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ABSTRACT
The acquisition of datasets is typically a laborious task. It is challenging, especially if the required annotations in
every image in the dataset are vast. It is even more challenging if the inter-class variance, the visual difference
between two distinct classes, is low. Retail product recognition constitutes an example of both issues. Products are
densely packed on shelves, resulting in many objects within an image. Products share visual similarities, which
makes them hard to distinguish.
In this work, we propose Annotron, a tool tackling the acquisition problem in this domain. Exploiting dataset struc-
tures, such as being organized in consecutive frames, we detect real-world objects through pre-trained detectors
and reproject detections to generate candidate traces over time. Further, we aid labelers by computing poten-
tial matches of real-world objects and reference images based on their visual similarity: We cluster consecutive
detections based on a large set of reference images using embeddings acquired from pre-trained networks.
Using the proposed tool reduces manual efforts drastically by diminishing the time spent on repetitive, error-prone
tasks. We evaluate Annotron in the retail recognition domain. The domain is commonly considered fine-grained,
which means that instance-level annotations are costly due to the described problems. We refine the given dataset,
surpass the number of previously found stock-keeping units, and label over 446.500 individual bounding boxes.
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1 INTRODUCTION
Collecting datasets for supervised learning tasks is a la-
borious but mandatory task. It typically requires human
data labelers to judge vast amounts of data points such
that a model can learn to make correct decisions. In
the context of computer vision, we typically let labelers
annotate images with bounding boxes and classes, i.e.,
visual concepts represented by regions of pixels. Fur-
ther, additional techniques might be required that help
to increase the overall accuracy, such as labeler con-
sensus or label auditing. These techniques increase the
overall time investment to design a particular solution
for new supervised learning tasks

The acquisition of datasets is extremely costly in the
fine-grained domain. It requires solid precision to de-
termine the correct visual concept of a particular image
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Figure 1: Retail product recognition is a supervised
fine-grained visual learning task. Crowded scenes and
low visual inter-class variance require significant man-
ual annotation efforts. We propose Annotron, a tool that
lowers these hurdles in fine-grained domains.

region. The problem of retail product recognition gives
a perfect example of a fine-grained domain. Figure 1
depicts an exemplary image of this domain. It visual-
izes two issues that arise in this fine-grained domain:
First, images of retail products on shelves comprise
crowded scenes. Similar-looking products are densely
stacked across the complete frame. Annotating a single
frame is a tedious task due to the sheer number of ob-
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jects. Second, some products can only be distinguished
through small visual cues. Both reference images il-
lustrate this problem: although they are entirely differ-
ent objects, they share significant visual similarities. If
meta-data of the reference set is available: labelers have
to annotate the visual concepts based on an exhausting
full-text search over the product’s name. If meta-data
is not available: the situation is even worse. Label-
ers would have to select the correct match based on
visual cues. Semi-automatic approaches could tackle
both problems.
[5] surveyed related works in the domain of
(semi-)automated image annotation. We focus on
more recent works since the authors already gave a
broad review of works proposed until 2017. More
recently, works have been proposed that use the labeler
in a loop in conjunction with trained networks [1], [2],
[14], [16], [26]. Here, the complete dataset is typically
split into two sets. The first is manually annotated
and used to train networks which then predict labels
for the latter. Other works extend this approach by
fuzzing the dataset split, i.e., by predicting the best
video frames to annotate manually [15]. [17] proposed
to use properties of existing detectors, which tend to
predict multiple different-sized bounding boxes for a
single object. The user has then to choose the correct
one iteratively. [21] proposed to use GrabCut [19],
which is designed to segment an object based on user
input. Using additional meta-knowledge, i.e., the depth
stream of a video stream, [21] proposed to track the
segmented object in 3D space and reproject bounding
boxes onto the image planes. [7] used meta-knowledge
of the environment to propose a semi-automatic
annotation tool tailored for retail environments. The
authors used a SLAM approach to annotate objects in
3D space and reproject their annotation onto consec-
utive video frames. Related works focus on general
(semi-)automated image annotation to our knowledge.
Our approach does not need any additional knowledge
about the environment and is tailored to crowded
scenes, in which mainly the manual annotation of
individual objects is time-consuming and error-prone.
In this work, we propose a semi-automatic image an-
notation system called Annotron, with the scope of al-
lowing a fast and continuous annotation workflow. We
evaluate the proposed approach in the fine-grained do-
main of retail recognition, in which acquiring instance-
level annotations is considered costly. We propose ex-
ploiting underlying structures of datasets by reproject-
ing found bounding boxes to consecutive frames. This
approach yields a candidate stream of a particular ob-
ject over time and extracts multiple views of the same
object. We extract embeddings, a lower-dimensional
representation of the visual content, of every image
patch in the candidate stream. With these, we form
groups of similar-looking visual concepts, e.g., retail

