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ABSTRACT
Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception.
The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor
searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm,
KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper,
we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly
infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based
space filling curves and multi-rotation of point cloud methods are introduced to point feature aggregation and
receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the
most efficient pointwise semantic segmentation method RandLA-Net [Qin20a] and achieves the same accuracy on
the large-scale benchmark SemanticKITTI dataset.

Keywords
Point Cloud, Semantic Segmentation, Space Filling Curves, Convolutional Neural Networks

1 INTRODUCTION
Lidar is widely used in autonomous driving perception
systems. The 3D point cloud captured from Lidar pro-
vides important geometric information for complex en-
vironment perception tasks like object detection and se-
mantic segmentation.

Unlike the regular structured images in computer vi-
sion, point cloud is irregular and unordered, and the
outdoor large-scale point cloud is sparse. To overcome
these challenges, most researchers transform the irreg-
ular point cloud to regular projection-based images or
3D voxels. Although these approaches can achieve sat-
isfactory results, there is information loss in 3D-2D
projection-based methods. In voxelization methods, the
preprocessing is expensive and the computational and
memory cost increases cubically by the increase of res-
olution [Yul20a]. In addition, when applying small res-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

olution and large voxel size, the specific granular point
features are ignored.

The PointNet [Cha17a] is a pioneering pointwise net-
work that directly processes point cloud and outputs
the label per point. The key contribution of PointNet is
to introduce the single symmetric function, max pool-
ing, to aggregate the global features from unordered
point clouds. However, the PointNet is limited to small
point clouds and cannot be extended to large-scale point
clouds [Qin20a]. The reason is the learned global fea-
tures by PointNet cannot represent a large-scale point
cloud consisting of many objects and complex struc-
tures.

Recently, PointNet-based works [Cha17b, Qin20a]
were proposed to directly process large-scale point
clouds. These pipelines include multi-level point cloud
sampling, neighbor searching, and PointNet-based
local feature aggregation. RandLA-Net [Qin20a]
achieves enhanced performances by efficient point
cloud random sampling. However, the pointwise meth-
ods do not have explicit point neighboring information,
and the time-consuming methods like KNN and ball
query [Yul20a] are still applied to neighbor searching.

For computer vision semantic segmentation tasks, fea-
tures aggregation of pixel does not require any extra
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Figure 1: Quantitative comparison results of our ap-
proach and other works on the SemanticKITTI dataset.

Layer Type Complexity per Layer

1D Convolution O(M ·K ·Cin ·Cout)
2D Convolution O(M2 ·K2 ·Cin ·Cout)
3D Convolution O(M3 ·K3 ·Cin ·Cout)

Table 1: Convolutional layer type and complexity per
layer. M is the output feature map size. K is the kernel
size, Cin is the input channel size, and Cout is the out-
put channel size. The output feature map size M can be
different between different layer type. The 1D convo-
lution layer could be more efficient because it reduces
the complexity caused by kernel size K

neighbor searching step, and it is replaced by applying
a 2D convolutional layer. The reason for this simplic-
ity is due to the fact that the structure of an image is
regular. The most simple strategy to make point cloud
regular is to sort the points, and space filling curves is
one sorting method to map high dimensional data to
1D sequence, while preserving the 3D local neighbor
information. The preserved local information can be
further applied to points feature aggregation and pre-
diction. Details of space filling curves can be found in
section 2.4.

Therefore, our basic idea is the 3D Lidar points can be
mapped to 1D sequence data, and the proposed 1D con-
volutional neural network can predict the points by the
preserved points local features. As high dimensional
neighbor searching method like KNN is deprecated,
and high efficient 1D convolution layer is used, our
proposed model is more efficient than the other similar
benchmark methods by a great margin (see Fig.1). The
efficiency of 1D convolution layer and the complexity
comparison of other layers can be found in Tab.1.

2 RELATED WORK
In this section, we give an overview of deep learning
based approaches in point cloud semantic segmenta-
tion tasks, mainly including voxelization based meth-
ods, projection based methods, and point based meth-
ods. Besides, the sorting algorithm space filling curves
(SFC) will also be introduced.

2.1 Voxelization based methods
Voxelization based methods [Xin21a, Yan20a, Jia21a,
Hao20a] transform the irregular unordered point cloud
into regular 3D grids, and then the powerful 3D con-
volution is applied in feature extraction and prediction.
However, the problem of granular information loss can
be caused by using a large voxel size. Meanwhile, the
computational and memory cost increases cubically by
the increase of the resolution, especially when process-
ing large-scale outdoor sparse point cloud [Yul20a]. To
tackle the granular information loss caused by a large
voxel size and the expensive cost caused by a small
voxel size, the fusion of a point based method and
sparse 3D convolution can be a feasible solution.

2.2 Projection based methods
To leverage the success from 2D image processing neu-
ral networks, the projection based methods [Che20a]
project the 3D point cloud into 2D images, and then the
traditional 2D architecture like U-net [Ola15a] is ap-
plied for features aggregation. However, the primary
limitation lies in the information loss from 3D-2D pro-
jection [Yul20a].

2.3 Point based methods
Inspired by the pioneering work PointNet, many
works [Cha17b, Qin20a] were introduced by directly
taking the point cloud as input and learning the point-
wise features by multi-layer perception and symmetric
function like max pooling.

To directly process large-scale outdoor point cloud, in
most pointwise MLP based works [Cha17b, Qin20a]
the pipeline includes sampling, neighbor points search-
ing such as ball query or K-nearest-neighbors (KNN),
PointNet-based features extraction, and per-point clas-
sification. Recently, RandLA-Net[Qin20a] was devel-
oped to utilize random point sampling and showed im-
pressive results. However, for carrying out the neigh-
bor points searching task, RandLA-Net still utilizes
the KNN method, which limits its efficiency even us-
ing the KDTree [Jon75a] algorithm with complexity
O(nlog(n)).

KPConv[Hug19a] is a kernel based point convolution
method, which in essence takes the neighbor points
as input and processes the points with spatial kernel
weights. However, in this method, the radius neigh-
borhood approach is applied to neighbor searching, and
the network cannot directly train the entire data of large
scenes [Jia21a].

2.4 Space filling curves
Space filling curves (SFC) is a sorting method to map
high dimensional data to one dimension sequence,
while preserving locality of the data points (e.g. the Eu-
clidean neighbor similarity in 3D tends to be kept after
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Figure 2: Morton-order in 2D case. The 2D points is
sorted while the locality is preserved, but there is still
information loss, like the distance between point 2 and
5 in 2D and 1D case is different.

mapped to 1D) [Tha20a]. One of widely applied and
high efficient SFC methods is Morton-order [Mor66a],
also known as Z-order because of the shape of the
curve in the 2D case, e.g. the curve in Fig.2. The
other SFC methods [Val05a] include Hilbert, Peano,
Sierpinski curves, etc.

In point cloud field, MortonNet [Tha20a] uses Morton-
order in self-supervised tasks, which not require se-
mantic labels. The trained MortonNet predicts the next
point in a point sequence created by Morton-order, and
the results show the learned Morton features can be
transferred to semantic segmentation tasks and improve
performances. However, like PointNet, MortonNet is
limited to small-scale point clouds.

Though SFC can keep the local features of high dimen-
sional data after mapping, there is still information loss.
As shown in Fig.2, the distance between point 2 and
point 5 in 2D space is 1, but after mapping to 1D se-
quence, the distance in 1D space is 3. The point 5 might
not be considered as the neighbor of point 2 after map-
ping, which limits the network points feature aggrega-
tion and prediction ability.

3 MVP-NET
In this section, we first present our key contribution,
the assumption-based space filling curves for 3D point
cloud, and the expansion of receptive field per point
by rotating the raw points, and at last an overview
of our network architecture MVP-Net, Multiple View
Pointwise Net, and the implementation details.

3.1 Space filling curves for 3D point cloud
Space filling curves (SFC) are widely applied to the
regular dense data like images, matrices and grid
cells [Val05a]. To obtain the SFC of large-scale

Figure 3: Space filling curves for 2D point cloud by
simple scores Eq.1

irregular sparse point cloud, we propose the Eq.8 to
calculate the score per point, and sort the points order
by the calculated scores.

For illustration purpose, the most simple case of 2D
points and scores per point is expressed as Eq.1,

scores = kx · round(x · rx)+ y (1)

where x, y denote the coordinates of 2D point, round()
is the rounding function to find the nearest integer of the
input. The key goal is to sort the points by cells along
x axis, and in each cell the points will be sorted along
y axis, as shown in Fig.3. The points in Fig.3 will be
sorted by the scores in Eq.1 in ascending order. rx and
kx are two hyperparameters to make the points strictly
sorted.

The cell width is 1
rx

, it can be derivated by inequation 2
and 3

−0.5≤ x · rx− xR < 0.5 (2)

→ xR

rx
− 0.5

rx
≤ x <

xR

rx
+

0.5
rx

(3)

where xR is the nearest integer of x · rx, i.e. xR =
round(x · rx).

To make sure the points are sorted strictly cell by cell,
the condition that the last point score in cell i is less
than the first point score in cell i+ 1 should be always
satisfied.

If the last point coordinate in cell i is denoted as (xi,yi),
and the first point in next cell i + 1 is (xi+1,yi+1),
the rounded values along x can be denoted as xi

R =
round(xi · rx) and xi+1

R = round(xi+1 · rx). Since cell
width is 1

rx
, the rounded values satisfy xi+1

R − xi
R = 1

rx
.

To make sure the last point scores in cell i should be less
than the first point scores in cell i+1, also kx ·xi

R +yi <
kx · xi+1

R + yi+1, the hyperparameter kx should satisfy
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Figure 4: Space filling curves for 3D point cloud by scores Eq.8

kx · xi
R + yi < kx · xi+1

R + yi+1 (4)

→ kx >
yi− yi+1

xi+1
R − xi

R
= (yi− yi+1) · rx (5)

→ kx > (ymax− ymin) · rx, (6)

where ymax and ymin is maximal and minimal coordinate
y values in all point clouds. In practice, we focus on the
region of interest points, e.g. in a rectangular region of
Xmin < x < Xmax, and Ymin < y < Ymax. As a result, the
hyperparameter kx should meet the condition 7

kx > (Ymax−Ymin) · rx. (7)

The hyperparameter rx, which determines the cell size,
will be extended and discussed in the full sorting equa-
tion.

Based on Eq.1, Fig.3 shows that the points will be
sorted at first along y axis, and then cell by cell along
x axis, as the x item will contribute more scores after
multiplying kx.

To introduce the complete space filling curves of 3D
point cloud in an autonomous driving scene, at first we
define two assumptions to aggregate the most important
point cloud neighboring features for prediction,

1. For neighbor-points searching, the neighbor per
point should be the same object as the point to be
classified as much as possible.

2. In an outdoor autonomous driving scene, the points,
except ground points, along object height z axis are
more possible to belong to the same object than
those along the other direction.

The first assumption can be explained by an example
that a point is classified as a car is based on the informa-
tion of the other points on the same car, instead of the
other object points, even when the other object points
are more spatially close to the to be classified point.
The second assumption can be explained by standing

object examples like cars, trees, buildings, etc. Except
for standing object points, the ground points have dis-
tinguishing features and thus can be easily predicted.

From the two assumptions above, we extend Eq.1 to
Eq.8, in which the feature along the object height axis
is more important, and the points along z axis in each
pillar will be at first aggregated.

scores = kx · round(x · rx)+ ky · round(y · ry)

+kz · round(z · rz)+ kρ ·ρ
(8)

where

ρ =
√

x2 + y2 (9)

where x, y, z denote the coordinates of each point,
kx� ky� kz� kρ . The hyperparameter rx and ry deter-
mine the pillar size. Small pillar size will only contain
few points in each pillar, and lose feature information.
Large pillar size is against the first assumption, because
the pillar will include different object points. These pa-
rameters, including the pillar size, are set empirically in
implementation as Tab.2.

From the discussion in the simplified sorting Eq.1, the
3D points will be sorted at first along z axis voxel by
voxel, and then along y axis and at last along x axis
pillar by pillar. The space filling curve, as shown in
Fig.4, derivated by Eq.8, preserve the most useful local
features after mapping from 3D data to 1D sequence.

The complexity of KNN, applied in 3D case, is
O(nlog(n)) when applying the KDTree [Jon75a]
algorithm, but the complexity of the proposed sorting
function Eq.8 is only O(n).

