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ABSTRACT

3D line skeletons are simplistic representations of a shape’s topology which are used for a wide variety of
geometry-processing tasks, including shape recognition, retrieval, and reconstruction. Numerous methods have
been proposed to generate a skeleton from a given 3D shape. While mesh-based methods can exploit existing
knowledge about the shape’s topology and orientation, point-based techniques often resort to precomputed per-
point normals to ensure robustness. In contrast, previously proposed techniques for unprocessed point clouds
either exhibit inferior robustness or require expensive operations, which in turn increases computation time. In this
paper, we present a new and highly efficient skeletonization approach for raw point cloud data, which produces
overall competitive results compared to previous work, while exhibiting much lower computation times. Our algo-
rithm performs robustly in the face of noisy and fragmented inputs, as they are usually obtained from real-world 3D
scans. We achieve this by first transferring the input point cloud into a Gaussian mixture model (GMM), obtaining
a more compact representation of the surface. Our method then iteratively projects a small subset of the points
into local L1-medians, yielding a rough outline of the shape’s skeleton. Finally, we present a new branch detection
technique to obtain a coherent line skeleton from those projected points. We demonstrate the capabilities of our
proposed method by extracting the line skeletons of a diverse selection of input shapes and evaluating their visual
appearance as well as the efficiency compared to alternative state-of-the-art methods.
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1 INTRODUCTION

Line skeletons – infinitely thin and centered represen-
tations of a shape’s topology – have been a heavily re-
searched topic since the original concept definition by
Blum [Blu67] in 1967. This compact approximation
captures the essence of the topological structure of even
highly detailed 3D shapes, and acts as an efficient proxy
for applications such as shape identification, classifica-
tion and retrieval.

3D skeletonization approaches typically require a sur-
face mesh or volumetric mesh as input and extract the
line skeletons through shrinking, contracting, project-
ing or other geometry processing techniques. How-
ever, in some cases, e.g. scanning of real world objects,
shapes are available only as raw point clouds. Obtain-
ing line skeletons from such inputs is possible but en-
tails additional challenges [OI92; CSM07; HLZ*09].
A skeletonization technique able to process such input
data was proposed by Huang et al. [HLZ*09]. It builds
on the Locally Optimal Projection (LOP) operator pro-
posed by Lipman et al. [LCLT07], which allows for a
parametrization-free resampling of the surface given by
a raw input point cloud. Let P = {p j} j∈J ⊂ R

3 be an

unordered set of input points and X (0) = {x
(0)
i }i∈I ⊂R

3

an arbitrary set of projected points with |X (0)| ≪ |P|
and I, J denoting index sets. While X (0) can contain
any points from R

3, in practice faster converge can be
achieved with the initialization X (0) ⊂ P. The LOP op-
erator tries to determine the set of optimally projected
points X by satisfying

argmin
X

∑
i∈I

∑
j∈J

||xi− p j||θ(||xi− p j||)+R(X). (1)

Here, the first term describes the locally weighted
L1-median [Web09], driving the points in X towards
local centers of P. The repulsion force R(X) prevents
projected points from accumulating in clusters. Huang
et al. [HLZ*09] adopted this operator to account
for non-uniform particle distributions with a locally
adaptive density weighting, referred to as Weighted

LOP (WLOP). To this end, they assign weights to each
point p j and xi, based on the local point cloud density.
Preiner et al. [PMA*14] show how to reformulate this
operator to work on a compact mixture of anisotropic
Gaussians M, representing the input point cloud P.
Their projection scheme is referred to as Continuous

LOP (CLOP). They reformulate the attraction force ac-
cordingly, where |M|≪ |P|, thereby greatly enhancing
the efficiency of the projection.
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While this family of projection operators was originally
designed to reconstruct surfaces from noisy and incom-
plete point clouds, Huang et al. [HWC*13] showed
that with minimal adaptions WLOP can also be used
to project the surface points into local centers of the
entire shape, thus constituting the basis for a line skele-
ton. They use a weighted Principal Component Anal-

ysis (PCA) to detect point connections and branches.
The advantage of this approach is that it has few re-
quirements regarding the quality of the input point set
as it is very robust w.r.t. outliers. Also, neither a surface
mesh nor vertex normals are required.

