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ABSTRACT
Lung segmentation is an initial step to provide accurate lung parenchyma in many studies on lung diseases based
on analyzing the Computed Tomography (CT) scan, especially in Non-Small Cell Lung Cancer (NSCLC) detec-
tion. In this work, Coordinate-UNet 3D, a model inspired by UNet, is proposed to improve the accuracy of lung
segmentation in the CT scan. Like UNet, the proposed model consists of a contracting/encoder path to extract
the high-level information and an expansive/decoder path to recover the features to provide the segmentation.
However, we have considered modifying the structure inside each level of the model and using the Coordinate
Convolutional layer as the final layer to provide the segmentation. This network was trained end-to-end by using
a small set of CT scans of NSCLC patients. The experimental results show the proposed network can provide a
highly accurate segmentation for the validation set with a Dice Coefficient index of 0.991, an F1 score of 0.976,
and a Jaccard index (IOU) of 0.9535.
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1 INTRODUCTION

Lung cancer is a major disease that accounts for more
than one million deaths [33], and Non-Small Cell
Lung Cancer (NSCLC) accounts for 85% of all lung
cancers[11]. Early detection of lung cancer could
reduce the mortality rate and increase the patient’s
survival rate during treatment operations. In most
techniques to capture the image of the cancer patient,
Computed Tomography (CT) scan is an effective med-
ical screening that can be used for the diagnosis and
detection of lung cancer. As CT acquisition represent
a large volume of CT scans with millions of voxels,
manual diagnosis and analysis of lung diseases is a
difficult task and time-consuming even for experienced
radiologists. Thus, automatic computer-aided diagno-
sis (CAD) for lung CT is a powerful solution to help
radiologists. As usual, CAD involves several steps, of
which accurate segmentation of the lung is the first step
towards the success of the entire CAD system.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In order to response to clinician demands, lung segmen-
tation algorithms have been proposed and have contin-
ued to emerge. However, obtaining accurate lung seg-
mentation remains a challenge. In general, lung seg-
mentation algorithms are grouped into two categories:
(1) traditional image processing algorithms and (2) arti-
ficial intelligence (AI) based algorithms. In traditional
image processing, algorithms consider image value,
shape, and spatial information to provide lung segmen-
tation. However, most of these methods are compu-
tationally expensive, difficult to create representative
training features. In recent years, artificial intelligence-
based approaches, for example, machine learning and
deep learning, have become popular. These methods of-
fer better accuracy under certain ill-defined conditions.

Over the past decade, deep learning methods have been
at the forefront of computer vision [12, 7], showing
significant improvements over previous methodologies
on visual understanding. They are generally becoming
a universal solution for image processing applications,
with fewer pre-processing steps, but provide better re-
sults than other algorithms. Besides classification and
object detection tasks [18, 27], segmentation is another
success story of deep learning methods in computer vi-
sion. These methods (e.g., the FCN model [21] or Unet
model [5]) mention labeling the pixels in the image into
several categories. Generally, these models consist of
two paths: an encoder path to extract and capture the
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image’s features from a low to a high level and; a de-
coder path to expand and reconstruct the image features
to provide the segmentation map.

In this work, we proposed another 3D architecture that
was inspired by UNet model [5], named Coordinate-
UNet 3D, for accurate lung segmentation from a 3D
volume of CT scan of a NSCLC patient. Our model
had the same structure as the original Unet model [5].
However, we have modified the core inside each level of
the encoder and the decoder paths. Our model achieved
an accurate segmentation (a Dice score of 0.99) based
on a small set of 3D images of NSCLC patients. The
highlighted points of our method are summarized as
follows:

• The proposed model inputs lung CT volume (3D)
and outputs the segmentation of lung parenchyma
without any post-processing operation.

• The proposed model can provide the results in a
short time.

• The proposed model is effective for lung segmenta-
tion. Its performance is very stable. It can also be
applied to detect nodules in the CT scan of the lung.

This paper is organized as follows: The following sec-
tion discusses the related works on lung segmenta-
tion approaches. Section 3 presents the methodology
which details the Coordinate-UNet 3D architecture and
the studied datasets. The experimental results will be
shown in section 4, and some concluding remarks will
be stated in section 5.

2 RELATED WORKS
In normal lung CT scans, it is easy to distinguish the
lung parenchyma and the non-lung region because the
intensities of these regions are very different. However,
this task becomes a difficult task when considering ab-
normal CT images such as the CT scans of NSCLC pa-
tients. Therefore, lung segmentation could be a chal-
lenge in many studies about lung diseases [8, 35, 26].