3.2 Point cloud rotation
Though the assumption-based sorting Eq.8 keeps the
most meaningful features along the height z axis, there
is still information loss caused by SFC, which is intro-
duced in section 2.4. In Fig.4, e.g. the pillar points 5
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Figure 5: The architecture of the MVP-Net. N represents the number of points. din denotes the input features of
point including the coordinates and other features. nclass is the number of classes to be predicted. The point cloud
rotation expands the receptive field per point. The point sorting makes the point sequence regular, and SFA can
directly aggregate the neighbor information. After inversely sorted to the original order, the aggregated features
will be decoded by a share-MLP based network.

Parameter value

kx 1010

ky 105

kz 100

kρ 10−5

rx 1.2
ry 1.2
rz 4

Table 2: The parameters and values of sorting Eq.8 in
implementation

is the neighbor of pillar points 1 in 3D space, but the
distance is much longer in 1D space. Therefore, the
receptive field per point in 1D is limited. To solve this
problem, the raw point cloud will be rotated along z axis
multiple times in our work, and the idea is similar to the
multiple view in projection methods.

If sorting scores Eq.8 is applied to the rotated by angle
π

2 point cloud, it is equivalent applying Eq.10, where
ky � kx � kz � kρ and the direction along x and y
axis is exchanged compared with Eq.8, to the unrotated
point cloud. In this case, the pillar points 5 is the neigh-
bor of pillar 1. In our proposed network, the raw point
cloud will be rotated by 4 different angles, and by ap-
plying only Eq.8, the neighbor and receptive field per
point will be expanded.

scores = ky · round(y · ry)+ kx · round(x · rx)+

kz · round(z · rz)+ kρ ·ρ
(10)

3.3 Architecture
The architecture of MVP-Net is illustrated in Fig.5. The
raw point cloud is at first rotated along the z axis by 4

fixed angles, 0, π

4 , 2π

4 , 3π

4 . The rotated point clouds are
then sorted by Eq.8. After being sorted, the point cloud
is regular and has explicit neighbor information.

The sequence feature aggregation backbone SFA,
Sequence Feature Aggregation, as shown in Fig.6, is
a 1D convolutional network to aggregate the local and
global features per point.

For each point i, the position difference between pi and
its nearest 8 points {p1

i ...p
k
i ...p

8
i } along the sorted se-

quence are explicitly encoded to achieve the translation
invariance [Wen19a] of the point cloud as follows:

xi = pi⊕ (pi− pk
i )⊕ pother f eatures

i (11)

where pi and pk
i are the xyz coordinates of the point

i and the neighbor point. pother f eatures
i represents the

other features except xyz positions of the point i, e.g.
the intensity of reflection per point. ⊕ is the concate-
nation operation. The features extracted by SFA will
be inversely sorted by the sorting function to the orig-
inal order. The inverse sorted features per point from
different angles will be added and then decoded by a
multi-layer perception based network with a kernel size
of 1.

3.4 Implementation

We implement our network in Pytorch [Ada19a]. For
batch training, we sample the input cloud to 105 points
per frame. We use the Adam optimizer [Die15a] with
default parameters and the learning rate is set as 0.0003
without any decay. The most commonly used cross-
entropy loss is employed as the loss function at first.
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Figure 6: Sequence Feature Aggregation (SFA). SFA is
a network consisting of only 1D convolution layer for
regular sequence point cloud feature aggregation.

When the network optimization steps into a plateau, we
adapt the loss function as

Loss = Cross-entropy-loss + Lovász-softmax-loss
(12)

The Lovász-Softmax-loss [Max18a] is a differen-
tiable loss function designed to maximize the mean
intersection-over-union (mIoU) score directly, which
is commonly employed in the evaluation of seman-
tic segmentation tasks. For data augmentation, we
randomly rotate the original point cloud along z axis
at each training step. For validation and testing, we
input the whole original point cloud into the network
and infer the semantic labels per point without any
pre/postprocessing. All experiments are conducted on
a Tesla V100 with one GPU 32G.

4 EXPERIMENTS
4.1 Dataset
We trained and tested our MVP-Net on the Se-
manticKITTI [Jen19a] dataset which provides large-
scale semantic annotation per point in autonomous
driving scenes. The point annotations for individual
scan of the sequence 00-10 are provided. We used
sequence 08 as a validation set and the other 10
sequences as a training set. Each point includes the
information of the three dimensional coordinates and
the remission. The mean intersection-over-union
(mIoU) over 19 classes is used as the standard metric.

4.2 Results
Fig.7 presents a qualitative result of the prediction and
the ground truth on the validation set.

Tab.3 presents a quantitative comparison of our MVP-
Net with the other recently published methods. These
methods are grouped by point-based [Cha17a, Cha17b,
Qin20a, Hug19a], projection-based [Che20a, And19a],
voxelization-based [Xin21a, Yan20a], and fusion-based
methods [Hao20a, Jia21a].

The comparison demonstrates that the voxelization-
based methods surpass the point-based and projection-
based methods on accuracy with large margin. The
fusion-based method RPVNet [Jia21a], the fusion of
point, projection and voxelization method, ranks 1st of
accuracy without much surprise.

Our proposed MVP-Net achieves the highest efficiency
over all the other methods. As one point-based method,
MVP-Net also achieve the comparable accuracy, and
the same mIoU as the pointwise benchmark method,
RandLA-Net [Qin20a], which uses KNN searching for
point neighbor in 3D space. This result shows that the
3D points local feature can be preserved by space filling
curves. The general information loss problem is solved
by our assumption-based curves and point cloud rota-
tion. The proposed contributions will also be proved in
ablation study section 4.3.

4.3 Ablation Study
All the ablated networks are trained by the sequence 00-
07 and 09-10, and evaluated by the sequence 08 of the
SemanticKITTI dataset.

1. Increasing/decreasing point cloud rotation times.
To achieve an excellent trade-off between efficiency
and effectiveness, the number of point cloud rotation
along z axis is studied.

2. Removing the point neighbor explicit encoding
(NEE) in the SFA unit. To achieve the translation-
invariance of the point cloud, the xyz positions dif-
ference of the center point and its neighbor point are
explicitly encoded in the SFA unit. The point neigh-
bor explicit encoding step is removed in the ablation
study, and the original point features are directly fed
into the SFA unit.

3. Replace the assumption-based sorting function
by another function. The assumption based sorting
function is one key contribution in our study, and we
think the feature along object height axis is more im-
portant. Here we compare the original sorting Eq.8
with Eq.13, which will not preferentially aggregate
the points along z axis.

scores = kz · round(z · rz)+ kx · round(x · rx)

+ky · round(y · ry)+ kρ ·ρ
(13)

The parameters of Eq.13 meet kz� kx� ky� kρ , and
the other parameters are the same as the original sorting
Eq.8. All results are listed in Tab.4. It can be seen
that the proposed parameters and methods achieve the
best trade-off between efficiency and effectiveness. The
proposed assumption-based SFC by Eq.8 also surpasses
the normal SFC, e.g. Eq.13.
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Figure 7: Qualitative comparison of prediction and ground truth on the validation set. The red circle shows the
failure case of other-vehicle points classification.
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PointNet [Cha17a] 10.12 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
PointNet++ [Cha17b] 0.06 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
RandLA [Qin20a] 1.74 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7
KPConv [Hug19a] 0.88 58.8 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4

SqueezeSegV3 [Che20a] 6.49 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 59.4 65.4 45.6 46.2 20.1 58.7 49.6 58.9
RangeNet53++ [And19a] 16.12 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9

Cylinder3D [Xin21a] 2.55 67.8 91.4 75.5 65.1 32.3 91.0 97.1 59.0 67.6 64.0 58.6 85.4 71.8 71.8 73.9 67.9 36.0 66.5 62.6 65.6
PolarNet [Yan20a] 1.96 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 61.3 65.5 43.2 40.2 5.6 61.3 51.8 57.5

SPVNAS [Hao20a] 0.88 66.4 - - - - - - - - - - - - - - - - - - -
RPVNet [Jia21a] - 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 73.4 72.1 64.8 61.4

MVP-Net 19.20 53.9 91.4 75.9 61.4 25.6 85.8 92.7 20.2 37.2 17.7 13.8 83.2 64.5 69.3 50.0 55.8 12.9 55.2 51.8 59.2

Table 3: The comparison results of our network and the other recently published point-based, projection-based,
voxelization-based and fusion-based methods on SemanticKITTI dataset. The input of points is fixed as 105, and
the size of projection image and voxel is set the same as literature. FPS, frames per second, represents the inference
speed. mIoU, intersection-over-union, is the accuracy metric over all classes.

Ablation Experiment FPS mIoU

Rotating the point cloud once 55.2 47.4
Rotating the point cloud twice 33.2 51.7
Rotating the point cloud eight times 10.5 54.8

Removing the NEE in SFA unit 19.8 50.2

Sorting by Eq.13 19.2 43.7

Original framework 19.2 54.6

Table 4: Ablation experiments based on the original
framework

5 CONCLUSION
In this paper, we present a novel end-to-end pointwise
network MVP-Net for 3D point cloud semantic seg-
mentation tasks. In contrast to the existing pointwise
methods, our network shows the possibility to totally
remove the KNN or other neighbor searching meth-
ods. Instead, assumption-based space filling curves and

point cloud rotation from multiple angles are proposed
to achieve comparable accuracy and high efficiency.

Our model is a fully 1D convolutional architecture
without any pre/postprocessing, and therefore, the
state-of-the-art neural modules from computer vision
and natural language processing can be directly im-
ported into our model. The fusion with other types
of methods like voxelization will also be explored in
future work.

As far as we know, our method is the first to directly
apply the space filling curves to large-scale point
cloud, and our experiments prove that the local infor-
mation loss problem caused by SFC can be solved in
point cloud field. The defined two assumptions are
explained and proved by the experiments and ablation
study, which is important for rethinking the features
aggregation in autonomous driving scene.
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ABSTRACT

We introduce a particle-based simulation method for granular material in interactive frame rates. We divide the simulation into
two decoupled steps. In the first step, a relatively small number of particles is accurately simulated with a constraint-based
method. Here, all collisions and the resulting friction between the particles are taken into account. In the second step, the
small number of particles is significantly increased by an efficient sampling algorithm without creating additional artifacts.
The method is particularly robust and allows relatively large time steps, which makes it well suited for real-time applications.
With our method, up to 500k particles can be computed in interactive frame rates on consumer CPUs without relying on GPU
support for massive parallel computing. This makes it well suited for applications where a lot of GPU power is already needed
for render tasks.

Keywords: position-based dynamics, position-based simulation, real-time simulation, animation

1 INTRODUCTION
Granular materials are composed of many, small bodies
that can be clearly separated from each other. The indi-
vidual components of the granular material can be very
different, for example grains, sand, gravel, rubble, but
also beans, rice and much more.

The simulation of such materials is particularly chal-
lenging, since the macroscopic behavior of the material
is determined by the microscopic interactions between
the individual grains. A complete, physically correct
description of all interactions is virtually impossible, so
simplified models are used that accurately reflect real-
ity to some degree. For this purpose, various methods
have been developed in the field of civil engineering
and later also in the field of computer graphics. While
methods from the engineering field must be able to sim-
ulate acting forces as accurately as possible, the main
focus of computer graphics methods is on generating
visually plausible results.

A common problem with current simulation methods
in computer graphics is that, despite considerable sim-
plification, it is not possible to achieve interactive frame
rates at higher particle counts that are necessary for
plausible visualization. In this work we use a position-
based simulation [4] with a low particle count that can
be easily computed within interactive frame rates and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

then refine it with an efficient upsampling algorithm to
obtain a large particle count. The two steps of the sim-
ulation are decoupled from each other and can be com-
puted at different temporal resolutions. The accurate
behavior of the continuum is determined by calculating
the individual collisions in the first step of the simula-
tion. The behavior of the high-resolution particles in
the second step is ensured by interpolating the underly-
ing velocity field and by partially blending in external
forces.

2 RELATED WORK
In the field of computer science, the physical simulation
of granular material plays an important role, besides
physical computing, especially in computer graphics.
A distinction is made between continuum methods and
purely particle-based discrete methods.

Continuum methods are particularly well suited to
simulate granular flow in the most time-effective man-
ner, since there is a decoupling between grain size
and resolution of the simulation. This decoupling is
at the expense of finer details in areas where the mo-
tion is in free flow, for example at surfaces, free-falling
grains or in the formation of spatter. Zhu and Brid-
son [29] used a hybrid Euler-Lagrangian formulation
of the Fluid-Implicit (FLIP) method, treating sand as a
fluid. Narain et. al. [22] developed a continuum-based
model that efficiently calculates internal pressures and
frictional stresses with an unilateral incomprehensibil-
ity constraint. Their method also allows two-way cou-
pling with rigid-bodies. Lenaerts and Dutré [17] make
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use of a pure Lagrangian approach by simulating gran-
ular material with the Smoothed Particle Hydrodynam-
ics (SPH) method [19]. Alduán and Otaduy [1] in-
corporated Narain et. al.’s unilateral incomprehensibil-
ity within the predictive-corrective incompressible SPH
(PCISPH) method [24]. Klar et. al. use the Drucker-
Pager plastic flow model to simulate sand in the Mate-
rial Point Method (MPM) [26][16]. Hu et. al. intro-
duce the Moving Least Squares Material Point Method
(MLS-MPM) [13] to enable the simulation of new phe-
nomena in MPM like two-way coupling with rigid-
bodies.

