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ABSTRACT
Registering partial point clouds is crucial in numerous applications in the field of robotics, vision, and graphics.
For arbitrary configurations, the registration problem requires an initial global alignment, which is computationally
expensive and often still requires refinement. In this paper, we propose a pair-wise global registration method that
combines the fast convergence made possible by global hierarchical surface descriptors with the arbitrarily fine
sampling enabled by continuous surface representations. Registration is performed by matching descriptors of
increasing resolution – which the continuous surfaces allow us to choose arbitrarily high – while restricting the
search space according to the hierarchy. We evaluated our method on a large set of pair-wise registration problems,
demonstrating very competitive registration accuracy that often makes subsequent refinement with a local method
unnecessary.
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1 INTRODUCTION
Acquiring 3D geometry of physical objects and envi-

ronments has become an integral part of numerous dis-
ciplines, ranging from applications in mechanical en-
gineering and computer vision to asset generation for
movies and games. Rapid development of 3D sensing
technology over the last decades led to affordable high
precision devices being widely available. Most tech-
niques follow a sequential scanning paradigm where an
object or scene is scanned from different view points.
The result of this acquisition process is a set of scans,
each in a local coordinate system defined by the pose
of the scanning device, with different degrees of over-
lap. These scans have to be aligned with respect to a
unique reference to obtain a final reconstructed model
of an object. The accuracy of this registration step is of
significant importance to the quality of the final model
but is often hampered due to low-overlap between scans
and inherent noise. Along with that, the registration er-
rors may lead to artificial creases and reconstruction ar-
tifacts (oscillations or even holes).

The goal of pairwise registration is to find a transfor-
mation that aligns a source scan as close as possible to
the surface represented by a target scan. The possible
approach that could assist in precise registration accu-
racy is combination of coarse alignment followed by an
iterative local refinement that results in higher conver-
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gence. The local refinement is performed effectively
using variants of Iterative closest point (ICP) [Bes92]
which highly depends on a good initial guess.
Coarse registration approaches usually depend on a de-
scriptor [MPD06,Zah12,Tom10,Pet15] associated with
a set of feature points encoding useful geometric infor-
mation from the data based on a local neighborhood.
Correspondences between descriptors are established
based on similarity, resulting in a rigid transformation
that best aligns the set of feature points and using some
robust estimator.
The object surface is generally not sampled at the same
locations between partial scans (an effect which we re-
fer to as sampling discrepancy), and every sample is
subject to measurement noise. Methods that directly
rely on descriptor computation are inherently limited
by these measurement issues. In addition to these
external factors, methods relying on localized feature
descriptors often suffer from a certain percentage of
false matches, typically caused by insufficient discrim-
inating capabilities of the descriptor and/or an under-
performing similarity measure. These factors, to vary-
ing degrees, prevent them from achieving higher levels
of accuracy, and the resulting rigid transformation neg-
atively affects the convergence of local iterative algo-
rithms employed for refinement. We propose a method
that mitigates these drawbacks. Our contributions are
as follows:
• novel adaption of an existing hierarchical surface de-

scriptor to continuous surface representations
• based on that, a new pair-wise global registration

pipeline for partial scans, featuring:
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– high precision that compares favorably to state-
of-the-art global methods

– competitive processing times
– either eliminates the need for refinement with

a local method completely or gives close-to-
optimal initial guesses

Additionally, the paper contributes a comprehensive
evaluation of the proposed approach and compares
it to the state-of-the-art global registration method
by [Zho16], demonstrating measurable improvements
in terms of accuracy and robustness.

2 RELATED WORK
Registration is a widely researched problem with vast
applicability in various domains like 3D scanning,
shape analysis, or motion capturing. For an overview
of existing registration algorithms, we refer the reader
to the respective surveys [Rus01], Salvi et al. [Sal07],
Tam et al. [Tam13], Bellekens et al. [Bel14], Huang et
al. [Hua21]. According to the aforementioned surveys,
registration approaches can be classified with respect
to the following criteria:

Pairwise / Multi-Way. Pairwise registration meth-
ods [Bel14] aim at registering two partially overlapping
scans. Overall registration of a data set can be achieved
by successively adding scans and registering them to
their predecessors or to all preceding scans. On the
other hand, multi-way registration [Goj09] optimizes
all transforms at the same time, usually by iterating
pairwise registrations or by modeling the problem with
a single registration objective.

