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ABSTRACT
Field of View (FOV) Nano-CT X-Ray synchrotron imaging is used for acquiring brain neuronal features from
Golgi-stained bio-samples. It theoretically requires a large number of acquired data for compensating CT recon-
struction noise and artefacts (both reinforced by the sparsity of brain features). However reducing the number of
radiographs is essential in routine applications but it results to degraded tomograms. In such a case, traditional
segmentation techniques are no longer able to distinguish neuronal structures from surrounding noise. Thus, we
investigate several deep-learning networks to segment brain features from very degraded tomograms. We focus on
encoder-decoder networks and define new ones addressing specifically our application. We demonstrate that some
networks wildly outperform traditional segmentation and discuss the superiority of the proposed networks.

Keywords
X-Ray nano-tomography, segmentation, deep-learning, brain imaging.

1 INTRODUCTION
Field-Of-View (FOV) Nano-CT X-Ray synchrotron
imaging provides 3D images of biological samples at
about 300nm by computed tomography (CT). In this
study, bio-samples are mouse brains stained with a
Golgi solution targeting neuronal connectome (neuron
cells, axons, dendrites, ...). Since the whole organ is
much larger than the scanner FOV, each brain is cut in
several blocks (sized ≈ 3× 3× 5 mm3). Each block
is introduced in a rod transparent to X-Rays and is
positioned on a 3-Axis translational + Z-Axis rotational
sample-holder. Numerous FOV CT acquisitions are
measured in a sequence (cf. Fig. 1(a-b)) for imaging
the whole sample rod. Each FOV acquisition is a set
of Nθ radiographs (2560× 2160 pixels). According to
rod dimensions, scanning resolution and the overlap
required between adjacent FOV 3D tiles, the overall
rod scan is composed of ≈ 360 CT acquisitions.

Each FOV CT acquisition is processed by a CT algo-
rithm to reconstruct a 3D volume (i.e. tomogram sized
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25602 ×2160 voxels) imaging the inner features of the
sample [Tof96, NW02]. For instance, Fig. 1 (c) shows
acquired radiographs (strong absorption reveals Golgi-
stained neuronal features), and Fig. 1 (d) is a 3D vi-
sualisation of a reconstructed tomogram. Once all to-
mograms have been reconstructed, the next data pro-
cessing step consists of segmenting the brain features
from the background (empty regions, non-stained parts
of the brain) in order to perform further 3D analysis
and visualisation of the mouse neuronal connectome. In
that context, it is obvious that tomographic reconstruc-
tion and segmentation steps are of great significance
since both high-quality and accuracy are required in to-
mograms to segment for achieving such a whole brain
analysis.

However overall data acquisition of a whole brain needs
to be performed as a routine application [SLH+23],
thus requiring to drastically reduce both acquisition and
CT reconstruction time. This limitation is practically
addressed by reducing the number of acquired radio-
graphs in CT acquisition, resulting to a degraded 3D to-
mogram. Such tomogram can no longer be segmented
using traditional methods. Thus in this paper we in-
vestigate deep-learning based on encoder-decoder net-
works since it has been already demonstrated that they
are well adapted to segmentation and / or denoising
problems. We first introduce our overall data process-
ing sequence and the positioning of our investigation in
section 2 and we preface encoder-decoder based seg-
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Figure 1: (a) Sample rod with several FOV areas. Translation steps (∆) calibrated to optimize overlaps (Ω). (b)
Acquisitions by X/Y-Axis translations: illustration of two FOV scans in blue and green. A unique full-scan (c) per
sequence provides high-quality tomogram (d) and binarisation (e) by traditional segmentation. Degraded full-scan
(f) provides degraded tomogram (g). The pair {(g),(e)} = (input, target) training dataset (h). All other sequence
scans done in very sparse configuration (i), providing 3D volumes (j), that are processed by the trained network
(k). Expected output (l) is a high-quality segmentation from degraded tomograms.

mentation methods in section 3. In section 4 we design
two networks more suitable to our use-case and explain
our design choices according to our data. Before con-
cluding, all networks are experimented in section 5 and
we discuss why our networks design specificities lead
to better results compared to the state-of-the-art tech-
niques.

