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ABSTRACT

Deep learning applications are attracting considerable interest nowadays and image analysis pipelines are no
exception. Benthic studies often rely on the subjective evaluation of video material recorded using underwater
drones. The demand for automatic image segmentation and quantitative evaluation arises due to the large volume
of video data collected. This study performed a semantic segmentation task by training the PSPNet architecture
with ResNet-34 backbone for 50 epochs using imagery prepared by simply extracting a few video frames or stitch-
ing a multitude of frames into a large 2D mosaic. Mosaicking is a particularly resource-intensive step, therefore,
the possibility to skip such preprocessing would result in a more rapid analysis. The effect on the resulting seg-
mentation quality was investigated by estimating the seabed coverage of three classes (Furcellaria lumbricalis,
Mpytilus edulis trossulus, and boulders) in a video material obtained from the Baltic Sea. Segmentation success,
measured by intersection over union, varied between 0.56 and 0.84, usually slightly better for frames than for the
mosaic overall. Absolute differences in estimated coverage were negligible (mosaic vs. frames): 0.24% vs. 1.26%
for furcellaria, 0.44% vs. 2.46% for mytilus, and 4.02% vs. 2.06% for boulders. Due to the differences between
predicted coverage and the mosaic-based ground truth being in an acceptable range, the findings suggest that the
mosaicking step could be safely skipped in favor of a few equally spaced sample frames.
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1 INTRODUCTION the information stored in these image archives is being
extracted due to labor-intensive and time-consuming
analysis procedures. A promising way to process large
amounts of images is computer-aided analysis, i.e.,
converting seabed video to 2D mosaic maps, image
segmentation, and quantifying segmentation results.
However, the mosaicking step is computationally
demanding, and the resulting photomosaic often

Maritime space is increasingly used for renewable
energy installations, oil and gas exploitation, naval
shipping and fishing, ecosystem monitoring and
biodiversity conservation, aquaculture production,
and many other purposes. The demand for maritime
space requires integrated planning and management

strategies focused on solid scientific knowledge and
reliable seabed mapping [Men20], with underwater
images [Urr21] being one of the most widely used
seabed mapping input sources. The key advantage
of underwater imagery is its simplicity, enabling the
rapid collection of vast amounts of data, especially
through the use of underwater drones and hence
cost-effectiveness. Unfortunately, only a small part of
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differs with respect to the tool used (see Fig. 1). A
comprehensive list of various, primarily commercial,
tools was evaluated for airborne imagery by [Sonl16]
with Pix4DMapper found to be the most precise and
Autostich the fastest.

Automatic segmentation of underwater imagery, com-
pared to other types of images, is a new and challenging
direction of research. According to a survey [Gral7]
the first publications on seabed segmentation task (also
termed seafloor classification) appeared 25 years ago
and are still scarce, the common ground between them
being the use of "hand-crafted" image features and
traditional machine learning algorithms, for example,
random forest [Rim18]. New deep learning architec-
tures of neural networks could replace image features
and help analyze images more effectively, accurately
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(a) CCOM [Rzh06]

(b) LAPM vl1 [Mar13]

(c) Microsoft ICE 2

(d) ArcSoft PM 6 (e) Sample frames

Figure 1: Converting underwater video material (from Atlantic Ocean) to images: marine mosaics for benthic
studies (a-b), commercial software mosaics for panoramic view (c-d), and sample of equally spaced frames (e).

and quickly than ever before. The initial efforts to
apply deep learning to underwater images concerned
corals [Alo19] and other broad categories [Liu20, Is120]
(such as fish, plants, divers, and stones) without preoc-
cupation with the sea floor and, therefore, without the
need to stitch images through mosaicking with the goal
of reconstructing a precise floor map for the estimation
of biologically valid organism counts or visual cover-
age.

The most similar related works that use deep learning
and convolutional architectures to explicitly segment
seabed images are recent techniques for estimating the
coverage of seagrass [Marl8, Weil9, Bur20], macroal-
gae [Bal20], and kelp [Mah20]. The discrepancy be-
tween the expert-identified and model-predicted cover-
age in absolute percentage points was between 0.54%
and 9.88% for kelp [Mah20] species (see Table 6 there),
while the remaining mentioned seabed studies reported
only segmentation accuracy without a comparison of
the resulting coverage percentages.