Rigid / Non-Rigid. Rigid registration methods [Bel14]
only allow rigid body transforms for the individual
scans, whereas non-rigid methods allow arbitrary ones.
However, non-rigid approaches [Hua22] usually regu-
larize the objective in order to avoid degenerate solu-
tions (e.g. by demanding the transform to be as rigid as
possible).

Local / Global. Local methods [Bes92, Hua11] use
an initial transform estimation (e.g. provided by the
user) and refine this transformation to optimize an ob-
jective. Global methods [Zho16, Pet15] do not require
any input other than the geometry and find the registra-
tion transforms with arbitrary initial alignment of scans.
Such global methods usually produce coarse registra-
tions that can be refined with local methods. Further-
more these methods are not directly based on spatial
proximity (but on, e.g., geometric feature descriptors).

Learning-based Registration. In recent years, data-
driven approaches are emerging for registering point
clouds primarily owing to exemplary results in both
2D and 3D applications. Researchers have used neu-
ral networks (NNs) in different ways, either to ex-
tract feature from individual point cloud followed by

correspondence search or even focused on end-to-end
pipeline for transformation estimation. Feature learn-
ing methods [Zen17, Hao18, Goj19] use the deep neu-
ral network to learn a robust feature correspondence
search. Then, the transformation matrix is obtained
by one step estimation (SVD, RANSAC) without it-
eration. Those NNs could provide robust and accu-
rate correspondence searching but are fairly limited by
availability of large training data and lesser general-
ization capabilities, resulting in a large-scale failure
for unknown scenes with different distribution com-
pared to the training data. End-to-end learning-based
method [Yan19, Wan19] solves the problem of regis-
tration with complete end-to-end network, i.e, along
with the correspondence search, transformation esti-
mation is also embedded into the framework and dif-
fers from feature learning method whose focus in en-
tirely on point feature learning. DeepGMR [Yua20] re-
lies on a neural network to initially learn pose-invariant
point-to-distribution parameter correspondences. Then,
these correspondences are fed into the GMM optimiza-
tion module to estimate the transformation matrix.

Descriptors

Many 3D descriptors based on point clouds have been
introduced and importantly applied to the task of point
cloud registration. A comprehensive reviews for point
cloud descriptors in terms of computational efficiency
and accuracy are detailed in [Ale12, Guo16, Han18,
Ran20, Han18]. Based on the process of descriptor
extraction, the descriptors can be approximately clas-
sified as local, global, and hybrid. Local descriptors,
for every point, embeds spatial distribution or geomet-
ric attributes extracted in the neighborhood and is pro-
duced by a histogram representing the descriptors for
each point. It is less discriminating exactly, but suitable
for cluttered scenes. Spin Image [Joh99] is a popular
descriptor often used in applications of shape match-
ing, object recognition. It creates a cylindrical support
around a keypoint, divides it into radial and vertical vol-
umes, and then counts the number of points that falls
within each volume. On the other hand, a global de-
scriptor, for the entire point cloud, is produced with a
single context vector by integrating a set of features or
incorporating spatial distribution of the complete data.
Global-based features are generally used in 3D ob-
ject recognition and object categorization, additionally
some global descriptors can be used for pose estimation
of the objects as they also contain local descriptors in-
formation, such as Viewpoint Feature Histogram (VFH)
and Local-to-Global Signature (LGS) descriptor. More-
over, global-based methods demands less computation
compared with the local features and better to describe
the whole point cloud but are majorly affected by oc-
clusions and clutter [Had14]. Hybrid-based descriptors
incorporate local and global descriptors together with
most of the advantages from them.
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Sampling Discrepancy

As briefly mentioned when motivating our work in sec-
tion 1, sampling discrepancy is a major factor limiting
the accuracy of point cloud registration, as it means
that in general, no exact correspondences can be found.
Thus, many strategies have been proposed to reduce
its impact. Chen and Medioni [Chen91] project points
from the source shape onto their closest position in
the target depth image with an iterative algorithm now
known as normal shooting [Rus01]. The resulting point
will yield an interpolated closest point on the target.

