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ABSTRACT 
Many objects in the real world exhibit specular reflections. Due to the limitations of the basic RGB-D cameras, it 
is particularly challenging to accurately capture their 3D shapes. In this work, we present an approach to correct 
the depth of close-range specular objects using convolutional neural networks. We first generate a synthetic dataset 
containing such close-range objects. We then train a deep convolutional network to estimate normal and boundary 
maps from a single image.With these results, we propose an algorithm to detect the incorrect area of the raw depth 
map. After removing the erroneous zone, we complete the depth channel.  
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1. INTRODUCTION 
With the availability of affordable RGB-D cameras, 
there have been a lot of advances in 3D computer 
vision to improve their capabilities for consumer 
use. This includes a variety of applications on 3D 
reconstruction, robot manipulation, virtual and 
augmented reality. However, these RGB-D cameras 
have some limitations; their depth estimation 
frequently suffers from missing or incorrect values, 
especially on shiny and transparent objects.  
The Intel Realsense D435 [IR21] is a good and 
affordable RGB-D camera that produces a color 
image along with its corresponding depth map. It 
uses stereo vision technology with an infrared 
projector/sensor to accurately measure depth.  
However, we can observe some limitations by 
testing the camera, illustrated on figure 1: 

• Missing data in the raw depth-map; 

• Pixels with invalid values on the shiny or 
transparent surfaces;  

• Confusion of the depth near edges of the 
foreground object and background or two 
close foreground objects; 

• Noisy estimation of shiny object’s curvature.  
 

Figure 1. Examples of Intel Realsense D435 camera 
limitations; (a) shows invalid values on a shiny box, (b) 
is the corresponding normal map. (c) shows the 
confusion of the depth near edges and (d) shows the 
noisy curvature of a mug. 
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Figure 2: Proposed pipeline: surface normals and boundaries are estimated from the color image. They are then used 
to remove the unreliable regions in the depth map. The depth is finally completed using a global optimization step. 

 
In this work, we propose a pipeline to refine captured 
depth values of glossy objects for close-range 
applications. Our approach is illustrated in figure 2. 
Given a single color image, we first use convolutional 
neural networks (CNN) to predict both the surface 
normals and objects boundaries. The CNN is trained 
with our own synthetic datasets (section 3.1). At this 
point, we can remove incorrect depth values in three 
steps. First, we remove the boundary of the objects 
using an estimated boundary mask. Second, we 
compute the normals directly from the sensor raw 
depth map and compare them to the normals estimated 
from the color image in order to remove areas where 
they differ significantly. Third, we use morphological 
transformations to remove the persisting noise. 
Eventually, we use a global optimization approach to 
fill the holes in the depth map.  

 
 

2. RELATED WORK 
2.1.  Depth completion algorithm 
Since the appearance of low cost RGB-D cameras, 
many methods have been proposed to overcome their 
limitations, which appear as holes and incorrect areas 
in the depth map. Most of these methods utilize a color 
image as guidance to correct the depth map. 
Huang et al [HHC14] use the edges of the color image 
to detect the unreliable zone in depth. Then they 
removed the existing depth in the unreliable zone to 
prevent erroneous depth propagation. Next, they used 
the fast marching method (FMM) [T04] which was 
first introduced for image inpainting and then revised 
for depth inpainting [LGL12] to complete the depth. 
In recent years, with the latest advances in deep 
learning, a lot of data-driven approaches have 
emerged. Zhang and Funkhouser [ZF18] completed 
the depth channel of an RGB-D image using global 

optimization. They first predict the normals from the 
color image and then solve for completed depth. Their 
work is mainly focused on large indoor environments 
with large holes. However, the lack of depth denoising 
prevents their method to obtain correct results in depth 
completion.  
Shreeyak et al. [SMPN20] proposed a modification to 
the previous method to estimate the depth of close-
range transparent objects for manipulation. Their 
method consists of detecting transparent objects in the 
color image, removing their depth values, and using 
global optimization to complete the depth of all 
missing areas. However, their method is not suitable 
in our case because the depth captured by depth 
cameras is not as inaccurate for specular objects as it 
is for transparent objects. As a result, removing all the 
depth values of the objects would be excessive. 
Xian et al [XQLL20] have developped a method to 
eliminate incorrect depth based on a segmentation 
network trained with labelled RGB-D images of large 
indoor scenes. 
 