Discrete methods, in contrast to continuum meth-
ods, simulate the macroscopic behavior of the mate-
rial based on contacts and collisions between individual
grains or particles. This enables realistic modeling of
various physical phenomena. However, accurate sim-
ulation of granular media often requires a very small
grain size or particle radius, and thus a large number
of particles. Collision detection of a large number of
particles is computationally intensive. A small parti-
cle radius usually also requires an increase of the time
steps in the simulation. In practice, therefore, often un-
naturally large grain sizes have to be used. The first ap-
proaches for simulating granular material with discrete
methods by Cundall and Strack [8] stem from Discrete
Element Method (DEM) theory in molecular dynamics.
Later Bell et. al. [3] model granular material as non-
spherical particles following DEM principles with con-
tact and shear forces for animation purposes. Müller et.
al. [20] developed position-based dynamics (PBD), a
particle-based simulation framework that applies posi-
tional changes of particles directly to the position layer
without calculating forces between individual particles.
Macklin et. al. [18] developed a static and dynamic
friction model for PBD to mimic granular material be-
havior in this unified framework specifically tailored for
real-time applications. Frâncu and Moldoveanu [10]
formulated an accurate contact and Coulomb friction
model suitable for rigid and flexible bodies in PBD.

Recent advances in the field of machine learning have
also produced new AI-based approaches to predicting
the behavior of granular materials. The neural net-
works used in these approaches are trained with clas-
sically simulated data. Again, there are approaches that
use continuum methods like Coombs and Augarde [7]
who use MPM and Sanchez-Gonzalez et. al [23] who
use SPH and MPM and approaches that use DEM like
Wallin and Servin [27]. Furthermore, hybrid techniques
exist that combine the strengths of continuum and dis-
crete methods, like the recently proposed method by
Yue et. al. [28].

In this work we focus on discrete methods. We try to
overcome the weaknesses of discrete methods, namely
the size of the individual particles, by splitting our sim-
ulation into two steps. First, an accurate PBD simula-

tion that takes into account collisions between individ-
ual particles but is computed at a low resolution with
large particle radii. Second, we use an efficient refine-
ment algorithm that replaces the results of the actual
simulation with a much higher number of particles with
a smaller radius. The decoupling of the two simula-
tion parts makes it possible to calculate both parts with
different time steps. This way, our method is very ef-
ficient, since the upsampling in the second part can be
done with much larger time steps than the contact cal-
culation in the low resolution part. The idea of this dual
partitioning is not new. It has been already applied by
Alduán et. al. [2], who compute their low resolution
(LR) guide particles using the continuum method of
Bell et. al. [3]. They move their high resolution (HR)
visualization particles using the flow of LR particles as
well as external forces. Ihmsen et. al. [15] took up this
idea. They calculated their LR particles using another
continuum based method, namely the friction model in
SPH developed by Alduán and Otaduy [1]. Further-
more, they optimized the algorithm to interpolate the
motion of the HR particles by superimposing external
forces on the velocity field of the LR particles depend-
ing on the density of the LR particles. In contrast to the
previously mentioned work, we use a discrete method
with PBD. This allows real-time simulation of granu-
lar media thanks to the speed advantages of PBD over
SPH. In addition, we modify the algorithm for advec-
tion of HR particles to achieve better interaction with
domain boundaries and prevent particles from sticking
to rigid bodies.

3 LR SIMULATION
In this section, we first describe the simulation of LR
guiding particles. As mentioned before, our LR simula-
tion is based on PBD [20], respectively the modification
described by Macklin et. al. [18] for parallel execution
by constraint averaging. This allows interactive frame
rates as needed in real-time applications even for larger
numbers of particles.

PBD and other discrete simulation methods use parti-
cles to represent each individual discrete element of the
material being simulated. All particles have the same
radius rLR. In general these particles can have arbitrary
attributes. For our purposes it is sufficient to assign
each particle a position xxx, a velocity vvv and a mass m.

In other discrete simulation methods, the particle mo-
tion is determined by time integration of all occurring
internal and external forces. In PBD, however, position
changes ∆xxx due to internal forces are expressed directly
by so-called constraints. The resulting velocity of in-
dividual particles is then calculated from the position
difference between two time steps, i.e.

∆vvv =
∆xxx

∆ tLR
.
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Figure 1: An excavator lifts up sand. left: LR Simulation with 6.8k Particles. right: HR Simulation with 147k.

Each of the constraints used in PBD can affect k
particles. In general a constraint can be an equality
constraint C(xxx1, . . . ,xxxk) = 0 or an inequality constraint
C(xxx1, . . . ,xxxk)≥ 0.

For our granular LR simulation we use the friction
model proposed by Macklin et. al. [18]. Their model
consists of two different contact constraints between a
collision pair xxxi, xxx j. First, interpenentrations between
the two collision partners are solved by displacing the
two particles along the collision vector xxxi j = xxx j − xxxi.
The displacement is proportional to the mass ratio:

∆xxxi =−m̂i j
(
2rLR−

∣∣xxxi j
∣∣) · xxxi j∣∣xxxi j

∣∣ (1)

∆xxx j = m̂ ji
(
2rLR−

∣∣xxxi j
∣∣) · xxxi j∣∣xxxi j

∣∣ (2)

with

m̂i j =
m−1

i

m−1
i +m−1

j
=

m j

mi +m j

After resolving collisions the particles i, j have new
temporary positions x̃xxi = xxxi +∆xxxi, x̃xx j = xxx j +∆xxx j. The
relative displacement between original positions and
these new positions

∆xxxi j = (x̃xxi− xxxi)− (x̃xx j− xxx j) = ∆xxxi−∆xxx j

is used to calculate a frictional position delta. It is based
on the tangential component

∆xxxi j⊥ = ∆xxxi j− (∆xxxi j · xxxi j)
xxxi j∣∣xxxi j
∣∣2

relative to the collision vector xxxi j. With this tangential
component the positional delta for particle i, j is calcu-
lated as

∆xxxi =−m̂i j

{
∆xxxi j⊥ if

∣∣∆xxxi j⊥

∣∣< 2rLRµs

∆xxxi j⊥minfric else
(3)

∆xxx j = m̂ ji

{
∆xxxi j⊥ if

∣∣∆xxxi j⊥

∣∣< 2rLRµs

∆xxxi j⊥minfric else
(4)

with

minfric = min

(
2rLR ·µk∣∣∆xxxi j⊥

∣∣ ,1
)
.

The parameters µs and µk are the dry friction coeffi-
cients for static and kinetic friction. For most cases, we
use µs = 0.35 and µk = 0.3 in our simulation. For a col-
lision pair with differing friction coefficients the cross
friction coefficients

µi j =
√

µiµ j

has to be calculated, where µi and µ j are the static re-
spectively kinetic friction coefficients for particle i and
j. The static and kinetic cross friction coefficients are
used in this case to calculate the positional deltas ∆xxxi
and ∆xxx j.

While Eq. (1) and (2) resolve only the interpenetra-
tion of the particles, Eq. (3) and (4) model the friction
effects. In the first case of Eq. (3) respectively (4), static
friction effects are modeled by preventing any tangen-
tial motion if the particle velocity is below a traction
threshold. Kinetic friction effects are treated in the sec-
ond case by limiting the positional delta depending on
the penetration depth.

The friction model described previously is used to
calculate the friction effects between two particles.
To model the interaction between particles and rigid-
bodies or domain boundaries we sample them with
particles as well. This allows us to use a unified colli-
sion handling and to work with the same constraints for
all types of contacts. In the [25], a method is described
to sample arbitrary closed volumes of 3D triangle
meshes with particles for the needs of particle-based
simulation. For stationary objects, the particles are
assigned an infinitely large mass or an inverted mass
of m−1 = 0, respectively. In this case it is sufficient
to only sample the surface of the object. A method
to sample arbitrary surfaces of 3D triangle meshes
based on the uniform sampling algorithm of Bowers
et. al. [5] can also be found in [25]. For moveable
rigid-bodies the individual particles are first treated
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as if they were unconnected. Then, a shape-matching
constraint [21] is applied to the particles of the rigid
body to find the particle configuration corresponding
to a transformed resting state. The position delta from
this constraint is given by

∆xxxi = (RRRxxxoi + ccc)− x̃xxi

where ccc corresponds to the center of gravity of the new
deformed particles of the rigid body. xxxoi corresponds to
the offset of the i-th particle from the center of gravity
of the undeformed particle positions. RRR is a rotation
matrix which is given by the polar decomposition [12]
of the covariance matrix

CCC =
n

∑
i
(x̃xxi− ccc) · xxxT

oi

of the deformed shape. This enables a two-way cou-
pling between the granular medium and rigid-bodies.

All of these previously mentioned constraints,
namely contact, friction and shape-matching con-
straints, can be calculated in parallel. A particle i can
receive a position delta ∆xxxik from several constraints
k. Therefore, after all constraints have been calculated,
the sum of all positions delta belonging to a particle i
is divided by ni the number of constraints involved:

∆xxxi =
1
ni

ni

∑
k

∆xxxik .

The procedure of constraint solving is repeated a cou-
ple of times until a solution is found that satisfies all
the constraints. For our calculations between 3 and 5
iterations were sufficient. However, it can happen that
no convergence was achieved and particles are in an in-
valid position at the start of a simulation step. This can
lead to particles experiencing an unwanted acceleration
in the next time step due to the next constrain to solve.
This effect is especially strong the smaller the time step
is. To avoid this, 1-2 stabilization iterations of the pure
contact constraints, Eq. (1) and (2), are executed per
time step. The resulting position deltas are applied to
the temporary positions as well as to the regular posi-
tions. This prevents unnatural kinetic energy from be-
ing added to the system due to these irregularities when
calculating new velocities. The complete algorithm for
performing one time-step is shown in Algorithm 1.

To achieve a more stable piling of particles, e.g. in
sand piles, and to prevent dissolution, a further im-
provement is made. As described in [18] a scaled mass

m∗i = mi · e−h(xxxi)

is assigned to each particle i based on the relative height
h(xxxi) with respect to the ground plane. These scaled
masses m∗ are used to solve the contact and friction
constraints. Since higher particles exert less pressure
on the levels below, the system converges faster and the
piles are more stable.

Algorithm 1 One simulation time-step
1: for all particles i do
2: vvvi← vvvi +∆ tLRggg . |ggg|= 9.81 m

s2

3: x̃xxi← xxxi +∆ tLRvvvi
4: m∗i ← mie−h(xxxi)

5: find_neighboring_particles()
6: generate_stabilization_constraints()
7: for stabilization iterations it = 1,2 do
8: ∆xxx← 0, n← 0 . ∀ particle i
9: ∆xxx,n← solve_stabilization_constraints()
10: for all particles i do
11: x̃xxi← x̃xxi +∆xxxi/ni
12: xxxi← xxxi +∆xxxi/ni

13: generate_constraints()
14: for solving iterations it = 1, . . . ,5 do
15: ∆xxx← 0, n← 0 . ∀ particle i
16: ∆xxx,n← solve_constraints()
17: x̃xxi← x̃xxi +∆xxxi/ni

18: for all particles i do
19: vvvi← (x̃xxi− xxxi)/∆ tLR
20: xxxi← x̃xxi

Figure 2: Exemplary illustration of the sampling pro-
cess. left: Inital sandcastle mesh. middle: LR sam-
pling. right: HR sampling

4 HR UPSAMPLING

In the previous section we described the simulation of
LR guide particles taking into account all collisions be-
tween particles. We now describe how a finer resolu-
tion simulation result can be generated on the basis of
the LR particles with the help of an upsampling. Fig-
ure 1 shows a comparison between the LR simulation
on the left and the result of the HR upsampling on the
right. This is done without having to perform complex
collision queries between HR particles. Thus this up-
sampling is extremely effective and the size of the LR
time step is decoupled from the size of the HR parti-
cles. Each LR Particle can be seen as a representation
of several HR Particles.