The Adaptive moving least squares (AMLS) surface
based approach [Hua11] for ICP registration emphasize
on the efficiency of the technique to overcome issues
of sampling discrepancy. The essential concept of the
AMLS method is to reconstruct a smooth and accurate
representation of a surface for ICP based registration
by adaptively selecting the width of a Gaussian kernel
based on the principal curvature of the MLS surface
through local integral invariant analysis [Yan06]. In-
stead of trying to minimize the distance between corre-
sponding entities, [Mit04, Pot06] estimate the distance
field of the underlying surface with local quadratic ap-
proximates and directly optimize the distance of the
scan and the target surface. Kubacki et al. [Kub12]
integrated multiple depth images into a model repre-
sented by implicit moving least squares (IMLS) on a
grid based on signed distance function updates. Similar
ideas appeared in [Par03, Mun07]. However, any such
method inherently suffers from discretization artifacts
at reasonable resolutions.

3 METHODOLOGY
The proposed method relies on the core concept of de-
scriptor matching in order to estimate the rigid transfor-
mation. Our approach is based on the Circon descriptor
proposed by Ferrero et al. [Car12] that represents an or-
dered set of radial contours around a point of interest
within a point cloud. The descriptor associated with a
particular point-of-interest is used to express the point
cloud in a local frame. The environment around a point-
of-interest is divided into sectors each representing an
angle ρθ , and are further divided radially into cells with
length ρr.

The points are mapped into cells of the descriptor in a
way that the cell-value represents the height (z-value)
with respect to the local reference frame. Figure 1 de-
picts a descriptor associated with a point-of-interest (cf.
section 3.1) encoding the structural information from a
point cloud.

We built upon the registration method Ferrero et al.
[Car12] tailored for this descriptor. While the core hi-
erarchical approach is the same, the way they use the
point cloud directly to build the descriptors ties the
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Figure 1: Descriptor spawned by a point-of-interest
defining a local reference frame with cell division into
sectors represented by green and red shows contour
formed by maximum z within each cell.

achievable accuracy to the point cloud resolution. We
propose to utilize a continuous surface representation
instead, enabling us to construct descriptors of arbitrar-
ily high resolution.

The exact choice of surface representation poses a
trade-off of surface expressiveness vs. computational
complexity. We opted for NURBS surfaces, as their
desirable properties include the ability to exactly
represent relevant algebraic shapes (like ellipsoids),
and many manufactured objects are likely to have been
CAD-designed using NURBS originally. They also
render computation of the Circon descriptor non-trivial,
which required additional measures to tackle the added
computational cost. Our proposed algorithm can be
summarized as follows:

AL.1 (pre-processing) Fit NURBS surfaces to the
source and target point clouds.1 We first perform
Euclidean clustering [Rad09] (see Appendix A
for details) on both to account for highly frag-
mented scans, and each cluster is fitted with
its own surface. We refer to the union of all
surfaces fitted to a point cloud as the surface of
the point cloud.

AL.2 (pre-processing) Sample each fitted surface at a
resolution of 256×256 in parameter space to get
a collection of (u0,v0) footpoints needed later for
descriptor construction (see section 3.2).

AL.3 (pre-processing) Point-of-interest (poi) selection
for both surfaces (section 3.1).

1 We fit trimmed cubic surfaces using the iterative tangent
distance-based refinement strategy proposed by Mörwald et
al. [Moe13] as implemented in PCL [Rus11] using default pa-
rameters.
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AL.4 (pre-processing) Initial sorting of poi (section
3.4) pairs at a coarse resolution according to their
similarity score (section 3.3), so step AL.5 can
start with the most promising pairs.

AL.5 Descriptor computation across resolutions (sec-
tion 3.4) for a pair of poi from source and target
surfaces.

AL.6 Estimate transformation from point-pairs with
highest similarity score at maximum resolution
(user-defined) and evaluate stopping criterion.

AL.7 Repeat from AL.5 until the stopping is criterion
satisfied.

We elaborate on the key details of the registration meth-
ods in the following sections.

3.1 Selecting Points-of-Interest
Points-of-interest (poi) for the source and target shapes
are essential for the proposed approach. They define
where descriptors are initially constructed and should
be chosen in a way such that the resulting descriptors
cover every location on the shape at least once. The
original registration algorithm by Ferrero et al. [Car12]
adapts a strategy to select non-edge points by perform-
ing edge detection and thresholding based on the Lapla-
cian of the normal vectors, essentially restricting their
selection to relatively flat areas. We did not find this to
provide measurable benefits, so we chose our poi based
on a random sampling of locations on the respective
surfaces to obtain the final set of points-of-interest, rep-
resented by: spoi = {s1

poi,s
2
poi,s

3
poi...,s

m
poi} ⊂ S, tpoi =

{t1
poi, t

2
poi, t

3
poi..., t

n
poi} ⊂ T , m < N1,n < N2, where N1,

N2 are total no. of samples from the continuous surface
representation of the source and target scan.

