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Abstract
The fast classification of shapes is an important problem in shape analysis and of high relevance for many possible
applications. In this paper, we consider the use of very fast and easy to compute statistical techniques for assessing
shapes, which may for instance be useful for a first similarity search in a shape database. To this end, we con-
struct shape signatures at hand of stochastic sampling of distances between points of interest in a given shape. By
employing the Kolmogorov-Smirnov statistics we then propose to formulate the problem of shape classification
as a statistical hypothesis test that enables to assess the similarity of the signature distributions. In order to illus-
trate some important properties of our approach, we explore the use of simple sampling techniques. At hand of
experiments conducted with a variety of shapes in two dimensions, we give a discussion of potentially interesting
features of the method.

Keywords
Statistical Shape Analysis; Shape Classification; Shape Similarity; Kolmogorov-Smirnov; Hypothesis Testing;
Sampling Methods

1 INTRODUCTION
Shape classification is the problem of finding similar
shapes among a set of shapes. The corresponding tech-
niques have numerous applications in many fields such
as computer vision [1], medical imaging [9,10] and en-
gineering [20]. Besides of numerous advances in the
use of neural networks in the field, there is still a need
for approaches that are easy to interpret and give rise to
simple and fast computations without the need to deal
with intricate neural network architecture, training and
data generation issues. In this paper we follow the sta-
tistical shape analysis approach, a recent overview may
be found in [6]. A more general overview on classic
shape analysis methods including some statistical ap-
proaches can be found in [3, 4].
Turning to the construction of shape analysis methods
in the statistical approach, usually a computational rep-
resentation of shapes, called a descriptor or signature,
is defined that is used for comparison and classification.
There is a wide range of possible descriptors which of-
ten represent geometric information that can be derived
from a given shape [21]. To this end the shape of an
object may suitably be described by its boundary. Ba-
sically, the descriptors may be classified in two cate-
gories: local and global descriptors. Local descriptors
are defined for each point of the shapes’ boundary and

often show the local geometric structure of the shape
around the point, whereas global descriptors are defined
based on information derived over the entire shape. Ex-
amples for some of the most commonly used shape de-
scriptors are centroid distance function, tangent angle,
curvature function, area function, triangle-area repre-
sentation or chord length [19]. In this paper we follow a
common terminology in shape analysis by denoting the
shape signature as the global representation for com-
parison, whereas the signature is constructed at hand
of local descriptors. Once useful shape signatures have
been computed, often a metric is introduced in order
to asses quantitatively how close any two given shapes
are in terms of the metric distance, see [2] for a recent
discussion.

In order to assess shape statistics and employ them
for shape comparison, there have also been some ef-
forts to formulate the task as a hypothesis test, see
for instance [8, 17]. In this work, we explore the use
of the Kolmogorov-Smirnov test in order to assess if
two shape signatures are similar. While the use of
Kolmogorov-Smirnov statistics appears to have found
few applications in image processing, see e.g. [18], it
appears that it has not been used for the purpose of
shape classification in a similar way as in this paper.
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Turning to the construction of statistical shape distribu-
tion functions, we build upon the article [15] which is at
the same time the most related work to the current pa-
per. It is one of the first works that formulates the shape
comparison task in 3D in terms of shape distribution
comparison. The comparison of easy-to-compute, sta-
tistical shape distribution functions is potentially highly
attractive for shape comparison and classification, since
this is methodically much simpler than traditional shape
matching methods that often rely on pose registration,
feature correspondence or model fitting.

In [15], the idea is to represent the signature of an
object as a shape distribution sampled stochastically
from a shape, measuring in this way global geometric
properties of an object. Therefore the authors of [15]
have studied several ways to construct shape distribu-
tions, including the use of the following descriptors
among others: (i) the distance between the centroid of
a shapes’ boundary and randomly selected points of the
boundary, as well as (ii) the distance between two ran-
dom points on the boundary. We will also make use
of these two basic building blocks in the current work.
After choosing the descriptor, [15] calculate the shape
signature by stochastic sampling the needed points over
an interpolated mesh, followed by a binning procedure
of corresponding descriptor values. For shape compar-
ison, in their work dissimilarity measures based on Lp

norms have been employed.