2 EXPERIMENTAL DATA PROCESS-
ING

We present in this section the overall data processing
sequence developed in this study and the positioning of
investigated deep-learning methods (cf. Fig. 1).

Traditional tomographic reconstruction is the Filtered
Back Projection (FBP), widely used in both medical
and industrial CT scanners and appreciated for its easy
implementation and fast computation [Han81]. How-
ever, FBP is very sensitive to the noise in the acquisi-
tions and the tomogram quality depends on the number
of radiographs (cf. image degradation with the num-
ber of radiographs on Fig. 2). Indeed, according to
Shannon-Nyquist theory, FBP requires at least Nopt ≈
2000 radiographs to optimally reconstruct slices sized
N2 = 25602 pixels [PGF+05]. In our case, Nθ = 2000
leads to an excessive irradiation damaging bio-sample,
but we can safely measure 1800 radiographs (denoted

full-scan in the following) without noticeable accuracy
losses on the tomograms. However, due to the huge
number of acquired data (≈ 360 FOV acquisition / rod,
and ≈ 40 rods / mouse brain), both acquisition and data
processing times have to be drastically decreased. The
most practical solution consists of reducing the number
of radiographs (fast-scan).

Such a fast-scan - i.e when Nθ << Nopt - leads to an-
gular sampling problem which can be addressed thanks
to iterative CT reconstructions (IR-CT). This domain
of research has been amazingly fruitful and addressed
for decades [HNY+13, HL89, GG96, And89, JW03,
KS01]. Numerous IR-CT methods have been pro-
posed [DMND+00, ZWZ+18, RFK+14], including ra-
diograph ordering optimizations [Kol05, KB98, EF99],
multi-scale / multi-grid methods [MKL+16] or GPU-
based implementations [SKKH07, RXT07, ZHZ09].

Furthermore, FOV tomography (also denoted in-
terior / region-of-interest / local tomography)
can be addressed by dedicated IR-CT meth-
ods [ZNG08, HGD+10, LHW+15, PM17, SKR+14].
Despite their efficiency, IR-CT techniques are sparsely
deployed in routine applications because of both their
complexity and their computation time (×10 to ×100
FBP requirements). This latter limitation makes them
ultimately unrealistic to be used in our project.
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Nθ 100 300 600 900 1800

Dice 0.02 0.84 0.93 0.96 1.00 (ref.)

Figure 2: Reconstructed slices from acquisitions with 900 to 100 radiographs, compared to reference (ref.) full-
scan image (Nθ = 1800). Noise and artefacts increase when scanning becomes faster. Dice is obtained by adaptive
Renyi entropy based segmentation (compared to segmentation result from full-scan).

Golgi-staining leads to high contrasted features (fore-
ground) on full-scan reconstructed slices (cf. bright
features on Fig. 1(d)). Thanks to such a sample prepa-
ration, empty regions of the brain are very low in-
tensity and almost confounded with empty space (i.e.
both can be considered as background). In that con-
dition, a traditional (binary) segmentation such that an
adaptive Renyi entropy method [San04, KR14, SRR08,
FZL+17] conveniently extracts neuronal features even
if they are widely unbalanced (less than 3% of a to-
mogram are neuronal connectome in our case). Unfor-
tunately, traditional segmentation accuracy directly de-
pends on the tomogram quality, and thus significantly
decreases when a fast-scan is processed. As illustrated
on Fig. 2, we have for instance experimented that about
30% (resp. 50%) of the segmented features are lost
when the segmentation is processed from a tomogram
reconstructed with 300 (resp. 100) radiographs (com-
pared to the segmentation result obtained from full-scan
tomogram).

