
Depth Completion for Close-Range Specular Objects

S. Pourmand
XLIM, UMR CNRS 7252
Université de Limoges

F-87000 Limoges, France
shahrzad.pourmand@unilim.fr

N. Merillou
XLIM, UMR CNRS 7252
Université de Limoges

F-87000 Limoges, France
nicolas.merillou@unilim.fr

S. Merillou
XLIM, UMR CNRS 7252
Université de Limoges

F-87000 Limoges, France
stephane.merillou@unilim.fr

ABSTRACT
Many objects in the real world exhibit specular reflections. Due to the limitations of the basic RGB-D cameras, it
is particularly challenging to accurately capture their 3D shapes. In this work, we present an approach to correct
the depth of close-range specular objects using convolutional neural networks. We first generate a synthetic dataset
containing such close-range objects. We then train a deep convolutional network to estimate normal and boundary
maps from a single image.With these results, we propose an algorithm to detect the incorrect area of the raw depth
map. After removing the erroneous zone, we complete the depth channel.

Keywords
Depth completion, RGB-D images, synthetic dataset, specular reflections.

1. INTRODUCTION
With the availability of affordable RGB-D cameras,
there have been a lot of advances in 3D computer
vision to improve their capabilities for consumer
use. This includes a variety of applications on 3D
reconstruction, robot manipulation, virtual and
augmented reality. However, these RGB-D cameras
have some limitations; their depth estimation
frequently suffers from missing or incorrect values,
especially on shiny and transparent objects.
The Intel Realsense D435 [IR21] is a good and
affordable RGB-D camera that produces a color
image along with its corresponding depth map. It
uses stereo vision technology with an infrared
projector/sensor to accurately measure depth.
However, we can observe some limitations by
testing the camera, illustrated on figure 1:

• Missing data in the raw depth-map;

• Pixels with invalid values on the shiny or
transparent surfaces;

• Confusion of the depth near edges of the
foreground object and background or two
close foreground objects;

• Noisy estimation of shiny object’s curvature.

Figure 1. Examples of Intel Realsense D435 camera
limitations; (a) shows invalid values on a shiny box, (b)
is the corresponding normal map. (c) shows the
confusion of the depth near edges and (d) shows the
noisy curvature of a mug.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 135

Figure 2: Proposed pipeline: surface normals and boundaries are estimated from the color image. They are then used
to remove the unreliable regions in the depth map. The depth is finally completed using a global optimization step.

In this work, we propose a pipeline to refine captured
depth values of glossy objects for close-range
applications. Our approach is illustrated in figure 2.
Given a single color image, we first use convolutional
neural networks (CNN) to predict both the surface
normals and objects boundaries. The CNN is trained
with our own synthetic datasets (section 3.1). At this
point, we can remove incorrect depth values in three
steps. First, we remove the boundary of the objects
using an estimated boundary mask. Second, we
compute the normals directly from the sensor raw
depth map and compare them to the normals estimated
from the color image in order to remove areas where
they differ significantly. Third, we use morphological
transformations to remove the persisting noise.
Eventually, we use a global optimization approach to
fill the holes in the depth map.

2. RELATED WORK
2.1. Depth completion algorithm
Since the appearance of low cost RGB-D cameras,
many methods have been proposed to overcome their
limitations, which appear as holes and incorrect areas
in the depth map. Most of these methods utilize a color
image as guidance to correct the depth map.
Huang et al [HHC14] use the edges of the color image
to detect the unreliable zone in depth. Then they
removed the existing depth in the unreliable zone to
prevent erroneous depth propagation. Next, they used
the fast marching method (FMM) [T04] which was
first introduced for image inpainting and then revised
for depth inpainting [LGL12] to complete the depth.
In recent years, with the latest advances in deep
learning, a lot of data-driven approaches have
emerged. Zhang and Funkhouser [ZF18] completed
the depth channel of an RGB-D image using global

optimization. They first predict the normals from the
color image and then solve for completed depth. Their
work is mainly focused on large indoor environments
with large holes. However, the lack of depth denoising
prevents their method to obtain correct results in depth
completion.
Shreeyak et al. [SMPN20] proposed a modification to
the previous method to estimate the depth of close-
range transparent objects for manipulation. Their
method consists of detecting transparent objects in the
color image, removing their depth values, and using
global optimization to complete the depth of all
missing areas. However, their method is not suitable
in our case because the depth captured by depth
cameras is not as inaccurate for specular objects as it
is for transparent objects. As a result, removing all the
depth values of the objects would be excessive.
Xian et al [XQLL20] have developped a method to
eliminate incorrect depth based on a segmentation
network trained with labelled RGB-D images of large
indoor scenes.