As discussed, initial approaches for lung segmenta-
tion consider the characteristics of the image or based
on the shape knowledge by using the traditional im-
age processing technique such as thresholding based on
the grey-level, adaptive thresholding technique, region
growing, image registration [4] or the others [34]. How-
ever, these methods are computationally expensive, and
it is difficult to generalize the learning features.

In medical imaging applications, Convolutional Neural
Networks (CNNs) models can be used to analyze lung
CT scans [2]. Their applications vary from detecting
the lung pathology segmentation [2], or classifying the
lung region [2, 37] to segment the lung volume [31].

Figure 1: The architecture of the Coordinate-UNet 3D

In the approaches to provide whole volume of lung seg-
mentation, most of applications have chosen to consider
independently each slice of CT volume: Ravindra Patil
et al. [28] and Brahim A. S. et al. [31] proposed dif-
ferent modifications on UNet model to provide the seg-
mentation of slices in CT volume. Lei Geng et al. [10]
presented a combination of VGG-16 [30] and dilated
convolution to provide the lung segmentation. Swati P.
Pawar et al. [29] have proposed a conditional gener-
ative adversarial network to encode the features from
the slices of CT image. Then, the encoder and decoder
were used to extract the multi-scales features and to
give the lung segmentation, respectively. In whole 3D
approach, Negahdar et al. [25] have proposed a vol-
umetric segmentation network based on V-net [24] for
3D volumetric medical segmentation.

3 METHODOLOGY
In this section, we describe the architecture of the
Coordinate-UNet 3D model and the hyper-parameters
related to the training process. Then, the studied
dataset used to train and validate Coordinate-UNet will
be presented in detail.

3.1 Network architecture
In recent years, the UNet architecture [5] has been pro-
moted as a good model for medical image segmenta-
tion. Generally, the UNet model [5] consists of two
paths: a contraction path and an expansion path. The
contraction path is like a classical CNN to extract low
to high level features from an input representation. On
the other hand, the expansive path consists of bottom-
up sampling of the feature map followed by bottom-up
convolution layers to reconstruct the features at differ-
ent scales of the input. A concatenation is done between
the convolution layer in the contraction path and the up-
convolution of the expansion path to obtain more accu-
rate labeling. At the end of the model, a convolution
layer is used to map the features to the desired number
of classes.
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Depending on the requirements of the applications, the
depth and layers at each level of the models are differ-
ent. Figure 1 shows the structure of the Coordinate-
UNet 3D model. Our model is inherited from the Unet
model [5], but we have modified the UNet structure to
adapt to our problem: (1) each level of contracting and
expansive path contains two CGPD blocks (described
in the next section); (2) the number of channels of the
input is doubled before reducing the space to the next
level; (3) a coordinate convolutional layer (CoordConv)
[20] (instead of the classical convolution layer) is added
at the end of the model to provide the segmentation
map. Table 1 details the input/output images at each
level of Coordinate-Unet 3D model.
Figure 2 illustrates the layers in a CGPD block. Each
CGPD block consists of one Convolutional layer, one
Group normalization (GN) layer [36], one PreLU
activation function [13], and one Dropout layer [32].
Firstly, the GN is used instead of Batch normalization
(BN) [14] because BN increases the error rapidly
caused by inaccurate batch statistics estimation when
the batch size becomes smaller; while GN divides
the channels into groups and computes within each
group the mean and variance for normalization. GN’s
computation is independent of batch sizes, and its ac-
curacy is stable in a wide range of batch sizes. Second,
the PreLU activation function [13] is used instead of
ReLU activation function [23] to make the leakage
coefficient a parameter that is learned along with the
other network parameters. Finally, the Dropout layer is
added to avoid over-fitting.

Figure 2: Layers in a CGPD block

As shown in the figure 1, each level of the contracting
path includes two CGPD blocks, and the number of in-
put channels is doubled at the second block before ap-
plying a max pooling layer to reduce the spatial size of
the input and sending it to the next level of the model.
At the expansive path, every level consists of an up-
sampling layer that halves the number of feature chan-
nels, a concatenation with the correspondingly cropped
feature map from the contracting path, followed by two
CGPD blocks to provide the information context of the

feature map. At the end of the expansive path, a Coord-
Conv layer (figure 3) is used to map the features to the
desired number of classes.

Figure 3: CoordConv layer [20]

As mentioned in [20], CoordConv is an extension of
the standard convolution layer. It has the same func-
tional signature as a convolution layer but accomplishes
the mapping by first concatenating extra channels to
the incoming representation. These channels contain
hard-coded coordinates. The CoordConv layer keeps
the properties of few parameters and efficient computa-
tion from convolutions but allows the network to learn
to keep or to discard translation in variance as is needed
for the task being learned. This is useful for coordinat-
ing transform based tasks where regular convolutions
can fail. Because of the presentation of this layer, we
give the name Coordinate-UNet 3D for our architecture.

