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ABSTRACT
3D human pose estimation by grouping human body joints according to anatomical relationship is currently a
popular and effective method. For grouped pose estimation, fusing features of different groups together effectively
is the key step to ensure the integrity of whole body pose prediction. However, the existing methods for feature
fusion between groups require a large number of network parameters, and thus are often computational expensive.
In this paper, we propose a simple yet efficient feature fusion method that can improve the accuracy of pose esti-
mation while require fewer parameters and less calculations. Experiments have shown that our proposed network
outperforms previous state-of-the-art results on Human3.6M dataset.
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1 INTRODUCTION
3D human pose estimation is the computer vision task
of estimating the articulated 3D joint locations of a hu-
man body from an input image or video, which has
received much research attention because it supports
many applications including cloth parsing [Don14a],
surveillance [Liu18a], augmented reality [Lin10a], ac-
tion prediction [Luv18a].

The main stream convolutional neural networks-based
methods for 3D human pose estimation mainly follow
two approaches: (1) directly regressing 3D coordinates
of each joint from input images or sequences; (2) first
predicting 2D joint coordinates from images and then
matching these 2D key points to 3D coordinates. The
second approach significantly outperforms the first one,
since these methods benefit from the high performance
of intermediate 2D pose detectors [Che18a, Sun19a].

Some researchers proposed to group human joints into
parts, such as arms, legs and torso, based on kinemat-
ics and human anatomy to improve prediction accu-
racy [Cai19a, Fan18a, Lee18a, Wan19a]. They first en-
code each part to get the corresponding features, and
then fuse these features together to get a complete hu-
man pose. Although the features of each part are in-
dependently predicted, different parts affect each other
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and their features are also related mutually. For exam-
ple, there is interaction between the arm and the head
for poses in "Eating", while the hand and the foot are
closely related when performing poses "Running". In
these methods, a feature fusion module is used to fuse
the features of different parts together; while many ex-
isting feature fusion methods just use fully connected
layers, resulting in large number of parameters and high
computation costs.

In this paper, we propose a network framework with
an optimized feature fusion (OFF) module for 3D pose
estimation, as shown in Figure 1. Our method improves
the accuracy of 3D pose estimation while requires fewer
parameters and has lower computational complexity.

The remaining of this paper is organized as follows. We
first review the related works on 3D human pose esti-
mation. Then, we describe the proposed method in de-
tail and experimentally demonstrate the effectiveness of
our method by comparing with state-of-the-art methods
and ablation studies. Finally, we conclude our work,
and discuss limitations and future research directions.

2 RELATED WORK
3D human pose estimation has been studied since a
very early time. Early traditional methods utilized
pictorial structures to predict 3D coordinates of human
joints. These methods usually require tedious manual
operations and a large amount of calculations, and
get bad results when encountering some complex
poses. Thanks to the rapid development of deep
learning methods, convolutional neural networks-based
methods have become the main stream and achieved
very promising results in recent years. These methods
can be classified into two categories. Some early works
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Figure 1: Our and Shan’s [Sha21a] feature fusion modules. There are five groups of local features. We both
concatenate the four groups of local features together. Then Shan [Sha21a] uses three modules based on FCN
to raise the feature dimension and outputs fused features through a FCN, while we use four modules based on
1D convolution to conduct discriminative dimensionality reduction and obtain four new features respectively. We
concatenate them together to get the fused features. For the torso part, we still use the feature fusion method
proposed by [Sha21a]. Finally, the remaining local features, fused features, and global features are concatenated
together to become a new feature of the body part. After performing such feature fusion five times, five new
features of five body parts are obtained. (FCN) - Fully Connected Layer. (BN) - 1D Batch Normalization. (Conv
1D) - 1D convolution.

[Pav17a, Tek16a] directly predict the 3D human joints
from the input image or video through neural networks,
which is called one-step regression method. Recently,
benefit from recent advancement in 2D pose detectors
[Che18a, Liu18a, Liu19a, Sun19a, Hua20a], many
methods first detect the coordinates of the 2D pose
joints, and then use these 2D coordinates to regress
the human pose joint in the 3D space. Among the
methods of regressing 3D coordinates, the method
using temporal information has the promising results.