It is especially important to create a good initial sam-
pling to avoid artifacts. For example, a uniform sam-
pling can lead to repetitive patterns during the simula-
tion. Furthermore, if the HR particles are placed sym-
metrically around the LR particles, aliasing or staircase
patterns can occur already in the initial state. Therefore,
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we use the randomized volume sampling algorithm de-
scribed in [25] for both the LR and the HR particles.
We use a triangle mesh as a hull in which the particles
should be located. First the bounding box delimiting
the mesh is divided into grid cells with a side length of
2r√

3
, with r being the radius of the LR particles rLR re-

spectively HR particles rHR. Then, a large number of
randomly but uniformly distributed candidate positions
are generated within the mesh and assigned to the re-
spective grid cells. After that, for each grid cell within
the mesh, an attempt is made to select a candidate po-
sition that does not overlap with already sampled posi-
tions. In this fashion the whole volume of the mesh is
sampled. For a more detailed description we refer the
reader to [25]. This algorithm is executed for both LR
particles with radius rLR and HR particles with radius
rHR before starting the simulation. Figure 2 shows an
example of the sampling process. The initial mesh is
displayed on the left, while in the middle the sampling
for the LR simulation and on the right the correspond-
ing sampling for the HR upsampling is shown.

Once the simulation is started, the LR particles are set
in motion by the LR simulation described in the previ-
ous section. The HR particles trace the movement of
these LR guide particles. HR particles should follow
the flow of the LR simulation but still move individually
to avoid the formation of clumps. For this we use the
advection method described by Ihmsen et. al. [15]. For
this, gravity is smoothly faded in as an external force
depending on how densely a HR particle is surrounded
by LR particles. If a HR particle is in the vicinity of
many LR particles, the velocity field generated by them
dominates. For this, distance-based weights w between
HR particles i and LR particles j are calculated as

wi j = max

0,

(
1−

∣∣xxxi j
∣∣2

9 · r2
LR

)3
 .

These weights are used to determine the average veloc-
ity vvvi at a HR particle i with

ṽvvi =
1

∑ j wi j
∑

j
wi jvvv j.

It shall be noted that LR particles j can be granular
material as well as the particle representation of rigid-
bodies or boundaries. The blending in of external forces
is controlled by a parameter

αi =

{
1−maxwi j if maxwi j ≤ c1 or maxwi j

∑ j wi j
≥ c2

0 else

which differs from zero only in sparse regions. The
constant c1 =

512
729 is the distance-based weight for a dis-

tance equal to the LR particle radius rLR and c2 = 0.6 is

Figure 3: left: Ihmsen et. al.’s original upsampling with
sticking artifacts. right: HR Simulation with our modi-
fication.

an empirically tested value. With this blending parame-
ter the resulting velocity for a HR particle i is calculated
as

vvvt+1
i = (1−αi)ṽvvt+1

i +αi
(
vvvt

i +∆ tHRggg
)

where ggg is the acceleration due to gravity and ∆ tHR de-
notes the time-step size from time t to time t + 1. The
new position xxxi for the i-th HR particle is then trivially
obtained by time integration through

xxxt+1
i = xxxt

i +∆ tHRvvvt+1
i .

In contrast to Ihmsen et. al. we ignore the LR particles
of rigid bodies if there are no LR granular particles in
the vicinity. This prevents HR particles from sticking
to rigid bodies that are moved externally (see Figure 3).

5 RESULTS
In contrast to previous works, our work focuses on run-
times in the range of interactive frame rates. Therefore,
in this section we present some examples of our ap-
proach to illustrate the different possible applications.

5.1 Implementation
We have implemented our simulation framework in
C++ 14. For more complex mathematical operations
and mathematical data structures like vectors and matri-
ces we use the Eigen3 [11] library. We parallelized our
algorithms on the CPU using OpenMP [9]. For an effi-
cient neighborhood search we use the CompactNSearch
library based on the Compact Hashing approach by
Ihmsen et al. [14]. Furthermore, we use the LEAVEN
[25] library for sampling volumes and surfaces. All
renderings in this work were created with Cycles in
Blender [6].

5.2 Experiments & Performance
In this section we would like to underline and evaluate
the usefulness of our method by suitable experiments
(scenes). For this purpose, we have selected four dif-
ferent test scenarios. For all scenarios we use a default
time step ∆tLR = 0.005s for the LR simulation, which
is further constrained by the CFL condition if neces-
sary. The time step for upsampling is ∆tHR = 0.0167s.
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Particles Time per Frame
LR HR LR HR

Sandcastle 2.4k 90k 9.75ms 7.31ms
Excavator 6.8k 147k 21.4ms 11.2ms
Hourglass 10k 460k 47.4ms 48.5ms
Squirrel 10k 207k 33.0ms 15.8ms

Table 1: Timing results for four different scenes

The density of the granular medium is ρ = 1600 kg
m3 and

the kinetic and static friction coefficients are µk = 0.3
and µs = 0.35, respectively. In general, we use LR
simulation radii rLR between 0.005m and 0.05m. For
the upsampling we use a HR particle radius between
rHR = 0.2 · rLR and rHR = 0.4 · rLR. This leads to an
upscaling factor between 15 and 125.

Scene Sandcastle (see Figure 4) consists of a exca-
vator controllable by user interaction and a sand castle
with a relatively small number of particles. The LR par-
ticle radius is 0.03m and the upsample radius is 0.01m,
resulting in 2.4k LR particles to 90k HR particles. This
scene serves to demonstrate the real-time capability of
our method, in which relatively few elaborately simu-
lated particles can be used to obtain visually pleasing
results by upsampling.

Scene Excavator , shown in Figure 1, also contains an
excavator. In this example, a radius of 0.02m generates
almost three times as many LR particles (6.8k) as in
Sandcastle . The upsampling radius 0.008m generates
147k HR particles. This scene is intended to illustrate
that our method can be used to simulate even compli-
cated interactions such as the lifting and lowering of
granular material with an excavator.

The Hourglass example should on one hand clarify
the behavior and runtime of larger particle numbers and
on the other hand, more importantly, give an impression
of the stable piling of our method. For this purpose 10k
LR particles in the hourglass are upsampled to 460k HR
particles. Radii of 0.028m and 0.008m are used.

Scene Squirrel shows the two-way coupling between
rigid bodies and the granular material. For this purpose,
a squirrel is hurled into the sandcastle with an initial ve-
locity. The squirrel is represented by 1.4k particles with
a density of ρ = 5000 kg

m3 , which are simulated in the
LR simulation. Afterwards, the original squirrel shape
is reconstructed by shape matching as described in Sec-
tion 3, which accomplishes the two-way coupling. All
LR simulation particles have a radius of 0.02m and the
upsampling radius of the granular particles is 0.0075m.
In addition to the 1.4k particles of the squirrel, there are
10k LR granular particles in the simulation, which are
upsampled to 207k.

All scenes were calculated on an Intel Core i9-
9980HK with 8 cores on the CPU alone. Table 1
shows the per frame timing results for the four different
scenes. For the timing of the LR simulation, the

Figure 4: An excavator is moved by user input through
a sand castle

Figure 5: An hourglass with sand containing 460k par-
ticles.

Figure 6: A squirrel hurled into a sand castle.

run-times of as many simulation steps as necessary to
calculate a time difference t = ∆tHR = 0.0167s were
combined. It shows that even for relatively high particle
counts of 500k a computation within interactive frame
rates is possible with our method on consumer hard-
ware without exploiting massive parallelism on GPUs.
Especially where the resources of the GPU are already
needed for e.g. computationally intensive physically
based rendering for realistic visualization, our pure
CPU based simulation can show its advantages.

6 CONCLUSION & FUTURE WORK
With this work we have shown that with the help of
an upsampling algorithm it is possible to scale up rel-
atively small numbers of particles to produce visually
vivid results within interactive frame rates for the sim-
ulation of granular material. It was shown that the up-
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sampling method described by Ihmsen et. al. [15] for
SPH simulations, which are far away from real-time
computation times, is very well suited for application
in interactive PBD simulations. We believe that this is
advantageous for future real-time applications in inter-
action with granular material.

7 LIMITATIONS & FUTURE WORK
On one hand, in position-based simulations friction is
dependent of the number of iterations, which has a neg-
ative impact on the correctness of the friction effects in
the LR simulation part. The modeled static and kinetic
friction effects are only approximations. On the other
hand, static friction cannot be modeled correctly with
HR upsampling, which prevents stable piling in some
situations.

Furthermore, currently only one constant radius for
all particles in the LR simulation and another constant
radius for all particles in the HR upsampling is possible.

In the future, we plan to take advantage of the high
parallizability of the PBD variant described by Macklin
et. al. [18] and the trivial parallelizability of the up-
sampling algorithm to create a GPU-based version of
our simulation that can simulate even larger numbers of
particles in real time.
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Abstract
Optical sensors can capture dynamic environments and derive depth information in near real-time. The quality
of these digital reconstructions is determined by factors like illumination, surface and texture conditions, sensing
speed and other sensor characteristics as well as the sensor-object relations. Improvements can be obtained by us-
ing dynamically collected data from multiple sensors. However, matching the data from multiple sensors requires
a shared world coordinate system. We present a concept for transferring multi-sensor data into a commonly ref-
erenced world coordinate system: the earth’s magnetic field. The steady presence of our planetary magnetic field
provides a reliable world coordinate system, which can serve as a reference for a position-defined reconstruction of
dynamic environments. Our approach is evaluated using magnetic field sensors of the ZED 2 stereo camera from
Stereolabs, which provides orientation relative to the North Pole similar to a compass. With the help of inertial
measurement unit informations, each camera’s position data can be transferred into the unified world coordinate
system. Our evaluation reveals the level of quality possible using the earth magnetic field and allows a basis for
dynamic and real-time-based applications of optical multi-sensors for environment detection.

Keywords
Dynamic Matching, Multi-Sensor, Magnetic Inertial Navigation, Real-Time, Computer Vision

1 INTRODUCTION

Many devices use 3D reconstructions of their surround-
ings for locomotion and interaction in complex visual
environments [Kok18]. Epipolar geometry based dis-
tance information of depth sensors allows us to com-
pute 3D points as point clouds. Multiple depth sen-
sors can be used efficiently for real-time point cloud
expanding and optimising [Pia13, Mue21]. The po-
sitional overlay of received depth information reduces
sensor and image errors. This involves the positional
accuracy and stability of depth sensors. Using global
navigation of inertial navigation systems (GNSS/INS)
enables a temporal position adjustment of these sen-
sors [Hua19, Vu12]. However, tracking systems like
Garmin Oregon 700 are insufficient for the matching of
multiple sensors due to positional deviations of 3 m to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

25 m [Gar22]. These position deviations affect the qual-
ity of rendered point clouds due to incorrect coordinate
alignments, scattering, outliers or offsets of neighbour-
ing depth points [Car16, Kad14]. The required visual
contact between satellite and receiver additionally lim-
its the local GPS signal [Chu11]. Alternative Visual In-
ertial Navigation Systems (VINS) offer limited benefits
for multiple sensor matching in terms of sensor drifts,
measurement errors and range [Car16, Hua19, Kad14].

Our motivation is based on the challenges of using
stable inertial navigation systems for multiple sensor
matching. The persistence of the geomagnetic field
lends itself to our concept. We apply the combination
of 3D depth technologies and smart sensor architec-
tures for the use of magnetic fields in an inertial system.
Smart sensor architectures offer a gradient transforma-
tion between acceleration, angular velocity and mag-
netic field in the meter defined world coordinate system
W(x,y,z) [Han07, Car16]. Our contribution comprises
the following aspects:

• Location and time independent matching of multiple
sensors based on geomagnetic inertial navigation

• Sensory setup for validation of our approach
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Notation Definition
a Acceleration [m/s2]
g Gravity 9.81 [m/s2]
B Baseline between CL and CR [cm]

B1, Bn Magnetic field strength [µT ]
bH Temperature Dependent Bias [µT ]
C Transformation Matrix [µT ]
m Seismic mass of accelerometer [mg]

R(ψ,φ ,θ) Rotation (Pitchψ , Rollφ , Yawθ )
s Distance [m]
t Time [s]

T Translation [m]
v Velocity [m/s2]
λ Depth [m]
ϕ Rotation angle [rad]
θ Orientation [◦]
ω Angular velocity [rad/s]

Abbr. Definition
CMOS Complementary Metal

Oxide Semiconductor
GNSS Global Navigation Satellite Systems

GPS Global Positioning System
ICP Iterative Closest Point

IMU Inertial Measurement Unit
INS Inertial Navigation Systems

LiDAR Light Detection And Ranging
SLAM Simultaneous Localisation and Mapping

ToF Time of Flight
VO Visual Odometry

VINS Visual Inertial Navigation Systems
VIO Visual Inertial Odometry

WCS World Coordinate System
Table 1: Notations and Abbreviations

• Analysis of positioning-based accuracy, reliability
and stability in a transformed world coordinate sys-
tem

Table 1 lists the used definitions, notations and abbre-
viations. This Paper is organised as follows:

• Section 2 overviews related works of sensor match-
ing and valid transformations in inertial systems.