Our Contribution. In this paper we adapt the 3D
method from [15] to the 2D setting, which allows us to
investigate some interesting properties of the proceed-
ing. In doing this, we perform a few technical adapta-
tions, for example we do not interpolate between shape
boundary points for stochastic sampling. As our main
contribution, we propose how to formulate the shape
classification task as a statistical hypothesis test in this
setting, making use of the Kolmogorov-Smirnov statis-
tics. This test is efficient to conduct, however, its use
appears to be uncommon in shape analysis. It is one of
the benefits of the proposed framework that it represents
a natural methodical fit to Kolmogorov-Smirnov test-
ing. In order to illustrate some properties of the dis-
cussed setting, we consider an adaptive sampling strat-
egy as well as a simple coarsening routine. By adap-
tive sampling it is possible to emphasize the role of
shape-specific points like corners within the statistics,
following the classic idea of shape analysis by explor-
ing landmarks, cf. [6]. We exemplify and illustrate our
proceeding by several tests with shapes from standard
shape datasets.

2 DESCRIPTION OF OUR MODEL
Now we give a detailed account on the used methods
for shape classification.

Figure 1: Illustration of the basic process of generat-
ing point clouds from color images (left). We take the
first color channel (middle left) and transform it into a
black and white image (middle right). After that we
can obtain a point cloud (right) via the MATLAB rou-
tine bwboundaries.

2.1 About Shapes
Our shapes are given as a curve in S ⊂ R2. Any of
these curves is represented as a point cloud consisting
of n ∈ N points pi = (xi,yi), i ∈ {1,2, . . . ,n}, where
xi and yi describe the x- and y-coordinates of the i-th
point, respectively. Our point clouds are in practice al-
ready ordered, so that the points pi and pi+1 are neigh-
bors. We make use of the established neighbourhood
relationship within the adaptive sampling scheme.
For illustrating our proceeding, we will consider in
this section few shapes taken from the Mendeley 2D
geometric shapes dataset [12]. While we discuss the
database and its use for experimental validation in
more detail later on, let us mention here that typically
shape databases contain colour or gray value images of
shapes. The Figure 1 illustrates how we obtain from
such given images the shapes in terms of point clouds
with ordered boundary points.

2.2 Adaptive Boundary Sampling
As indicated in the introduction, for some studies we
employ an adaptive sampling of shape boundary points.
The aim of the adaptive method we employ is to re-
duce the number of boundary points in regions that are
close to line segments, and to keep salient points of the
boundary like at corners or regions with many details.
The adaptivity is realised here via the concept of adap-
tive areas.
The idea of adaptive area comes from [7]. To find out
if a point pi is of interest we calculate the area Ai of the
triangle spanned by pi and its direct neighbours pi−1
and pi+1, cf. Figure 2. Then, for an arbitrary triangle
the area Ai can be computed via

Ai =
1
2
|⃗v1| |⃗v2|sin(γ) (1)

Ai

pi

pi−1

pi+1

v⃗1

v⃗2

Figure 2: Triangle corresponding to point pi
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where |⃗v| denotes the length of the vector v⃗, and γ the
angle enclosed by these vectors. The angle can be com-
puted with

cos(γ) =
v⃗1 · v⃗2

|⃗v1| |⃗v2|
(2)

with v⃗1 ·⃗v2 being the scalar product of these two vectors.
So the area Ai depends on the angle between the vectors
v⃗1 and v⃗2. If both vectors are parallel the area reaches
a minimum. The maximal area is obtained when both
vectors are orthogonal to each other. With this in mind
we say, that a point pi is of interest if the area is larger
than a user-defined threshold T . If the area is below this
threshold we can assume that the point pi is located at
a line-like segment.

To make this approach a bit more robust against scaling
we normalize the vectors v⃗1 and v⃗2. This means we
redefine v⃗k := v⃗k/ |⃗vk|, for k = 1,2. Then the formula
for cos(γ) and Ai simplify to

cos(γ) = v⃗1 · v⃗2 and Ai =
1
2

sin(γ) (3)

In the end we neglect all points pi for which the cor-
responding triangle has an area smaller that a threshold
parameter T , i.e. in case Ai < T .

2.3 Shape Descriptors and Signature
In this section we want to describe how to construct
our shape signature functions. With these functions we
then perform the classification with the Kolmogorov-
Smirnov test.

