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ABSTRACT
In recent academic literature Sex and Gender have both become synonyms, even though distinct definitions do
exist. This give rise to the question, which of those two are actually face image classifiers identifying? It will be
argued and explained why CNN based classifiers will generally identify gender, while feeding face recognition
feature vectors into a neural network, will tend to verify sex rather than gender. It is shown for the first time how
state of the art Sex Classification can be performed using Embedded Prototype Subspace Classifiers (EPSC) and
also how the projection depth can be learned efficiently. The automatic Gender classification, which is produced
by the InsightFace project, is used as a baseline and compared to the results given by the EPSC, which takes the
feature vectors produced by InsightFace as input. It turns out that the depth of projection needed is much larger
for these face feature vectors than for an example classifying on MNIST or similar. Therefore, one important
contribution is a simple method to determine the optimal depth for any kind of data. Furthermore, it is shown how
the weights in the final layer can be set in order to make the choice of depth stable and independent of the kind of
learning data. The resulting EPSC is extremely light weight and yet very accurate, reaching over 98% accuracy for
several datasets.
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1 INTRODUCTION

Sex or Gender classification is one important task in
the field of face recognition (FR) and it will be shown
how this can be done efficiently using Embedded Pro-
totype Subspace Classification (EPSC) [Has22, HV21,
HLV19, HL20, HV21], which has already been proven
to be able to classify datasets of various kinds, such as
digits, words and objects.

Another important contribution to EPSC in this paper,
is to show how the projection depth can be learned and
how the weights in the final layer can be set in order
to make sure that the algorithm is stable and that the
results are always reliable, regardless of how the depth
parameter is set for unknown data to be classified.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1.1 Sex or Gender?
Sex and Gender has increasingly become synonyms and
the recent research papers about how to use FR to de-
termine whether there is a male or a female in the im-
age, generally use the word Gender, just as many other
academic papers tend to do in their titles [Hai04] nowa-
days. However, there is a distinct difference between
the words Sex and Gender, and the Council of Eu-
rope gives several definitions on one of their websites
[oE23]. To make a long story short, Sex generally refers
to "biological differences between males and females",
while Gender is presented as a "social, psychological
and cultural construct".

In this paper the question about sex and gender will be
handled in a very simple way, by just using the labels
"Male" and "Female" provided in the datasets. Hence,
the classification has already been done in some way,
and then the task is for any computer algorithm to de-
termine the class based on cues such as face geometry,
facial hair etc, as explained in the following sections.
The main question is which cues to use and whether
humans use other cues than Machine Learning (ML)
algorithms for sex and gender classification. It will be
argued that when using face feature vectors (FFV) from
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FR, they are predominantly based on the geometry of
the face, regardless of facial expression and outer at-
tributes such as facial hair, makeup or hair-cuts, which
otherwise could reveal the gender of the person at hand.

1.2 Cues
Hoss et al. [HRGL05] found that high masculinity in
male faces, but not high femininity in female faces, fa-
cilitated sex classification when showing face images
to both adults and children. And they also found that,
independently of masculinity/femininity, attractiveness
affected not only the accuracy of the sex classification,
but also the speed.

Interestingly, Bruce et al. [BBH∗93] found that cues
from features such as eyebrows, and skin texture, play a
more important role when humans are deciding whether
faces are male or female, than cues from such things as
hairstyle, makeup, and facial hair. Moreover, O’Toole
et al. [OPD96] found that female observers were more
accurate at classification of sex than were male ob-
servers, on both Caucasian and oriental faces.

Obviously, humans use different cues to determine sex
and gender, both outer attributes but also the geometry
itself, which is related to masculinity and femininity.

1.3 Geometry or Attributes?
The main question then is, which of those two concepts
will FR algorithms pick up on? A Convolutional Neu-
ral Network (CNN) will probably pick up on both fa-
cial attributes, such as hairstyle, facial hair but also on
geometrical aspects such as size of chin and nose, etc.
The reason is simply, because they are all visual cues
present to different degrees in face images.

It is quite obvious that Sex could have an impact on all
these cues, while Gender, i.e. a persons own perception
about gender, cannot change the geometrical aspects,
since they are predominantly the results of a persons
sex. However, depending on a persons Gender they
have indeed power to change the other attributes, such
as facial hair, makeup and haircut, which the surround-
ing world would perceive as typically female or male
(or neither).