3.2 Descriptor Construction
Descriptors are natural choice for estimating transfor-
mation in a global registration framework as detailed in
section 2. It encodes local or global structural informa-
tion of a 3D shape.

The local reference frame of a Circon descriptor is de-
fined by the normal at the point-of-interest zl (queried
from the parametric surface representing the shape),
some perpendicular vectors yl and xl = zl × yl , as well
as the keypoint itself as origin. We refer to the plane
with normal zl which the kepoint lies on as the refer-
ence plane of the descriptor.

Circon descriptors can form a hierarchy, as each cell
in turn implies another keypoint that spawns a descrip-
tor. By doubling the resolution at each level, a tree of
course-to-fine representations is formed. The points-of-
interest we determined in section 3.1 form roots of such
a hierarchy.

So, at a given resolution, we can iterate over each valid
cell (i, j) of the descriptor and further build descriptors
associated with the 3D point of the cell. In this regard,
the descriptors are identical to [Car12], but we largely
modified the construction process to work with para-
metric surfaces as follows: To obtain a cell value, we
cast a ray from the cell along the z-direction of the local
reference frame and compute the intersection of the ray
with the surface transformed to this local frame. Since
we use NURBS surfaces, the intersection has to be de-
termined numerically as no exact analytical solution is
known: We start at certain point S(u0,v0) on the surface
and optimize its position (u,v) so that it lies on the ray
originating from the cell center o⃗ along its direction d̂
defined by the local frame z-axis. This yields the fol-
lowing optimization problem:

argmin
u,v

∥∥(⃗o+< S(u,v)− o⃗, d̂ > d̂)−S(u,v))
∥∥2

2 (1)

We use the simple Nelder-Mead algorithm [Nel65] to
solve this, since the problem is low-dimensional and the
evaluation of the objective function is cheap. This strat-
egy requires an initial guess though, which we obtain in
the following way:
During pre-processing, we perform a regular sampling
of the NURBS surfaces in parameter space, giving us a
database of footpoints on the surface and their associ-
ated parameters (u0,v0). When transforming a surface
into the local frame of the current descriptor, we can
transform these footpoints along with it. Using a simple
regular grid on the descriptor reference plane, descrip-
tor cells can collect those footpoints that project close
to them. We then select the most promising initial guess
by applying a multi-criterion sort according to (a) foot-
point height z above the descriptor reference plane and
(b) closeness to the ray.
We accomplish (a) by binning the footpoints in the cell
according to their height z, and (b) results from sorting
them inside each bin. For selecting the initial guess, we
begin with the highest z-bin and choose the first (and
thus, closest) sample from it. If no intersection could
be found, we continue with the next sample in the bin,
or the next lower bin if the current bin does not contain
more samples, and so on.
The NURBS surface is then evaluated at the optimized
parameter (u

′
,v

′
) to determine corresponding 3D point

along with its normal. The cell value ci, j is obtained
from the z-coordinate of the point quantized with re-
spect to a height resolution ρz as in equation 2, i.e.

ci, j = ⌈ z
ρz

⌉ (2)

The x, y coordinate of each cell is given by

x = j ∗ρr ∗ cos(−(i−1)∗ρθ ))

y = j ∗ρr ∗ sin(−(i−1)∗ρθ ))
(3)
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As the descriptor embeds an environment of the poi,
it represents a closed sequence such that the first and
last row is considered adjacent and also the elements
with the same column index corresponds to adjacent
cell. Hence, the descriptor exhibits a cyclical property
that is crucial for matching and determining the rotation
parameter of the alignment transformation it represents
(see section 3.4).