This study evaluates both semantic segmentation suc-
cess and the resulting coverage estimates using seabed
imagery in the form of 2D mosaics, or several sample
frames from short 30 s video transects as input to a con-

https://www.doi.org/10.24132/JWSCG.2022.4

volutional architecture deep learning model. Both mo-
saics, as in Fig. 1 (a), and frames, as in Fig. 1 (e), were
annotated by marine biologists to solve the detection
task of 2 biological species — Furcellaria lumbricalis
and Mytilus edulis trossulus — and 1 geological class —
boulders. Performed experiments use mosaic-based an-
notations as a golden standard to measure how much
coverage summaries differ when skipping a resource-
intensive mosaicking step in favor of a few sample
frames from an underwater video.

2 UNDERWATER IMAGERY

The underwater material was filmed in coastal and oft-
shore reefs of Lithuanian marine waters of the south-
eastern Baltic Sea. In the coastal area, the video was
taken by scuba divers at 4-7 meters depth using a hand-
held video camera with 1920x 1080 resolution along
multiple 10—meter transects (designations SM_07_1,
SM_07_2, SM_08_1A, SM_08_1B). Additionally, in
the offshore region at 35 — 40 meters depth, a re-
motely operated vehicle (ROV) equipped with a verti-
cally mounted camera (3 CCD, high-quality Leica Di-
comar lenses, and 10x optical zoom) with 1920x 1080
resolution and a lighting system consisting of 16 LED
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in 4 x 4 array was deployed, and two 30 second long
transects (designations Denoflit_30s and Denoflit_2)
were filmed. The raw video material was later trans-
formed into 2D mosaics or several relevant frames were
picked for each transect.

In this study, the video mosaicking method, developed
by the Center for Coastal and Ocean Mapping [Rzh06],
was used. The method consists of the following steps:

1. To reduce processing time, video transects of 30 s
had frame rate reduced from 50 to 5 fps and frame
size from 1920x 1080 to 960 x 540.

. The roll and pitch of the filming platform were ad-
justed by image transformations and some video en-
hancements were applied to each frame.

. The enhanced footage was subjected to automatic
frame-to-frame pair-wise registration (a method that
calculates the overlap of neighboring frames).

. Using the pair-wise registration data from the previ-
ous step, video mosaics were constructed from non-
enhanced video.

For an alternative approach, experts assigned a specific
number of frames, typically 12-16, for each video tran-
sect, and equally spaced frames of 960x540 size were
extracted using a command-line tool ffinpeg. The aim
of several representative sample frames was to cover the
video material with the least overlap between frames
to roughly correspond with the mosaic’s visual scope.
Summary of the prepared image data and classes repre-
sented in the images is in Table 1, where the size of the
resulting 2D mosaics and the corresponding number of
representative frames (of 960x540 resolution) can be
compared.

The prepared imagery (large mosaics and many fixed-
size frames) was annotated by two marine biologists
(without overlap) using polygons and striving for pixel-
level accuracy in an online collaborative annotation

Transect Mosaic size  Frames Classes
SMO07_1 2434 %8774 16 Furcellaria
Boulder
SMO07_2  5021x5107 12 Furcellaria
SMO08_1A 4191 %5379 12 Furcellaria
Boulder
SMO08_1B 4745% 5379 12 Furcellaria
Boulder
Denoflit 2 2434x8774 11 Mytilus
Boulder
Denoflit_30s  1580x5480 11 Miytilus

Table 1: Summary of underwater imagery used.
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platform Labelbox [Rie20]. Examples of these anno-
tations for the mosaic segment and the corresponding
frame are shown in Fig. 2.

(c) Boulders

(a) Furcellaria (b) Mytilus

Figure 2: Mosaic (fop) and frame (bottom) annotations
for (roughly) the same transect region.

In general, all visible objects of 3 classes were anno-
tated: biological Furcellaria species had 102 instances
in 3 mosaics and 120 instances in frames; biological
Mpytilus species had 148 instances in 2 mosaics and 62
in frames; geological Boulder class had 167 instances
in 3 mosaics and 166 in frames.

3 METHODS

The prepared underwater imagery, either in the form
of large mosaics or representative frames, was patched
using a sliding window idea to prepare training and
testing data for the deep learning model with convo-
Iutional architecture. Training patches were augmented
to increase data amount and as a simple form of reg-
ularization. The evaluation was performed by splitting
the transects in half to achieve a 2-fold cross-validation.
Segmentation success was measured by the intersection
over union metric and by comparing visual coverage es-
timates.