FFVs on the other hand are constructed so that the FR
software can be used to recognise a person, regardless
of the aforementioned outer attributes, which might re-
veal the persons gender. Hence, the FFV are more sta-
ble in that sense, and therefore obviously tend to pick
up on the geometry, which is more related to Sex. So
for this reason, the title contains the word Sex Classifi-
cation, rather than Gender Classification. Nonetheless,
as stated before, most researchers will understand both
as determining whether the person present in the image
is a male or a female.

2 RELATED WORK

Burton et al. [BBD93] compared the human ability
to determine sex of persons showing the face only,
wearing swimming caps to conceal their hair (outer at-
tribute), compared to a computer approach based on
the face geometry, and found that humans could reach
an accuracy of 96% and that the computer was at the
time approaching human performance of 94% accuracy.
These experiments from 30 years ago underlines the
importance of face geometry for determining sex.

Golumb et al. [GLS90] devised "SexNet", which was a
neural network, working on aligned and scaled face im-
ages, and had an average error rate of 8.1% compared to
humans, who averaged 11.6% on that particular dataset.
Hence, this network would pick up on both the geome-
try and outer facial cues like facial hair.

Mäkinen and Raisamo[MR08] gives an overview of dif-
ferent gender classification methods with a varying ac-
curacy between 76.87% and 86.54%, on the FERET
[PWHR98] and IMM [NLSS04] datasets.

Gong et al. [GLJ20] proposed a group adaptive clas-
sifier for face recognition, which is designed to cus-
tomize the classifier for each demographic group, and
automatically learns where to use adaptive kernels in a
multilayer CNN. They obtained an accuracy for FR of
98.19% using a 5-fold cross-validation on 8 groups of
the Racial Faces in the Wild (RFW) dataset [WDH∗19].
However, the accuracy for gender classification was
only 85%.

Gil and Hassner [LH15] achieve an accuracy of
86.8% using deep CNN’s on the Adience Benchmark
[EEH14], on which others have reached up to 91%
[SBLM17].

Acien et al. [AMVR∗19] used the Labeled Faced in the
Wild (LFW) dataset [HRBLM07], which will be used
also in this paper. They achieved a 94.8% accuracy us-
ing VGGFace and 89.01% using ResNet50, where a
separate layer was added in both networks to classify
gender. It can be noted that the dataset is ethnically
mixed between Caucasians, Asians and Blacks.

Sumi et al. [SHIA21] gives an overview of several
other works for gender classifcation, where no algo-
rithm reaches over 97% accuracy. They report them-
selves an average training and test accuracy of 90% and
83.5%, respectively on the Nottingham Scan Database,
which will also be used in this paper.

Both Liu et al. [LLWT15] and Ranjan et al. [RPC16]
report results from several implementations trying to
classify gender on the CelebA dataset, which is another
dataset that will be used in this paper. The accuracy
spans from 90% up to 98% depending on which method
is being used.
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2.1 3D Faces
Interestingly, Abbas et al. [AHM∗18] proposed a set of
facial morphological descriptors, based on 3D geodesic
path curvatures between two key landmarks in 3D
faces, obtained from 3D scanning. Hence, it would
only pick up on geometry and not on outer facial cues,
like facial hair. They achieved a gender classification
accuracy of 88.6% using a combination of geodesic
distances between landmarks and the new geodesic
path features.

Gilani et al. [GRS∗14] investigated how the the human
cognitive system uses geometric features in perceiv-
ing the degree of masculinity/femininity in 3D faces.
Their results suggested that humans use a combination
of both Euclidean and geodesic distances between bi-
ologically significant landmarks of the face for deter-
mining gender. Gilani and Milan [GM14] used this ap-
proach on 3D scanned faces and obtained an accuracy
of 99.32

It should be noted though that the proposed method can
not be easily compared to 3D methods, since only 2D
face images are used from FR software. However, the
important lesson here is that geometry was concluded in
both mentioned papers as an important cue for differing
between masculine and feminine faces.