We present a novel method that combines this WLOP-
based skeletonization with the much more efficient
CLOP operator that operates on a Gaussian mixture
representation of the input data. Moreover, we replace
the point-based branch detection technique, proposed
by Huang et al., with a more robust probability-based
approach. Finally, we show that by decoupling pro-
jection and branch detection, a further increase of
computational efficiency can be achieved.

2 RELATED WORK

The topic of skeletonization is vast and multi-faceted.
Several different strategies have emerged over the
years, ranging from shrinking ball methods and dis-

tance field methods to medial-surface-based methods

and contraction methods, each with a large number
of publications. Among these methods, various ap-
proaches can be also be classified based on the type
of input data they process, such as (watertight) surface
meshes, voxel grids, or point clouds. In this paper,
we primarily focus on skeletonization techniques that
process point clouds as inputs. For a general discussion
on skeletonization techniques, we refer the reader to a
number of surveys. Cornea et al. [CSM07] give a broad
overview of methods for obtaining curve skeletons.
Sobiecki et al. [SYJT13] focus specifically on the com-
parison of contraction-based skeletionization methods,
and they also look into the comparison of curve- and
surface-skeletons operating on voxel shapes [SJT14].
The most recent survey from 2016 by Tagliasacchi et

al. [TDS*16] constitutes an encompassing report on all
types and aspects of skeletonization.

While the vast majority of approaches requires surface
meshes as input, Ogniewicz and Ilg [OI92] show how
line skeletons can be obtained from point clouds based
on a Voronoi diagram of boundary points. A weakness
of this approach is that it requires a uniform sampling
of an intact input shape, which is not generally pro-
vided by many point clouds, especially when they are
obtained by scanning real-world physical objects.

Sharf et al. [SLSK07] propose growing a watertight
genus-0 mesh inside the input point cloud with mul-
tiple competing evolving fronts. While this approach

manages to capture various degrees of detail and is able
to cope with missing data, it is computationally expen-
sive. Tagliasacchi et al. [TZC09] achieve robustness
w.r.t. holes in the point cloud by inferring a general-
ized rotational symmetry axis (ROSA) from the points,
which, however, requires normals provided along with
the point positions as input. Cao et al. [CTO*10] show
how skeletons can be obtained from point clouds by
pairing a Laplacian-based contraction – as proposed by
Au et al. [ATC*08] for surface meshes – with a local
Delaunay triangulation.

3 GMM-BASED SKELETONIZATION

In this section we discuss our method and its main
components in detail. Our method performs a contin-
uous optimal projection (CLOP) (Sec 3.1) with dynam-
ically increasing kernel radii (Sec 3.2). The subsequent
branch detection (Sec. 3.3) takes the projected points as
input and yields a connected 1D structure capturing the
essential geometric shape of these points.

3.1 L1-Medial Projection

Based on the condition given in Eqn. (1), Huang et

al. [HLZ*09] use the following update rule for the pro-

jected points x
(k)
i ∈ X (k) at iteration k:

x
(k+1)
i = F1(x

(k)
i ,P)+µF2(x

(k)
i ,X

(k)
i \{xi}), (2)

with the attraction force

F1(x,P) = ∑
j∈J

p j

α j

∑ j′∈J α j′
(3)

and the repulsion force

F2(x,X
′
i ) = ∑

i′∈I\{i}

(x− xi′)
βi′

∑i′′∈I\{i}βi′′
, (4)

where

α j =
θ(||p j− x||)

||p j− x||
and (5)

βi′ =
θ(||x− xi′ ||)

||x− xi′ ||

∣

∣

∣

∣

∂η

∂ r
(||x− xi′ ||)

∣

∣

∣

∣

. (6)

In Eqn. (2), µ governs the balance between the forces
and should be within [0,0.5) for practical applications
[HLZ*09; PMA*14]. θ(r) = er2/(h/4)2

is a fast decay-
ing, isotropic kernel function over support radius h. The
projection scheme in this form corresponds to the LOP
operator by Lipman et al.