3.3 Similarity Measure
There exist multiple measure, for instance, correlation
coefficient, mutual information, join entropy to obtain a
quantitative value and are largely dependent on the pro-
portion of overlap area to arrive at a score. To compare
the source and target descriptors for each resolution, we
rely on a specific similarity measure [Car09]. In point
clouds with low overlap region, it is likely that the en-
vironment around the corresponding points of source
and target scan appear similar resulting in selection of
false pairs. To circumvent false matching that could be
detrimental to registration accuracy, the similarity mea-
sure incorporates information from the non-overlapping
region enlarging its descriptive capabilities. The objec-
tive of the algorithm is to maximize similarity S(Ds,Dt )
in equation 5 while comparing descriptors from two
surfaces. D(s, p) and D(t,q) refers to a descriptor with
respect to point p,q from two surfaces s, t respectively.

argmax
p,q

S(D(s, p ∈ s),D(t,q ∈ t)) (4)

S(Ds,Dt) =
ϕOL(Ds,Dt )

(α∗dOL(Ds,Dt )+β
′
)+ϕOL(Ds,Dt )(1−β

′
)

(5)

The similarity measure S(Ds,Dt ) in equation 5 relies on
the percentage of overlap (ϕOL) between two surfaces
and their proximity (dOL), representing the average dis-
tance in overlapped area. The affect of overlap in the
similarity measure can be modified using β

′
whereas α

directly influences the average distance dOL. The de-
tailed derivation and additional concepts are provided
in [Car12] and [Car09].

3.4 Multi-resolution Descriptor and
Matching

The descriptor computation in section 3.2 and similar-
ity measure in section 3.3 are core blocks of our hier-
archical registration pipeline. The algorithm initially
performs a descriptor matching at a coarse resolution
of 16 × 16 with similarity measure described in sec-
tion 3.3 between two sets of point-of-interest spoi and
tpoi. The pairs (si

poi, t
j
poi) are sorted in decreasing or-

der of their similarity score at this coarse resolution to
obtain a feasible set of starting points for the hierarchi-
cal matching of descriptors. We try the highest-ranked
pairs first, avoiding initial match ups that are unlikely
to yield good results.

The actual process of descriptor comparison then works
on some (si

poi, t
j
poi) pair in isolation. We name the ini-

tial pair of descriptors at some resolution the primary
descriptors for source and target, respectively. A search
is performed over each cell and its associated point on
the surface of the primary source descriptor to find a
secondary source descriptor that gives the greatest sim-
ilarity to the target at some row shift k. This row shift
represents rotation around the normal of the keypoint
that spawned the secondary descriptor, determining the
remaining free parameter needed to form a rigid trans-
formation. When the rows of the secondary source de-
scriptor had to be shifted k times for highest similarity,
then the rotation angle is kρθ , where ρθ is the angular
step at the given resolution.

The 3D point and rotation associated with the sec-
ondary descriptor that gave the best match at the cur-
rent resolution becomes the starting point for the pri-
mary descriptor at the next higher resolution. Figure 2
depicts a series of primary descriptors from coarse to
fine resolution. The process terminates for a specific
(si

poi, t
j
poi) pair once the specified maximum resolution

is reached.

The final alignment transformation for a points-of-
interest pair results from the best-matching secondary
source descriptor at the highest resolution. Since we
now assume both source and target descriptors to
describe the same point on the surface, we can find
this alignment by going from world space W into
the local reference frame s of the final secondary
source descriptor, applying the rotation resulting from
the final row shift k, and finally concatenating the
transformation back to W from the reference frame t of
the target descriptor:

Talign =
W T−1

s · R(k) · W Tt (6)

The transformation W Tl for some descriptor reference
frame l is given directly from the keypoint p that
spawned the descriptor and its associated normal n (see
section 3.2). The rotational part of the transformation
from W to l is obtained as follows:

W Rl = [⃗xl n⃗× x⃗l n⃗]T (7)

The full transformation W Tl then follows as

W Tl =

[W Rl −W Rl · p
01×3 1

]
(8)

Finally, a rotation matrix parametrized by some row
shift k is obtained as follows:

R(k) =


cos(ρθ · k) sin(ρθ · k) 0 0
−sin(ρθ · k) cos(ρθ · k 0 0

0 0 1 0
0 0 0 1

 (9)
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(a) 32X32 (b) 64X64 (c) 128X128 (d) 256X256

Figure 2: Descriptor cell values mapped to an image at the top and corresponding point cloud represented by the
descriptor at the bottom of Bunny model. The restriction of higher resolution descriptors to 64 columns is visible
in image (d).