3 BACKGROUND
The main advantage of EPSC compared to many deep
learning based methods [Sha18] is that EPSC is shal-
low to its nature, with no hidden layers, and therefore it
does not require powerful GPU resources in the training
process. Recently, the main idea of backpropagation
used by most neural network based approaches, was
questioned by Geoffrey Hinton [Hin22] who proposed
another alternative in the The Forward-Forward Algo-
rithm. Interestingly, the EPSC does not use backprop-
agation at all and learns only from the feature vectors
using PCA, and from the embedding of feature vectors,
using dimensionality reduction techniques like t-SNE,
UMAP or SOM [HV21]. Consequently, subspaces are
created from each cluster [KLR∗77, OK83], which con-
stitutes a set of neurons that are specialised on identify-
ing the class variation captured in that cluster. However,
in this paper, only one set of neurons, i.e. subspace, will
be used for each class, as it turns out to be more efficient
for the purpose of sex/gender classification.

Obviously, EPSC does not always outperform the
state-of-the-art deep learning approaches when it
comes to accuracy. However, Both learning and
inference will generally be much faster, due to its
simplicity and compactness. Moreover, both the
learning and classification processes are inherently
easy to both interpret [Kri19, CPC19] and explain
[ADRS∗19, GSC∗19, CPC19], as well as they are easy

(a) Detected face (white box) with
landmarks (red dots)

(b) Face after alignment

Figure 1: Illustration of automatic face detection and
alignment using landmarks.

to visualise. Furthermore, Deep learning does not
always solve a problem better than classical machine
learning algorithms [DDD∗23]. Hence, there are sev-
eral reasons to look at fast, and sustainable computing
alternatives.

4 FACE FEATURE VECTOR EXTRAC-
TION

In this paper the InsightFace [Ins23] pipeline is used,
which is an integrated Python library for 2D and 3D
face analysis. InsightFace efficiently implements a rich
variety of state of the art algorithms for both face detec-
tion, face alignment and face recognition, such as Reti-
naFace. [DGZ∗19]. It allows for automatic extraction
of highly discriminative FFVs for each face, based on
the Additive Angular Margin Loss (ArcFace) approach
[DGXZ19].

Face detection algorithms have come a long way since
the simple, but efficient Viola-Jones detector [VJ01].
As an example, Figure 1a shows RetinaFace can
perform automatic face detection that find the white
bounding box of the face. Red landmarks are computed
that can be used to align the face as shown in 1b.

The FFV, also known as embedding, will have length
512 when using InsightFace and the provided buffalo_l
model, which is the default model pack in latest version
of InsightFace. Other approaches such as DeepFace
[TYRW14], CosFace [WWZ∗18] FaceNet [SKP15],
SphereFace [LWY∗17], or [WZLQ16, SJ19], just to
mention a few, could also have been used to produce
FFVs for the proposed approach, as well as some of
the ones mentioned in section 2.

5 DATASETS
In the automatic FR process, images where faces were
not properly recognised or images with more than one
face where removed. The remaining face images, i.e.
an image containing one face and producing an FFV
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to be processed further, were kept as shown in table 1.
This process is referred to as the automatic selection
in the following description of the datasets. For some
datasets, it was required that several face images of
the same person, covering several ages (decades) where
chosen, while for others no such selection was done. In
this way, quite different datasets are at hand and can be
evaluated. Since the datasets used often are subsets of
the original dataset, they will be referred to as explained
below.

5.1 AgeDB
The AgeDB dataset [MPS∗17] contains 16,516 images.
Of those, 9826 face images were extracted so that each
person depicted had about 36 face images on average
covering at least three different age decades. Moreover,
it was required that each person included should have
at least 30 face images. This will ensure that there are
several face images of the same person at different ages,
or decades, and not only for one. Hence, it will make
it possible to verify that the sex classification works for
different ages.

5.2 CASIA
Since the CASIA-WebFace [YLLL14] is rather large as
it contains around 500k images, a much smaller subset
was extracted containing 65579 face images, which is
still quite large compared to some of the other datasets
used. Nevertheless, a similar approach was used as for
AgeDB, resulting in more than 50 face images per per-
son on average.

5.3 LFW
The Labeled Faces in the Wild (LFW) dataset
[HRBLM07, LM14] contains 13,233 images, with
5749 different individuals. It is unbalanced as 1680
people have two or more images and the remaining
4069 have just a single image in the database. After
FR, 10792 face images where selected automatically.
No further selection was done, i.e. no requirements of
age groups.