The Long Short-Term Memory (LSTM) model is the
first sequence-to-sequence model that extract 3D hu-
man pose information from videos. It mainly encodes
the coordinates of 2d human joint, and then decodes
them into coordinates in 3d space [Hos18a]. Lee et al.
[Lee18a] design a propagating LSTM structure based
on joint interdependency to learn the spatial position
relationship of each joint of the human body. However,
LSTM cannot process multiple frames in parallel, but
store them sequentially in memory resulting in many
parameters. To address this problem, temporal convo-
lutional network (TCN) is proposed for 3D human pose
estimation [Pav19a]. It performs 1D convolutions over
2d input pose sequences with fewer parameters. Liu et
al. [Liu20a] apply attention mechanism to TCN, which

determine key frames and output tensor in every layer.
Chen et al. [Che21a] transform TCN to predict both
direction and length of the bones.

Many current methods [Par18a, Wan19a, Zhe20a,
Zen20a, Sha21a] group body parts to predict 3d human
pose according to the anatomical relationship. Park
et al. [Par18a] propose to divide human joints into 5
non-overlapping groups (torso, left arms, right arms,
left legs, right legs). Then the features learned by these
5 groups are averaged to produce the feature of the
whole pose. Wang et al. [Wan19a] define the degrees
of freedom (DOF) and model limbs with higher DOFs
and torso with lower DOFs. In this way, various body
parts with different DOFs can supervise each other,
leading to more reasonable prediction results. Zheng
et al. [Zhe20a] treat each joint as a group and design a
dual attention module to learn the feature relationship
between each group. Zeng et al. [Zen20a] divide the
human body into local groups of joints and develop
a network to learn internal dependencies within each
group and weak dependencies among groups. Shan
et al. [Sha21a] split the human body into five groups
(torso, left/right arms, left/right legs), encode the
features of each group separately, and design a feature
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fusion module to fuse the 5 groups of features to obtain
a complete human body.

3 METHOD
We use the structure of [Sha21a] as the baseline from
our network framework (Figure 1). The input of the
network is the coordinate of the 2D pose that have been
predicted from the images. It first processes the input
2D pose joints of target pose and other poses to obtain
the positional and temporal information, and then di-
vides these information into five groups (torso, left arm,
right arm, left leg, right leg). After all the information
encoded by the TCN network, we propose a new op-
timized feature fusion (OFF) module to fuse the five
groups of features. We use the OFF module to fuse four
groups of features (e.g., left and right hands, left and
right legs) and then concatenate them with the remain-
ing group of features (torso) to form a new torso fea-
ture. After performing five times of feature fusion, we
get five new groups of features (torso, left/right hands,
left/right legs). Finally, we decode the five new groups
of features to get the coordinates of the joints of the
five body parts and concatenate them together to get the
complete human pose.

Our proposed feature fusion module is compared with
that of [Sha21a] in Figure 1. Both of our inputs are
five local features of five body parts, four of which are
concatenated together. Shan et al. [Sha21a] use three
modules composed of fully connected layer, 1D batch
normalization [Iof15a], rectified linear units [Nai10a]
and dropout [Sri14a] to raise the feature dimension to
obtain the fused features. Shan et al. [Sha21a] also use
residual connections to solve the problem of gradient
explosion and disappearance when the number of net-
work layers is deep. However, Cheng et al. [Che15a]
illustrate that fully connected layers generally involve
over 90% of the network parameters and generate re-
dundancy of parameters in deep neural networks. Sim-
ilarly, the method of [Sha21a] also generate some re-
dundant information, since the features of each group
are connected to each other when using fully connected
layers to fuse the features of the four body parts. But
in fact some body parts are not strongly related in some
actions. For example, there is no strong correlation be-
tween head and hands in the action âWalkingâ. Com-
pared with the method of [Sha21a], we only use four
different 1D convolutions followed by 1D batch nor-
malization [Iof15a] and rectified linear units [Nai10a],
which can reduce the amount of parameters greatly and
ensure that each part learns enough information.