Our key contribution of adapting the construction of
Circon descriptors to continuous surfaces enables us to
extend the hierarchy with much higher resolution de-
scriptors, without being constrained by the original res-
olution of the point cloud. Like [Car12], we also re-
duce the search space further down in the hierarchy by
halving the number of columns (i.e. radial steps away
from the contour center) considered at each level. This
is especially important for us since descriptor compu-
tation is significantly more expensive, and there is no
need to consider points far away from the center of the
radial contour at later stages. To mitigate the perfor-
mance impact of our construction process even further,
we also limit descriptor construction to 64 columns (see
figure 2d). Every cell further away than 64 radial steps
will thus be invalid, which the similarity measure is
able to handle naturally as part of its down-weighting
of non-overlapping regions (see section 3.3).

3.5 Stopping Criterion
The stopping criterion is essential for the iterative
search to be convergent and importantly must embed
characteristics of the descriptor. To this end, we choose
three non-colinear points from the final source and
target descriptors that each form a triangle around
the respective Circon descriptor center. Such points
can be easily obtained by selecting the same three
equidistantly spaced cells from the first column of each
descriptor and computing their 3D point equivalents.
These triangles form a fictitious correspondence pair
in accordance with Ferrero et al. [Car12]. The cen-
troid of each triangle defines a local reference frame
with fictitious transformation T f ict between them as

represented by equation 6. T f ict is compared with rigid
transformation Talign in terms of a delta transformation:

∆T = Talign ·T−1
f ict (10)

This delta transformation is evaluated for rotational and
translational difference separately (see Appendix A for
details). If the rotational difference ∆r and translation
distance ∆ts extracted from ∆T are smaller than their re-
spective thresholds, the algorithm terminates and Talign
is returned as the final alignment transformation.

4 EVALUATION
To demonstrate the effectiveness of the proposed hi-
erarchical registration method (HER), we perform our
analysis on a publicly available dataset and compare
quantitative measure with state-of-the art registration
method and and also the hierarchical method proposed
by Ferrero et al. [Car12] and for simplicity name it as
ORI-HER. We ran all our experiments on an Intel Core
i5-6500 clocked at 3.20GHz. The following section
presents how we performed our evaluation including
dataset description and the tested methods.

4.1 Dataset
We performed an evaluation on the comprehensive
benchmark provided2 by Petrelli et al. [Pet15], which
we refer to as the LRF dataset. This dataset contains
multiple objects captured by sensors of different
quality, ranging from consumer-level depth cameras
to professional laser scanners resulting in point clouds
with varying point density. Moreover, the benchmark
includes challenging low-overlap registration pairs.

2 http://www.vision.deis.unibo.it/list-all-categories
/78-cvlab/108-pairwiseregistrationbenchmark
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(a) ORI-HER (b) FGR (c) HER

Figure 3: Registration of a view-pair From LRF OilPump dataset

(a) ORI-HER (b) FGR (c) HER

Figure 4: Registration of a view-pair From LRF WoodChair dataset

4.2 Methods
We base our comparisons with ORI-HER [Car12] that
uses hierarchical descriptors with similarity measure
for coarse point cloud registration and state-of-the-art
global registration method FGR [Zho16]. This meth-
ods has been shown to rival the accuracy of local meth-
ods and therefore ideal for comparison to understand
the difference of accuracy with our proposed approach.
The parameters for each methods and their respective
values adapted during the evaluation process are de-
scribed in separate Appendix-A.

4.3 Metrics
After solving the various registration problems with dif-
ferent methods based on the dataset discussed in sec-
tion 4.1, we evaluate how well the results match the
ground truth transforms with a data-dependent metric.
We use root mean square error (RMSE) as a metric to
quantify registration accuracy. The RMSE measures
the mean error over all source cloud point locations
for some computed transformation Tout with respect to
ground truth transformation Tg:

RMSE(Tout) =
1
d

√
1
n

n

∑
i=1

∥Tout pi −Tg pi∥2 (11)

The normalization factor d represents the sampling dis-
tance. For the LRF dataset, where scans are repre-
sented as polygon meshes, we use the average mesh
edge length.

5 RESULTS

The section elucidates on the results of our experiments
that verify the proposed approach produces more accu-
rate registration results than state-of-the art approach.
We will also examine various characteristics of our al-
gorithm.