5.4 CelebA
The CelebA dataset [LLWT15] contains 202,599 im-
ages of 10,177 persons. The automatic FR extraction
resulted in 200,096 face images where kept. No further
selection was done.

5.5 UTKFace
The UTKFace datset [ZYQ17] contains 23,709 images,
where 23,685 face images where kept after the auto-
matic FR extraction. This set contains a wast age range
from 0 to 116 years old, making it rather challenging
for sex classification. Moreover, there are quite many
images with watermarks, that could influence the face
recognition. Anyhow, no further selection was done.

Table 1: Databases used, with the total number of face
images, number of women and Men.

Database Total Women Men
AgeDB 9826 4071 5755
CASIA 65579 24077 41502
LFW 10792 2410 8382
CelebA 200096 116985 83111
UTKFace 23685 11308 12377
NSD 100 50 50

5.6 NSD
The Nottingham Scans Dataset (NSD) was included as
it is rather different from the other dataset, but also be-
cause it has been evaluated before [SHIA21]. It only
contains 100 face images, all of different persons. How-
ever, it is totally gender balanced, with 50 face images
of each sex. As can be seen from the table, the other
datasets vary quite a lot when it comes to this aspect,
which will affect the accuracy, both when it comes to
training as well as classification.

6 SUBSPACE CLASSIFICATION
Subspace Classification in pattern recognition was in-
troduced by Watanabe et al. [WP73] in 1967 and
was later further developed by Kohonen and others
[WLK∗67, KLR∗77, KO76, KRMV76, OK88]. The
following mathematical derivation follows from Oja
and Kohonen [OK88] and Laaksonen [Laa07].
Every face image to be classified is repre-
sented by a FFV x with m real-valued elements
x j = {x1,z2...xm},∈ R, such that the operations take
place in a m-dimensional vector space Rm. In this
paper m is equal to the FFV length, i.e. 512. Any set
of n linearly independent basis vectors {u1,u2, ...un},
where ui = {w1, j,w2, j...wm, j},wi, j ∈ R, which can
be combined into an m× n matrix U ∈ Rm×n, span a
subspace LU

LU = {x̂|x̂ =
n

∑
i=1

ρiui,ρi ∈ R} (1)

where,

ρi = xT ui =
m

∑
j=1

x jwi, j (2)

Classification of a feature vector can be performed by
projecting x onto each subspace LUk . The vector x̂ will
in this way be a reconstruction of x, using n vectors in
the subspace through

x̂ =
n

∑
i=1

(xT ui)ui (3)

=
n

∑
i=1

ρiui (4)

=UT UxT (5)
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Figure 2: Illustration of the neural net that constitutes
one of two subspaces forming the EPSC for Sex Classi-
fication. Neurons compute the response ρ from weights
w, using the quadratic response function (·)2. In the
second layer, the weights ω and the linear response
function (·) are used.

By normalising all the vectors in U, the norm of the
projected vector can be simplified as

||x̂||2 =(UxT ) · (UxT ) (6)

=(UxT )2 (7)

=
n

∑
i=1

ρi
2 (8)

Therefore, the feature vector x, which is most similar
to the feature vectors that were used to construct the
subspace in question LUk , will thereby have the largest
norm ||x̂||2.

The parameter n discussed above is the projection depth
that will be learned, which is discussed in section 7.

In order to construct subspaces, a group of prototypes
need to be chosen for each subspace, which is done
by the embedding obtained from some dimensional-
ity reduction method such as t-SNE [MH08], UMAP
[MH18] or SOM [Koh82]. However, for classification
of sex, it was found that one subspace per class was suf-
ficient, and hence all feature vectors for males are used
to construct one subspace, and all feature vectors for
females are used for the second subspace.

In general, subspace classification can be regarded as
a two layer neural network [HLV19, OK88, Laa07],
where the weights are not learned using time consum-
ing backpropagation. Instead, all weights are mathe-
matically defined through Principal Component Analy-
sis (PCA) [Laa07]. The resulting Neural Network for
one subspace in the EPSC is shown in Fig. 2. The
output of the two subspaces are then compared via the
argmax function do determine which class, male or fe-
male, is at hand.