• Section 3 discusses our concept of geomagnetic in-
ertial navigation and coordinate transformation of
the magnetic field sensor.

• Section 4 lists the steps of our methodology for the
evaluation.

• Section 5 overviews setup information of our mea-
surement implementation.

• Section 6 discusses the static and dynamic results of
our geomagnetic inertial navigation.

• Section 7 describes our conclusion and resulting fu-
ture work.

2 RELATED WORK
The challenges of dynamic matching demands a refer-
encable and accurate world coordinate system (WCS)
in which several depth sensors move in defined posi-
tions. In this section, we describe the matching of mul-
tiple sensors and transferability to this WCS. Based on
related work, we provide a foundation for our hypothe-
sis and methodological approach.

Multiple Depth Sensor Systems Locomotive sensors
require information about their translation Tx,y,z, rota-
tion Rψ,φ ,θ and local depth λ [Mue21].

Figure 1: Point Cloud Matching: The resulting point
cloud (right) is matched from several depth images (top
and bottom left). The arrows of λ1 and λ2 represent the
camera orientation.

3D depth technologies like Light Detection And Rang-
ing (LiDAR), Time of Flight (ToF) or stereoscopic sys-
tems receive the emitted light of their surroundings and
convert it to electrical signals [Yoe21]. The depth in-
formation (λ1 and λ2 on the left side of Fig. 1) can
be calculated algorithmically from the converted digi-
tal sensor signals. One commonly used algorithm for
point cloud registration is Iterative Closest Point (ICP),
which involves the determination of point cloud specific
rotation and translation [Tar10, Mue21]. Approaches
like Simultaneous Localisation and Mapping (SLAM),
Visual Odometry (VO), visual detection and tracking,
as well as visual classification and recognition enable
3D evaluations by means of volumetric rendered point
clouds (right side of Fig. 1) [Mue21]. Volumetric data
can be converted into polygonal meshes in order to ma-
nipulate objects volumetrically on the fly [Tak15].

Quality characteristics of these point clouds can be in-
creased by matching multiple depth images as shown
in Fig. 1. Error corrections of distortions, scatter, noise,
sensor defects or latencies as well as point cloud devia-
tions characterise such quality features [Kad14, Mue21,
Tak15].

Takimotoa et al. [Tak15] examined the matching of
multiple point clouds and described the finding of ICP
correspondences as challenges when texture-free sur-
faces of point clouds are to be reconstructed densely
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and accurately. Their measurements indicate that low-
precision sensors are capable of reasonably good recon-
structed objects. They conclude that increased number
of acquisitions and SIFT methodology do not improve
the final point cloud quality. Instead, they suggest that
the adjustment of ICP and reconstruction parameters
leads to improvements due to limited sensor accuracy
and stability.

Piatkowska et al. [Pia13] optimised spatio-temporal
and three-dimensional reconstructions with asyn-
chronous time-based image sensors and extended
existing methods for event-based processing. They
conclude that dynamic, asynchronous and cooperative
implementations are possible using a specialised
algorithm.

In [Mue21], we describe the possibility of synchronous
and dynamic sensor matching for limited sensor and ob-
ject ranges. We name the alignment and transferabil-
ity relevance of precise sensor positions for successful
depth matching.

Figure 2: Combination of 3D Depth Sensing and
Smart Sensor Architecture: Relationships between
the stereo camera and IMU integrated gyroscope and
magnetometer in a defined world frame coordinate sys-
tem. The received images of CR and CL are located in
the extrinsic camera frame [Mue21]. In contrast to the
cameras, the IMU is originally located in body frame.

Inertial Navigation Prior research indicates that minor
deviations of aligned point clouds can be minimised by
accurate positional information. Data fusion of iner-
tial sensors in form of smart sensor architectures (see
Fig. 2) reduce the influence of a failure prone single
sensor [Car16]. This allows the necessary optimisation
of stability and precise movement detection.

Inertial Measurement Unit (IMU) and depth integrated
sensors have statically defined distances DCS, DMS and
Dc to each other. Estimated sensor positions and orien-
tations are coordinated in camera extrinsic depth sen-
sors or body frame IMUs [Car16, Mue21]. Positional

relations of multiple used sensors are not directly trans-
ferable into the world frame since each sensor uses its
own coordinate definitions. Therefore, rotations and
translations have to be transformed from camera and
body into a world frame defined coordinate system
[Car16]. The attitude representation of quaternions q
as shown in Eq. 1 describes Euler’s principle rotations
ϕ from inertial to body frame [Vec22, Car16]. We ob-
tain the current position by measuring actual speed v,
angular velocity ω , acceleration a, gravity g, and local
magnetic field B (Eq. 2, 3 and 4) [Car16].

q = [cos
ϕ

2
,ϕ · sin

ϕ

2
]T (1)

∂q
∂ t

=
1
2

q ·ω (2)

∂v
∂ t

= ω × v+a+q ·g ·q1 (3)

∂B
∂ t

= ω ×B+∇B · v (4)

We use ∇ as 3× 3 gradient matrix. A continuous and
time-dependent initialisation of body oriented dynamic
sensors in the transformed world frame is necessary to
ensure positional accuracy.

Smart sensor architectures include IMUs consisting of
three accelerometers, gyroscopes and magnetometer
[Auf11]. The body frame denotated angular velocity
ω of the gyroscope (Eq. 5) can be determined from the
measured angular velocity ωm, temperature dependent
bias bt and additive η of zero-mean Gaussian noise
[Vec22, Kok18].

Gyroscope : ω = ωm +bt +η { η ∼ N(0,σ2
gyro) (5)

ωm defines the sensor’s angular velocity of body frame
with respect to earth inertial frame [Kok18].

Orientation : θ(t+∆t) ≈ θ(t)+
∂

∂ t
θ(t)∆t + ε (6)

The orientation θ (Eq. 6) of gyroscope measurements
can be approximated by Taylor expansion [Vec22].
θ(t+∆t) describes the angle at current step and θ(t)
defines last changed time step ∆t. ε is the approxi-
mation error. R is presented by Euler angles (φ ,θ ,ψ)
[Kok18, Mue21].

Rx(φ) =

 1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 (7)

Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (8)

Rz(ψ) =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (9)
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We can calculate the translation by measuring the lin-
ear acceleration alin (Eq. 10) of accelerometer (Acc)
[Kok18].

Acc : alin = a(g)+a(l)+η { η ∼ N(0,σ2
acc) (10)

In motionless state, we measure the noisy gravity vector
a(g) and zero-mean Gaussian noise η with a magnitude
of 9.81m/s2 = 1g. In case of movement, the external
force a(l) interacts additively [Kok18]. Accelerometers
are suitable for long-term measurements due to absence
of drifts and constant positions of earth’s gravity centre
[Car16]. However, noise behaviour is evident. The lack
of information about yaw θ allows correct tilts only for
roll ψ and pitch φ [Vec22].

The magnetometer enables the determination of θ since
the actual direction of φ ,θ ,ψ depends on latitude and
longitude [Vec22]. They refer to an Earth-Fixed Coor-
dinate System (ECEF). This transformation from iner-
tial to earth-fixed coordinate system is described as a
rotation since a common reference is used.

Magnetic Inertial Navigation A further method for in-
ertial navigation is the position determination by means
of magnetic sensors.

Shi et al. [Shi21] examined the navigated indoor
positioning using optimisation algorithms for magnetic
reference maps. They demonstrated in their motion
experiment that positional accuracy and matching with
inertial navigation devices is significantly improved
through magnetic references.

Kok et al. [Kok18] demonstrated empirically that mag-
netic field maps achieve efficient position estimates.
They identified the necessary proximity between sensor
and magnetic field generating coils for radial positions
as well as altitude error reduction and concluded that
further magnetic disturbance decreases the information
content of measurements.

Caruso et al. [Car16] showed that fused estimation of
magnetometer arrays and VINS are able to reconstruct
outdoor trajectories where Magneto-Inertial Dead-
Reckoning (MI-DR) techniques fail due to gradient
leaks. However, magnetic estimation techniques and
leakage of suppressed magnetic information need to be
improved. They concluded that magnetic navigation
could expand the application range in unfavourable
environments and reduce power consumptions.

VINS Initial orientations of navigated devices can be
estimated with IMUs. The combined merging of cam-
era and IMU data allows extensive image informa-
tion for efficient position solutions [Yan19]. VINS use
points and lines with online spatial and temporal cali-
brations. Additional feature observations from different
keyframes enable a reduction of trajectory sensor drifts
[Hua19].

Huang [Hua19] investigated short-term compatibility
for 3D motion tracking by comparing VIO and SLAM
for local navigation. VINS is not suitable for long-term,
large-scale, safety-critical deployments and under dif-
ficult conditions. This was mainly due to poor illu-
mination and movement. Geometric features such as
points, lines and areas, as used in current VINS for lo-
calisation, are unsuitable for semantic localisation and
mapping. The real-time implementation of VINS con-
tinues to be challenging, despite initial efforts. Auxil-
iary sensors for specific environments and movements,
such as sonar or LiDAR, enable better detection of dy-
namic movements. Huang asserts that simple integra-
tion of high-frequency IMU measurements is unreliable
for long-term navigation, due to noise and distortion be-
haviour.

Tardif et al. [Tar10] demonstrated a robust image-based
inertial navigation system for rural and urban environ-
ments based on VINS. Experimentally, the prototype
showed low deviations at a maximum speed of 70km/h.

In [Vu12], experimental results have shown that the
combination of DGPS and a single visual feature mea-
surement at 1Hz is sufficient to achieve 1m positional
accuracy. Vu et al. used visual features like traffic lights
to generate a better positional and situational aware-
ness in their tightly coupled real-time vision and DGPS-
based INS.

3 GLOBAL SENSOR MATCHING

This section describes the underlying concept for global
matching of multiple sensors in a new WCS. We de-
fine the first local sensor as the new origin of this WCS
and transform the initialised data of all remaining sen-
sors once to the first sensor point {B1}. This enables
future extensible matchings with VINS or feature de-
tection and additional inclusions of local fused sensor
information.

To represent movements, it is necessary to transform in-
trinsic coordinates of depth and position sensors into a
new WCS. We observe the IMU integrated gyroscope
and magnetometer of two different stereo cameras (1
and n). A common reference coordinate allows the cal-
culation of positional IMU relationships. The defined
points {B1} and {Bn} of the magnetometers refer to the
magnetic North Pole as common origin {Np} (Fig. 3).

From this consideration we can form the mathemati-
cal relationships between {Np}, {B1} and {Bn}. The
point Pw marks the new origin of our common WCS
(Pw=̂{B1}). We define the scalar values D⃗nNp, D⃗1n and
D⃗1Np between {Np}, {B1}, {Bn} (Fig. 3) and denote
the rotational coordinate transformations as Bn

Np
RT , B1

Bn
RT

and B1
Np

RT .
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Figure 3: Conceptual Representation of Global Sensor Matching: Description of the geometric relationships
between the sensor points {B1} ,{Bn} and common origin {Np} in the WCS.

The following relationships apply to the transformation
of {Bn}, {B1} and {Np}:

Bn =
Bn
Np

RT · (Np − D⃗nNp) (11)

B1 =
B1
Bn

RT · (Bn − D⃗1n) (12)

B1 =
B1
Np

RT · (Np − D⃗1Np) (13)

D⃗1Np = D⃗nNp + D⃗1n (14)

By transforming Eq. 11 and Eq. 13 according to {Np},
we obtain the distance D⃗1n between the position of the
magnetic sensors {B1} and {Bn}.

Bn
Bn
Np

RT
+ D⃗nNp =

B1
B1
Np

RT
+(D⃗nNp + D⃗1n) (15)

D⃗1n =
Bn

Bn
Np

RT
− B1

B1
Np

RT
(16)

Eq. 16 shows the relationship between {Bn} and {B1}.
The initial position of {B1} is only influenced by the ro-
tation ratio between {Bn} and {B1} in case of |D1n| =
0. The related distance dependencies of {B1},{Bn} to
{Np} can be determined by substituted vector length
D1n from Eq. 14 to Eq. 16.

D⃗1Np − D⃗nNp =
Bn

Bn
Np

RT
− B1

B1
Np

RT
(17)

The new coordinate system at origin {B1} can be calcu-
lated using Eq. 12. Therefore we substitute Eq. 16 into
Eq. 12.