The signature functions we consider are based on shape
descriptors. These should be geometrically meaningful
as well as fast to compute. Several possible signature
functions were presented in [15]. We opt here to adopt
the D1 and D2 shape descriptors from the latter work
and renaming them into d1 and d2, respectively, since
both of them are readily interpreted and obtained in low
computing time:

d1 distance For the d1 shape descriptor we calculate
the distance between a sampled point on the shape
and a fixed point pc = (xc,yc).

d1(pi) = ∥pi − pc∥2 with pc =
1
n

n

∑
i=1

pi (4)

with ∥·∥2 the Euclidean norm. For the fixed point
pc we, thus, consider here the geometrical centre of
a given shape, determined by arithmetic averaging
of its boundary points. Thereby n is again the total
number of boundary points of the given shape.

d2 distance For the d2 shape descriptor we calculate
the Euclidean distance between two points pi and
p j, i ̸= j, from our shape:

d2(pi, p j) =
∥∥pi − p j

∥∥
2 (5)

For demonstration purposes we focus on the d1 distance
descriptor. The Figure 3 gives an account of the de-
scriptor d1, when selecting all boundary points of de-
picted shapes in the order they make up the bound-
ary. At hand of this figure, it is surely easy to per-
ceive how the d1 descriptor works and that it gives a
useful account of a shape. Let us note already here
that the descriptor values of triangle and pentagon ap-
pear to be very characteristic, while descriptor values
of nonagon and circle appear just within a certain nar-
row band width, which may make these shapes hard to
distinguish at hand of d1.

Having defined our shape descriptors d1 and d2, we
draw m stochastic samples of them, obtained by random
selection of boundary points for the computation of d1

and d2 distances, respectively. This means, by taking
m random samples of boundary points we can evalu-
ate m times the descriptors d1 and d2, respectively, and
store the corresponding values as dk

j with j = 1, . . . ,m
and k = 1,2. The corresponding shape signatures are
obtained then as the collections D1 = (d1

1 , . . . ,d
1
m) and

D2 = (d2
1 , . . . ,d

2
m) of these samples. For ease of no-

tation, we consider in the following mainly (i.e. if not
stated otherwise) the d1 distance descriptor, and denote
by Di the signature of the i-th shape obtained by the
corresponding D1 collection of descriptor values.

2.4 Comparing Distributions
Having computed the signatures Di for each shape, we
want to test if they belong to the same distribution.

By default we can not expect that the signatures ob-
tained by the procedure explained in previous section
are comparable. Imagine a small and a large triangle.
The possible distances from the sample of the small tri-
angle will on average be smaller than the distances from
the sample of the larger triangle. To tackle this normal-
ization issue the idea is to scale the different samples
Di to one reference sample Dref. See for example [8]
for a thorough discussion of normalization methods. In
this work we adopt a mean-scaling, which equalizes the
means of two given samples. In a slight abuse of nota-
tion, we keep Di for the signature of the i-th shape after
normalization in the following.

Now we can test if two signatures Di and D j are from
the same shape distribution. As indicated, we propose
to do this at hand of testing the corresponding hypothe-
sis. There is a large variety of possible hypothesis test-
ing setups in the statistical literature, see for instance,
[14] for an overview. One could, for example, test if
the medians of the populations from which two or more
samples are drawn are equal or not, or one may com-
pare the maximum mean discrepancy of two given sam-
ples. However, among the various possibilities, the best
fitting test for our circumstances is the Kolmogorov-
Smirnov test, since this is designed to evaluate if two
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Figure 3: We plotted d1 distance samples for four geometrical shapes, taking all available boundary points. From
top to bottom we see the samples of a triangle, pentagon, nonagon and a circle. Additionally, we show the resource
images of the samples on the right side.

samples have the same underlying probability distribu-
tion, which means in our case, if they belong to the
same shape category.

2.4.1 The Kolmogorov-Smirnov Test
We now recall the setting for the Kolmogorov-
Smirnov hypothesis test, cf. [14] for more details.

The Kolmogorov-Smirnov test will give us the value for
the hypothesis H which we here cast like

Hi, j =

{
0 if Fn

Di
= Fm

D j

1 if Fn
Di

̸= Fm
D j

(6)

where Fn
Di

is the empirical cumulative distribution func-
tion for the sample Di containing n elements. This
means H is zero if both samples are drawn from the
same distribution and 1 if not. You cannot generally as-
sume that n and m are equal. Even the normalization
process does not change this condition.

Thus, in our application, Hi, j = 0 indicates that the
shapes described by the normalized signatures Di and
D j are of the same category.