The neurons compute the response ρ using the
quadratic response function (·)2, commonly referred
to as an activation function. The mathematics of
subspaces defines it to be quadratic, since it is deduced
from computing the norm as in equation (8). The
weights ω in the final layer should, according to the
definition of the dot product, all be set to 1. However,
it will be shown how it can be changed to make the
classification more stable. For the same reason, the
response function in the final layer is by definition
linear, which still makes sense because it is the output
to argmax.

7 LEARNING THE PROJECTION
DEPTH

As stated earlier, the variable n in equation (1) is the
projection depth. It tells how many dimensions in the
subspace that are actually used when computing the
projected vector x̂ in equation (3).

The projection depth needs to be determined for each
type of classification task, and will somehow depend
on number of classes and the data at hand. As an ex-
ample, it was reported to be 28 for MNIST [HLV19]
and 6 for the Esposalles word dataset [Has22]. Experi-
mentally it was noted that rather large values for n was
necessary for sex classification, and it depended quite a
lot on which of the aforementioned datasets were used
for training. The obvious way to learn the depth, is to
vary it from 1 to m and find the optimal accuracy. Here
m = 512 for the face feature vectors obtained from In-
sightFace.

Since the projection into the subspace can be regarded
as a reconstruction of the input vector using the vectors
in the subspace, it can be generally be observed that us-
ing a few vectors, i.e. small depth, gives more errors in
the subspace reconstruction. On the other hand, using
too many vectors, i.e. large depth, help in generating
a near perfect reconstruction, making it impossible to
suggest which subspace gives the strongest response.

Therefore, it is reasonable to deduce that the initial
vectors in the PCA are more important than the sub-
sequent ones, and therefore different weights ω could
be applied. Referring to Fig. 2, let σ be the response
output function from every subspace projection LU,
then a closed-form solution of each σ is computed as
a weighted sum, presented in the following equation:

ωi = 1−
(

i−1
n

)2

(9)

where i varies from 1 to n. This decaying or dampen-
ing function generated the best results in general. The
quadratic decay makes sure that the initial dimensions
will use an ω closer to one, while the very last dimen-
sions will use an ω closer to zero. Hence, the negative
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effect of near perfect reconstruction is avoided as the
trailing dimensions are hardly used at all.

The main reason for doing this is not only that the
classification accuracy actually increases, but rather to
avoid using a preset projection depth that accidentally
would cause near perfect reconstruction for some
datasets. Hence, the best projection depth for different
kinds of datasets could be chosen with the reassurance
that it will always be reliable and never cause the
accuracy to drop substantially. All these claims will be
proven in the next subsection where the experiments
are explained.

7.1 Experiments
First three sets where chosen for learning, AgeDB, CA-
SIA and LFW. Since the EPSC does not perform back-
propagation, no epochs are performed. Instead the
learning is simply performed by dividing the set for
training into one cluster for all males and another one
for all females. Only one subspace for each class is then
created using PCA, since it was experimentally noted
that not much was gained by dividing these subspaces
further using, for an example t-SNE as proposed ear-
lier [HLV19]. Then the projected depth is learned by
finding the optimal depth using the validation set.

Two different approaches were deployed for computing
the best projection depth. The first approach divided
each set into a learning set (60%) and a validation set
(40%). Here the datasets where split on person, so that
the same person where only present in one of the splits.
Furthermore, it splits on sex so that there are both 60%
of the males and females in the set for learning and 40%
of each sex for validation,

The second approach was simply to learn from one of
the three sets and validate on each of the other sets.
Hence, using the three aforementioned datasets as train-
ing sets, and validations sets, one at a time, six different
permutations are possible.

In each experiment, the optimal depth for sex classifi-
cation using the FFVs as input to the EPSC, was deter-
mined. The proposed dampening function in equation
(9) to set the weights ω was used and then 100 runs
where performed using bootstrapping on three datasets
at a time, as shown in table 2, where 60% was used as
sets for training and the remaining 40% as validation
sets. The result can be compared to table 3, where the
average accuracy for the validation set, when comput-
ing the sex with the provided model from InsigtFace.
The tables shows the accuracy for the two classes, and
the Macro Average Arithmetic, which is just the mean
of the two classes. This is done to avoid the effect of
the the fact that several of the datasets are heavily im-
balanced and that could have a large impact on methods
that are better to find one sex than the other. The MAA

Table 2: Average accuracies for 100 runs using boot-
strapping with a 60/40 split and depth=360.