In order to account for non-uniform densities in the in-
put point cloud, the WLOP operator introduces addi-
tional local density weights

v j = 1+ ∑
j′∈J\{ j}

θ(||p j− p j′ ||), (7)

w
(k)
i = 1+ ∑

i′∈I\{i}

θ(||x
(k)
i − x

(k)
i′
), (8)
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Figure 1: A point cloud is converted to a mixture of
anisotropic Gaussians, visualized as blue ellipsoides
denoting their 0.5 iso-variance.

acting on Eqn. (5) and Eqn. (6) as α j = α j/v j and

β
(k)
i′

= β
(k)
i′

w
(k)
i . This adopted scheme results in an im-

proved point regularity and further prevents the forming
of point clusters.

With CLOP we approximate the input point set P by
a much more compact mixture of anisotropic Gaus-
sians M = {w j,µ j,Σ j}, where w j denotes the Gaus-
sian’s convex weights, µ j their means, and Σ j their
anisotropic covariance matrices. Such a mixture can
be computed efficiently by means of a regularized hier-

archical expectation maximization [VL98; PMA*14].
Accordingly, Eqn. (3) is reformulated to exert the in-
tegral attraction force of the continuous density of the
mixtureM,

F1(q,M) =
∑ j w j

∫

R3 x g(x|µ j,Σ j) α(x) dx

∑ j w j

∫

R3 g(x|µ j,Σ j) α(x) dx
, (9)

which can be efficiently evaluated in closed form
[PMA*14].

3.2 Adaptive Kernel-Growth

Huang et al. [HWC*13] propose an interleaved WLOP
projection and branch detection scheme in order to ob-
tain a L1 medial projection of points. To this end, a
constantly increasing kernel size h is used to cover fea-
tures of different diametric extents, while avoiding the
degeneration of smaller features in the presence of too
large h. During the branch detection step, subsets of
the projected points that are found to exhibit a branch-
like structure are marked as fixed and excluded from
the further projection iterations in order to prevent their
degeneration.

Opposed to an interleaved execution, we found that
the efficiency as well as the robustness of the skele-
tonization process could be improved by performing
the projection and branch detection steps consecutively.
That is, we perform CLOP projection until all projected
points X have converged towards their local L1 median,
and only then, branch detection is performed. As a con-
sequence, we also have to adjust the kernel-growth pol-
icy accordingly: Since no points are fixed until projec-
tion is finished, a globally increasing kernel would de-
stroy the valid medial structures which form at a small
h in areas of delicate features. To resolve this issue, we

employ an increasing but locally adaptive kernel size
whose growth rate is governed by the local anisotropy
of the shape.

Starting from an initial kernel size of h(0) = 2bbd/ 3
√

|P|
(where bbd denotes the bounding box diagonal of P) as

proposed by Huang et al., the kernel h
(k)
i for point xi at

iteration k is given by

h
(k)
i = h

(k−1)
i +∆hν

(k)
i , (10)

with ∆h = h(0)/2. The local growth factor ν
(k)
i ∈ [0,1)

ensures that areas with highly isotropic neighborhood
experience a comparably large kernel growth, while
regions of highly anisotropic shape experience almost
none. The local growth factor is given by

ν
(k)
i =







1 if n
(k)
i ≤ 2,

1−
n
(k)
i −2

n
(k)
i −1

σ
(k)
i otherwise.

(11)

Here, the measure for local anisotropy σ
(k)
i ∈ [0,1] is

given by

σ
(k)
i =

λ
(k)
i2

λ
(k)
i0

+λ
(k)
i1

+λ
(k)
i2

, (12)

where λ
(k)
i0
≤ λ

(k)
i1
≤ λ

(k)

i2
are the real-valued eigenval-

ues of the weighted covariance matrix

C
(k)
i = ∑

i′∈I\{i}

θ(||vi,i′ ||)vi,i′v
⊤
i,i′ , vi,i′ = x

(k)
i −x

(k)
i′
. (13)

Note that σ
(k)
i is scaled relative to the size of xi’s lo-

cal neighborhood n
(k)
i = |{i′ ∈ I \ {i} : ||x(k)i − x

(k)
i′
|| <

h
(k)
i }|. This counteracts a known downside of the ap-

plied weighted PCA that very sparse neighborhoods
could exhibit a very high anisotropy, thus preventing
any kernel growth and point projection in the first place.

Figure 2: Left: density of M (blue) and projected
skeleton points X (red). Middle: hierarchical EM on
X results in a skeleton mixture MX . Right: Skeleton
after probabilistic branch detection.