products that share similar looks or real-world images
that look similar to a particular reference image. We
gather the set of nearest neighbors for every candidate
stream. A labeler finally identifies the correct reference
image to acquire the ground-truth annotation.

The proposed approach efficiently lowers the need for
manual assistance. It enables labelers to annotate dif-
ferent views of the same stock-keeping unit simulta-
neously. Further, it reduces the search space dramati-
cally from which the labeler has to choose the correct
reference concept. We achieve this by using a mutual
embedding space of candidates and reference images.
We demonstrate the ease of use throughout the paper.
Our experiment shows that the proposed approach com-
bined with lower annotation efforts extends a given
database. We found more visual concepts using fewer
annotation efforts as proposed in the original work.

The paper is structured as follows: Section 2 explains
the proposed approach in detail. We describe the re-
quired preprocessing step in-depth and elaborate on the
resulting tool support that differentiates manual anno-
tation tasks. Afterward, we evaluate the proposed ap-
proach with an already given dataset in Section 3. We
report on the specific choices that arise in the prepro-
cessing step and demonstrate that the resulting new
dataset extends the previously given dataset. Finally,
we conclude our work.

2 ANNOTRON
We propose a semi-automatic labeling tool to ease the
hurdle of acquiring few-shot datasets focused on fine-
grained recognition problems. We follow a two-stage
approach: First, we preprocess the original data to iden-
tify similar-looking regions across multiple frames as
described in Section 2.1. This is done in a fully auto-
mated manner. Second, we label these region tracks
manually, which we call candidate traces, using dif-
ferent labeling strategies. This allows us to annotate
vast amounts of previously tracked candidate traces
efficiently. Further, we automatically cluster similar-
looking traces to reduce the manual search time in-
vested. We describe the manual tasks in Section 2.2.

2.1 Preprocessing
The first stage of the proposed approach is a fully-
automated preprocessing process that aims at generat-
ing an intermediate data structure. The core idea is
to automatically extract high-level representations of
subsequent image regions and determine similar visual
concepts. We group and present these in an ordered
manner to the labeler (cf. Section 2.2).

The basis for the proposed preprocessing step is the
assumption that a dataset is organized in a consecutive
manner, i.e., in video streams. Further, we assume
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2.1.3 Create Embeddings
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2.1.4 Visual Similarities Database

Candidate Stream

Figure 2: Flowchart of the proposed preprocessing module. We trace candidates across consecutive frames and use
embeddings to find similar-looking image patches. We comprise these findings in a database for fast user access.

that at least a single reference image of all relevant
visual concepts is available. Figure 2 depicts the pro-
posed preprocessing module. Generally, we propose
reprojecting given candidates, e.g., acquired with a
generic detection module, onto consecutive frames
(cf. Section 2.1.1). Using the resulting candidate
streams (cf. Section 2.1.2), we encode these and
the reference images using an embedding model
(cf. Section 2.1.3). Finally, we extract the nearest
neighbors (cf. Section 2.1.4) of every candidate stream
and comprise the results in a special data structure.

2.1.1 Generate Candidates

The first step in the proposed preprocessing module
is generating possible object candidates on every real-
world image. Generally, we assume that an image holds
multiple objects of interest. We propose acquiring pos-
sible candidates, i.e., arbitrary shapes or volumes in the
input space, using a general-purpose detector, if possi-
ble. The detector does not need to predict the correct
class or concept of a particular object of interest.

In this work, we focus on images as input. We consider
a bounding box the most common form of shape that
needs to be detected for every frame. Consequently, we
use the detector to predict bounding boxes for as many
objects as possible. We emphasize the possibility of
tailoring the proposed preprocessing module as needed,
i.e., replacing the detector with a shape predictor. This
might be necessary if the objects of interest are to be
described in a different form.