Database Women Men MAA
CASIA 0.9995 0.9976 0.9986
AgeDB 0.9995 0.9907 0.9951
LFW 0.9900 0.9913 0.9907

Table 3: Accuracy for different datasets when the gen-
der is classified by the face recognition model.

Database Women Men MAA
CASIA 0.6824 0.7037 0.6930
AgeDB 0.8018 0.7293 0.7655
LFW 0.5651 0.6924 0.6288

Table 4: Optimal Depth for different datasets running
100 times using 60/40 split and bootstrapping. The
mean optimal projection depth is 359.

Split CASIA AgeDB LFW Mean
60/40 361 373 342 359

is generally defined as the arithmetic average of the par-
tial accuracies of each class:

MAA =
∑

N
i=1 ACCi

N
(10)

where N = 2 for gender classification, as it the datasets
have only two genders labeled. Hereby we avoid any
discussions about what is actually gender, and how it
relates to biological sex and perceived gender.

In the first approach it was chosen to compute the the
MAA for sex classification using the Bootstrapping
method [Koh95, KW96], with stratification because the
data is imbalanced, which means that the bootstrap
sample is taken from the whole set by using sampling
with replacement. The experiments where conducted
100 times for each data split, varying the permutations
randomly.

The results of the experiments are shown in Fig. 3 and
are shown as a so called shaded bars graph, where the
MAA is shown as a red curve with its shaded error
(standard deviation) for ω = 1. It can noted that for high
projection depths near perfect reconstruction is reached
and the MAA drops rapidly. While for the blue curve,
using equation (9) for computing ω , the curve flattens
out. The latter ensures that the projection depth can be
set to high values, without the dangers of reaching near
perfect reconstruction.

The optimal projection depth for the different datasets
are reported in table 4. The optimal depth was com-
puted when using ω in equation (9). The mean value is
359, which would still give a close to optimal MAA for
all three datasets.
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(a) CASIA

(b) AgeDB

(c) LFW

Figure 3: Macro Average Arithmetic for different depth
of projection with shaded error (standard deviation),
comparing dampening function ω (blue) for weights
and using 1 as weight (red). Note how the former helps
lifting the curve for larger projection depths in all three
datasets

Table 5: Optimal Depth for different datasets for train-
ing and validation. The mean of all permutations, ex-
cept those on the diagonal, is 360.

Dataset AgeDB CASIA LFW
AgeDB 249 393 382
CASIA 328 395 352
LFW 375 328 347

Figure 4: Macro Average Arithmetic for the mean of
the 6 permutations of datasets with different depth of
projection with shaded error (standard deviation), com-
paring dampening function ω (blue) for weights and us-
ing 1 as weight (red). Note how the former helps lifting
the curve for larger projection depths on average for the
datasets.

In Table 5 the optimal depth for all 6 possible permu-
tations of training and validation sets is reported. Since
using the same set for training and validation yields
much better results, the results on the diagonal were
not used when computing the mean equal to 359.6667.
Once again ω was set as in equation (9).

Fig. 4 tells the mean of all six experiments, and clearly
shows that the use of the dampening function for ω lifts
the MAA curve and gives better accuracy than for ω =
1.

The conclusion from both types of experiments is that
a projection depth can safely be set around 360 for sex
classification using different datasets for learning.

8 RESULTS
After concluding that 360 turns out to be a good value
for the projection depth in the experiments, using dif-
ferent validation sets, the MAA was computed using
this projection depth on different datasets for leaning
and testing. Table 6 compares the MAA for using the
EPSC approach and what accuracy is obtained by us-
ing the gender classificaion model provided by Insight-
Face. It can be noted that EPSC produce state of the art
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Table 6: MAA for Classificaion of Sex, using one dataset for learning and another one for testing.
Database AgeDB CASIA LFW CelebA UTKFace NSD
AgeDB 0.9994 0.9921 0.9822 0.9596 0.8847 0.9900
CASIA 0.9960 0.9994 0.9860 0.9769 0.9007 0.9900
LFW 0.9963 0.9977 0.9976 0.9737 0.9065 1.0000
CelebA 0.9966 0.9989 0.9885 0.9893 0.9152 0.9500
UTKFace 0.9974 0.9979 0.9897 0.9813 0.9488 1.0000
InsightFace 0.7593 0.6959 0.6640 0.6887 0.5700 0.5807

results for sex classification and also outperforms the
deep learning model.