Letting for simplicity Di = (d1, . . . ,dn), we can calcu-
late Fn

Di
via

Fn
Di
(x) =

1
n

n

∑
j=1

ξ(−∞,x](d j) (7)

where ξ(−∞,x](d j) is the indicator function given by

ξ(−∞,x](d j) :=

{
1 if d j ∈ (−∞,x]
0 if d j /∈ (−∞,x]

(8)

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Figure 4: The empirical cumulative distribution func-
tion from the samples in Figure 3. The functions from
the triangle shape is marked with triangles, the pen-
tagon shape with diamonds, the nonagon with half filled
circles and the circle is marked with circles. We can see
the different slopes that will make the comparison pos-
sible.
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Some examples of empirical distribution functions that
arise given some shapes and their normalized signatures
are presented in Figure 4.

We may then calculate the Kolmogorov-Smirnov statis-
tics in general via

Sn,m = sup
x

∣∣∣Fn
Di
(x)−Fm

D j
(x)

∣∣∣ (9)

After [11, eq. (15), section 3.3.1] [16, p. 402, theorem
9.8.3], the hypothesis is accepted if

Sn,m ≤ c(δ ,n,m) =

√
− ln

(
δ

2

)
n+m
2nm

(10)

where c(δ ,n,m) is the critical value for Kolmogorov-
Smirnov test, which depends on the significance level
δ and the sample sizes n and m.

Putting all things together, we thus obtain by
Kolmogorov-Smirnov test:

Hi, j =

0 for Sm,m ≤

√
− ln

(
δ

2

)
n+m
2nm

1 otherwise

(11)

2.4.2 Hit Rate
If we test for the similarity of a signature Di with a ref-
erence signature Dref making use of the Kolmogorov-
Smirnov test we get an result Hi,ref ∈ {0,1}. And now
we want to quantify the test results when comparing a
set of signatures with a reference signature. With N the
total number of samples we can define the hit rate in the
following manner

[0,1] ∋ hit rate = 1− 1
N

N

∑
i=1

Hi,ref (12)

This is a natural definition, since if the Kolmogorov-
Smirnov test failed we obtain a 1 and if the test suc-
ceeded we get a 0. Adding up these results and divid-
ing by the number of samples we compared, we end up
with the percentage value of failures. Subtracting this
value from 1 finally gives us the value for successful
Kolmogorov-Smirnov tests.

We expect that the hit rate is close to 1 if, for example,
we compare all triangles with a reference triangle. Con-
versely, the value should be close to 0 if we compare the
triangles with other geometrical shapes.

The hit rates for different shape types and different ref-
erence shapes will form a so called hit rate matrix, as
seen in discussion of experiments. The rows of this ma-
trix represent the different shape types and the columns
represent the reference shape type. The grey value
shading of the matrix entries will give a visual account
of the hit rate.

Figure 5: Examples of 8 different shapes one can find
in the 2D image shape database [12]. From top left
to bottom right we see a triangle, square, pentagon,
hexagon, heptagon, octagon, nonagon, and a circle. All
images have a resolution of 200×200 pixel.

Figure 6: Selection from the MPEG-7 Core Experi-
ment database [13]: pictures from a bone, heart, apple
and a shoe.

3 EXPERIMENTS
Before we talk about the experiments we need to con-
sider our database. After that we give a clear account of
the general procedure when conducting the experiments
and indicate how fast the method works. After that we
give a detailed account of the experiments. For this we
concentrate first on geometric shapes and proceed after
that with a discussion of some additional experiments.

3.1 Database for the Experiments
We use two different databases. The first database is
a large 2D geometrical shape database [12] contain-
ing 90,000 pictures of nine geometrical object. Taken
from this we consider images of triangles, squares, pen-
tagons, hexagons, heptagons, octagons, nonagons and
circles. Each of these objects is given in total in 10,000
different sizes, rotations and positions.

It should be noted that all images of the triangle pictures
the same triangle in different positions, size and rota-
tion. This also applies to the other geometrical shapes.
This means, the angles within the shapes do not vary,
and they are not transformed in a non-rigid way.

Let us note that for our experiments we ignored the star
shapes also contained in the Mendeley database [12]
due to some difficulties encountered in the process of
point cloud generation. Examples of the shape classes
we mentioned used for our experiments can be seen in
the Figure 5.

The second database we consider is the MPEG-7 Core
Experiment database [13]. This database contains bi-
nary (black and white) images of variety of objects like
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apples, bat, Teddy’s, birds and many more. We chose
the apple, bone, cup, heart and shoe shapes for our ex-
periments, which can be seen in Figure 6.

In the next step we need to generate point clouds out
of all the considered pictures of the two databases. In
the case of the MPEG-7 Core Experiment database, [5]
gives access to the point clouds via github. For the 5
example shapes we chose, the point clouds contain be-
tween 102 and 118 points. For each shape there are 20
samples.