Specifically, we denote each group of local features
as Fi, Fi ∈ RB×C, where B and C are the batch size
and the number of channels. We concatenate the four
groups of local features among them together accord-
ing to the channel dimension as [F1, ...,F4]. Then we

aim to use the discriminative dimensionality reduction
method [Sub17a, Gao19a] to make the features separate
and obtain a new discriminative feature F

′
i for group i

by aggregating features from four groups. Therefore,
we need to learn the transformation W for concatenated
four groups of features [F1, ...,F4]. We denote W as a
1D convolution with 1 stride and 1 kernel size. The in-
put and output channels of this 1D convolution are 4C
and C respectively. Therefore, this formula for obtain-
ing the discriminative feature F

′
i is as follows

F
′
i = BatchNorm1D(Conv1D([F1, ...,F4])) (1)

After performing four different groups of 1D convo-
lution, batch normalization [Iof15a] and rectified lin-
ear units [Nai10a], we get four new groups of features
F

′
1,F

′
2,F

′
3,F

′
4 . These new features are concatenated to

form the fused features
[
F

′
1,F

′
2,F

′
3,F

′
4

]
. Subsequently,

the remaining local body features F5 and global features
(target pose) are concatenated with the fused feature
and all the features are sent to the decoding layer to
predict the coordinates of the 3D human pose. In addi-
tion, considering that the number of joints in the torso
is the largest among the five groups, we still use the fea-
ture fusion method based on the fully connected layer
proposed by [Sha21a] for the torso group. The remain-
ing four groups of joints adopt our proposed optimized
feature fusion (OFF) module.

4 EXPERIMENTS
4.1 Datasets and Evaluation
Dataset We evaluate our model on the public dataset
Human3.6M [Ion13a]. Human3.6M is an indoor scenes
dataset collected by motion capture system with 3.6
million video frames. It has 11 professional actors
wearing clothes with markers which record the coordi-
nates of each human body joint. These actors perform
15 actions in daily life under 4 synchronized camera
views, such as walking dogs, photoing, sitting, greet-
ing, eating and so on.
Following previous studies [Mar17a, Pav17a, Fan18a,
Pav19a, Liu20a, Sha21a], we adopt five subjects (S1,
S5, S6, S7, S8) for training and two subjects (S9 and
S11) for testing. We use the commonly used proto-
cols to evaluate our experimental results. Our model
is trained in the PyTorch framework on one GeForce
RTX 3070 GPU.
Evaluation protocol is denoted as Mean Per Joint Po-
sition Error (MPJPE) that is the average Euclidean dis-
tance between estimated human joint coordinates and
ground-truth human joint coordinates. It is the most
popular standard for evaluating the 3D human pose es-
timation.
Table 2 illustrates the computational complexity of dif-
ferent models. We compare our method with [Pav19a]
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Method Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Lee et al. [Lee18a] 32.1 36.6 34.4 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 37.6 30.3 35.5 38.4
Pavllo et al. [Pav19a] 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Liu et al. [Liu20a] 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Zeng et al. [Zen20a] 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0
Shan et al. [Sha21a] 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1

Ours (T = 243 GT) 27.8 28.2 28.7 27.7 30.4 35.8 31.1 26.6 34.6 36.8 30.2 28.3 28.0 23.6 24.1 29.5

Table 1: Reconstruction error on Human3.6M under evaluation protocol with MPJPE (mm). The input 2d pose
is ground truth. The lowest reconstruction error is bold, and the second lowest is underlined. (GT) - ground-truth.