Alternatively to traditional approaches, we investigate
deep-learning networks for accurately segmenting de-
graded tomograms. Our bio-sample acquisition pro-
duces massive CT data from a sequence in which all
FOV CT scans are exactly measured in the same condi-
tions and on the same sample. This high repeatability
is particularly suitable for deep learning. We thus apply
the following data processing protocol (cf. Fig. 1): i)
only one full-scan FOV CT (c) is acquired per sequence
to obtain a high-quality tomogram (d) and its corre-
sponding high-quality segmentation (e) ; ii) the full-
scan is degraded (remove radiographs) to reach very
sparse scanning configuration (f) ; iii) the resulting de-
graded tomogram (g) is combined to the segmentation
(e) to provide the pair (input, target) feeding the in-
vestigated neural network training ; then, iv) all the
other FOV regions are acquired in fast-scan conditions
(j), providing degraded tomograms (j) which are seg-
mented using the trained network. One may note that
the training dataset is automatically obtained thanks to
the full-scan combined with a traditional data process-

ing pipeline, leading to an overall processing sequence
which is fully automated.

3 RELATED WORKS
Several efficient Convolutional Neural Networks
(CNN) have been proposed to address segmentation
task. The first network architecture has been proposed
by Long et al. [LSD15]. It is a Fully Convolutional Net-
work (FCCN) able to achieve a semantic segmentation
of natural images. However in these primary works,
pixel classification is considered inadequate to achieve
accurate segmentation since pixel localisation, which
is essential, is ignored. Thus Ronneberg et al. have
proposed a new architecture called U-Net [RFB15]
to address this limitation. U-Net is a CNN based on
encoder-decoder operations: i) the encoder compresses
the input data into a latent-space representation, and,
ii) the decoder aims at predicting the output from the
latent-space representation [BKC17].

The U-Net design is one of the most well-known ar-
chitecture for segmentation. A lot of variants have
been proposed to address several applications, such
as segmentation of Drosophilya cells in microscopy
images [RFB15] or road recognition in natural im-
ages [ZLW18], for instance. U-Net network also ad-
dress 3D segmentation thanks to 3D convolutional lay-
ers. For example, Cicek et al. [ÇAL+16] have designed
a 3D U-Net with a ReLU activation function to segment
kidney in confocal microscopic images.

The reason why U-Net and its variants are suitable for
medical image segmentation is that its structure can si-
multaneously combine low and high level information.
The low-level information aims at improving accuracy
while the high-level information helps to extract com-
plex features [LSLZ21]. Classical U-Net architecture
is based on a binary cross-entropy (BCE) [RFB15] loss
function suitable for balanced classes. In our study
case, class distribution is very imbalanced so that using
such a loss function could lead to roughly classifying
background only. A DICE loss function is more dedi-
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U-Net [RFB15] V-Net [MNA16] RED-
CNN [HZRS16]

RED-
Net [MSY16]

Original Application Segmentation Segmentation Denoising Restoration
Original Dimension 2D 3D 2D 2D
3D Capabilities Yes Yes Yes Yes
Activation function ReLU PReLU ReLU ReLU
Sampling function
(encoder path)

Maximum
Pooling

Convolution Convolution Convolution

Sampling function
(decoder path)

Transposed
Convolution

Transposed
Convolution

Transposed
Convolution

Transposed
Convolution

Skip connectors between
encoder & decoder

Vector
concatenation

Vector
concatenation

Scalar sum Scalar sum

Feature map
size variations

Yes Yes No No

Number of floors 4 + Bottleneck 4 + Bottleneck − −
Total number of
Convolutional layers

28 23 10 10 to 30

Loss function (C) BCE (G) DICE (A) MSE (B) MSE
Other experimented loss (F) DICE - (D) DICE (E) DICE

Table 1: Encoder-decoder characteristics. Notations (A) to (G) are refers to discussion Table 5.

cated to our use-case since it only scores estimated fore-
ground pixels. This U-Net variant, denoted V-Net, has
been first proposed by Milletari et al.[MNA16]. An-
other major design difference between U-Net and V-Net
consists of using convolution layers instead of pooling
layers to down/up-sample between each level of the net-
work.