For the database of the geometric shapes we needed to
build the point clouds by ourselves. The basic steps can
be seen in Figure 1. For this process we first need to
transform the color images into a binary format. With
this in mind, we take the first color channel of a given
picture and produce a binary image via the MATLAB
function imbinarize. Out of this image we can extract
a point cloud through the bwboundaries MATLAB rou-
tine. After that we end up with point clouds with round
about 90 up to 700 points for the geometric figures.

The point clouds obtained in the one or other way are al-
ready ordered representing the neighbourhood relation.
So we do not need to do some further preprocessing.

As one may observe at hand of Figure 7, the consid-
ered Mendeley shape database allows to study invariant
properties of shape analysis methods that are important
for tackling applications. These properties are the in-
variances with respect to translation, scaling and rota-
tion, which are often considered as the most basic and
fundamental properties of useful schemes.

It is quite obvious that the schemes we consider
should give by construction invariant results with
respect to translations and rotations of a given shape.
These invariances are by construction given since the
descriptors we study work by considering distances
taken from the shape barycenters to boundary points,
respectively, distances between points on the shape
boundaries. These again are supposed to stay invariant
under translation or rotation. The invariance with
respect to scaling is addressed by the mean-scaling
normalization.

3.2 Procedure and Processing Time
In this section we summarize the general procedure for
our experiments, giving a clear account of our method.

1. Generate point clouds for the shapes and define a
reference shape.

2. When applying adaptive sampling:
Compute the adaptive area for every shape using
equation (3)

3. Generate descriptor samples for all shapes using the
functions (4) or (5).

4. Normalize the samples with respect to the reference
shape sample. In the end, all samples should have
the same mean value. This gives the shape signa-
tures.

5. Compare the signatures to the reference signature
via Kolmogorov-Smirnov test using equations (7),
(9) and (11).

6. Compute the hit rate via equation (12).

Let us note that for performing the Kolmogorov-
Smirnov test, there exist in several software packages
builtin functions like: kstest2 (MATLAB), ks.test (R)
or scipy.stats.ks_2samp (Python with SciPy).

For all our experiments we used the first shape
of a given group as the reference shape. Further-
more, we used the MATLAB builtin function for the
Kolmogorov-Smirnov test. By default this test is
implemented with a significance level of δ = 5%.

All calculations were executed with MATLAB R2021a
installed on a computer with Intel Xeon W-2145 CPU
and 62,4 GiB of memory.

Proof of Fastness
For processing 80,000 points without adaptive sam-
pling ≈ 50 seconds. That will be ≈ 6.25 ·10−4 seconds
per shape. With adaptive sampling we need ≈ 60 sec-
onds, which will be ≈ 7.5 ·10−4 seconds per shape. We
conjecture that this is very fast and makes the method
suitable for potential applications like a first similarity
search in a large shape database.

3.3 Experiments and Discussion
We now proceed along the lines of several experiments
that allow to point out several properties of our method.

For all the basic experiments discussed first, we fol-
lowed the steps from the previous section but do not
consider adaptive sampling or a coarsening of points
yet, which will follow in subsequent experiments.

3.3.1 Basic Experiment with Geometric Figures
In Figure 7 we find the hit rate matrix for the geo-
metrical Mendeley shape dataset. We see the diagonal
structure in the hit rate matrix. Let us recall that this
dataset contains the eight mentioned shapes in differ-
ent sizes, rotations and positions. Because of the in-
variance properties of the method by construction, a
strong diagonally dominant entry structure in the hit
matrix has also been expected. However, it is surely
a very reasonable result with respect to the use of the
Kolmogorov-Smirnov test for classification. Let us also
note that simple geometries like the triangle, square and
heptagon are classified very robustly.

Let us comment on the less pronounced but visible off-
diagonal entries here. The more corners are involved
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Figure 7: Hit rate matrix for an experiment without
adaptive sampling. On the x-axis we wrote the ref-
erence shape type and the y-axis we put the different
shape types. We see that our basic setup is invariant to
rotation, translation and scaling.

in the geometric objects, the more they resemble each
other already in the descriptor values, cf. Figure 3 and
corresponding discussion. Therefore the basis for per-
forming the Kolmogorov-Smirnov test becomes less
discriminative which is reflected in the results.

3.3.2 Basic Experiments with Shapes from
MPEG-7

In this experiment, we consider the shapes displayed
in Figure 6 supplemented by the cup image as seen in
Figure 10. Furthermore, we compare here the two dis-
tances d1 and d2 introduced in Section 2.3. The results
are displayed in terms of the hit rate matrices in Figures
8 and 9.