2.1.2 Trace Candidates

We aim at lowering the amount of manual labeling ac-
tivities. Therefore, the core idea is to trace object can-
didates - regions within every frame that depict similar
visual concepts - across multiple frames. We use the

well-known overlap measure intersection over union.
Given two shapes A,A′ ∈ R2, the IoU is defined as

IoU =
|A∩A′|
|A∪A′| (1)

We iteratively trace two shapes, i.e., bounding boxes, A
and A′ of two consecutive frames. We select the over-
lapping bounding boxes with a watershed algorithm
while maximizing the IoU . Thereby, we generate can-
didate streams - traces of real-world objects over time
- by iterating over all images of a video to gather dif-
ferent views of the same object. We empirically found
that this approach seems reasonable precise for video
streams from the retail domain. However, we main-
tain the possibility to slice a candidate stream manually
through the labeler.

2.1.3 Create Embeddings
Next, we aim at clustering found candidate streams to
find visual cues of similar objects shown in the image
regions. To do so, we create a vectorized representation
of the visual content of every image in the candidate
stream. We use deep neuronal nets to create embed-
dings, a lower-dimensional representation of the visual
content. This is a common approach for many special-
ized fields, such as face recognition [6], [20], [27] or
person recognition [3], [13], [22], that typically deal
with few-shot learning problems.
[4], [24], [25] have shown that generic classification
networks can be used for a few shot recognition tasks,
with and without any additional training. The authors
proposed removing the network’s classification head
and using the penultimate output as embeddings. For
the domain of retail recognition, there also exist spe-
cialized neuronal networks [8], [9], [23] designed to
produce tailored embeddings. We use a specialized net-
work wherever pre-trained weights tailored to the do-
main are available and use generic embedders other-
wise.
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2.1.4 Visual Similarities
Generally, the proposed approach uses the fact that em-
beddings of similar concepts are mapped to close re-
gions in the embedding space. We exploit the obser-
vation by mapping real-world traces and reference im-
ages into a mutual embedding space. We then select the
nearest reference images for every sample within a can-
didate stream. Further, we gather the nearest candidate
streams of each candidate stream. Here we use the cen-
ter point of the embeddings, i.e., the mean embedding
of the complete candidate stream, because we assume
that a candidate stream depicts the same visual concept
over time.

We gather the top set of nearest neighbors in both cases,
assuming that in the top nearest neighbors most likely
is the true visual concept. Given the underlying prob-
lem of retail recognition with its fine-grained nature, we
found that retrieving the five nearest reference images
whereas 50 nearest candidate streams of every candi-
date stream yield feasible results. We gather all nearest
neighbors in a data structure, i.e., using identifies, for
fast and easy access during the labeling procedure.

2.2 Labeling Procedure
The second step of the proposed process is the actual la-
beling, i.e., linking real-world objects with visual con-
cepts. Labeling vast amounts of data is a monotone,
time-consuming, and error-prone task. To overcome
some of the hurdles induced through the necessity of
training with labeled data, we proposed a preprocess-
ing step in the previous Section 2.1. The core idea is to
use the previously computed similar-looking candidate
streams with their most similar-looking reference im-
ages and present this information in an ordered manner
to the user. We thereby focus on annotating complete
candidate streams with minimal user interaction.

The ability to operate on candidate streams rather than
on individual image regions yields different benefits
during the labeling process. First, it produces a partic-
ular relevance scheme for all candidate streams, which
induces an order. Second, it enables us to cluster can-
didate streams through computing similarity measures.
This allows us to identify similar visual concepts from
different directions, i.e., previously labeled candidate
streams that share joint visual embeddings are more
likely to depict the same visual concept.

Ordering the labeling procedure yields soft benefits dur-
ing processing, such as faster feedback loops that in-
crease morale. We inherit a better ability to monitor the
labeling activities because the number of manual inter-
actions is greatly reduced. It is becoming easier to reach
achievements.

Using clustered candidate streams further allows us to
distinguish two different types of labeling tasks: Identi-
fying new visual concepts in the data that have not been

linked to visual concepts and increasing the number of
observations of already seen concepts. In the follow-
ing, we present both tasks in detail and elaborate on the
design choices for each task.

2.2.1 Task 1: Identify Visual Concepts
When we identify new concepts in the data, we link pre-
viously unseen reference concepts to candidate streams.
Without Annotron, we would have to detect new con-
cepts based on the human eye and a full-text search over
the reference names if the labeler can identify them.
This is error-prone due to the fine-grained nature of the
problem. Using Annotron provides better tool support
to the user while identifying new concepts by present-
ing similar-looking reference concepts. Presenting vi-
sually similar reference and candidate images removes
the burden of full-text search activities and, therefore,
increases the overall labeling speed of a single labeler.