B1 =
B1
Bn

RT ·
(

Bn−
(

Bn
Bn
Np

RT
− B1

B1
Np

RT

))
(18)

We receive the following result solving Eq. 18:

B1 = Bn · B1
Bn

RT ·

(
1− 1

Bn
Np

RT

)
(

1−
B1
Bn

RT

B1
Np

RT

) (19)

We combine the rotational transformations of Eq. 19 to
RB1 .

B1 = Bn ·RB1 (20)

The trajectory position information of R,T can be cal-
culated by integrated velocity over a discrete time pe-
riod. We can determine the measured acceleration a and
angular velocity ω in the body frame oriented IMU. The
associated determination of Euler angles in the direc-
tion cosine matrix C allows the velocity transformation
from bodyb to inertiali frame [Vec22] (Eq. 21).

Cb ≈

 1 ψ −θ

−ψ 1 φ

θ −φ 1

 (21)

∆vi =Cb
∫ tn+∆

tn
ab

lin dt (22)

The accelerometer integrated seismic mass affects
motion-dependent special force measurements of cori-
olis ab

cl, centrifugal ab
cf and gravitational ab

g acceleration
(Eq. 24) [Cla15, Kok18, Vec22].

ai
cor = ab

lin +ab
cf +acl −ab

g { ab
cl ≪ ab

cf (23)

ai
cor = ab

lin +ω × vb −Rb ·ab
g (24)

Assuming that the navigation frame is fixed on earth’s
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Figure 4: Calibration of the Magnetic Field Sensor: The magnetometer is integrated in the chassis of the ZED 2
from Stereolabs. Each colour represents a direction of rotation (red: Rφ , green: Rθ , blue: Rψ ).

frame position, we can derive a relation for the cor-
rected velocity (Eq. 25) [Kok18, Vec22] .

∆vcor = ∆vI +∆t
(
ab

g −2ω⊕×
∫ tn

t0
ai dt

)
(25)

ω⊕ defines the earth’s angular rate [Cla15]. The earth
fully rotates every 23.9345 hours with an approximated
rate of ω⊕ = 7.29 · 10−5 rad/s relative to the stars
[Kok18]. The position s can be calculated from the re-
lationships of Eq. 25.

∆vk+1 =
∫ tn

t0
acor dt +∆vcor (26)

∆sk+1 =
(∫∫ tn

t0
ai

cor dt
)
+∆t

(∫ (tn+∆)

tn
alin dt

)
+

∆t
2

∆vcor

(27)

4 METHODOLOGY OF INITIAL
SPACE MOVEMENT

Our methodological approach as shown in Fig. 5 can
be classified into the steps of calibration, initialisation,
transformation and locomotion.
Since we define a magnetically referenced WCS at
timestep t0, small positional fluctuations are inevitable
in the presence of external influences. A general cal-
ibration is carried out for this reason. The sensor ini-
tialisation allows the determination of a specified trans-
fer function for unit transformation ∇B → ∇s. The
space transformation converts the intrinsic sensor coor-
dinates into the magnetically defined WCS. Using the
motion equations in case of dynamic movement allows
the space positional translation and rotation.
The accuracy of magnetic field sensors is affected by
external temperature as well as ferro-, para- and dia-
magnetic influences [Cla15, Ren10, Vec22].

Magnetometer Calibration
{

Rz(ψ)Ry(θ)Rx(φ)

⇓

Sensor Initialisation
{

∇
−→
B1,∇

−→a1 ,∇
−→
ω1

∇
−→
Bn,∇

−→an ,∇
−→
ωn

⇓

Space Transformation
{

W(X,Y,Z)
W(ψ,θ ,φ)

⇓

Dynamic Movement
{

Tt : s(X,Y,Z)
Rt : ρ(ψ,θ ,φ)

Figure 5: Pipeline of Space Determination: The dif-
ferent steps of movement transformations in a WCS.

The homogeneity of earth’s magnetic field is deter-
mined by local anomalies, dipole and external fields.
The earth field’s detectability depends on the sensitiv-
ity of the magnetic field sensor [Cla15]. Since these ef-
fects can occur in- and outdoors, magnetometers must
be calibrated. Fig. 4 demonstrates the difference be-
tween a calibrated and uncalibrated sensor. Under ideal
conditions, the measured points (X,Y,Z) are located at
the centre {0,0,0} of overlayed perfect spheres (RGB)
since their position changes in all spatial directions.
The non-calibrated state on the left side of Fig. 4 shows
the inconsistent relationship between the axes (red: Rφ ,
green: Rθ , blue: Rψ ). This shift condition can be cor-
rected by the Hard and Soft Iron calibration [Ren10,
Vec22].

The magnetic disturbances and error sources can be
corrected mathematically. Therefore, we consider the
magnetometer Bc with the Eq. 21 based transforma-
tion matrix C and temperature dependent bias bH to the
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vector of non-calibrated magnetic field data B̃ [Ren10,
Vec22]. Bcx

Bcy
Bcz

=

 C00 C01 C02
C10 C11 C12
C20 C21 C22

 B̃x −bH0
B̃y −bH1
B̃z −bH2

 (28)

Rotating the magnetometer around the gravity vector
for several 360◦ cycles allows calibration. The sensor
should inclinate between 5◦ and 10◦ [Vec22]. A suc-
cessful calibration contains the measuring points of all
rotation directions in a circle (Right diagram - Fig. 4).
The next step refers to the initial position of the dif-
ferent sensor parameters. Pw1 (left coordinate system
in Fig. 6) is at the origin of our magnetic WCS {B1}
at the timestep t0. The susceptibility to external influ-
ences makes the magnetic measurement data unsuitable
for permanent dynamic position determination. For this
reason, we transfer the magnetic unit to a metre unit
(right coordinate system in Fig. 6) and initialise it with
the measurement data of the gyroscope as well as the
accelerometer. The initialisation and measurement fu-
sion of all available sensors in the transformed metric
system helps to reduce measurement fluctuations and
influences of a single sensor.

Figure 6: Unit Transformation [µT ]→ [m]: Transfor-
mation of the magnetic field density B[µT ] into the dis-
tance s[m] (Fs ·∇B[µT ]→ ∇s[m]). Fs and Fϕ describes
the transfer function from [µT ] to [m].

The origin Pw1, related to {B1}, can be calculated with
Eq. 19. The IMU integrated magnetometer and gyro-
scope have a sensor specific step size during the spa-
tial movement (R|T ). Gradient formation enables the
conversion of the step size to a unit of measurement.
The transfer functions of translation Fs and rotation Fϕ

describe the unit transformation from magnetic ∇B to
distance ∇s at t:

Fs =
∇s
∇B

[m]

[µT ]

{
t > 0

B > 0 (29)

Fϕ =
Pw2
Pw1

RT [◦]

{
t > 0 (30)

Since the distances between the components of gyro-
scope, acceleration and magnetic field sensor are suf-
ficiently small, the coordinate systems converge (Fs ·
∆B → ∆s). The initial translation and rotation values
∇s and ∇ϕ can be used approximately as starting val-
ues due to converging systems.

R → ϕ[◦] : ∆ϕ(t) = Fϕ +
∫

ω dt (31)

T → s[m] : ∆s(t) = Fs ·∇B +
∫∫

a dt (32)

The transfer functions Fs and Fϕ can be determined for
each sensor (Eq. 29 and Eq. 30). This allows the sen-
sor unit-specific transmission of measured values in the
WCS. The direct sensor relations to each other can be
determined. Fluctuations, noise or susceptibilities due
to external influences are evident. By comparing the
position data between two defined coordinate systems
Pw1 and Pw2, magnetic interference or sensor-specific
drift deviations can be corrected.

The analysing of locomotive position sensors is an im-
portant part for the validation of dynamic matching.
Therefore, we focused on the differences between static
and dynamic states of multiple matched sensors and the
extent of environmental influences in our methodologi-
cal considerations.

Figure 7: Experimental Setup: Selected measurement
locations (left side) and their associated depth images
(right side). Top: Indoor space of a Lab; Middle: Model
vehicle in a residential building; Bottom: Outside in a
moving vehicle

We select different experimental locations (Fig. 7) for
our validation and gather criteria (Tab. 2) such as fer-
romagnetic influenced building materials, lighting and
colour conditions, textures as well as velocities from
the challenges of previous works.

Lab Model Vehicle
Velocity [km/h] 0 < 3.6 0 0 < 80

Location size [m] 30 < 1 < < 2000
Magnetic influences Indoor Indoor Outdoor

Texture variations Low Low High
Light Low Average High

Colour Contrasts Low Average High

Table 2: Criteria of Measurement: Description of the
selection criteria for different experimental locations.
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σnc [µT ] σc [µT ] εc/nc [%] Uncalibrated Calibrated

Model: 3.00±12.86 ·10−3 2.05±23.00 ·10−3 31.67

Lab: 0.99±11.10 ·10−3 0.97±8.09 ·10−3 2.51

ICEV Centre: 1.29±0.00 ·10−3 1.28±10.83 ·10−3 0.35

ICEV Front: 6.72±3.11 ·10−3 1.52±11.48 ·10−3 77.50

EV Centre: 2.56±0.01 ·10−3 0.96±15.39 ·10−3 62.53

EV Front: 1.89±2.22 ·10−16 1.15±10.16 ·10−3 39.27

Table 3: Stability of the Magnetometer: σc and σnc (σc :calibrated, σnc: non-calibrated) describe the deviation
of magnetic values during measured time tc and tnc (tc: calibrated, tnc: non-calibrated). The calibrated and uncali-
brated states of the magnetometer are represents roll: red, pitch: green and yaw: blue.

5 EVALUATION
We investigate the static and dynamic behaviour of
ZED 2 integrated sensors for the evaluation of geomag-
netic inertial navigation and positional sensor stability.
Our computing hardware has an integrated Intel Core
i5 processor (@2.5GHz), 64GB RAM, external GPU1
Nvidia GeForce GTX 1050 Ti and onboard GPU0 of
Intel HD Graphics 630.

Static Sensor State The stability behaviour is evaluated
through revision of ZED 2 integrated magnetometer,
accelerometer and gyroscope in stationary case. We
consider local measurement fluctuations (Fig. 7) in
calibrated and uncalibrated state to explore the suitabil-
ity of geomagnetic initialisation at different times. In
addition to different indoor spaces, we examine sensor
behaviours in Internal-Combustion-Engine Vehicles
(ICEV) and Electric Vehicle (EV). We investigate
static influences on magnetometers caused by Faraday
cage, electric motors, battery, active sensors, embedded
graphic and combination instruments. Our static results
are shown in Tab. 3.

Static Evaluation The location-dependent comparison
in our evaluation show necessity of magnetometer cal-
ibration and accelerometer compension in static case.
The magnetometer reveal local susceptibilities. Elec-
tromagnetic fields from devices act on the sensor at spa-
tial locations and within the vehicles. Previous sensor
positions or micro movements deviate from actual cali-
brated conditions between 31.67% and 77.5%. We no-
tice in the vehicles (ICEV and EV) that magnetome-
ters could not be calibrated at any local position due
to possible magnetic fields. A strong vulnerability oc-
curs in front of the position area where fluctuations are

measurable despite calibrated states. The centre vehicle
area of ICEV prove as well suitable for calibration posi-
tion. We suspect that engine compartments and embed-
ded graphic and combination instruments induce fields.
The Faraday cage exhibit no direct effects in our mea-
surements. Contrary to the ICEV, we are able to achieve
stable measurement results at several static positions in
the EV. Both vehicles show the consistently best results
at the calibrated position. A sensor shift from the cal-
ibrated location cause a direct deterioration of position
accuracy. We conclude that the magnetometer is suit-
able for one-time initialisation. The ideal moment is
immediately after calibration. Compressing accelerom-
eters drift and gravity at the time of magnetic calibra-
tion allows efficient positional accuracy.
Dynamic Sensor State The accuracy and transferabil-
ity of multiple sensor trajectory representations is di-
rectly related to the sensor behaviour comprising sta-
bility, resolution, accuracy and speed response. Sen-
sory noises and limitations correlate with the necessary
tolerance band of trajectory positions. However, keep-
ing within the tolerance band is an important criterion
for the successful implementation of our methodology.
Therefore, we compare and analyse the dynamic be-
haviour with the resting IMU state.
Dynamic Evaluation In resting state, the linear accel-
eration (Eq. 10) and angular velocity (Eq. 5) exhibit
noise and offset behaviours in all directions (Fig. 8).