2.2.  3D understanding from the single color 
image 
It has been shown that a single color image can be used 
to directly infer depth [EPF14, LKY17], or other 
geometric features [SR12, EF15, WFG15]. One of the 
geometric features that is tightly coupled with depth is 
normal-map. Normal-map is a pixel-map that contains 
the orientation of the surface at each point. Wang et al. 
[WFG15] proposed a method to predict surface 
normals at local and global scales, then they used a 
fusion network to combine both predictions into a final 
result. Eigen and Fergus [EF15] designed a single 
multiscale convolutional network to predict depth, 
surface normals, and semantic labels.  
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Recently, Yinda Zhang et al. [ZS17] utilized a U-net 
architecture with VGG-16 as backbone for normal 
estimation and achieved state-of-the-art results.  
In this work, we use U-Net architecture with 
inceptionv4 [SI16] as our model. 
 

2.3.  Dataset for training neural network 
There are several real-world datasets available for 
training neural networks including NYU depth v2 
[SHKF12], ScanNet [DCSH17], and Matterport3D 
[CDFH17] which are all highly used datasets. 
However, real-world datasets generally suffer from 
noise and missing data in shiny, transparent, or distant 
areas as they are limited by the quality of the capturing 
device. 
To overcome these limitations, researchers have been 
increasingly using synthetic data for training networks 
for vision and robotic tasks [KMHV17, SMPN20]. 
The advantage of using synthetic data for training is 
that it is easy to obtain pixel-perfect ground truth data. 
Furthermore, it is affordable to create large-scale 
datasets. In this work, we will generate our own 
dataset containing a mix of close-range shiny (with 
specular reflections) and rough objects (with diffuse 
reflections) to meet our needs. 
 
 

3. PROPOSED METHOD 
3.1.  Generating data 
There are several RGB-D datasets available to train 
neural networks consisting of synthetic or real-world 
data. Yet, none of these are especially focused on 
close-range glossy objects. Therefore, we choose to 
generate our own customized dataset. We have created 
a scene generator in Blender. The generated scene 
would consist of a plane with different objects on it. 
The ground (plane) is randomly textured from 82 
textures [URL1]. The camera is randomly placed in 
the scene, always focused on the ground. The 
environment lighting is randomly chosen from 120 
indoor HDRI environments [URL2]. Next, some 
objects are chosen from primitive shapes presented in 
figure 3. These shapes represent a large variety of 
objects: smooth sphere, mesh with smoothed or hard 
edges, objects with or without holes. 3D objects are 
added to the scene as in Shreeyak et al. [SMPN20], by 
using Blender physics simulation to drop them on the 
ground: objects will collide with each other and the 
plane insuring a random final positioning. The textures 
of the objects are chosen from 47 textures [URL1] 
(including Blender's checker pattern) or a solid color. 
Their roughness and metallic values are also chosen 
randomly.  

Each of the created scenes is rendered with Blender 
Cycles at the resolution of 256x256 pixels. 
Corresponding normal map and boundary map are 
also generated for each image. Before generating the 
normal map, a bounding-sphere is created in the scene. 
This sphere contains the plane and all the objects to 
ensure that if the HDRI background is visible in the 
rendered scene, the normals of those areas do not stay 
empty. This does not create an issue when training our 
network because the background information is 
irrelevant in our context. The generated normals are 
then oriented from world space to camera space and 
normalized in the range of -1 and 1. The resulting 
normal map is saved in OpenEXR format. This 
method permits us to create thousands of images for 
the next step (illustrated in figure 4).  
 