We propose specialized tool support for this particular
task to rank the previously computed candidate streams
according to two different metrics, which are defined as
follows:

Tracking Stability: We weigh the candidate streams
with the longest stable tracking to be the most rel-
evant. Given a candidate stream ci ∈ C, we define
the metric mt as mt(ci) =−|ci|. This metric focuses
on fast annotations that quickly maximize the to-
tal number of observed examples per concept in the
dataset.

Embedding Stability: We sort the candidate streams
according to their visual stability. We assume that
a candidate stream depicting a particular concept
available in the set of reference images will lead to
stable nearest neighbors in the embedding space of
reference images. Given a candidate stream ci, with
multiple nearest reference concepts Nci in the em-
bedding space, we define the metric me as me(ci) =
|{Nci}|
|ci| .

2.2.2 Task 2: Increase Observations of Concepts
The second annotation task increases the total number
of annotations of a particular concept within the dataset.
The user manually identifies the previously found ref-
erence concepts on other video stream regions in the
dataset. Without Annotron, we would again have to
identify a reference concept of a particular candidate
stream based on the human eye and full-text search.
This task would not differ from the previous and might
induce errors in the annotation process.

Using Annotron allows us to present similar-looking
reference images when viewing a candidate stream.
This dramatically reduces the number of full-text
queries a labeler has to issue during the annotation
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procedure. It also inherits a reduced risk of annotation
errors. Further, when the labeler selects a reference
concept, that is already assigned to a stream, we
display similar-looking candidate streams. This de-
creases the effort of identifying similar-looking ones
in other streams. We distinguish two different types of
similarity relations:

Similarity to other Candidate Streams: To describe
the visual distance of two candidate streams, we
use the center of the hyperspheres in the embedding
spaces formed with all embeddings in a stream.
To do so, we use the mean embeddings µ of
a candidates stream ci ∈ C which are defined,
following [11], as µi =

1
|ci| ∑

|ci|
j z j, whereas z j is the

embedding of an image in the candidate stream.
We measure the distance of candidate streams as
distance(ci,c j) = ||µi −µ j||22.

Similarity to Reference Concepts: Further, we pro-
pose to measure the distance of a candidate stream
and reference images. We measure the distance of
a candidate stream and a reference embedding zr
similarly, distance(ci,zr) = ||µi − zr||22. This allows
us to present candidate streams visually similar to
reference concepts during the labeling process.

Other works do typically not differentiate these two
tasks. We, however, assume that modern visual neu-
ronal nets produce embeddings powerful enough to dis-
tinguish the visual content of image patches to some
extend. This is justified by observing that these ap-
proaches are used in broad scopes, i.e., face, human,
or character recognition and anomaly detection. Using
visual similarity to assist the user dramatically reduces
the mental efforts of an annotator while labeling image
patches. We found the ability to distinguish different la-
beling tasks to be the most dominant benefit. It enables
us to differentiate the tool support necessary for every
individual step to increase the overall efficiency of the
manual input.
We implemented the proposed approach in a tool called
Annotron. An example is shown in Figure 3. We eval-
uate the proposed approach using a case study from the
retail recognition domain.

3 CASE-STUDY
In this section, we present the implementation of the
proposed tool called Annotron. We evaluate the pro-
posed tool in the fine-grained domain of retail product
recognition. First, we describe an existing dataset that
will serve as a basis for our work in Section 3.1. Sec-
ond, we elaborate on the concrete implementation of
the automatic preprocessing module. Third, we give in-
sights on the manual work in Section 3.3. Finally, we
evaluate the outcome based on the resulting dataset and
compare it to the original dataset.

3.1 A Retail Recognition Dataset
We refine an already existing dataset to evaluate the
proposed approach. We chose a fine-grained dataset
from the domain of retail product recognition. In our
opinion, fine-grained datasets cover a very challenging
acquisition problem. Thus, we chose to refine a semi-
automatic generated large-scale dataset taken from [7]
to illustrate the efficiency of the proposed approach.