Method Parameters ≈ FLOPs MPJPE

Pavllo et al. [Pav19a] 16.95M 33.87M 37.8
Shan et al. [Sha21a] 41.78M 36.03M 30.1
Ours 28.38M 22.39M 29.5

Table 2: Comparison with the computational complex-
ity of different models. All models are trained on
ground-truth 2D poses under evaluation protocol with
MPJPE (mm). The input of all models is a 2D pose se-
quence of 243 frames. Both parameters and FLOPs of
us and [Sha21a] are calculated at stage 2 or 3.

and [Sha21a] in terms of the number of model pa-
rameters and an estimate of the floating-point opera-
tions (FLOPs) because we all use the TCN as the base-
line. FLOPs are the computational power required for
forward propagation, which reflects the level of per-
formance required for hardware such as GPU. In our
experiments, we mainly calculate the computational
power consumption of the convolutional layer, fully
connected layer, BatchNorm and ReLU when the model
is forward propagated. Both parameters and FLOPs of
us and [Sha21a] are calculated at stage 2 or 3. Although
our model has more parameters than that of [Pav19a],
our MPJPE result is 8.3mm lower. In addition, the
number of our model parameters is much less than that
of [Sha21a] and our reconstruction error (MPJPE) is
also lower. As for FLOPs, our model only has 22.39M
which is the least among all models, almost half of the
model proposed by [Sha21a].

4.2 Comparison with State-of-the-Art
Methods

We compare our results with state-of-the-art works in
recent years on the public dataset Human3.6M. Table 1
shows the comparison results between our method and
recent methods on Human3.6M under evaluation pro-
tocol. We use ground-truth 2D poses as input and train
under the recpetive field of 243 frames. Our method
reaches 29.5mm in MPJPE, which is 0.6mm better than
the best result. Besides, our model achieves the state-
of-the-art in terms of multiple actions and also reaches
the second best result in some complex actions, such
as "Eat", "Photo", "Sitting", "Sitting Down", "Walk".
The reason why we do not achieve the best results in
these complex actions may be that these actions have
severe deep ambiguity and occlusion, which requires

other groups of joints to provide more information to
the occluded or deeply ambiguous joints during feature
fusion. Our method reduces nearly half of the param-
eters in the feature fusion stage, so it may lose some
information for the learning of these complex actions.

4.3 Ablation Studies
In order to verify the validity of each part in our model,
we perform ablation experiments on whether the torso
part uses 1D convolution or fully connected layers on
Human3.6M under evaluation protocol with MPJPE
(mm). Our network takes the ground truth of 2D poses
as input. Table 3 shows ablation experiments of dif-
ferent methods used in our network at stage 3. If all
feature fusion modules use 1D convolution, although
the parameter amount is the lowest, only 24.96M, the
MPJPE is only reduced by 0.1mm. However, if the
fully connected layer is used for feature fusion for the
torso part and the 1D convolution is used for other parts
for fusion, the MPJPE is reduced by 0.6mm and the
parameter quantity is also much lower than the base-
line. This is because the torso part has more joints than
other parts and needs to learn more information during
feature fusion. 1D convolution feature fusion method
makes it not enough to learn features. The baseline uses
FCN to perform feature fusion on five parts, so redun-
dant information is learned for the part with few joints.
Therefore, in order to balance the number of features
that need to be learned in each part, we use the feature
fusion module consisting of 1D convolution and FCN.

Method MPJPE(mm) △ Parameters

Baseline (FCN (all parts)) 30.1 − 41.78M
+OFF(Conv 1D) 30.0 0.1 24.96M
+OFF(Conv 1D + FCN (torso)) 29.5 0.6 28.38M

Table 3: Ablation study of different methods in our
model at stage 3. OFF refer to optimized feature fusion
proposed by us. The MPJPE results takes ground-truth
2D poses as input and is trained on Human3.6M under
evaluation protocol. (FCN) - Fully Connected Layer.
(Conv 1D) - 1D convolution.

5 CONCLUSION
We propose an optimized feature fusion module for
grouped human pose in this paper. Compared with the
feature fusion module [Sha21a] composed of fully con-
nected layer, our optimized feature fusion module can
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use fewer parameters to fuse different groups of hu-
man pose features and it can also reduce reconstruc-
tion errors. Experimental results prove that our method
advances state-of-the-art performance on Human3.6M
dataset. However, there are still limitations in our cur-
rent method: we still require three stages of training and
the improvement in prediction accuracy is observed but
not in a significant percentage. In the future, we will
research on one-stage training of the entire network to
further improve prediction accuracy.
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