 
 

3.2.  Network Architecture and Training 
We experimented with U-Net [RFB15] and 
DeepLabV3 [CP17] as our encoder-decoder model 
architecture. We trained DeeplabV3 with resnet101 
[HZ16] and Unet with resnet101, inceptionv4 [SI16] 
and vgg16 [SZ14] as backbones [PY20]. All models 
have been pre-trained on ImageNet [RDSK15].  
Our experiments led us to choose U-Net with 
inception4 as our model architecture for both normal 
estimation and boundary detection, as it generates 
better results with our dataset. U-net is (a U-shape) 
encoder-decoder architecture that uses skip-
connections between corresponding layers of encoder 
and decoder. We train both networks on the data that 
we generated using Blender. 

Figure 3: Blender primitive shapes used for dataset 
generation 
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Normal estimation: We modify the last layer of the 
network to generate a three-channel output. Therefore, 
we will have the three components of the normal 
vector per pixel: x, y, and z. We then normalize the 
output to L2-norm. To calculate the loss, we use an 
element-wise dot product between the network’s 
output and the generated synthetic ground-truth. 
We train the network in two steps; first, we train the 
network on 10,000 synthetic images, which are then 
augmented using Gaussian blur. In the second step, we 
reduce the learning rate and re-train the network on 
5000 synthetic images of very close-range objects. We 
have again augmented the data using Gaussian blur. 
We empirically found that re-training the network on 
very close-range objects with a reduced learning rate 
gives better results than training the network on all 
data in a single step. 
 
Boundary estimation: For this task, we modify the 
last layer of the network to generate a single channel 
output. The activation function of the last layer is then 
set to sigmoid to output the value of each pixel 
between 0 and 1. Note that the boundary pixels of the 
ground-truth data are zero, while the non-boundary 
pixels are one. We dilate the boundary pixels before 
training to be able to use the result of the network 
directly for boundary removal, as described in section 
3.3. 

We use the binary cross-entropy loss as the loss 
function. Since the number of non-boundary labels is 
significantly higher than the number of boundary 
pixels, we use a loss weight that is ten times greater 
for boundary pixels than for non-boundary ones, as 
suggested by Yang et al [YPCLY16]. 
We train the network on 5000 synthetic images and we 
augment them using Gaussian blur and random 
changes of brightness, contrast, saturation, and hue.  
 

3.3.  Incorrect Depth Pixel Removal 
RGB-D cameras generally do not measure edge depth 
correctly, causing confusion between the depths of the 
foreground object and the background or the depths of 
two close foreground objects. Thus, we begin by 
removing the depth of the object’s boundaries. First 
we create a binary mask from the estimated boundary 
map, and then we apply this mask to the depth map to 
remove the border of objects. 
Next, we compute the normal map of the depth map 
by considering adjacent 3D points [ZPK18]. We 
compare each of these normals to its corresponding 
one in the normal map estimated from the color image 
using a simple dot product. We remove the areas 
where the difference between the angles of the 
normals is greater than 30 degrees: we experimentally 
found that the normal estimation network gives nearly 
perfect results from this value, thus the normal map 
generated from color image would be reliable, see 
section 4. This step is performed to remove erroneous 
zones that appear on our objects as a result of specular 
reflections. 
At last, we remove any small noise persisting in the 
two previous steps. This is done by generating a mask 
from the depth map by setting every zero value to zero 
(which are the holes in the depth map) and every non-
zero value to one. We then use a morphological 
opening on the mask with a 5x5 circular structuring 
element as our kernel. We apply the mask to the depth 
map to remove the noise. 
 

3.4.  Global optimization 
After removing the unreliable depth from the depth 
map, we use the optimization algorithm proposed by 
Zhang and Funkhouser [ZF18] to complete the depth. 
This approach takes the estimated normal map and 
estimated boundary map from the color image as input 
and uses them as a guide to complete the depth map. 
The optimization algorithm has the objective function 
as follows: 

𝐸 =	𝜆!𝐸! +	𝜆"𝐸" +	𝜆#𝐸#𝐵	, 

𝐸! =	 ( ∥ 𝐷
$∈&!"#

(𝑝) −	𝐷'(𝑝) ∥(, 

Figure 4: Some examples of our synthetic training 
datasets. First and second rows illustrate sample 
data used for normal estimation training, while the 
two bottom rows illustrate data used for boundary 
detection training 
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𝐸# =	 ( ∥	< 𝑣(𝑝, 𝑞), 𝑁(𝑝) >
$,*∈#