The original dataset contains over 23.000 different ref-
erence images and offers 41.000 frames from more than
20 video sequences. They were gathered using a we-
bcam mounted to a hololens. The authors used addi-
tional meta-knowledge of the environment to label the
data semi-automatically. The authors found 871 differ-
ent stock-keeping units in the database, collected with
four labelers.

Unfortunately, the dataset does comprise some inaccu-
racies. Bounding boxes were tracked over time using
the camera’s position calculated with the internal mea-
surements of the hololens. This leads to some irregu-
lar annotations, possibly due to synchronization issues.
Further, the authors deployed standard tool support to
identify visual concepts, such as a full-text search us-
ing the products’ names.

We assume that there is some headroom for improve-
ments regarding the complete localization of available
reference concepts, i.e., products. We find it challeng-
ing to determine the fine-grained visual differences
of retail products because products typically share
significant visual aspects and the enormous reference
concept space. This makes the Magdeburg Groceries
Dataset [7] the perfect basis for our experiments.

3.2 Automatic Preprocessing
This section describes our implementation of the pro-
posed automatic preprocessing module. Further, we
present detailed information on the parametrization.

3.2.1 Generate Candidates
Following the proposed approach, we generated bound-
ing boxes for every frame as proposed in Section 2.1.1.
We used a pre-trained network proposed in [18]. It was
trained on the SKU-110k dataset [10]. The dataset is
taken from a similar domain - retail product detection.
Thus, it can acquire the location of retail products on
shelves. We chose to use the network with pre-trained
weights due to the pure availability of a pre-trained de-
tector. However, it cannot recognize the classes of prod-
ucts in any sense. Thus, it serves as a good basis to
predict bounding boxes in the retail domain.

3.2.2 Trace Candidates
The previously predicted bounding boxes are mapped
from one frame to the next. In this step, the goal is
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Figure 3: We implemented Annotron as a web service for easy access and minimal system requirements. The status
page depicts various statistics of the current dataset.

to interconnect the locations across multiple frames.
As proposed in Section 2.1.2, we greedily select the
bounding boxes by calculating the IoU of consecutive
frames. Thereby we maximized the overlap based on
iteratively selecting bounding boxes that overlap with a
watershed algorithm. We accepted consecutive traces
up to a threshold of 0.5. The consecutive trace of over-
lapping bounding boxes, i.e., candidate traces, is fed
into the embedding network to describe the visual con-
tent.

3.2.3 Create Embeddings
We describe the visual content of candidate traces us-
ing embeddings to assist the user during the error-
prone manual work. We proposed using an existing
network to generate embeddings of visual inputs in
Section 2.1.3. We again use an already-trained net-
work [8] from the retail domain. The network archi-
tecture is based on the well-known resnet-50 architec-
ture [12]. The classification head was removed, and
a 128-dimensional embedding head was attached. We
embed the visual content of every reference concept,
and every candidate of all traces scaled to 128x128
pixel patches. We use the euclidean distance metric to
compare these embeddings.

3.2.4 Visual Similarities
The last preparation step is the identification of visual
similarities. As proposed in Section 2.2, these embed-

ded visual representations are used to assist the labeling
procedure later. As shown there, we are using the k-
nearest neighbors of reference and candidate images as
well as the k-nearest neighbors of the mean of candidate
images. We use an approximated variant1 since retriev-
ing k=50 nearest neighbors can be a resource-intensive
task. We precompute the nearest neighbors and save
their identifiers in a database to allow a smooth user ex-
perience.

3.3 Manual Annotation
Finally, it is the task of the labeler to identify visual con-
cepts and annotate them manually. Figure 3 depicts the
status page of the proposed tool. It allows the labeler to
monitor the labeling progress itself and the distribution
of tagged candidate streams.
Further, it displays a comparison to the original Magde-
burg Grocery dataset [7]. We identified 1188 visual
concepts, i.e., retail products. The original work found
871 visual concepts in the data. We assume that the dif-
ference is mainly because the original work used stan-
dard tool support to identify products, such as a full-text
search over product names. We instead used the visual
similarities of image patches. Thus, we conclude that
the larger number of found products must be due to the
better tool support.

1 github.com/spotify/annoy
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(a) Identify Visual Concepts. An-
notron comprises special tool support
that structures the annotation work-
flow. Tracked candidate streams are
ordered based on their embedding sta-
bility.

(b) Annotation View. Annotron de-
picts all samples of a candidate stream
and the nearest neighbors based on vi-
sual similarity.