2.2. 3D understanding from the single color
image
It has been shown that a single color image can be used
to directly infer depth [EPF14, LKY17], or other
geometric features [SR12, EF15, WFG15]. One of the
geometric features that is tightly coupled with depth is
normal-map. Normal-map is a pixel-map that contains
the orientation of the surface at each point. Wang et al.
[WFG15] proposed a method to predict surface
normals at local and global scales, then they used a
fusion network to combine both predictions into a final
result. Eigen and Fergus [EF15] designed a single
multiscale convolutional network to predict depth,
surface normals, and semantic labels.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 136

Recently, Yinda Zhang et al. [ZS17] utilized a U-net
architecture with VGG-16 as backbone for normal
estimation and achieved state-of-the-art results.
In this work, we use U-Net architecture with
inceptionv4 [SI16] as our model.

2.3. Dataset for training neural network
There are several real-world datasets available for
training neural networks including NYU depth v2
[SHKF12], ScanNet [DCSH17], and Matterport3D
[CDFH17] which are all highly used datasets.
However, real-world datasets generally suffer from
noise and missing data in shiny, transparent, or distant
areas as they are limited by the quality of the capturing
device.
To overcome these limitations, researchers have been
increasingly using synthetic data for training networks
for vision and robotic tasks [KMHV17, SMPN20].
The advantage of using synthetic data for training is
that it is easy to obtain pixel-perfect ground truth data.
Furthermore, it is affordable to create large-scale
datasets. In this work, we will generate our own
dataset containing a mix of close-range shiny (with
specular reflections) and rough objects (with diffuse
reflections) to meet our needs.

3. PROPOSED METHOD
3.1. Generating data
There are several RGB-D datasets available to train
neural networks consisting of synthetic or real-world
data. Yet, none of these are especially focused on
close-range glossy objects. Therefore, we choose to
generate our own customized dataset. We have created
a scene generator in Blender. The generated scene
would consist of a plane with different objects on it.
The ground (plane) is randomly textured from 82
textures [URL1]. The camera is randomly placed in
the scene, always focused on the ground. The
environment lighting is randomly chosen from 120
indoor HDRI environments [URL2]. Next, some
objects are chosen from primitive shapes presented in
figure 3. These shapes represent a large variety of
objects: smooth sphere, mesh with smoothed or hard
edges, objects with or without holes. 3D objects are
added to the scene as in Shreeyak et al. [SMPN20], by
using Blender physics simulation to drop them on the
ground: objects will collide with each other and the
plane insuring a random final positioning. The textures
of the objects are chosen from 47 textures [URL1]
(including Blender's checker pattern) or a solid color.
Their roughness and metallic values are also chosen
randomly.

Each of the created scenes is rendered with Blender
Cycles at the resolution of 256x256 pixels.
Corresponding normal map and boundary map are
also generated for each image. Before generating the
normal map, a bounding-sphere is created in the scene.
This sphere contains the plane and all the objects to
ensure that if the HDRI background is visible in the
rendered scene, the normals of those areas do not stay
empty. This does not create an issue when training our
network because the background information is
irrelevant in our context. The generated normals are
then oriented from world space to camera space and
normalized in the range of -1 and 1. The resulting
normal map is saved in OpenEXR format. This
method permits us to create thousands of images for
the next step (illustrated in figure 4).

3.2. Network Architecture and Training
We experimented with U-Net [RFB15] and
DeepLabV3 [CP17] as our encoder-decoder model
architecture. We trained DeeplabV3 with resnet101
[HZ16] and Unet with resnet101, inceptionv4 [SI16]
and vgg16 [SZ14] as backbones [PY20]. All models
have been pre-trained on ImageNet [RDSK15].
Our experiments led us to choose U-Net with
inception4 as our model architecture for both normal
estimation and boundary detection, as it generates
better results with our dataset. U-net is (a U-shape)
encoder-decoder architecture that uses skip-
connections between corresponding layers of encoder
and decoder. We train both networks on the data that
we generated using Blender.