3.3 Branch Detection

The iterative CLOP projection (Sec. 3.1) results in a
regularized point set X in the local L1-medians of the
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input shape. Although X resembles the resulting skele-
ton, the points do not convey any connectivity or branch
information. Thus, in a final processing step we extract
a set of connected straight line segments constituting
the branches of the shape’s skeleton.

We circumvent the instabilities we encountered with
point-based branch detection approaches [HWC*13]
by extracting branches from a probabilistic approxima-
tion of the projected points. This way, branch detection
is more robust w.r.t. outliers and areas with high point
density. Similar to the processing of input points P in
Section 3.1, we use a regularized hierarchical expecta-
tion maximization [PMA*14] to compute a Gaussian
mixture MX = {wi,(µi,Σi)} of the final projected
points X (Fig. 2, middle). The mean points {µi} of
the resulting Gaussians are then iteratively connected
such that the angle α between adjacent segments
(Fig. 3b) does not fall below αmin = π/2, as we assume
that the points within a branch are well aligned. Let
M = (dM(i, j)) ∈ R

|M|×|M|, i, j = 1..|M| denote the
matrix of symmetric Mahalanobis distances [Mah36]
dM(i, j) = min{d̃M(µi,µ j,Σi), d̃M(µ j,µi,Σ j)}, with
d̃M(x1,x2,Σ) =

√

(x1− x2)⊤Σ−1(x1− x2), and let
E = (||µi − µ j||) denote the equal-sized matrix of
Euclidean distances between components’ means.
Our greedy branch detection method employs these
distances as outlined in Algorithm 1, with the minimum
number of components per branch bmin = 5, and the
maximum Euclidean distance between components
dmax = 0.1% of the bounding box diagonal.

As this approach can result in multiple disjoint
branches, we complete this stage by merging these seg-
ments to a single connected set of branches (Fig. 3c).
To this end, we perform a connected components
analysis to identify unconnected clusters. Branches
are merged pairwise by inserting a link between
the two points from the respective clusters with the
lowest Mahalanobis distance dM . This merging is
conducted iteratively until only one cluster remains,
which constitutes the final skeleton (Fig. 2, right).

(a) (b) (c)

Figure 3: Starting from a seed pair of mixture compo-
nents with minimal distance (a), an angle criterion (b)
is used to grow the branch in both directions. Finally
all branches are merged (c) to obtain a fully connected
line skeleton.

4 RESULTS

We compare our method to five alternative skeletoniza-
tion methods (Sec. 4.1), both mesh-based and point-

Algorithm 1 Branch detection based on pair-wise Ma-
halanobis distances M and Euclidean distances E as
well as governing thresholds αmin, dmax and bmin.

1: function BRANCHDETECTION(M, E, αmin, dmax, bmin)
2: B←{} ▷ The set of branches
3: A← 1..|M0∗| ▷ The index set
4: v←{} ▷ The blacklist of used points
5: (î, ĵ)← argmini∈A, j∈A Mi j

6: while |A| ≥ bmin and Eî ĵ < dmax do

7: b← ⟨î, ĵ⟩ ▷ Init new branch
8: prev← argmini∈A\b(Mib0

)

9: while ∠(
−−→
b0b1,

−−−−→
b0prev)> αmin do

10: b← ⟨prev,b⟩ ▷ Grow head
11: prev← argmini∈A\b(Mib0

)
12: end while

13: next← argmini∈A\b(Mib|b|−1
)

14: while ∠(
−−−−−−−→
b|b|−1b|b|−2,

−−−−−−→
b|b|−1next)> αmin do

15: b← ⟨b,next⟩ ▷ Grow tail
16: next← argmini∈A\b(Mib|b|−1

)
17: end while

18: if |b| ≥ bmin then

19: B← B∪{b} ▷ Append to branches
20: end if

21: A← A\b ▷ Update index set
22: (î, ĵ)← argmini∈A, j∈A Mi j ▷ Update start
23: end while

24: return B

25: end function

based approaches, and evaluate the obtained results re-
garding their visual appearance and capability to cap-
ture the essence of a shape (Sec. 4.2), their compu-
tational efficiency (Sec. 4.3) and their robustness w.r.t

noise and outliers (Sec. 4.4).

