir-

tual Reality, 2005., pages 91–98. IEEE, New York
(2005). DOI: 10.1109/vr.2005.1492758.

[Bli82] Blinn, J.F. A Generalization of Algebraic Sur-
face Drawing. ACM Trans. Graph., 1(3):235–256
(1982). DOI: 10.1145/357306.357310.

[BW97] Bloomenthal, J. and Wyvill, B. Introduction

to Implicit Surfaces. Morgan Kaufmann Publishers
Inc., San Francisco (1997). ISBN 155860233X.

[CLL22] Cai, Q., Li, J., and Long, J. Effect
of Physical and Virtual Feedback on Reach-
to-Grasp Movements in Virtual Environments.
IEEE Transactions on Cognitive and Develop-

mental Systems, 14(2):708–714 (2022). DOI:
10.1109/TCDS.2021.3066618.

[Clo20] Cloudwalkin Games. Hurricane VR -
Physics Interaction Toolkit (2020). URL:

https://assetstore.unity.com/packages/tools/physics/
hurricane-vr-physics-interaction-toolkit-177300.

[CNS+19] Canales, R., Normoyle, A., Sun, Y., Ye, Y.,
Luca, M.D., and Jörg, S. Virtual Grasping Feed-
back and Virtual Hand Ownership. In ACM Sympo-

sium on Applied Perception 2019, SAP ’19. ACM,
New York (2019). ISBN 9781450368902. DOI:
10.1145/3343036.3343132.

[COC22] Chen, J., Or, C.K., and Chen, T. Effective-
ness of Using Virtual Reality–Supported Exercise
Therapy for Upper Extremity Motor Rehabilita-
tion in Patients With Stroke: Systematic Review
and Meta-analysis of Randomized Controlled Tri-
als. J Med Internet Res, 24(6):e24111 (2022). DOI:
10.2196/24111.

[DMF+19] D’Alonzo, M., Mioli, A., Formica, D.,
Vollero, L., and Di Pino, G. Different level of vir-
tualization of sight and touch produces the uncanny
valley of avatar’s hand embodiment. Scientific Re-

ports, 9(1):19030 (2019). DOI: 10.1038/s41598-
019-55478-z.

[Ear20] Earnest Robot. Auto Hand -
VR Interaction (2020). URL: https://
assetstore.unity.com/packages/tools/game-toolkits/
auto-hand-vr-interaction-165323.

[EWB20] Elbehery, M., Weidner, F., and Broll, W.
Haptic Space: The Effect of a Rigid Hand Rep-
resentation on Presence When Interacting with
Passive Haptics Controls in VR. In 19th Inter-

national Conference on Mobile and Ubiquitous

Multimedia, MUM ’20, page 245–253. ACM,
New York (2020). ISBN 9781450388702. DOI:
10.1145/3428361.3428388.

[FSY+19] Furmanek, M.P., Schettino, L.F., Yarossi,
M., Kirkman, S., Adamovich, S.V., and Tunik,
E. Coordination of reach-to-grasp in physical and
haptic-free virtual environments. Journal of Neu-

roEngineering and Rehabilitation, 16(1):78 (2019).
DOI: 10.1186/s12984-019-0525-9.

[Har95] Hart, J. Sphere Tracing: A Geometric Method
for the Antialiased Ray Tracing of Implicit Sur-
faces. The Visual Computer, 12 (1995). DOI:
10.1007/s003710050084.

[IWL+22] Isenstein, E.L., Waz, T., LoPrete, A., Her-
nandez, Y., Knight, E.J., Busza, A., and Tadin,
D. Rapid assessment of hand reaching using vir-
tual reality and application in cerebellar stroke.
PLOS ONE, 17(9):1–21 (2022). DOI: 10.1371/jour-
nal.pone.0275220.

[JSF12] Jacobs, J., Stengel, M., and Froehlich, B.
A generalized God-object method for plausible
finger-based interactions in virtual environments.
In 2012 IEEE Symposium on 3D User Interfaces

(3DUI), pages 43–51. IEEE, New York (2012). DOI:

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 239

https://github.com/GPUOpen-Effects/TressFX
https://github.com/GPUOpen-Effects/TressFX
http://dx.doi.org/10.1109/VR.2016.7504682
http://dx.doi.org/10.48550/arXiv.2101.01132
http://dx.doi.org/10.1109/vr.2005.1492758
http://dx.doi.org/10.1145/357306.357310
http://dx.doi.org/10.1109/TCDS.2021.3066618
https://assetstore.unity.com/packages/tools/physics/hurricane-vr-physics-interaction-toolkit-177300
https://assetstore.unity.com/packages/tools/physics/hurricane-vr-physics-interaction-toolkit-177300
http://dx.doi.org/10.1145/3343036.3343132
http://dx.doi.org/10.2196/24111
http://dx.doi.org/10.1038/s41598-019-55478-z
http://dx.doi.org/10.1038/s41598-019-55478-z
https://assetstore.unity.com/packages/tools/game-toolkits/auto-hand-vr-interaction-165323
https://assetstore.unity.com/packages/tools/game-toolkits/auto-hand-vr-interaction-165323
https://assetstore.unity.com/packages/tools/game-toolkits/auto-hand-vr-interaction-165323
http://dx.doi.org/10.1145/3428361.3428388
http://dx.doi.org/10.1186/s12984-019-0525-9
http://dx.doi.org/10.1007/s003710050084
http://dx.doi.org/10.1371/journal.pone.0275220
http://dx.doi.org/10.1371/journal.pone.0275220

10.1109/3dui.2012.6184183.

[JYM+20] Jörg, S., Ye, Y., Mueller, F., Neff, M., and
Zordan, V. Virtual Hands in VR: Motion Capture,
Synthesis, and Perception. In SIGGRAPH Asia 2020

Courses, SA ’20. ACM, New York (2020). ISBN
9781450381123. DOI: 10.1145/3415263.3419155.

[KSF+18] Knierim, P., Schwind, V., Feit, A.M.,
Nieuwenhuizen, F., and Henze, N. Physical Key-
boards in Virtual Reality. In Proceedings of the

2018 CHI Conference on Human Factors in Com-

puting Systems, pages 1–9. ACM, New York (2018).
DOI: 10.1145/3173574.3173919.

[LC21] Lavoie, E. and Chapman, C.S. What’s limbs
got to do with it? Real-world movement correlates
with feelings of ownership over virtual arms during
object interactions in virtual reality. Neuroscience of

Consciousness (2021). DOI: 10.1093/nc/niaa027.

[LGAMB06] Le Garrec, J., Andriot, C., Merlhiot, X.,
and Bidaud, P. Virtual Grasping of Deformable
Objects with Exact Contact Friction in Real Time.
WSCG ’2006: short communications proceedings,
pages 87–92 (2006).

[LKRI20] Lougiakis, C., Katifori, A., Roussou, M.,
and Ioannidis, I.P. Effects of Virtual Hand Repre-
sentation on Interaction and Embodiment in HMD-
based Virtual Environments Using Controllers. In
2020 IEEE Conference on Virtual Reality and 3D

User Interfaces (VR), pages 510–518. IEEE, New
York (2020). DOI: 10.1109/VR46266.2020.00072.

[Met22a] Meta. Creating Hand Grab Poses (2022).
URL: https://developer.oculus.com/documentation/
unity/unity-isdk-creating-handgrab-poses/.

[Met22b] Meta. Interaction SDK Overview (2022).
URL: https://developer.oculus.com/documentation/
unity/unity-isdk-interaction-sdk-overview/.

[ORC07] Ortega, M., Redon, S., and Coquillart, S.
A Six Degree-of-Freedom God-Object Method for
Haptic Display of Rigid Bodies with Surface Prop-
erties. IEEE Transactions on Visualization and

Computer Graphics, 13(3):458–469 (2007). DOI:
10.1109/TVCG.2007.1028.

[PZ05] Pollard, N.S. and Zordan, V.B. Physically
Based Grasping Control from Example. In Proceed-

ings of the 2005 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’05,
page 311–318. ACM, New York (2005). ISBN
1595931988. DOI: 10.1145/1073368.1073413.

[RT06] Rong, G. and Tan, T.S. Jump Flooding in GPU
with Applications to Voronoi Diagram and Distance
Transform. In Proceedings of the 2006 Sympo-

sium on Interactive 3D Graphics and Games, I3D
’06, page 109–116. ACM, New York (2006). ISBN
159593295X. DOI: 10.1145/1111411.1111431.

[SDF23] SDF2HandPose (2023). URL: https://github.

com/nosferathoo/SDF2HandPose.

[SHX+22] She, Q., Hu, R., Xu, J., Liu, M., Xu, K.,
and Huang, H. Learning High-DOF Reaching-and-
Grasping via Dynamic Representation of Gripper-
Object Interaction. ACM Trans. Graph., 41(4)
(2022). DOI: 10.1145/3528223.3530091.

[TWH+22] Turpin, D., Wang, L., Heiden, E., Chen,
Y.C., Macklin, M., Tsogkas, S., Dickinson, S., and
Garg, A. Grasp’D: Differentiable Contact-Rich
Grasp Synthesis for Multi-Fingered Hands. In Com-

puter Vision – ECCV 2022: 17th European Confer-

ence, Tel Aviv, Israel, October 23–27, 2022, Pro-

ceedings, Part VI, page 201–221. Springer-Verlag,
Berlin, Heidelberg (2022). ISBN 978-3-031-20067-
0. DOI: 10.1007/978-3-031-20068-7_12.