3.2 Evaluation metrics
The evaluation of 3D lung parenchyma segmentation is
based on the comparison between ground-truth and out-
putted segmentation from the model. For quantitative
analysis of the predicted segmentation, several perfor-
mance metrics are considered, including Dice score co-
efficient (DSC), F1-score, Jaccard similarity (IOU) and
Matthews correlation coefficient (MCC) [3].
DSC is expressed as in Eq. 1 according to [6]. Here,
GT and SP refer to the ground truth and predicted seg-
mentation, respectively.

DSC =
2∗ (|GT |∩ |SP|)
|GT |+ |SP|

(1)

The IOU score is represented using Eq. 2 according to
[15].

IOU =
(|GT ∩SP|)
|GT ∪SP|

(2)

The MCC score is computed according to Eq. 3.

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(3)

where TP, FP, TN, and FN are True Positive, False Pos-
itive, True Negative, and False Negative rates, respec-
tively.
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Level Input Output Level Input Output
(c×w×h×d) (c×w×h×d) (c×w×h×d) (c×w×h×d)

Encoder path Decoder path
Input - 1×256×256×48 Output 32×256×256×48 1×256×256×48
Level 0 2×256×256×48 32×256×256×48 Level 0 96×256×256×48 32×256×256×48
Level 1 32×128×128×24 64×128×128×24 Level 1 192×256×256×48 64×128×128×24
Level 2 64×64×64×12 128×64×64×12 Level 2 384×64×64×12 128×64×64×12
Level 3 128×32×32×6 256×32×32×6 Level 3 768×32×32×6 256×32×32×6
Level 4 256×16×16×3 512×16×16×3 Level 4 512×16×16×3 512×16×16×3

Table 1: The dimensions of input/output features at each level of proposed model.

3.3 Experimental data
Coordinate-UNet 3D was trained and validated
on 3D CT images of NSCLC patients. Images
were obtained from 2 sources: NSCLC-Radiomics-
Interobserver1 dataset [16] consisting of 21 CT scans,
and a local dataset consisting of 66 CT scans. Each
image has a variable size from (512× 512× 60) to
(512×512×600) pixels. All images were reformatted
from standard DICOM to Neuroimaging Informatics
Technology Initiative (NIfTI) format created by the
National Institutes of Health [19]. The NIfTI file held
the 3D image matrix and diverse metadata. Figure 4
shows a 3D image for volumetric measurements of
lung parenchyma across three axes.

Figure 4: 3D volume of lung with XYZ axes.

Data splitting and pre-processing:

The images from 2 datasets were divided into two sets:
train/validation and testing set. The train/validation set
consists of 21 images from Interobserver1 dataset [16]
and 41 images from the local dataset. The testing set
consists of remaining 25 images of the local dataset.
During the training process, the 62 images were divided
into two sets corresponding to the training and valida-
tion process with a ratio of 0.8 : 0.2.

According the guideline of CT imaging, a CT scan con-
sists of pixel spacing, axial slice thickness and view in
the z axis with various scans. Therefore, the input im-
ages are uniformly pre-processed to minimize the vari-

ability within the database. In this work, the input im-
ages go through the three following steps for preparing
the images:

1. The image intensity of each slice was first truncated
in the range of [-1200, 600].

2. Z-normalization was performed on each slice of 3D
image.

3. The CT scans were cropped to focus on lung region
and converted to 256×256×48 pixels.

Data augmentation
Due to the limitation of the number of samples in the
training set, we used online and offline augmentation
operations to increase the number of images in the train-
ing set. Offline augmentation means that we generate
multiple augmented versions from an original image
and add them to the dataset, while online augmentation
operations are performed during the training process. In
our work, we applied warping and flipping operations
to generate two new versions from one image. Figure
5 shows an augmented example in our dataset. After
the offline augmentation, we obtained 62 x 3 = 186 im-
ages for the training and validation processes. In addi-
tion to offline augmentation, online augmentation was
performed like other segmentation approaches such as
spatial flipping and image shearing.

Figure 5: A slice in a 3D studied image with its
augmentation. From left to right: original slice, flipped

slice, and deformed slice.

4 EXPERIMENTS AND RESULTS
Coordinate-UNet 3D was implemented on Pytorch-
lightning [9]. The model has been trained in 500
epochs with Dice loss (Dice loss = 1−DSC). The
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Adam optimization [17] has been used with an initial
learning rate of 10−4 and reduce to 10−6 by using
cosine annealing schedule [22]. An early stopping has
been employed to monitor the validation loss to avoid
overfitting.