Figure 3: Blender primitive shapes used for dataset
generation

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 137

Normal estimation: We modify the last layer of the
network to generate a three-channel output. Therefore,
we will have the three components of the normal
vector per pixel: x, y, and z. We then normalize the
output to L2-norm. To calculate the loss, we use an
element-wise dot product between the network’s
output and the generated synthetic ground-truth.
We train the network in two steps; first, we train the
network on 10,000 synthetic images, which are then
augmented using Gaussian blur. In the second step, we
reduce the learning rate and re-train the network on
5000 synthetic images of very close-range objects. We
have again augmented the data using Gaussian blur.
We empirically found that re-training the network on
very close-range objects with a reduced learning rate
gives better results than training the network on all
data in a single step.

Boundary estimation: For this task, we modify the
last layer of the network to generate a single channel
output. The activation function of the last layer is then
set to sigmoid to output the value of each pixel
between 0 and 1. Note that the boundary pixels of the
ground-truth data are zero, while the non-boundary
pixels are one. We dilate the boundary pixels before
training to be able to use the result of the network
directly for boundary removal, as described in section
3.3.

We use the binary cross-entropy loss as the loss
function. Since the number of non-boundary labels is
significantly higher than the number of boundary
pixels, we use a loss weight that is ten times greater
for boundary pixels than for non-boundary ones, as
suggested by Yang et al [YPCLY16].
We train the network on 5000 synthetic images and we
augment them using Gaussian blur and random
changes of brightness, contrast, saturation, and hue.

3.3. Incorrect Depth Pixel Removal
RGB-D cameras generally do not measure edge depth
correctly, causing confusion between the depths of the
foreground object and the background or the depths of
two close foreground objects. Thus, we begin by
removing the depth of the object’s boundaries. First
we create a binary mask from the estimated boundary
map, and then we apply this mask to the depth map to
remove the border of objects.
Next, we compute the normal map of the depth map
by considering adjacent 3D points [ZPK18]. We
compare each of these normals to its corresponding
one in the normal map estimated from the color image
using a simple dot product. We remove the areas
where the difference between the angles of the
normals is greater than 30 degrees: we experimentally
found that the normal estimation network gives nearly
perfect results from this value, thus the normal map
generated from color image would be reliable, see
section 4. This step is performed to remove erroneous
zones that appear on our objects as a result of specular
reflections.
At last, we remove any small noise persisting in the
two previous steps. This is done by generating a mask
from the depth map by setting every zero value to zero
(which are the holes in the depth map) and every non-
zero value to one. We then use a morphological
opening on the mask with a 5x5 circular structuring
element as our kernel. We apply the mask to the depth
map to remove the noise.

3.4. Global optimization
After removing the unreliable depth from the depth
map, we use the optimization algorithm proposed by
Zhang and Funkhouser [ZF18] to complete the depth.
This approach takes the estimated normal map and
estimated boundary map from the color image as input
and uses them as a guide to complete the depth map.
The optimization algorithm has the objective function
as follows:

𝐸 =	𝜆!𝐸! +	𝜆"𝐸" +	𝜆#𝐸#𝐵	,

𝐸! =	 (∥ 𝐷
$∈&!"#

(𝑝) −	𝐷'(𝑝) ∥(,

Figure 4: Some examples of our synthetic training
datasets. First and second rows illustrate sample
data used for normal estimation training, while the
two bottom rows illustrate data used for boundary
detection training

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 138

𝐸# =	 (∥	< 𝑣(𝑝, 𝑞), 𝑁(𝑝) >
$,*∈#

∥(,

𝐸" =	 (∥ 𝐷
$,*∈#

(𝑝) − 	𝐷(𝑞) ∥(,

where 𝐸! is the distance between the estimated depth
and the raw depth, 𝐸" ensures that the neighbor pixels
have similar depth values and 𝐸# uses the dot product
to ensure that the normal estimated from the image and
the estimated depth are consistent. 𝐵 has a value
between [0,1] and down-weights the 𝐸# based on the
predicted probability that a pixel is on the boundary.