4.1 Reference Methods

We compare our method to the original LOP-based ap-
proach (L1-WLOP) by Huang et al. [HWC*13], the
ROSA approach by Tagliasacchi et al. [TZC09], and
the Laplacian-based contraction of point clouds (Lap-
Con10) by Cao et al. [CTO*10]. The former is given
as a C++ implementation, while the latter two are avail-
able as MATLAB scripts. Besides these point-based
methods we additionally compare our method to sev-
eral mesh-based approaches (Wave Fronts, Geometry
Contraction, TEASAR and Tangent Ball). Those are pro-
vided within a Python library1 by Au et al. [ATC*08],
which we also employ to preprocess the inputs and fix
common mesh deficiencies, like duplicate or unrefer-
enced vertices, degenerated faces and the like.

Wave Fronts

This method requires a surface mesh as input. Starting
from a randomly selected seed vertex, a wave is prop-

1 https://navis-org.github.io/skeletor/
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agated across the mesh based on a given n-ring neigh-
borhood, where n defines the propagation step. Vertices
that are hit by the wave at the same step are consid-
ered rings and are subsequently collapsed to their com-
mon center. This approach is particularly well-suited
and highly efficient for tubular structures.

Geometry Contraction

Au et al. [ATC*08] describe a skeletonization method
based on an iterative geometric contraction (henceforth
referred to as LapCon08VC) of the surface mesh. To
this end, the mesh is subjected to an implicit Lapla-
cian smoothing [SCL*04] until the mesh converges to
a zero-volume skeleton-like shape. The remaining sur-
face topology is then transformed to a one dimensional
curve using a connectivity surgery process. Contrac-
tion weights control the efficiency of contraction, while
attraction weights dynamically adapt to the local neigh-
borhood. We used the contraction parameter sL = 2.0
recommended by the authors. For inputs where these
result in numerical instabilities, a smaller value was
used. We also applied a sufficiently large convergence
threshold εvol = 0.1 which lets the contraction stop if
the contracted mesh is reduced to less than 10% of its
original volume. To obtain a line skeleton from the
contracted mesh, a subsequent vertex clustering algo-
rithm is applied which joins vertices within a maximum
geodesic distance of sdmax

. As the value of this parame-
ter recommended by the authors resulted in instabilities
on several of our inputs, we have increased this param-
eter for those cases.

Besides vertex clustering, Au et al. propose a
second, alternative connectivity surgery method (Lap-

Con08EC). Here, edges are iteratively collapsed in a
greedy fashion based on a cost function that follows es-
tablished mesh geometry preservation metrics [GH97].
An advantage of this approach is that it can be directly
applied without the computational expensive prior
contraction of the input (as we do in our experiments),
while on the downside, it is more sensitive to the scale
of the input.

TEASAR

The TEASAR algorithm by Sato et al. [SBB*00] starts
from a randomly determined root voxel V0 of a volu-
metric input mesh, and determines the voxel that max-
imizes the shortest-path length to V0, invalidating all
voxels within a given distance along its path. Next, the
second longest shortest-path between still valid voxels
is picked up repeatedly until all voxels are invalidated.
This approach is well suited for shapes with an under-
lying tree structure and tubular sections like vessels, rib
cages and the like. Although the original approach is

conceptualized for volumetric meshes, the only avail-
able code is an adaption by Dorkenwald et al. [DS22],
operating on surface meshes. Note however, that this
adaption produces skeletons that lie on the surface of
the input shape.

Tangent Ball

With their medial axis point approximation method
(henceforth referred to by Tangent Ball) Ma et

al. [MBC12] leverage vertex normals to determine
the line skeleton. A set of randomly determined seed
points are used to generate spheres, whose center points
are located along their inverse vertex normal axis, such
that the respective seed points rest on their sphere
surface. The spheres’ radii are decreased iteratively
via nearest neighbor queries until they contain no other
sampling point than their respective seed point. The
authors show that for an infinite number of seed points,
the sphere centers converge towards the true medial
axis. The method is highly sensitive w.r.t. the quality
of vertex normals and works generally well for smooth
surfaces, while errors in the mesh and noisy surfaces
pose a limitation.