As a result, the double integrated acceleration after
time leads to major position deviations. Adjusting the
offset reduces the deviation error but does not elimi-
nate it. By implementing a Kalman and low-pass filter,
we are able to improve the noise and following position
behaviour. Especially, Kalman filter is suitable for the
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Figure 8: Sensory Ground Truth: The left diagram
shows the acceleration. The right diagram represents
the angular velocity.

fusion of several sensor signals in a dynamic system,
which means that we can compensate the accelerometer
signal error with the magnetometer. The section of hu-
man positional trajectory representation (Fig. 9) shows
inaccuracies of sensor orientation (black arrows).

Figure 9: Trajectory Representation of Climb Stairs:
Black arrows show the sensor orientation. Red dots rep-
resent the calculated position.

We expect that the human sinusoidal oscillation leads
to a harmonic behaviour of the sensor alignment. How-
ever, our results show a non-harmonic progression. The
orientation inaccuracies result from noise behaviour
and sensitivity of the measured angular velocity. The
use of Kalman and low-pass filters may also increase
the orientation quality.

6 CONCLUSION AND FUTURE
WORK

In this paper we present a concept for global and dy-
namic matching of multiple depth cameras using dy-
namic sensor data. Our motivation is a stable and ver-
ifiable inertial navigation system for in- and outdoor
depth sensing. Limiting ranges and external influences
such as contrast, textures, temperature, magnetic inter-
ferences and insulating materials affect the accuracy
of conventional methods like GPS or image initialisa-
tion. Inaccurate position data decrease the quality of
matched point clouds due to visible scattering, distor-
tion, noise and offsets effects. Based on these chal-

lenges, we propose a concept to transfer multi-sensor
data into a magnetically referenced WCS: the geomag-
netic field. Global depth sensor matching allows the
environmental reconstruction of individual geographic
positions, while alternative navigation systems are in-
sufficient. Geomagnetic sensor matching can be used
wherever a stable external magnetic field is measured.

The positional matching of dynamic depth sensors is
a promising technique for the expanding and optimis-
ing of 3D reconstructions. The suitability of global ad-
justment for in- and outdoor applications is based on
the measurability of earth’s magnetic field. A WCS
can be generated by magnetic field sensors. Referenc-
ing the geomagnetic North Pole allows a direct pro-
portionality of the magnetic field sensors. Coordinate
transformations between the magnetometer and IMU
can compensate the magnetic susceptibility, drifts and
noise effects. The sensors show fluctuations during
our in- and outdoor measurements. Combining multi-
ple sensors reduce the position error and following off-
sets in merged point clouds. Calibration of magnetic
field sensors increases stability of measurements de-
spite magnetic interference sources. Future approaches
can implement Kalman or low-pass filters to decrease
integration-related position and orientation deviations.

The measurement radius will be extended for future
evaluations of external influences and functionalities of
geomagnetic matching. We will expand our data sets
with different geographical locations, higher movement
speeds, long-term measurements and in- and outdoor
combination. Extended data sets enable us to analyse
geographical sensor stability and continuous influence
of dynamically variable point cloud mapping. This al-
lows a thorough investigation of system boundaries and
external influences on global depth sensor alignment.

7 REFERENCES

[Auf11] Aufderheide D., Krybus W., Dodds D.,
MEMS-based Smart Sensor System for Estima-
tion of Camera Pose for Computer Vision Ap-
plications. 2011 Proceedings of the University
of Bolton Research and Innovation Conference
2011 (pp. 28-29)

[Car16] Caruso D., Sanfourche M., Besnerais G.,
Vissiere D., Infrastructureless Indoor Navigation
With an Hybrid Magneto-inertial and Depth Sen-
sor System. 2016 International Conference on In-
door Positioning and Indoor Navigation (IPIN),
https://doi.org/10.1109/IPIN.2016.7743690

[Chu11] Chung J., Donahoe M., Schmandt C., Kim
I., Razavai P., Wiseman M., Indoor Loca-
tion Sensing Using Geo-Magnetism. 2011 ACM,
https://doi.org/10.1145/1999995.2000010

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.3 24



[Cla15] Clauser C., Einführung in die Geophysik.
2015 Springer, https://doi.org/10.1007/978-3-
642-04496-0

[Gar22] Garmin Ltd, https://www.garmin.com/de-
DE/p/550460, last visited March 19th 2022

[Han07] Han X., Seki H., Kamiya Y., Hikizu M.,
Wearable Handwriting Input Device Using Mag-
netic Field. 2007 SICE Annual Conference,
https://doi.org/10.1109/SICE.2007.4421009

[Hua19] Huang G., Visual-Inertial Navigation: A
Concise Review. 2019 International Confer-
ence on Robotics and Automation (ICRA),
https://doi.org/10.1109/ICRA.2019.8793604

[Kad14] Kadambi A., Bhandari A., Raskar R.,
3D Depth Cameras in Vision: Benefits and
Limitations of the Hardware. 2014 Springer,
https://doi.org/10.1007/978-3-319-08651-4_1

[Kok18] Kok M., Hol J.D., Schön T.B., Us-
ing Inertial Sensors for Position and Orienta-
tion Estimation. 2018 Foundations and Trends
in Signal Processing No. 1-2, pp 1-153,
https://doi.org/10.1561/2000000094

[Mue21] Müller S., Kranzlmüller D., Dynamic Sen-
sor Matching for Parallel Point Cloud Data Ac-
quisition. 2021 International Conferences in Cen-
tral Europe on Computer Graphics (WSCG),
https://doi.org/10.24132/CSRN.2021.3101.3

[Pia13] Piatkowska E., Belbachir A.N., Gelautz
M., Asynchronous Stereo Vision for Event-
Driven Dynamic Stereo Sensor Using an
Adaptive Cooperative Approach. 2013 In-
ternational Conference on Computer Vision
Workshops (ICCV Workshops) pp. 45-50,
https://doi.org/10.1109/ICCVW.2013.13

[Vu12] Vu A., Ramanandan A., Chen A., Farrell J.,
Barth M., Real-Time Computer Vision/DGPS-
Aided Inertial Navigation System for Lane-
Level Vehicle Navigation. 2012 IEEE Trans-
actions on Intelligent Transportation Systems,
https://doi.org/10.1109/TITS.2012.2187641

[Ren10] Renaudin V., Afzal M., Lachapelle G.,
Complete Triaxis Magnetometer Calibra-
tion in the Magnetic Domain. 2010 Hindawi
Publishing Corporation Journal of Sensors,
https://doi.org/10.1155/2010/967245

[Shi21] Shi S., Gao T., Gao D., Ding Z., Zhang
Z., Inertial navigation aid indoor navigation
based on the establishment of accurate mag-
netic reference map. 2021 Journal of Physics:
Conference Series, https://doi.org/10.1088/1742-
6596/1802/4/042022

[Sir19] Sirakov N., Muge F., A System for Recon-
structing and Visualising Three-dimensional
Objects. 1999 Computers and Geosciences
Volume 27, https://doi.org/10.1016/S0098-
3004(00)00055-8

[Ste22] Stereolabs-ZED2, https://www.stereo
labs.com/zed-2, last visited May 03th 2022

[Tar10] Tardif J., Goerge M., Laverne M., A
New Approach to Vision-Aided Inertial Nav-
igation. e 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems,
https://doi.org/10.1109/IROS.2010.5651059

[Tak15] Takimotoa R., Tsuzuki M., Vogelaar
R., Martins T., Satoa A., Iwao Y., Gotohb
T., Kagei S., 3D reconstruction and mul-
tiple point cloud registration using a low
precision RGB-D sensor. 2015 Mechatronics,
https://doi.org/10.1016/j.mechatronics.2015.10.014

[Tes22] Tesla, https://www.tesla.com/de_DE/autopilot,
last visited March 19th 2022

[Vec22] Vectornav, https://www.vectornav.com/resour
ces/inertial-navigation-primer/specifications–
and–error-budgets/specs-hsicalibration, last
visited March 19th 2022

[Woe13] Wöhler C., Triangulation-Based Approaches
to Three-Dimensional Scene Reconstruction.
2013 Springer, https://doi.org/10.1007/978-1-
4471-4150-1_1

[Yan19] Yan Y., Geneva P., Eckenhoff K., Huang
G., Visual-Inertial Navigation with Point and
Line Features. 2019 IEEE International Work-
shop on Intelligent Robots and Systems (IROS),
https://doi.org/10.1109/IROS40897.2019.8967905

[Yoe21] Yeong J., Velasco-Hernandez G., Barry J.,
Walsh J., Sensor and Sensor Fusion Technology
in Autonomous Vehicles: A Review. 2021 Sen-
sors 2021, https://doi.org/10.3390/s21062140

[Zha16] Zhang Z., Cameras and Iner-
tial/Magnetic Sensor Units Alignment
Calibration. 2016 IEEE Transactions
on Instrumentation and Measurement,
https://doi.org/10.1109/TIM.2016.2518418

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.3 25



Exploring the necessity of mosaicking for underwater
imagery semantic segmentation using deep learning

Kazimieras Buskus
Kaunas University

of Technology,
Kaunas, Lithuania
kazimieras.buskus

@ktu.edu

Evaldas Vaiciukynas
Kaunas University

of Technology,
Kaunas, Lithuania

evaldas.vaiciukynas
@ktu.lt

Saule Medelyte
Klaipeda university,
Klaipeda, Lithuania

saule.medelyte
@ku.lt

Andrius Siaulys
Klaipeda university,
Klaipeda, Lithuania

andrius.siaulys
@jmtc.ku.lt

ABSTRACT
Deep learning applications are attracting considerable interest nowadays and image analysis pipelines are no
exception. Benthic studies often rely on the subjective evaluation of video material recorded using underwater
drones. The demand for automatic image segmentation and quantitative evaluation arises due to the large volume
of video data collected. This study performed a semantic segmentation task by training the PSPNet architecture
with ResNet-34 backbone for 50 epochs using imagery prepared by simply extracting a few video frames or stitch-
ing a multitude of frames into a large 2D mosaic. Mosaicking is a particularly resource-intensive step, therefore,
the possibility to skip such preprocessing would result in a more rapid analysis. The effect on the resulting seg-
mentation quality was investigated by estimating the seabed coverage of three classes (Furcellaria lumbricalis,
Mytilus edulis trossulus, and boulders) in a video material obtained from the Baltic Sea. Segmentation success,
measured by intersection over union, varied between 0.56 and 0.84, usually slightly better for frames than for the
mosaic overall. Absolute differences in estimated coverage were negligible (mosaic vs. frames): 0.24% vs. 1.26%
for furcellaria, 0.44% vs. 2.46% for mytilus, and 4.02% vs. 2.06% for boulders. Due to the differences between
predicted coverage and the mosaic-based ground truth being in an acceptable range, the findings suggest that the
mosaicking step could be safely skipped in favor of a few equally spaced sample frames.

Keywords
underwater imagery, mosaicking, semantic segmentation, deep learning, PSPNet, ResNet, Baltic sea

1 INTRODUCTION

Maritime space is increasingly used for renewable
energy installations, oil and gas exploitation, naval
shipping and fishing, ecosystem monitoring and
biodiversity conservation, aquaculture production,
and many other purposes. The demand for maritime
space requires integrated planning and management
strategies focused on solid scientific knowledge and
reliable seabed mapping [Men20], with underwater
images [Urr21] being one of the most widely used
seabed mapping input sources. The key advantage
of underwater imagery is its simplicity, enabling the
rapid collection of vast amounts of data, especially
through the use of underwater drones and hence
cost-effectiveness. Unfortunately, only a small part of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the information stored in these image archives is being
extracted due to labor-intensive and time-consuming
analysis procedures. A promising way to process large
amounts of images is computer-aided analysis, i.e.,
converting seabed video to 2D mosaic maps, image
segmentation, and quantifying segmentation results.
However, the mosaicking step is computationally
demanding, and the resulting photomosaic often
differs with respect to the tool used (see Fig. 1). A
comprehensive list of various, primarily commercial,
tools was evaluated for airborne imagery by [Son16]
with Pix4DMapper found to be the most precise and
Autostich the fastest.

Automatic segmentation of underwater imagery, com-
pared to other types of images, is a new and challenging
direction of research. According to a survey [Gra17]
the first publications on seabed segmentation task (also
termed seafloor classification) appeared 25 years ago
and are still scarce, the common ground between them
being the use of "hand-crafted" image features and
traditional machine learning algorithms, for example,
random forest [Rim18]. New deep learning architec-
tures of neural networks could replace image features
and help analyze images more effectively, accurately
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(a) CCOM [Rzh06] (b) LAPM v1 [Mar13] (c) Microsoft ICE 2 (d) ArcSoft PM 6 (e) Sample frames

Figure 1: Converting underwater video material (from Atlantic Ocean) to images: marine mosaics for benthic
studies (a-b), commercial software mosaics for panoramic view (c-d), and sample of equally spaced frames (e).

and quickly than ever before. The initial efforts to
apply deep learning to underwater images concerned
corals [Alo19] and other broad categories [Liu20, Isl20]
(such as fish, plants, divers, and stones) without preoc-
cupation with the sea floor and, therefore, without the
need to stitch images through mosaicking with the goal
of reconstructing a precise floor map for the estimation
of biologically valid organism counts or visual cover-
age.