4. EXPERIMENTAL RESULTS
We evaluate the normal estimation network on a
synthetic test set; the test set consists of 100 synthetic
unseen images that we generated using our data
generation method, but composed of new (unseen)
objects. For all the images, we compute the mean and
the median of the angular error measured between the
estimated normals and ground truth ones. We also
compute the percentage of the pixels with errors
smaller than 30, 22.5, and 11.5 degrees (common
metric also used for example in [SMPN20]). The
results are presented in Table 1 and show a perfect
matching above 30°.

 Mean Median 11.25° 22.5° 30°

Our model 24,2 18,3 38,7 54,3 99,8

Table 1. Evaluation metrics on the synthetic test set
for normal estimation network.

We have tested our approach on real data captured by
the Intel Realsense D435 camera. The testing
environment consists of a table with a few objects on
it. We use a variety of specular objects with different
shapes and materials; Some of them have similar
shapes to the synthetic objects while others have
previously unseen shapes. The images and depth maps
are taken under ambient light and at the resolution of
424x240 pixels.
We train and test our proposed pipeline on a desktop
computer equipped with an Intel Core(TM) i9
2.80GHz CPU with 16 GB RAM and NVIDIA
GeForce RTX 2080 GPU. For each test of RGB-D
data with a resolution of 424x240 pixels, estimating
normals and boundaries of the color image and
removing unreliable region from the depth map takes
about 0.3 seconds while optimization on depth map
takes about 1.8 seconds. We compare our proposed

method with the method proposed by Zhang and
Funkhouser [ZF18]. We have used the code they
provide on their github page without making any
modification. For the optimization used in both Zhang
and Funkhouser’s and ours, we use the following
values: 𝜆! = 1000, 𝜆" = 0.001 and 𝜆# = 1.
As illustrated in figure 5, we can see that our proposed
pipeline greatly improves the depth completion results
in close-range tasks. Note that the object boundaries
got sharper and depth inside the objects is more
consistent, especially for the box in rows three and
four.

5. CONCLUSION
In this paper, we propose a depth correction and
completion pipeline for close-range shiny objects. Our
contribution is twofold; first, we prepare a synthetic
dataset consisting of close-range specular and non-
specular objects. This permits to train a CNN with
pixel-perfect values of normals and boundaries.
Second, we propose an algorithm to detect and remove
unreliable regions in depth map, based on the normals
and boundaries predicted from a single color image.
Eventually, we complete the depth using the
optimization method proposed by Zhang and
Funkhouser [ZF18]. A theoretically possible
drawback could arise if the depth of a specular object
is incorrect, while its normal map is accurate. We will
investigate this as future work. We will also estimate
the influence of noise differential (synthetic images vs
real captures) in our kind of pipeline. Despite theses
possible drawbacks, in most cases, our method
produces excellent results for close-range objects.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 139

Figure 5: Although we used the same depth completion approach as Zhang and Funkhouser [ZF18], this comparison
demonstrates that our proposed pipeline considerably improves the depth completion results for close-range specular
objects. (In the first two rows, the depth beyond one meter is clipped for better visualization)

REFERENCES

[CDFH17] Angel Chang, Angela Dai, Thomas

Funkhouser, Maciej Halber, Matthias Nießner,
Manolis Savva, Shuran Song, Andy Zeng and
Yinda Zhang. Matterport3D: Learning from
RGB-D Data in Indoor Environments. In
International Conference on 3D Vision (3DV),
2017

[CP17] Liang-Chieh Chen, George Papandreou,
Florian Schroff, Hartwig Adam. Rethinking
Atrous Convolution for Semantic Image
Segmentation. 2017

[DCSH17] Angela Dai, Angel X. Chang, Manolis
Savva, Maciej Halber, Thomas Funkhouser and
Matthias Nießner. ScanNet: Richly-annotated 3d
reconstructions of indoor scenes. In Proceedings

of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017

[EF15] David Eigen, Rob Fergus. Predicting Depth,
Surface Normals and Semantic Labels with a
Common Multi-Scale Convolutional
Architecture. ICCV, 2015.

[EPF14] David Eigen, Christian Puhrsch and Rob
Fergus. Depth Map Prediction from a Single
Image using a Multi-Scale Deep Network.
CoRR, 2014.