For these non-geometric objects we may observe that
the proceeding appears to be less discriminative in some
cases. However, we conjecture that one can mainly no-
tice the properties of the underlying distances used for
building the descriptors. Let us note that in [15], the d2

descriptor gives best results among the tested distances,
while by Figure 9 it appears to be less discriminative.

3.3.3 Sampling Experiments
The motivation behind the study of adaptive sampling
and a coarsening as we will apply here, can be summa-
rized as follows. By adaptive sampling, salient points
of a given shape can be stressed. We compute these
points and add them to the list of points from which we
sample. By coarsening, we take every second point of
the boundary and add it again, which gives a uniform
distribution of additional points. This is conceptually
in contrast to stressing salient points and shows at the
same time the influence of number of points in a shape.
The Figure 10 gives an account of resulting points for
the cup shape.

The main results of this study are depicted in Figure
11 and Figure 12. We compare the cup using the sam-
pling strategies with the chosen shapes from MPEG-7.
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Figure 8: Hit rate matrix for a basic experiment with-
out adaptive sampling. Here we used the d1 distance
function to produce samples with a sample size equal
to number of points in the point cloud. The reference
shape type is listed on the x-axis and on the y-axis we
find the shape type. We notice the diagonal like struc-
ture of this plot.
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Figure 9: Hit rate matrix for a basic experiment with-
out adaptive sampling, analogously to Figure 8 but us-
ing the d2 distance. We observe more pronounced off-
diagonal entries than the hit rate matrix obtained from
the d1 distance.

Exploring just the additional points from adaptive sam-
pling, meaning that salient points are stressed within
sampling, we observe that in most cases the accuracy
of classification by Kolmogorov-Smirnov test declines.
Turning to combination of adaptive and coarse sam-
pling, we observe a similar effect of adaptivity, while

Figure 10: Different variations of the point cloud of the
cup shape. Top Left: Cup Image. Top Middle: Point
cloud of this shape. Top Right: Every second point.
Bottom Left: Adaptive area sampling with T = 0.02.
Bottom Middle: T = 0.04. Bottom Right: T = 0.06.
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Figure 11: Cup only experiment. Hit rate matrix for the
cup, exploring different adaptive sampling parameters.
First row coincides with basic experiment.
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Figure 12: Cup only experiment. Here we combine
the adaptive sampling with the coarse shape represen-
tation, adding both point sets for sampling to the orig-
inal shape. Especially by results for choice T = 0
(see y-axis) we observe in the second row that adding
a coarse shape representation gives favourable results
over adding salient points to the sampling set.

adding the coarsened version of the cup gives signifi-
cant better results than for original cup only.

As a result, one may conjecture that a higher uniform
density of shape boundary points is beneficial for the
overall strategy. Let us note that this does not imply
that offering just the original points several times to the
sampling routine is to be favoured. Doing this will just
lead to randomness of the complete result so that no
useful classification can be performed.

Let us note that we refrain from performing the same
study for geometric shapes as in Mendeley dataset. The
reason for this may be observed via Figure 13. In geo-
metric shapes with many straight lines, at certain stages
(that depend on the way the shape boundaries are de-
termined on the discrete pixel grid) the adaptive routine
drops out many boundary points at once. Therefore, we
opt to perform the study on sampling on the mentioned
subset of MPEG-7.

4 CONCLUSION
In this paper a new method for shape classification is
introduced based on Kolmogorov-Smirnov test. To
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Figure 13: Study of point numbers when applying
adaptive sampling, in dependence of area threshold pa-
rameter T

do this, we propose an adaptation of the method from
Osada and co-authers [15] and showed how to set
up a useful framework. One may conclude that the
Kolmogorov-Smirnov hypothesis test is well suitable
for the task. The whole proceeding is computationally
very efficient and may be explored, for instance, for a
first quick search for similarities in a shape database.

One of the main construction points is the shape sig-
nature. We tested two underlying descriptors, and for
future work we may infer that it could be reasonable to
combine several descriptors for a joint inference.

By the discussion of the sampling experiments, we may
deduce that the complexity of shapes tied to their reso-
lution may be a major factor for the quality of classifica-
tion results. In future work we aim to explore this point
and consider a mathematical investigation of sampling
strategies. Furthermore, in future work we will consider
other datasets or create our own so that we can transfer
our approach to 3D.
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