3.1 Image patching and augmentation

Due to the limitations of the available computational
resources, both mosaics and frames were sliced into
overlapping 288 <288 size patches. The overlap was
the result of sliding window or block processing idea
with vertical and horizontal strides of 144 pixels (see
Fig. 3). The mosaics contained many white pixels, as a
result of the mosaicking process, so only patches with
a minimum of 70% non-white pixels were considered
as input images. Furthermore, to increase the amount
of training data, a few traditional augmentation tech-
niques, such as vertical and horizontal flip, and one
marine-specific technique — removal of water scattering
(RoWS) [Chal0] — were used on input image patches.

3.2 Convolutional architecture

In the experiments, we used a deep convolutional neu-
ral network with pyramid spatial pooling architecture
- PSPNet [Zhal7] model with ImageNet pre-trained
ResNet-34 [Hel6] as the backbone. The model was im-
plemented using the Keras framework (version 2.3.1),
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Patch width

Figure 3: Block processing of underwater photos into overlapping patches of 288 <288 sized input images.

running on the Tensorflow back-end (version 2.1.0),
with the help of the package segmentation-models
(version 1.0.1) [Yak19]. Model training settings were
as follows: batch size (number of images used for
the weight tuning step) - 8 images, training duration
- 50 epochs, downsampling rate (backbone depth in
the PSPNet model) - 8, minimized loss - additive
combination of Jaccard [JacO8] and Focal [Linl7]
losses. Final model had 2 746 058 parameters (2 737
860 trainable).

3.3 Evaluation of segmentation

Evaluation of segmentation performance was done
using 2-fold transect-stratified cross-validation (CV),
where each transect was split in half — top and bottom
parts — and training was performed on one part while
testing on the other part. For example, after training
on all bottom parts of mosaics (first half of the corre-
sponding frame set), testing was performed on all top
parts and vice versa. Both training and testing were
carried out using 288288 size images and after ob-
taining results on all mosaic (or frames) patches tested,
overlapping parts were averaged and a class threshold
of 0.5 was used to obtain the final predicted mask.
Then the intersection over union (IOU) — a commonly
used measure of segmentation success, comparing the
ground truth with the predicted mask — was used to
summarize the results of both testing folds of 2-fold CV
in a micro-average fashion. In addition, final prediction
masks were used to estimate the visual coverage of the
class in question. The coverage itself was interpreted
as a ratio between predicted or the ground truth masks
with either relevant pixels (excluding white pixels) in
the mosaic setting and all pixels in the frame setting,
see the Pixels column in Tables 2— 4.

https://www.doi.org/10.24132/JWSCG.2022.4

4 EXPERIMENTS

We used 2D mosaics and representative transect
frames for training and testing the convolutional neural
network model for two biological and one geological
classes.

4.1 Setup

The hardware used was as follows: Intel(R) Core(TM)
i7-8700 CPU @3.2 GHz, 32 GB of operating memory,
NVIDIA RTX 2070 with 8 GB of memory. Software
used: Windows 10 Enterprise (build 1809) 64-bit op-
erating system, CUDA 10.1, CuDNN 6.4.7 and Python
3.6.8. During training, 4608 patches were used for Fur-
cellaria class mosaic setting, 4200 for frame settings;
Mpytilus class - 1944 for mosaic, 1848 for frames; Boul-
der - 9810 mosaic, 8652 patches in frame settings.

4.2 Results

Segmentation performance. Segmentation perfor-
mance was summarized using the intersection over
union (IOU) metric. The amount of imagery used in
experiments is reported as Pixels column in Tables 2
— 4, with frames usually having slightly fewer pixels
overall, except for Furcellaria class transects. Results
demonstrate that the best achieved IOU score was
84% using mosaics for Furcellaria class segmentation
(see Table 2). The IOU results between mosaics and
frames indicated slight differences in all but one case
for Furcellaria class, where the absolute difference in
IOU scores was almost 10%. Also, in two out of four
transects for Furcellaria class, the frames had a better
10U score (by 1.04% and 1.5% points). For Mytilus
class (see Table 3), frames had marginally better IOU
results (by 2.8% and 6.1% points). However, mosaics
appeared to be more advantageous for the geological
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Mosaic Frames
Furcellaria transects

Pixels (mln.) 10U Pixels (mln.) 10U ATIOU
SMO07_1_bio 9.04 0.703 8.29 0.718 -0.015
SMO07_2_bio 7.06 0.839 6.22 0.793 0.046
SMO8_1A_bio 6.64 0.661 6.22 0.765 -0.104

SMO08_1B_bio 6.85 0.726 6.22 0.726 0
Totals: 29.59 0.711 26.96 0.746 -0.035

Table 2: Segmentation performance, as measured by the IOU score, for Furcellaria class using mosaics and frames.