[HHC14] Yung-Lin Huang, Tang-Wei Hsu, Shao-Yi
Chien. Edge-aware depth completion for point-
cloud 3D scene visualization on an RGB-D
camera. In IEEE Visual Communications and
Image Processing Conference, VCIP 2014

[HZ16] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 140

conference on computer vision and pattern
recognition, 2016

[IR21] Intel RealSense D400 series Product Family
Datasheet. URL: https://dev.intelrealsense.com
/docs/intel-realsense-d400-series-product-
family-datasheet

[KMHV17] Eric Kolve, Roozbeh Mottaghi, Winson
Han, Eli VanderBilt, Luca Weihs, Alvaro
Herrasti, Daniel Gordon, Yuke Zhu, Abhinav
Gupta, and Ali Farhadi. Ai2-thor: An Interactive
3D Environment for Visual Ai, 2017.

[LGL12] Junyi Liu, Xiaojin Gong and Jilin Liu.
Guided inpainting and filtering for Kinect depth
maps. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR), 2012

[LKY17] Jun Li, Reinhard Klein and Angela Yao. A
Two-Streamed Network for Estimating Fine-
Scaled Depth Maps from Single RGB Images. In
Proceedings of the IEEE International
Conference on Computer vision, 2017.

[PY20] Pavel Yakubovskiy. Segmentation Models
Pytorch, 2020, URL: https://github.com
/qubvel/segmentation_models.pytorch

[RDSK15] Olga Russakovsky, Jia Deng, Hao Su,
Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Anderj Karpathy, Adity Khosla,
Michael Bernstein, Alexander C. Berg and Li
Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015.

[RFB15] Olaf Ronneberger, Philipp Fischer and
Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In
International Conference on Medical image
computing and computer-assisted intervention,
pages 234-241. Springer, 2015.

[SHKF12] Nathan Silberman, Derek Hoiem,
Pushmeet Kohli and Rob Fergus. Indoor
segmentation and support inference from rgbd
images. In European Conference on Computer
Vision, pages 746-760. 2012

[SI16] Christian Szegedy, Sergey Ioffe, Vincent
Vanhoucke, and Alexander A. Alemi. Inception-
v4, Inception-ResNet and the Impact of Residual
Connections on Learning. In Proc. AAAI
Conference on Artificial Intelligence, 2016.

[SMPN20] Shreeyak S. Sajjan, Matthew Moore,
Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy

Zeng, Shuran Song. ClearGrasp: 3D Shape
Estimation of Transparent Objects for
Manipulation - IEEE International Conference
on Robotics and Automation (ICRA), 2020

[SR12] Alexander G. Schwing and Raquel Urtasun.
Efficient Exact Inference for 3D Indoor Scene
Understanding. In ECCV, 2012.

[SZ14] Karen Simonyan and Andrew Zisserman.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556, 2014

[T04] Alexandru Telea. An image inpainting
technique based on the fast marching method. In
Journal of Graphics Tools, vol.9, 2004

[URL1] https://resources.blogscopia.com/category
/textures/, and https://3dtextures.me/

[URL2] https://polyhaven.com/hdris/
[WFG15] Xiaolong Wang, David F. Fouhey and

Abhinav Gupta. Designing Deep Networks for
Surface Normal Estimation. In 2015 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[XQLL20] Chuhua Xian, Kun Qian, Guoliang Luo,
Guiqing Li and Jianming Lv. Elimination of
incorrect Depth Points for Depth Completion. In
proceedings of CGI 2020, pp. 245-255

[YPCLY16] Jimei Yang, Brian Price, Scott Cohen,
Honglak Lee and Ming-Hsuan Yang. Object
Contour Detection with a Fully Convolutional
Encoder-Decoder Network. In 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 193-202

[ZF18] Yinda Zhang and Thomas Funkhouser. Deep
depth completion of a single RGB-D Image –
The IEEE Conference on computer vision and
pattern recognition, 2018

[ZPK18] Qian-Yi Zhou, Jaesik Park and Vladlen
Koltun. Open3D: A Modern Library for 3D Data
Processing, 2018.

[ZS17] Yinda Zhang, Shuran Song, Ersin Yumer,
Manolis Savva, Joon-Young Lee, Hailin Jin, and
Thomas Funkhouser. Physically-based rendering
for indoor scene understanding using
convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.17 141