Residual Networks[HZRS16] are deep learning
networks mainly made of convolutions and skip
connections. Their architecture is based on a deep
succession of convolutional layers which have empiri-
cally showed an accuracy gain over shallower networks
when coupled with skip connections. These skipped
connections take places between two not successive
layers to address the vanishing/exploding gradients
problem by adding a shallow residual mapping to a
deeper layer input. Our investigation also focuses on
RED-CNN and RED-Net which are residual networks,
but also encoder-decoder such as the previously
introduced U-Net and V-Net. RED-CNN (Residual
Encoder-Decoder Convolutional Neural Network) has
been developed for low-dose CT imaging. It has been
demonstrated in [HZRS16] that such a network is par-
ticularly efficient for preserving structural information
while reducing noise. Despite RED-CNN has been
proposed for segmenting tomograms reconstructed
from a large amount of low-dose X-Ray radiographs,
we investigate this network since the noise / artefacts
it deals with are quite similar to those observed on our
degraded tomograms. We also focus on the capabilities
of the RED-Net network which is a very deep fully
convolutional encoder-decoder network for image
restoration. Since denoising is part of the very de-

graded CT tomogram segmentation problem, RED-Net
architecture could provide some ideas to address
our task. Usually, RED-Net performs ten to thirty
successive convolutions (depending on the version),
and is also coupled with skip connections. A summary
of the characteristics of all the state-of-the-art networks
(U-Net, V-Net, RED-CNN, RED-Net) explored in this
study is provided in the Table. 1.

4 OPTIMAL ENCODER-DECODER
NETWORKS

In addition to the encoder-decoder networks detailed in
section 3, we introduce in this section two new encoder-
decoder networks specifically addressing the segmen-
tation of very degraded brain tomograms (Fig. 3). We
justify our architectural choices in accordance with our
data and the other networks architectures. Each level of
the encoder path is composed of a succession of con-
volutional layers + batch normalization + PReLU acti-
vation function ; maximum pooling (network I) or con-
volutions with strides (network H) are applied between
each down-sampling step. Symmetrically, the decoder
part is composed of a succession of transposed convolu-
tional layers with concatenations of symmetric encoder
feature maps. The final up-sampling step of the decoder
is finalized by a sigmoid function coupled with a binary
threshold in order to achieve the segmentation.

On top of that, batch normalization is added to speed
up the training process enabling a higher learning
rate [IS15], while PReLU activation function gen-
eralizes the traditional rectified unit and improves
network fitting with nearly zero extra computational
cost [HZRS15]. We investigated on two variations
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Our Application Segmentation of widely
unbalanced data in very
noisy tomograms

Act. function PReLU
Sampling function
(encoder path)

Batch normalization +
(H) Convolution
(I) Maximum Pooling

Sampling function
(decoder path)

Transposed Convolution

Skip connectors Vector concatenation
Number of floors 4
Total number of Convo-
lutional layers

18

Loss function Sigmoid + DICE +
Threshold

Figure 3: New investigated networks architecture and summary of their principal characteristics.

of this architecture assuming: i) network (I) with
maximum pooling will maximize Recall (Table. 4);
ii) network (H) with convolutions will maximize
Precision (Table. 4). Finally, the network minimizes
a DICE loss function at the end since it has been
already demonstrated it is suitable for accounting
on very imbalanced foreground data. However, this
minimization is completed with a sigmoid + threshold
in order to achieve the binary segmentation. Finally,
the overall networks can be designed to work in 2D
to perform a segmentation slice by slice, or directly
in 3D. Thus both designs have been implemented and
results are discussed in the following section.

Second we experiment several level of pre-filtering over
the training data to verify the consideration of imbal-
anced background during the training. All networks
investigated in this paper are trained with: i) no filter-
ing (i.e. all patches are considered), ii) > 0 filter (only
the patches containing at least one foreground pixel are
used), and, iii) > 5% filter (only the patches containing
at least 5% of foreground pixels are used).