[TWMZ19] Tian, H., Wang, C., Manocha, D., and
Zhang, X. Realtime Hand-Object Interaction Us-
ing Learned Grasp Space for Virtual Environ-
ments. IEEE Transactions on Visualization and

Computer Graphics, 25(8):2623–2635 (2019). DOI:
10.1109/TVCG.2018.2849381.

[Uni05] Unity Technologies. Unity Real-Time Devel-
opment Platform (2005). URL: https://unity.com.

[Uni16] Unity Technologies. The V-HACD library
decomposes a 3D surface into a set of "near"
convex parts. (2016). URL: https://github.com/
Unity-Technologies/VHACD.

[Uni22] Unity Technologies. Mesh-To-SDF (2022).
URL: https://github.com/Unity-Technologies/com.
unity.demoteam.mesh-to-sdf.

[Val19] Valve Corporation. Valve Index - Up-
grade your experience (2019). URL: https://www.
valvesoftware.com/en/index/controllers.

[Val20] Valve Corporation. Skeleton Input |
SteamVR Unity Plugin (2020). URL: https:
//valvesoftware.github.io/steamvr_unity_plugin/
articles/Skeleton-Input.html.

[ŽCJ18] Žilak, M., Car, v., and Ježić, G. Educational
Virtual Environment Based on Oculus Rift and Leap
Motion Devices. WSCG ’2018: short communi-

cations proceedings, pages 143–151 (2018). DOI:
10.24132/CSRN.2018.2802.18.

[WGG99] Wyvill, B., Guy, A., and Galin, E. Extend-
ing The CSG Tree. Warping, Blending and Boolean
Operations in an Implicit Surface Modeling System.
Comput. Graph. Forum, 18:149–158 (1999). DOI:
10.1111/1467-8659.00365.

[WW80] Welch, R. and Warren, D. Immediate per-
ceptual response to intersensory discrepancy. Psy-

chological bulletin, 88(3):638—667 (1980). URL:
http://europepmc.org/abstract/MED/7003641.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.27 240

http://dx.doi.org/10.1109/3dui.2012.6184183
http://dx.doi.org/10.1145/3415263.3419155
http://dx.doi.org/10.1145/3173574.3173919
http://dx.doi.org/10.1093/nc/niaa027
http://dx.doi.org/10.1109/VR46266.2020.00072
https://developer.oculus.com/documentation/unity/unity-isdk-creating-handgrab-poses/
https://developer.oculus.com/documentation/unity/unity-isdk-creating-handgrab-poses/
https://developer.oculus.com/documentation/unity/unity-isdk-interaction-sdk-overview/
https://developer.oculus.com/documentation/unity/unity-isdk-interaction-sdk-overview/
http://dx.doi.org/10.1109/TVCG.2007.1028
http://dx.doi.org/10.1145/1073368.1073413
http://dx.doi.org/10.1145/1111411.1111431
https://github.com/nosferathoo/SDF2HandPose
https://github.com/nosferathoo/SDF2HandPose
http://dx.doi.org/10.1145/3528223.3530091
http://dx.doi.org/10.1007/978-3-031-20068-7_12
http://dx.doi.org/10.1109/TVCG.2018.2849381
https://unity.com
https://github.com/Unity-Technologies/VHACD
https://github.com/Unity-Technologies/VHACD
https://github.com/Unity-Technologies/com.unity.demoteam.mesh-to-sdf
https://github.com/Unity-Technologies/com.unity.demoteam.mesh-to-sdf
https://www.valvesoftware.com/en/index/controllers
https://www.valvesoftware.com/en/index/controllers
https://valvesoftware.github.io/steamvr_unity_plugin/articles/Skeleton-Input.html
https://valvesoftware.github.io/steamvr_unity_plugin/articles/Skeleton-Input.html
https://valvesoftware.github.io/steamvr_unity_plugin/articles/Skeleton-Input.html
http://dx.doi.org/10.24132/CSRN.2018.2802.18
http://dx.doi.org/10.1111/1467-8659.00365
http://europepmc.org/abstract/MED/7003641

	Introduction
	Background
	Visual representation of hands
	Physics Based Hands
	Hand poses
	Virtual hand auto-grasping

	The SDF sampling-based method
	Virtual hand configuration
	SDF computation
	Fingertip positions cache
	SDF sampling
	SDF based auto-grasping
	Fine tuning using SDF sample

	Results
	Limitations
	Conclusions
	REFERENCES