4.2 Visual Comparison

In order to conduct a qualitative evaluation of our skele-
tonization approach, we compiled a diverse set of in-
put shapes, posing different challenges to skeletoniza-
tion: (i) a Dino shape which is a simple standard model
of a creature with a finite number of extremities, (ii) a
statue of Neptune, a humanoid figure with several high-
frequency structures like fingers, hair and a trident, (iii)

an abstract smooth model of Dancers, (iv) a Tree model
comprising a large number of thin details, and (v) a
topologically complex Filigree model of genus 10. The
inputs, as well as their number of vertices, faces and
mixtures, are presented in Fig. 4, top row. All models
have been skeletonized using the reference skeletoniza-
tion methods listed in Sec. 4.1.

For the Dino shape (Fig. 4, first column) the Wave
Fronts, TEASAR, Tangent Ball, ROSA, LapCon10, L1-
WLOP, and our method result in plausible line skele-
tons with clearly distinguishable extremities like legs,
tail and neck. The LapCon08EC and LapCon08VC ap-
proaches lead to an oversimplification.

For the Neptune model (Fig. 4, second column) all
methods yield plausible results. However, in con-
trast to the Dino model, the LapCon08EC skeleton
exhibits various superfluous branches. The same can
be observed for the result generated by the TEASAR

method in the torso region of the model. Note that
LapCon08VC, ROSA, LapCon10, L1-WLOP and
our method only partially preserve the thin tip of the
trident.
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† The original concept requires a volumentric mesh, but the given results were obtained with an adaptation for surface meshes.
Figure 4: Qualitative comparison of our method to eight related approaches using five diverse input shapes. The
numbers in the table header denote the models’ number of vertices, faces and mixture components after conversion
to a GMM. Filled circles on the left indicate the type of input data and attributes required by a specific approach.

The Dancers model (Fig. 4, third column) poses a seri-
ous challenge to all of the applied algorithms, as none
of them are able to capture the genus of the input shape
within their resulting skeleton. Nonetheless, all results
appear to be plausible, and one could argue that the

skeleton calculated by L1-WLOP comes closest to the
desired result.

The Tree shape (Fig. 4, fourth column) yields very di-
verse results. While the Wave Fronts, LapCon08EC
and TEASAR methods obtain an overly detailed skeleton
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with a branch for every leaf, the LapCon08VC, Tangent
Ball, and L1-WLOP methods return an oversimplified
skeleton. ROSA, LapCon10 and our method provide a
good trade off and are able to capture the stem as well
as the thicker tree branches. Note that the input mesh
is comprised of two intersecting but unconnected com-
ponents (lower stem and tree crown). LapCon10 and
our method are the only ones which are able to return a
single connected skeleton component for this input.

The Filigree model (Fig. 4, fifth column) also exhibits
tubular structures of higher genus. Similar to the
Dancers model, none of the algorithms is able to
capture the shape’s essential structure accurately,
and the achieved skeleton quality of the individual
algorithms is comparable to the skeletons calculated
from the Dancers model.

4.3 Efficiency

Table 1 lists the skeleton computation times for all pre-
sented methods and models. All computations were
performed on commodity hardware. Note that our
method was implemented in C++, while the reference
methods were provided as either Python scripts, Matlab
scripts or C++ implementations.

Table 1: Computation times for different models and
approaches in seconds.
Model Dino Neptune Dancers Tree Filigree
Wave Fronts 0.16 0.22 0.04 1.25 0.21
LapCon08EC 42.28 80.23 4.32 173.12 52.62
LapCon08VC 100.13 207.93 10.49 226.36 123.01

Contraction+ 99.55 206.96 10.32 221.06 122.32
Clustering 0.59 0.97 0.17 5.30 0.69

TEASAR 0.45 1051.85 0.66 1.18 0.99
Tangent Ball 39.70 7.50 0.42 6.18 4.17
ROSA 5101.80 5479.90 7308.00 2236.60 411.29
LapCon10 195.00 525.00 1168.00 977.00 252.00
L1-WLOP 40.00 50.00 161.00 51.00 12.00
Our Method 8.37 13.54 12.98 17.63 3.89

Init† 1.93 3.06 5.99 7.55 1.26
HEM† 0.54 1.05 5.41 2.11 0.69
Projection 5.67 9.17 1.49 5.93 1.81
Branching‡ 0.23 0.26 0.09 2.05 0.12

† Mixture computation of the input point set.
‡ Mixture computation of the projected points plus branch detection.
+ Times can vary significantly, depending on parametrization.