Prediction results are given as an illustration on Table 2
for our network (I), but similar behavior is observed for
all networks. It leads to a performance superiority for
trained networks excluding patches without any data of
interest, slightly better than the classic not filtering pro-
cess, but highly better than the 5% filtering. Consider-
ing the reduced amount of training data from a higher
filtering rate, we investigated on this potential bias. Pre-
diction results of the filtering process with a same num-
ber of training data are given Table 3. The ranking be-
tween the processing methods remains the same with
still a huge gap between > 0 and > 5% filtering meth-
ods and a superiority of the > 0 filtering over the no
filtering method. Training on too much background
(no filtering) lowers the features of interest over back-
ground ratio while eliminating too much foreground
(> 5% filtering) lowers the absolute features of interest
information to train on. The > 0 filtering method take
the fullest information while increasing the features of

interest over background ratio leading to higher perfor-
mances.

5 DISCUSSION
In this section, we first compare our proposed networks
to the state-of-the-art encoder-decoders through their
segmentation performances from very degraded brain
CT tomograms. Notice that all networks are trained
using the optimal pre-filtering explained in previous
section. Then, since network design can be consid-
ered in 2D or in 3D, we compare both design to es-
timate the quality gain of 3D (which is computation-
ally widely more gloutonous, thus requiring HPC or
GPU-box computers) over to 2D (rapidly achievable on
a general purpose computer).

Metric comparisons are based on the standard confu-
sion matrix composed of true positive (t p), true nega-
tive (tn), false positive ( f p) and false negative ( f n) ratio
compared to ground truth. We also discuss the results
using the Precision, Recall, Dice and Jaccard metrics,
reminded in the Table 4. Precision (ratio of correctly
segmented voxels among all predicted foreground) and
Recall (ratio of correctly segmented foreground vox-
els compared to ground truth) are complementary: a
high Precision coupled with a high Recall means a high-
quality prediction of the network. Conversely, if one of
them is not high enough, the prediction quality down-
grades. Dice and Jaccard values are mentioned since
they state the similarity and the diversity between pre-
dictions and ground truth.

As already mentioned, in all our experiments: i) full-
scan are processed with 1800 radiographs while fast-
scans only contain 100 radiographs ; ii) FBP is used for
all CT reconstructions, and, iii) an adaptive Renyi en-
tropy based segmentation is used from high-quality to-
mograms to obtain the training target and ground truths
to be compared with network predictions.

5.1 Networks comparison
Prediction results are given on Table 5 for networks
trained on fast-scans containing only 100 radiographs.
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Filters nb patchs TP FP FN TN P R D J
no filter 9680 18020 2280 10361 3066939 0.887 0.634 0.740 0.587
> 0 7294 21261 3703 7120 3065516 0.852 0.749 0.797 0.663
> 5% 257 25118 222378 3262 2846842 0.101 0.885 0.182 0.100

Table 2: Processing filtered data (maximum data)

Filters nb patchs TP FP FN TN P R D J
no filter 257 17979 14646 10402 3054573 0.551 0.633 0.589 0.418
> 0 257 17764 10697 10617 3058522 0.624 0.626 0.625 0.455
> 5% 257 25118 222378 3262 2846842 0.101 0.885 0.182 0.100

Table 3: Processing filtered data (reduced data)

Precision ↑ Recall ↑ Dice ↑ Jaccard ↑

P =
t p

t p+ f p
R =

t p
t p+ f n

D =
2∗ t p

2∗ t p+ f p+ f n
J =

t p
t p+ f p+ f n

Table 4: Definition of Prediction, Recall, Dice and Jaccard metrics.