∥(, 

𝐸" =	 ( ∥ 𝐷
$,*∈#

(𝑝) − 	𝐷(𝑞) ∥(, 

 
where 𝐸! is the distance between the estimated depth 
and the raw depth, 𝐸" ensures that the neighbor pixels 
have similar depth values and 𝐸# uses the dot product 
to ensure that the normal estimated from the image and 
the estimated depth are consistent. 𝐵  has a value 
between [0,1] and down-weights the 𝐸# based on the 
predicted probability that a pixel is on the boundary. 
 
 

4. EXPERIMENTAL RESULTS 
We evaluate the normal estimation network on a 
synthetic test set; the test set consists of 100 synthetic 
unseen images that we generated using our data 
generation method, but composed of new (unseen) 
objects. For all the images, we compute the mean and 
the median of the angular error measured between the 
estimated normals and ground truth ones. We also 
compute the percentage of the pixels with errors 
smaller than 30, 22.5, and 11.5 degrees (common 
metric also used for example in [SMPN20]). The 
results are presented in Table 1 and show a perfect 
matching above 30°.  

 Mean Median 11.25° 22.5° 30° 

Our model 24,2 18,3 38,7 54,3 99,8 

Table 1. Evaluation metrics on the synthetic test set 
for normal estimation network. 
 
We have tested our approach on real data captured by 
the Intel Realsense D435 camera. The testing 
environment consists of a table with a few objects on 
it. We use a variety of specular objects with different 
shapes and materials; Some of them have similar 
shapes to the synthetic objects while others have 
previously unseen shapes. The images and depth maps 
are taken under ambient light and at the resolution of 
424x240 pixels.  
We train and test our proposed pipeline on a desktop 
computer equipped with an Intel Core(TM) i9 
2.80GHz CPU with 16 GB RAM and NVIDIA 
GeForce RTX 2080 GPU. For each test of RGB-D 
data with a resolution of 424x240 pixels, estimating 
normals and boundaries of the color image and 
removing unreliable region from the depth map takes 
about 0.3 seconds while optimization on depth map 
takes about 1.8 seconds. We compare our proposed 

method with the method proposed by Zhang and 
Funkhouser [ZF18]. We have used the code they 
provide on their github page without making any 
modification. For the optimization used in both Zhang 
and Funkhouser’s and ours, we use the following 
values: 𝜆! = 1000, 𝜆" = 0.001 and 𝜆# = 1. 
As illustrated in figure 5, we can see that our proposed 
pipeline greatly improves the depth completion results 
in close-range tasks. Note that the object boundaries 
got sharper and depth inside the objects is more 
consistent, especially for the box in rows three and 
four.  
 
 

5. CONCLUSION 
In this paper, we propose a depth correction and 
completion pipeline for close-range shiny objects. Our 
contribution is twofold; first, we prepare a synthetic 
dataset consisting of close-range specular and non-
specular objects. This permits to train a CNN with 
pixel-perfect values of normals and boundaries. 
Second, we propose an algorithm to detect and remove 
unreliable regions in depth map, based on the normals 
and boundaries predicted from a single color image. 
Eventually, we complete the depth using the 
optimization method proposed by Zhang and 
Funkhouser [ZF18]. A theoretically possible 
drawback could arise if the depth of a specular object 
is incorrect, while its normal map is accurate. We will 
investigate this as future work. We will also estimate 
the influence of noise differential (synthetic images vs 
real captures) in our kind of pipeline. Despite theses 
possible drawbacks, in most cases, our method 
produces excellent results for close-range objects. 
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Figure 5: Although we used the same depth completion approach as Zhang and Funkhouser [ZF18], this comparison 
demonstrates that our proposed pipeline considerably improves the depth completion results for close-range specular 
objects. (In the first two rows, the depth beyond one meter is clipped for better visualization) 
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