Mosaic Frames
Mytilus transects
Pixels (mln.) 10U Pixels (mln.) 10U ATIOU
Denoflit_2_bio 6.56 0.560 5.70 0.621 -0.061
Denoflit_30s_bio 5.17 0.671 5.70 0.699 -0.028
Totals: 11.73 0.613 11.40 0.6649 -0.051

Table 3: Segmentation performance, as measured by the IOU score, for Mytilus class using mosaics and frames.

Mosaic Frames
Boulder transects

Pixels (mln.) 10U Pixels (mln.) 10U AIOU
Denoflit_2_geo 6.56 0.661 5.70 0.592 0.070
SMO7_1_geo 9.04 0.606 8.29 0.603 0.003
SMO8_1A_geo 6.63 0.819 6.22 0.798 0.021
SMO8_1B_geo 6.85 0.802 6.22 0.808 -0.006
Totals: 29.09 0.744 26.44 0.733 0.011

Table 4: Segmentation performance, as measured by IOU, for Boulder class using mosaics and frames.

boulder class (see Table 4), with a maximum difference
of 7% points. Overall, total IOU scores were higher for
frames than mosaics by 3.5% for Furcellaria and 5.1%
for Mytilus class (see Totals in Tables 2 and 3), except
for the boulder class (see Totals in Table 7) with 1%
point difference.

Segmentation totals. When summarizing the segmen-
tation performance by the Totals in Tables 24 we
can make the following insights. Segmentation suc-
cess, measured by the IOU metric, was in an accept-
able range between 61.3% (for Mytilus mosaics) and
74.6% (for Furcellaria frames). Segmentation perfor-
mance using frames was better for biological classes
(by 3.5% for Furcellaria and 5.1% for Mytilus tran-
sects), but slightly worse for the geological boulder
class (by 1.1%).

Coverage estimates. With respect to visual coverage
estimates, it is important to note that for all but the
Mpytilus class, transects have very different coverage
levels: for example, transect SMO7_1_bio had 9.75%
while transect SMO8_1B_bio had 57.48% coverage for
the Furcellaria class (see the Mosaic GT column in Ta-
ble 5). Three deltas summarize the results of visual cov-
erage estimates in Tables 5-7, measuring the absolute
difference in coverage from the mosaic ground truth:
the first delta (Mosaic A DL) shows the effect of us-

https://www.doi.org/10.24132/JWSCG.2022.4

ing predictions from mosaics, the second delta (Frames
A GT) shows the effect of using annotated frames in-
stead of mosaics without any prediction, and the third
delta (Frames A DL) shows the effect of using predic-
tions from frames. Biological classes had negligible
differences when using mosaic predictions with an un-
derestimate of 0.86% and an overestimate of 0.41%,
while geological class had greater differences with an
underestimate of 1.61% and an overestimate of 6.12%.
Surprisingly, even annotators were unable to achieve a
high correspondence in visual coverage estimates with
slight differences for geological class and more consid-
erable differences for biological classes, even reaching
an underestimate of 8.24% points for Furcellaria tran-
sect with the highest coverage (transect SM07_2_bio).
The last and most important differences in our study
were observed using frames predictions with an un-
derestimate of 5.89% and an overestimate of 8.41%,
both for the Furcellaria class. The differences for
other classes were distributed relatively uniformly in
that range. There was a tendency to overestimate geo-
logical class and underestimate biological classes when
estimating visual coverage from frame predictions.