Methods TP FP FN TN P R D J

Trad 28381 3067457 0 1762 0.009 1.0 0.018 0.009

(A) RED-CNN (MSE) 0 0 28381 3069219 0 0 0 0
(B) RED-Net (MSE) 0 0 28381 3069219 0 0 0 0
(C) U-Net (BCE) 0 0 28381 3069219 0 0 0 0

(D) RED-CNN (DICE) 0 0 28381 3069219 0 0 0 0
(E) RED-Net (DICE) 0 0 28381 3069219 0 0 0 0
(F) U-Net (DICE) 19194 2451 9186 3066769 0.887 0.676 0.767 0.623
(G) V-Net (DICE) 20132 3380 8249 3065839 0.856 0.709 0.776 0.634

(H) Our Network (conv) 18715 2212 9665 3067008 0.894 0.659 0.759 0.612
(I) Our Network (maxP) 21261 3703 7120 3065516 0.852 0.749 0.797 0.663

Table 5: Encoder-decoder performances overview (tomogram reconstructed with 100 radiographs)

In that case, the traditional segmentation performances
lead to a nearly white-only pixel prediction. Among
the nine encoder-decoder networks, five are not effi-
cient and perform a black pixel only prediction: i) Net-
works (A) with BCE loss and (B) & (C) using MSE
loss which are weak against hugely imbalanced clas-
sification tasks; ii) (D) RED-CNN and (E) RED-Net
which are customized with a DICE loss but are primar-
ily designed for denoising and restoration thus justify-
ing their inefficiency to our use-case. The four work-
ing encoder-decoders are (F) U-Net customized with
DICE, (G) V-Net, and our networks, (H) and (I), which
lead to a DICE score of 0.759 to 0.797 (resp.) com-
pared to the 0.018 for the traditional method. Each of
the four networks is built using vector concatenation as
skip connectors between encoder and decoder, coupled
with feature map size variations and a DICE loss func-
tion. Note that it is not the case for any of the networks
which does not work (i.e. (A), (B), (C), (D) and (E)).

Investigating on the design specificities of the four net-
works linked to their performance ranking, we were
not able to highlight some evidence. Especially we ex-

pected: i) (F) and (I) networks with maximum pool-
ing to maximize Recall; ii) (G) and (H) networks with
convolutions to maximize Precision; iii) (H) and (I) net-
works with fewer floors to be ranked better as they man-
aged to process more information in the network.

5.2 2D versus 3D DL segmentation
We investigate now our deep learning segmentation
model using independent slices (2D segmentation of
slices) and 3D (tomogram segmentation). As high-
lighted in Figure 4 and on the Table 6 metric compar-
ison between 2D and 3D designs, there is a huge per-
formance gap between 2D and 3D processing for our
particular task. Processing 3D volumes brings shapes
continuity, which should explain the performance su-
periority. Indeed, considering the tomogram as a whole
results in 3D patches decomposition in the network
model. Such a volumetric representation propagates the
3D morphological context of the features to segment
through the latent space of the network, which would
not be the case if the tomogram were considered slice
by slice.
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Dimension TP FP FN TN P R D J

2D 25577 15043 31457 3025523 0.629 0.448 0.523 0.354

3D 39630 4679 17404 3035887 0.894 0.694 0.782 0.642
Table 6: Tomogram processing (3D model) against independent slice processing (2D slice-by-slice segmentation)

(a) (b)
Figure 4: Comparison of 2D model result (a) and 3D model result (b) compared to ground truth (Yellow=TP,
Red=FP, Green=FN, Black=TN).

6 CONCLUSION
Being able to reconstruct whole brain network from
degraded tomograms remains a challenge as the tradi-
tional algorithms are not able to produce useful results.
We have investigated several models of deep learn-
ing methods and proposed new approaches. From this
whole set of experiments we can observe that encoder-
decoder performances highly overcome traditional seg-
mentation for 100 radiographs fast-scan processing and
such models are good candidates to achieve our ad-
dressed task: providing a good quality segmentation
from degraded tomograms reconstructed with a limited
number of radiographs. More with a small number of
layers the best networks are able to manage 3D images
and allow to extract information coming from the whole
brain conformation. Future works will investigate post
processing methods to reconstruct the brain neuronal
structures, for example by introducing graph concept
into the deep-learning network designs in order to con-
nect positive pixels, i.e. to directly recover neuronal
structures instead of the subset of voxels composing it.
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Franz Franchetti, Markus Püschel, and
José M.F. Moura. Performance anal-
ysis of the filtered backprojection im-
age reconstruction algorithms. In
ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Pro-
cessing - Proceedings, volume V, 2005.