9 DISCUSSION
The question about a persons Sex is easier to understand
than Gender since the former is something that usually
is assigned at birth, even if it sometimes can be a dif-
ficult task because of different disorders. The latter on
the other hand can be chosen later in life. Nonethe-
less, as stated before, these two words have become
synonyms and are also used as such such in this paper.
However, it is closer at hand to talk about Sex classifi-
cation for the method presented in this paper. The rea-
son is that since FFVs are used, which are more closely
related to the geometric features in a face, and there-
fore theoretically should be invariant to facial hair, hair
style, makeup etc. Hence FFVs captures the geome-
try, which depends on genetics, rather than facial hair,
hair-style, makeup etc, which all can be chosen. In any
case, no political stance is taken in this paper about this
matter. Furthermore, most datasets do not reveal on
what grounds the sex or gender was chosen, so there is
no other choice than trusting the labels and classify on
them. However, the proposed algorithm, will lean to-
wards classifying Sex rather than Gender, while many
CNN based algorithms might pick up on both geomet-
ric features as well as outer features such as facial hair,
hair-style and makeup, since these are the things that
are visible in the face images.

The EPSC achieves state of the art classification on hard
datasets. The way the dampening function is formu-
lated in equation (9), which is used to set the weights
ω is one important contribution in this paper. It makes
the projection depth variable n less sensitive, and makes
the EPSC reliable compared to not using the dampening
function.

Looking at at the results in table 6 one can note that
the proposed approach, using FFVs as input to EPSC
performs close to or precede the state of the art. Acien
et al. [AMVR∗19] [HRBLM07] achieved a 94.8% ac-
curacy using VGGFace on the LFW dataset, while the
EPSC achives well over 98%.

For the CelebA dataset, both Liu et al [LLWT15] and
Ranjan et al. [RPC16] reported the results from several
implementations with an accuracy spanning from 90%

up to 98%. The table shows that the EPSC is close to
98% or over depending on what dataset was used for
learning.
It should be noted though that some methods used a
split from the same dataset for training, validation and
testing. Hence, the results cannot be compared straight
on, but rather gives an indication on how well the pro-
posed algorithm works compared to the state of the art
algorithms. Furthermore, the learned projection depth
could be set differently depending on the data at hand,
but here it was chosen to learn it from three datasets.
Learning from the same dataset when doing some kind
of cross validation tend to give even better results as
shown in table 2. Nevertheless, the overall results are
promising for taking on any challenging dataset using
the EPSC.
Initially it was supposed that an age balanced dataset
would improve the overall classification, and therefore
subsets of the AgeDB and CASIA was created. Even
subspaces for each age group was created and tested.
However, no great improvement was noticed. In the fu-
ture, it should be tested whether, the approach by Gong
et al. [GLJ20] could be used by dividing the learning
data into groups, creating a subspace for each race and
sex. Nonetheless, several of the datasets used contain
a mix of races already, and it seem to work very well
anyway.
Interestingly, the UTKFace dataset has the lowest accu-
racies when it comes to testing, but often yields the best
accuracy when it is used as the set for learning. One
reason for it being hard to classify, is that it contains
quite many small children. They are hard to tell, even
for humans, whether they are boys or girls.
The second hardest set to classify was CelebA and sim-
ilarly it is the second best for learning, with one excep-
tion and that is when classifying on the NSD. Neverthe-
less, it seems like curating a set, requiring different age
groups, did not help much. Better is to use a set with a
great variation from the start. Also, even if CelebA is
much larger than UTKFace, the latter performed better,
perhaps because it is more gender balanced.

10 CONCLUSION
The proposed improvements to the EPSC, including
how to learn projection depth and the improved damp-
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ening function, makes EPSC reliable and stable for sex
classification of face images. The face feature vec-
tors from face recognition software, do include geomet-
ric information that can be used to determine sex and
will not be affected by outer cues, such as facial hair,
makeup and hair-style, which might be picked up by
CNN based approaches, since they capture whatever is
visible in the images. The results show close to state
of the art performance, and even precede many of the
algorithms published.
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