5.1 Accuracy

The accuracy comparison is based on datasets intro-
duced in section 4.1 with multiple registration problems
and RMSE defined in section 4.3 on the registration
output after convergence. We categorize RMSE results
into fine (< 20d), coarse (

[
20d,50d

]
), failed (rest) and

measure the number of view pairs (Table 1) that fall
under these categories with respect to the total num-
ber of registration problems. To refine the compari-
son, we concentrate on the fine registration view-pairs
and Figure 5 shows the accuracy results for the LRF
datasets falling under this category. Figure 5 asserts that
the highest accuracy are obtained by our method com-
pared to FGR and ORI-HER. Furthermore, The statisti-
cal measures in Table 2 based on fine RMSE delineates
lowest values for our method among others. The con-
tinuous representation of scans followed by descriptor
computation with finer resolution attributes to the sig-
nificant improvement in the accuracy. Figure 3 and Fig-
ure 4 depict particularly difficult registration problems
from the LRF dataset that FGR and ORI-HER failed to
align, while our method achieved fine alignment.
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No.Pairs Fine Coarse Fail
ORI-HER 1840 57 427 1356
FGR 1840 279 642 919
HER 1840 355 711 774

Table 1: Categorization of registration view pairs from
LRF datasets based on threshold as discussed in sec-
tion 5.1

Min Max Avg Std.dev
ORI-HER 1.162 23.66 5.99 4.07
FGR 0.48 21.67 3.49 2.77
HER 0.34 20.24 2.58 2.25

Table 2: Statistical Comparison of RMSE based on Fine
threshold as discussed in section 5.1

Figure 5: Accuracy comparison of pairwise registration
methods for the LRF datasets. The box height repre-
sents the 25th and 75th percentile. The whiskers repre-
sent the 5th and 95th percentiles. The middle line rep-
resents the median. Better registration results are char-
acterized by lower RMSE.

5.2 Runtime
We examined the computational time of ORI-HER,
FGR and our approach taking into account the prepro-
cessing steps and the core-algorithm. An analysis was
performed on 10 randomly selected models from the
LRF dataset. For our proposed approach, we consider
three major components, i.e surface fitting, coarse res-
olution sorting and the iterative core algorithm. As de-
picted in the Figure 6, the runtime for sorting is neg-
ligible with respect to the other two components. The
FGR algorithm relies on feature descriptors from a pre-
processing step, which tend to be expensive to com-
pute. Time computing the alignment is spend largely
on matching these features for FGR and varies a lot
depending on the point clouds. Nevertheless, it is the
fastest method on average. ORI-HER exhibits the high-
est runtime across the comparison. We observed that
it has to run through a large number of keypoint pairs
(and thus, descriptor hierarchies) to determine an opti-
mal transformation. While descriptors are significantly

0 10 20 30 40 50 60 70 80 90 100

HER

FGR

ORI-HER

Time(s)

surface fitting time Keypoints comput. time

Feature Descriptor comput.time Sorting time

core-algorithm

Figure 6: Runtime comparison of the proposed ap-
proach with ORI-HER, FGR including the preprocess-
ing step for each methods. Our method exhibits higher
runtime in the core algorithm part owing to its multiple
descriptor computation compared to FGR but consider-
ably lesser to ORI-HER

more expensive to compute for our method, we typi-
cally find an optimal solution within the first few key-
point pairs, as we can use higher resolution descriptors
independent of the sampling situation, greatly speeding
up convergence.

6 CONCLUSION AND OUTLOOK
In this paper, we have presented a hierarchical (coarse-
to-fine) global registration method. The 2D descrip-
tors built from a continuous representation of each point
cloud enables us to embed higher accuracy into them.
Our evaluation based on the diverse LRF dataset shows
considerable improvement in the accuracy compared to
the state-of-the-art FGR algorithm.
Nonetheless, a handful of improvements could be
made, most obviously concerning speed. We chose
NURBS surfaces for their versatility and ready avail-
ability of implementations, but the fitting process is
expensive. Furthermore, as described in section 3.2,
intersecting rays with a NURBS surface requires,
in general, a numeric solution. A more specialized
surface representation could accelerate both fitting
and descriptor building, in turn making the use of
higher resolution descriptors more feasible and thus
improving accuracy even further.
Alternatively, leveraging GPU hardware to compute the
descriptors promises immense speedups. This could be
achieved using the programmable rasterization pipeline
to generate orthographic depth maps of the continuous
surfaces as viewed in the descriptor reference frame.
The resolution of these depth maps can be chosen as
high as needed to enable artifact-free sampling at the
Circon cell centers. We expect this would bring down
the computation time spend on building descriptors to a
fraction of what it is in our current implementation.
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