The proposed model was firstly trained in one fold with
80% of data and validated on 20% of data. The ob-
jective was to find the best hyperparameters for our
model. After adjusting the hyperparameters, we trained
the model on 5-fold cross-validation to ensure the sta-
bility of the model. Then, we computed the average of
the scores outputted from 5 folds. Table 2 shows the
average scores obtained on the validation set by using
different kinds of final layer: CoordConv (the second
row) and the traditional Convolutional layer (the third
row). We see that the model can provide a very accurate
lung parenchyma segmentation with both two kinds of
Convolutional layers. Moreover, the outputted scores
of CoordConv are higher than the traditional Convolu-
tional layer. It provides a high Dice score, the other
scores (IOU, F1, MCC) are smaller than Dice but re-
main in a high accuracy rank.

Score Dice index IOU F1 MCC
CoordConv 0.9907 0.9535 0.9761 0.9705
Convolution 0.9202 0.9383 0.9643 0.9236
Table 2: The performance of Coordinate-UNet model on

validation set

These scores showed that the Coordinate-UNet 3D
model has a good performance on the validation
set. Then, the trained model was used to predict the
segmentation of the testing images. The outputted
segmentation was evaluated by calculating the dice
score between prediction and the ground truth. Then,
the average Dice score of 25 testing images was
considered. We have obtained an average Dice score of
0.776 for all 25 images. Figure 6 and 7 illustrate the
two examples in the testing set: one good and one worst
predictions. From left to right, each one represents
the ground truth and the segmentation generated by
our network. The top row shows the segmentation
of a slice in the image, the bottom row illustrates the
3D-segmentation.

Figure 8 shows the number of CT scans in several con-
sidered ranges of C-index scores. We see that our model
worked effectively to provide good segmentation for
most of the images in the test set (17 out of 25 CT scans
obtain Dice scores greater than 0.75). Even in the im-
age with the worst Dice score (figure 7), we see the
segmentation of the lung parenchyma is correct, with
the predicted segmentation producing only a minor er-
ror outside the lung region. This area really affected the
dice score, but it was not that significant. Indeed, we
want to see if the model can provide the segmentation
of the lung parenchyma.

Figure 6: A good prediction in the test set (yellow =
ground truth, green = prediction). Top: Segmentation

of a slice in 3D image. Bottom: Lung parenchyma
segmentation in 3D

Figure 7: A worst prediction in the test set (yellow =
ground truth, green = prediction). Top: Segmentation

of a slice in 3D image. Bottom: Lung parenchyma
segmentation in 3D

The performance of the model on the testing dataset
is good, but this is far from the results on the valida-
tion set. The hypothesis is the difference between the
training and testing datasets. It is worth noting that the
model was trained on a combination of the CT scans
from two datasets. After checking the data, we see that
21 images from the Interobserver1 dataset [16] do not
have the bronchi, while the bronchi are present in the
local dataset.

It is not fair to compare our results with other results be-
cause we are on different approaches [28, 31, 10]. How-
ever, Coordinate-UNet 3D model can segment lung
parenchyma with very satisfactory performance and
have the potential to locate and analyze lung lesions. It
was employed to segment the lung parenchyma in other
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Figure 8: The number of predictions in each range of
Dice score

datasets: NSCLC-Radiomics [1], which were used in
another work to provide the segmentation of the tumor
inside the lung.

5 CONCLUSION
In this work, we presented Coordinate-Unet 3D model
to provide the lung segmentation. We have obtained an
accurate segmentation with 0.99 Dice coefficient index
for the validation set. However, the average Dice score
on the test set has decreased a little bit. The problem
has been found as a difference between the training and
testing datasets. Basically, the prediction error is not
so high, it can be solved by applying an algorithm to
remove the small object in the segmentation map. The
advantage of the method is the fact that can work with
a whole 3D volume of the CT image and it can be ap-
plied to a wide area of different medical image segmen-
tation task. Our objective is to generalize the approach
to apply it to another task, for example, to perform lung
tumor segmentation. This work has opened some ques-
tions that we can address in future work. (1) Concern-
ing the data, we tried to reduce the bias between the
images in the datasets, as well as limit the loss of data
during the normalization process. (2) Analyze the ef-
fect of the presence of bronchi in the CT images by
considering two groups of input images with and with-
out the presence of bronchi. (3) This is an intermediate
stage in our pipeline which provides the segmentation
of NSCLC tumors, it is interesting to compare the re-
sults of the whole pipeline with other methods.
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