Coverage totals. When summarizing the coverage es-
timates by the Totals in Tables 5-7 we can make the
following insights. Taking mosaics as the ground truth,
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Mosaic Frames
Furcellaria transects

GT DL ADL GT AGT DL A DL
SMO07_1_bio 9.75 9.44 0.31 8.32 1.43 9.01 0.74
SMO07_2_bio 11.91 11.05 0.86 9.88 2.03 9.25 2.66
SMO08_1A_bio 43.15 43.83 -0.68 47.56 -4.41 49.04 -5.89
SMO08_1B_bio 57.48 57.07 041 49.23 8.24 49.07 8.41
Totals: 28.81 28.57 0.24 27.18 1.63 27.55 1.26

Table 5: Coverage estimates for Furcellaria class. Abbreviations: GT — results from ground truth annotations; DL
—results from deep learning model-based predictions; A — difference from mosaic-wise ground truth annotations.

Mosaic Frames
Mpytilus transects
GT DL ADL GT AGT DL A DL
Denoflit_2_bio 18.11 17.92 0.20 15.25 2.86 16.25 1.86
Denoflit_30s_bio 22.83 22.07 0.76 21.61 1.21 19.21 3.62
Totals: 20.19 19.75 0.44 18.43 1.76 17.73 2.46

Table 6: Coverage estimates for Mytilus class. Abbreviations: GT — results from ground truth annotations; DL —
results from deep learning model-based predictions; A — difference from mosaic-wise ground truth annotations.

Mosaic Frames
Boulder transects

GT DL A DL GT A GT DL A DL
Denoflit_2_geo 29.65 28.05 1.61 30.62 -0.97 25.84 3.82
SMO7_1_geo 34.95 41.07 -6.12 34.52 0.43 36.24 -1.29
SMOS_1A_geo 76.41 81.95 -5.54 77.05 -0.64 81.17 -4.77
SMO08_1B_geo 76.55 81.70 -5.15 76.72 -0.17 80.90 -4.35
Totals: 53.01 57.03 -4.02 53.61 -0.60 55.08 -2.06

Table 7: Coverage estimates for boulder class. Abbreviations: GT — results from ground truth annotations; DL —
results from deep learning model-based predictions; A — difference from mosaic-wise ground truth annotations.

we can notice lower coverage for biological classes
(28.81% for Furcellaria and 20.19% for Mytilus) than
for the geological class (53.01% for boulders). Expert-
based annotations of frames deviated from the anno-
tations of mosaics only slightly: more for biological
classes (by 1.63% for Furcellaria and by 1.76% for
Mpytilus) and less for the geological class (by 0.6% for
boulders). Model-based predictions when training on
the transects’ bottom half and testing on the top half (or
vice versa), if compared to previously mentioned devia-
tions of expert-based frames annotations, deviated only
slightly more with underestimates of 1.26% for Furcel-
laria and 2.46% for Mytillus classes and an overesti-
mate of 2.06% for boulders class.

Visual comparison. Examples of segmentation predic-
tions are provided in Figures 4-5, where we can com-
pare how poor results differ from acceptable with seg-
mentation false positives/negatives in green/blue colors.

5 CONCLUSIONS

Segmentation success was better than average with in-
tersection over union varying between 0.56 and 0.84,

https://www.doi.org/10.24132/JWSCG.2022.4

depending on the class and transect, but slightly better
for frames than for the mosaics overall. Lower visual
coverage estimates from ground truth mosaic annota-
tions were for biological classes (28.81% for Furcel-
laria and 20.19% for Mytilus) than for the geological
class (53.01% for boulders).

Expert-based annotations of frames deviated from the
annotations of mosaics only slightly (largest deviation
of 1.76%), model-based predictions - a bit more (largest
deviation of 2.46%). The largest differences were ob-
served for Mytilus class, which was composed of many
tiny objects and had the lowest coverage. Due to the
deviations being in an acceptable range, the reported
results of visual coverage estimates suggest that the mo-
saicking step could be safely skipped in favour of a few
equally spaced sample frames.

The main limitation of the experiments performed is the
balance between training and testing data amounts, and
the transect-stratified type of cross-validation, ensuring
that the model has seen part of the tested transect during
training. Future work should address these limitations.
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(a) Furcellaria

(b) Mytilus

(c) Boulders

Figure 4: Segmentation success using mosaics: acceptable (fop) and poor (bottom) results. Color coding: false
negative pixels are marked in blue, false positive pixels in green, and ground truth annotations are outlined in red.

(a) Furcellaria

(b) Mytilus

(c) Boulders

Figure 5: Segmentation success using frames: acceptable (fop) and poor (bottom) results. Color coding: false
negative pixels are marked in blue, false positive pixels in green, and ground truth annotations are outlined in red.
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