(c) Increase Observations. The user
can quickly identify more visually
similar candidate streams using al-
ready tagged streams or the reference
image of the visual concept 8751.

Figure 4: Different stages of the annotation process depicted in Annotron. Annotron provides specialized tool
support for the different stages in the labeling process.

Figure 4 depicts the proposed tool support at a glance.
In this work, we describe the three major views of An-
notron. We cover the particular views of Annotron in
the following.

3.3.1 Identify Visual Concepts
Figure 4a depicts the user interface of Annotron during
the identification phase. Here, the candidate streams are
ordered by embedding stability. A single click redirects
the user to Figure 4b.

On the left side of Figure 4b all individual image
patches of the candidate stream are shown. The
right side of Annotron displays a distinct list of the
top-5 nearest neighbors of every image patch in the
candidate stream ordered by their number of votes.
A single click links the visual reference concept to
the candidate stream. Annotron redirects the user to
the next candidate stream (cf. Figure 4b) without
additional interaction.

3.3.2 Increase Observations of Concepts
Figure 4c depicts the user interface of Annotron de-
signed explicitly for the phase of increasing the obser-
vations of the particular visual concept. The GUI is
organized similarly to a classical website. At the top,
all information of the visual concept is presented. Af-
ter that, already annotated candidate streams are de-
picted. Then, candidate streams that are similar to al-
ready tagged streams are depicted. With a single click,
the user can link the displayed candidate streams to

the visual concept. If the user hovers over a candi-
date stream, we virtually scroll through it, enabling him
to identify invalid patches easily. Finally, the nearest
neighbors of the visual concept in the embedding space
are depicted at the bottom of the page. In the particu-
lar example, we can see the challenges of fine-grained
recognition problems: Close neighbors in the candidate
stream space depict visually similar classes to already
tagged candidate streams, but the nearest neighbors of
the reference image depict purely invalid samples that
share large visual similarities. It is the duty of the la-
beler to identify only valid matches and link real-world
and reference images accordingly.

3.4 Refined Dataset
This section covers the final result of our labeling ac-
tivity. We detected 3.573.906 images patches in the
complete set of image frames. We further managed
to track 1.153.516 candidate streams. We annotated
446.481 image patches of 1.188 different retail prod-
ucts. Thereby, we manually annotated 21.861 candi-
date streams, meaning that every stream we manually
labeled consists of 20 tracked bounding boxes on aver-
age. That underlines the greedy strategy we employed
through the labeling phase.

As shown in the Annotron tool in Figure 3, we managed
to identify over 90% of the previously found visual con-
cepts. This is especially remarkable since we annotated
the retail products with lower manpower as in the orig-
inal dataset. We labeled the data with a single labeler,
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while four labelers were needed in the original work.
Further, we identified over 400 new visual concepts that
were already presented in that dataset and not labeled in
the original variant. We conclude that this increase of
found retail products has to originate in the better tool
support proposed in this work.

4 CONCLUSION
In this article, we proposed an semi-automatic image
annotation tool called Annotron, which aims at lower-
ing the hurdle of acquiring new datasets in fine-grained
domains. We exploit the structure in datasets, such as
in the domain of retail product recognition, in which
products are densely packed on shelves, to achieve a
fast and continuous annotation workflow by reproject-
ing bounding boxes of consecutive image frames. This
is also helpful in other datasets if they are similarly or-
ganized in video frames.
Further, we exploit the capabilities of modern neuronal
networks by projecting the visual contents of reference
and real-world images into a mutual embedding space.
This enables us to extract similar-looking objects and
determine possible matches, i.e., depicting the same vi-
sual concept, from both input spaces. We implement
an intuitive interface that presents possible matches to
a labeler to acquire ground truth annotations of objects
tracked over time.
We demonstrated the applicability of Annotron in the
fine-grained domain of retail recognition. We refined an
existing database from the literature and extended the
total number of found stock-keeping units with lesser
manual effort. We showed that the proposed approach
efficiently lowered the need for manual assistance dur-
ing the labeling procedure.
However, we only focused on a single database and
heavily relied on the fact that it consists of videos. If the
images to be tagged are not consecutively ordered, we
cannot track patches across multiple frames, which pre-
vents us from finding candidate samples and ultimately
increases the required annotation efforts. The effort
gains originated in the proposed idea of using encoded
image representations to acquire possible matches re-
main in effect. We plan to address this validity flaw by
extending another database in the future.
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