From Table 1 we can observe a correlation of efficiency
between model sizes and computation times. In par-
ticular, the skeletonization of the Tree model takes sig-
nificantly longer with almost all approaches. We can
also see that the computation times with different meth-
ods vary greatly. LapCon08VC, Tangent Ball and Lap-
Con10 are generally slower, with computation times up
to a few minutes. In general, the ROSA technique ex-
hibited the slowest performance, with timings far out-
side the comparable range for most of the models. Note
that the bottleneck of the LapCon08VC method is given
by the contraction step, whose efficiency is very sen-
sitive w.r.t. the governing parameters. The authors
state that these techniques could be orders of magnitude
faster with optimal parameterization [ATC*08], which

we aimed to find manually to the best of our means.
In contrast, the Wave Fronts and TEASAR methods ex-
hibit very short computation times. As an exception,
the skeletonization of the Neptune model with TEASAR

took more than 17 minutes on our reference platform.

Our method aligns itself in-between the fast and the
slow reference methods with computation times settled
around several seconds. As it can be seen from the per-
formance break-down, our computation time is mostly
composed of the computation of a Gaussian mixture of
input points, necessary for CLOP (Sec. 3.1) and the
iterative projection (Sec. 3.2). Interestingly, we can
observe that the computation time with our approach
does not significantly increase with increasing model
size and complexity (c.f. Tree model), as the number
of mixture components does not increase equally. For
a proper interpretation of the presented timings, note
that our method receives a raw non-parameterized point
cloud as input, while most reference methods receive a
fully connected surface mesh or point clouds with pre-
processed vertex normals. If the actual input of those
methods were given by raw points cloud as well, addi-
tional computation times for normal and surface recon-
struction would have to be factored in. These timings
were omitted in our comparison, since the input shapes
were already given as surface meshes and reconstruc-
tion timings are themselves known to depend heavily
on the applied method and parameters.

4.4 Stability

In most practical applications of line skeletonization
it is generally required that similar input shapes re-
sult in similar skeletons. However, it has been shown
that even very small perturbations on the surface of
an input shape can lead to a substantially different
skeleton [TDS*16]. This phenomenon has been re-
ferred to as skeletal noise [RVT08] or spurious points

[SBTZ02]. Since 3D models captured from real world
objects typically suffer from a multitude of different er-
rors [BLN*13], the robustness of a skeletonization al-
gorithm w.r.t. surface perturbations is a major quality
characteristic.

We analyze the stability of our method by looking at
the Filigree model, as it exhibits a multigenus geom-
etry with structures and features of varying sizes. We
subject the model to different levels of noise in order to
mimic the artefacts present on models obtained by scan-
ning real-world physical objects. In terms of noise, we
apply white noise following the Gaussian distribution
N (0,σ2) to all of the vertices. Different magnitudes
σ2 of noise, 0.002, 0.005, and 0.01 times the object’s
bounding box diagonal, have been investigated, in the
following referred to as N0.002, N0.005 and N0.01. The
resulting noisy inputs are shown in the top row of Fig. 5.

Rows 2 to 7 of Fig. 5 present the skeletons result-
ing from our method as well as the reference methods
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Figure 5: Top: Filigree model subjected to various levels of noise and (shaded in blue) additional decimation step.
Rows 2-7: Skeletonization with different methods based on the respective noisy (and decimated) inputs. The red
dots in the line skeletons mark junction points.

(Sec. 4.1), based on the different noised inputs. It is
immediately visible that the results degenerate with in-
creasing levels of noise, independent from the applied
method. Moreover, we can observe clear differences
in the quality of the approaches. The LapCon08EC,
TEASAR and especially the Tangent Ball methods ex-
hibit a major increase in skeletal noise, even with visu-
ally inconspicuous surface perturbations. The skeletons
obtained with the Wave Fronts and Iterative Contrac-
tion methods do not significantly differ from the results
obtained with the noiseless model (Fig. 4). With our
method no significant deterioration is apparent at the

lower two noise levels N0.002 and N0.005, and only at
level N0.01 slight perturbations become visible.