[PM17] Pierre Paleo and Alessandro Mirone.
Efficient implementation of a local to-
mography reconstruction algorithm. Ad-
vanced structural and chemical imaging,
3(1):1–15, 2017.

[RFB15] Olaf Ronneberger, Philipp Fischer, and
Thomas Brox. U-net: Convolutional
networks for biomedical image seg-
mentation. In International Confer-
ence on Medical image computing and
computer-assisted intervention, pages
234–241. Springer, 2015.

[RFK+14] Benoit Recur, Mathias Fauconneau,
Andrew Kingston, Glenn Myers, and
Adrian Sheppard. Iterative reconstruc-
tion optimisations for high angle cone-
beam micro-ct. In Developments in
X-Ray Tomography IX, volume 9212,
pages 288–299. International Society for
Optics and Photonics, 2014.

[RXT07] Dmitri Riabkov, Xinwei Xue, and Dave
Tubbs. Accelerated cone-beam backpro-
jection using GPU-CPU hardware. Pro-
ceedings of the 9th International Meet-
ing on Fully Three-Dimensional Image
Reconstruction in Radiology and Nu-
clear Medicine, pages 68–71, 2007.

[San04] Bulent Sankur. Survey over image
thresholding techniques and quantita-
tive performance evaluation. Journal of
Electronic Imaging, 13(1):146, 2004.

[SKKH07] Holger Scherl, Benjamin Keck, Markus
Kowarschik, and Joachim Hornegger.
Fast GPU-based CT reconstruction us-
ing the Common Unified Device Ar-
chitecture (CUDA). In IEEE Nuclear
Science Symposium Conference Record,
volume 6, pages 4464–4466, 2007.

[SKR+14] Emil Y Sidky, David N Kraemer, Erin G
Roth, Christer Ullberg, Ingrid S Reiser,
and Xiaochuan Pan. Analysis of iterative
region-of-interest image reconstruction
for x-ray computed tomography. Jour-
nal of Medical Imaging, 1(3):031007,
2014.

[SLH+23] Anton PJ Stampfl, Zhongdong Liu, Jun

Hu, Kei Sawada, H Takano, Yoshiki
Kohmura, Tetsuya Ishikawa, Jae-Hong
Lim, Jung-Ho Je, Chian-Ming Low, et al.
Synapse: An international roadmap to
large brain imaging. Physics Reports,
999:1–60, 2023.

[SRR08] Ahmad Adel Abu Shareha, Mandava Ra-
jeswari, and Dhanesh Ramachandram.
Textured renyi entropy for image thresh-
olding. In Proceedings - Computer
Graphics, Imaging and Visualisation,
Modern Techniques and Applications,
CGIV, pages 185–192, 2008.

[Tof96] Peter Toft. The radon transform. Theory
and Implementation (Ph. D. Disserta-
tion)(Copenhagen: Technical University
of Denmark), 1996.

[ZHZ09] Xing Zhao, Jing-jing Hu, and Peng
Zhang. Gpu-based 3d cone-beam ct
image reconstruction for large data vol-
ume. International Journal of Biomedi-
cal Imaging, 2009:1–8, 2009.

[ZLW18] Zhengxin Zhang, Qingjie Liu, and Yun-
hong Wang. Road extraction by deep
residual u-net. IEEE Geoscience and
Remote Sensing Letters, 15(5):749–753,
2018.

[ZNG08] Andy Ziegler, Tim Nielsen, and Michael
Grass. Iterative reconstruction of a re-
gion of interest for transmission tomog-
raphy. Medical physics, 35(4):1317–
1327, 2008.

[ZWZ+18] Hao Zhang, Jing Wang, Dong Zeng,
Xi Tao, and Jianhua Ma. Regularization
strategies in statistical image reconstruc-
tion of low-dose x-ray CT: A review,
2018.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.3 19