Additionally to this visual comparison, we provide
a quantitative evaluation of robustness. To this end,
we count the number of junction points (points where
branches are joined) of the resulting skeletons as an
indicator for skeletal noise. For the Filigree model we
expect around 20 junction points as visualized in Fig. 6,
left. The figure shows the number of junction points
resulting from different algorithms and noise levels.
The comparably good performance of our method
is attributed to the fact that the Gaussian mixtures,
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Figure 6: Number of junction points obtained with dif-
ferent approaches and different levels of additive noise.
Algorithms marked with an asterisk are based on the
decimated inputs.

which the input points are converted to (Sec. 3.1),
allow to automatically model the inherent noise level
of the data, thereby providing an implicit pre-filtering
of the data. To investigate the impact of pre-filtering
on the results obtained with the comparison methods,
we apply a variant of the Quadratic Edge Collapse

Decimation by Garland et al. [GH98] to the noisy
inputs. We choose the parameters such that the
resulting number of vertices is equal to the number
of mixture components, which do not vary greatly
across noise levels. The decimated models can be
seen in Fig. 5, top row, shaded in blue. The results
for the different methods based on these decimated
inputs are given in Fig. 5, rows 2-7. While results
became worse with the LapCon08EC and Iterative
Contraction skeletonizations, an improvement can be
clearly observed for the Wave Fronts, TEASAR and
Tangent Ball approaches, where the skeletons obtained
with the decimated noisy input is even better than with
the unperturbed original input (Fig. 4).

5 LIMITATIONS AND FUTURE WORK

Like many other techniques, the results of the pro-
posed skeletonization approach can be sensitive w.r.t.

governing parameters. That is, empirically determined
parameters are required in three separate steps of our
pipeline: (i) the computation of the Gaussian mixture
for CLOP and balancing of attraction and repulsion
forces (Sec. 3.1), (ii) the speed of the adaptive kernel
growth (Sec. 3.2), and (iii) the thresholds governing the
branch detection (Sec. 3.3). Some of these parameters
could possibly be defined over properties intrinsic to
the input point cloud (diameter, density, feature sizes)
which can be part of future work.

The PCA-driven kernel growth (Sec. 3.2) and repulsion
force (Eqn. (2)) face typical issues of PCA, which are
also discussed in Huang et al. [HLZ*09]: erroneous

directivity estimates near thick point clouds and un-
wanted propagation between particles at close-by sur-
faces. The latter can be observed at the trident of the
Neptune model (Fig. 4) where the relative proximity of
the three parallel prongs leads to their collapse to a sin-
gle tubular structure. This poses a severe disadvantage
compared to mesh-based approaches, which can rely on
the surface topology to avoid the merging of close-by
surfaces.

Another aspect not investigated is the determination of
the appropriate number of projection steps necessary
for a successful projection for all shape granularities.
20 to 30 iterations turned out to be a good choice for
all inputs. Introducing an automatic halting criterion
would increase the flexibility of our method. A naive
approach is to stop the projection if the overall points

movement m(k) =∑i∈I ||x
(k+1)
i −x

(k)
i ||, falls below a cer-

tain threshold. In practice however, m does not gradu-
ally decrease with k, but instead can level off and run
into a local minimum, or even continue to decrease af-
ter two surface branches merge. Finding a simple yet
robust halting criterion in the face of these complex pro-
cesses is thus still open for further investigation.

6 CONCLUSION

We present an efficient projection-based point cloud
skeletonization approach. To this end, we marry the
concept of the WLOP-based skeletonization by Huang
et al. [HWC*13] with the CLOP operator [PMA*14].
In contrast to Huang et al., we grow projection kernels
for each point individually, based on a local anisotropy
measure, and conduct the branch detection after the
projection instead of interleaved. We present a prob-
abilistic branch detection approach for the projected
point set, which is more robust w.r.t. outliers. While
point-based approaches generally seem to be inferior
to surface or even volume-based approaches – as mesh
topologies incorporate much vital information – the
strength of our approach is that it does not depend
on high quality or manifold input data, and even per-
forms robustly in the face of noisy and incomplete data.
Hence, we think that our approach is a reasonable al-
ternative in cases where just the raw point cloud data
is available, e.g. in the case of 3D scans if no surface
reconstruction is conducted. We have demonstrated the
feasibility of our method by different experiments con-
ducted on a wide variety of 3D shapes, and analysed
limitations and problem cases to indicate directions for
future work.
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