The most similar related works that use deep learning
and convolutional architectures to explicitly segment
seabed images are recent techniques for estimating the
coverage of seagrass [Mar18, Wei19, Bur20], macroal-
gae [Bal20], and kelp [Mah20]. The discrepancy be-
tween the expert-identified and model-predicted cover-
age in absolute percentage points was between 0.54%
and 9.88% for kelp [Mah20] species (see Table 6 there),
while the remaining mentioned seabed studies reported
only segmentation accuracy without a comparison of
the resulting coverage percentages.

This study evaluates both semantic segmentation suc-
cess and the resulting coverage estimates using seabed
imagery in the form of 2D mosaics, or several sample
frames from short 30 s video transects as input to a con-

volutional architecture deep learning model. Both mo-
saics, as in Fig. 1 (a), and frames, as in Fig. 1 (e), were
annotated by marine biologists to solve the detection
task of 2 biological species – Furcellaria lumbricalis
and Mytilus edulis trossulus – and 1 geological class –
boulders. Performed experiments use mosaic-based an-
notations as a golden standard to measure how much
coverage summaries differ when skipping a resource-
intensive mosaicking step in favor of a few sample
frames from an underwater video.

2 UNDERWATER IMAGERY
The underwater material was filmed in coastal and off-
shore reefs of Lithuanian marine waters of the south-
eastern Baltic Sea. In the coastal area, the video was
taken by scuba divers at 4–7 meters depth using a hand-
held video camera with 1920×1080 resolution along
multiple 10–meter transects (designations SM_07_1,
SM_07_2, SM_08_1A, SM_08_1B). Additionally, in
the offshore region at 35 – 40 meters depth, a re-
motely operated vehicle (ROV) equipped with a verti-
cally mounted camera (3 CCD, high-quality Leica Di-
comar lenses, and 10× optical zoom) with 1920×1080
resolution and a lighting system consisting of 16 LED
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in 4 × 4 array was deployed, and two 30 second long
transects (designations Denoflit_30s and Denoflit_2)
were filmed. The raw video material was later trans-
formed into 2D mosaics or several relevant frames were
picked for each transect.

In this study, the video mosaicking method, developed
by the Center for Coastal and Ocean Mapping [Rzh06],
was used. The method consists of the following steps:

1. To reduce processing time, video transects of 30 s
had frame rate reduced from 50 to 5 fps and frame
size from 1920×1080 to 960×540.

2. The roll and pitch of the filming platform were ad-
justed by image transformations and some video en-
hancements were applied to each frame.

3. The enhanced footage was subjected to automatic
frame-to-frame pair-wise registration (a method that
calculates the overlap of neighboring frames).

4. Using the pair-wise registration data from the previ-
ous step, video mosaics were constructed from non-
enhanced video.

For an alternative approach, experts assigned a specific
number of frames, typically 12-16, for each video tran-
sect, and equally spaced frames of 960×540 size were
extracted using a command-line tool ffmpeg. The aim
of several representative sample frames was to cover the
video material with the least overlap between frames
to roughly correspond with the mosaic’s visual scope.
Summary of the prepared image data and classes repre-
sented in the images is in Table 1, where the size of the
resulting 2D mosaics and the corresponding number of
representative frames (of 960×540 resolution) can be
compared.

The prepared imagery (large mosaics and many fixed-
size frames) was annotated by two marine biologists
(without overlap) using polygons and striving for pixel-
level accuracy in an online collaborative annotation

Transect Mosaic size Frames Classes

SM07_1 2434×8774 16
Furcellaria

Boulder

SM07_2 5021×5107 12 Furcellaria

SM08_1A 4191×5379 12
Furcellaria

Boulder

SM08_1B 4745×5379 12
Furcellaria

Boulder

Denoflit_2 2434×8774 11
Mytilus
Boulder

Denoflit_30s 1580×5480 11 Mytilus

Table 1: Summary of underwater imagery used.

platform Labelbox [Rie20]. Examples of these anno-
tations for the mosaic segment and the corresponding
frame are shown in Fig. 2.

(a) Furcellaria (b) Mytilus (c) Boulders

Figure 2: Mosaic (top) and frame (bottom) annotations
for (roughly) the same transect region.

In general, all visible objects of 3 classes were anno-
tated: biological Furcellaria species had 102 instances
in 3 mosaics and 120 instances in frames; biological
Mytilus species had 148 instances in 2 mosaics and 62
in frames; geological Boulder class had 167 instances
in 3 mosaics and 166 in frames.

3 METHODS
The prepared underwater imagery, either in the form
of large mosaics or representative frames, was patched
using a sliding window idea to prepare training and
testing data for the deep learning model with convo-
lutional architecture. Training patches were augmented
to increase data amount and as a simple form of reg-
ularization. The evaluation was performed by splitting
the transects in half to achieve a 2-fold cross-validation.
Segmentation success was measured by the intersection
over union metric and by comparing visual coverage es-
timates.

3.1 Image patching and augmentation
Due to the limitations of the available computational
resources, both mosaics and frames were sliced into
overlapping 288×288 size patches. The overlap was
the result of sliding window or block processing idea
with vertical and horizontal strides of 144 pixels (see
Fig. 3). The mosaics contained many white pixels, as a
result of the mosaicking process, so only patches with
a minimum of 70% non-white pixels were considered
as input images. Furthermore, to increase the amount
of training data, a few traditional augmentation tech-
niques, such as vertical and horizontal flip, and one
marine-specific technique – removal of water scattering
(RoWS) [Cha10] – were used on input image patches.

3.2 Convolutional architecture
In the experiments, we used a deep convolutional neu-
ral network with pyramid spatial pooling architecture
- PSPNet [Zha17] model with ImageNet pre-trained
ResNet-34 [He16] as the backbone. The model was im-
plemented using the Keras framework (version 2.3.1),
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Figure 3: Block processing of underwater photos into overlapping patches of 288×288 sized input images.

running on the Tensorflow back-end (version 2.1.0),
with the help of the package segmentation-models
(version 1.0.1) [Yak19]. Model training settings were
as follows: batch size (number of images used for
the weight tuning step) - 8 images, training duration
- 50 epochs, downsampling rate (backbone depth in
the PSPNet model) - 8, minimized loss - additive
combination of Jaccard [Jac08] and Focal [Lin17]
losses. Final model had 2 746 058 parameters (2 737
860 trainable).

3.3 Evaluation of segmentation
Evaluation of segmentation performance was done
using 2-fold transect-stratified cross-validation (CV),
where each transect was split in half – top and bottom
parts – and training was performed on one part while
testing on the other part. For example, after training
on all bottom parts of mosaics (first half of the corre-
sponding frame set), testing was performed on all top
parts and vice versa. Both training and testing were
carried out using 288×288 size images and after ob-
taining results on all mosaic (or frames) patches tested,
overlapping parts were averaged and a class threshold
of 0.5 was used to obtain the final predicted mask.
Then the intersection over union (IOU) – a commonly
used measure of segmentation success, comparing the
ground truth with the predicted mask – was used to
summarize the results of both testing folds of 2-fold CV
in a micro-average fashion. In addition, final prediction
masks were used to estimate the visual coverage of the
class in question. The coverage itself was interpreted
as a ratio between predicted or the ground truth masks
with either relevant pixels (excluding white pixels) in
the mosaic setting and all pixels in the frame setting,
see the Pixels column in Tables 2– 4.

4 EXPERIMENTS
We used 2D mosaics and representative transect
frames for training and testing the convolutional neural
network model for two biological and one geological
classes.

4.1 Setup
The hardware used was as follows: Intel(R) Core(TM)
i7-8700 CPU @3.2 GHz, 32 GB of operating memory,
NVIDIA RTX 2070 with 8 GB of memory. Software
used: Windows 10 Enterprise (build 1809) 64-bit op-
erating system, CUDA 10.1, CuDNN 6.4.7 and Python
3.6.8. During training, 4608 patches were used for Fur-
cellaria class mosaic setting, 4200 for frame settings;
Mytilus class - 1944 for mosaic, 1848 for frames; Boul-
der - 9810 mosaic, 8652 patches in frame settings.

4.2 Results
Segmentation performance. Segmentation perfor-
mance was summarized using the intersection over
union (IOU) metric. The amount of imagery used in
experiments is reported as Pixels column in Tables 2
– 4, with frames usually having slightly fewer pixels
overall, except for Furcellaria class transects. Results
demonstrate that the best achieved IOU score was
84% using mosaics for Furcellaria class segmentation
(see Table 2). The IOU results between mosaics and
frames indicated slight differences in all but one case
for Furcellaria class, where the absolute difference in
IOU scores was almost 10%. Also, in two out of four
transects for Furcellaria class, the frames had a better
IOU score (by 1.04% and 1.5% points). For Mytilus
class (see Table 3), frames had marginally better IOU
results (by 2.8% and 6.1% points). However, mosaics
appeared to be more advantageous for the geological
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Furcellaria transects
Mosaic Frames

Pixels (mln.) IOU Pixels (mln.) IOU ∆ IOU
SM07_1_bio 9.04 0.703 8.29 0.718 -0.015
SM07_2_bio 7.06 0.839 6.22 0.793 0.046

SM08_1A_bio 6.64 0.661 6.22 0.765 -0.104
SM08_1B_bio 6.85 0.726 6.22 0.726 0

Totals: 29.59 0.711 26.96 0.746 -0.035

Table 2: Segmentation performance, as measured by the IOU score, for Furcellaria class using mosaics and frames.

Mytilus transects
Mosaic Frames

Pixels (mln.) IOU Pixels (mln.) IOU ∆ IOU
Denoflit_2_bio 6.56 0.560 5.70 0.621 -0.061

Denoflit_30s_bio 5.17 0.671 5.70 0.699 -0.028

Totals: 11.73 0.613 11.40 0.6649 -0.051

Table 3: Segmentation performance, as measured by the IOU score, for Mytilus class using mosaics and frames.

Boulder transects
Mosaic Frames

Pixels (mln.) IOU Pixels (mln.) IOU ∆ IOU
Denoflit_2_geo 6.56 0.661 5.70 0.592 0.070
SM07_1_geo 9.04 0.606 8.29 0.603 0.003

SM08_1A_geo 6.63 0.819 6.22 0.798 0.021
SM08_1B_geo 6.85 0.802 6.22 0.808 -0.006

Totals: 29.09 0.744 26.44 0.733 0.011

Table 4: Segmentation performance, as measured by IOU, for Boulder class using mosaics and frames.

boulder class (see Table 4), with a maximum difference
of 7% points. Overall, total IOU scores were higher for
frames than mosaics by 3.5% for Furcellaria and 5.1%
for Mytilus class (see Totals in Tables 2 and 3), except
for the boulder class (see Totals in Table 7) with 1%
point difference.

Segmentation totals. When summarizing the segmen-
tation performance by the Totals in Tables 2–4 we
can make the following insights. Segmentation suc-
cess, measured by the IOU metric, was in an accept-
able range between 61.3% (for Mytilus mosaics) and
74.6% (for Furcellaria frames). Segmentation perfor-
mance using frames was better for biological classes
(by 3.5% for Furcellaria and 5.1% for Mytilus tran-
sects), but slightly worse for the geological boulder
class (by 1.1%).

Coverage estimates. With respect to visual coverage
estimates, it is important to note that for all but the
Mytilus class, transects have very different coverage
levels: for example, transect SM07_1_bio had 9.75%
while transect SM08_1B_bio had 57.48% coverage for
the Furcellaria class (see the Mosaic GT column in Ta-
ble 5). Three deltas summarize the results of visual cov-
erage estimates in Tables 5–7, measuring the absolute
difference in coverage from the mosaic ground truth:
the first delta (Mosaic ∆ DL) shows the effect of us-

ing predictions from mosaics, the second delta (Frames
∆ GT) shows the effect of using annotated frames in-
stead of mosaics without any prediction, and the third
delta (Frames ∆ DL) shows the effect of using predic-
tions from frames. Biological classes had negligible
differences when using mosaic predictions with an un-
derestimate of 0.86% and an overestimate of 0.41%,
while geological class had greater differences with an
underestimate of 1.61% and an overestimate of 6.12%.
Surprisingly, even annotators were unable to achieve a
high correspondence in visual coverage estimates with
slight differences for geological class and more consid-
erable differences for biological classes, even reaching
an underestimate of 8.24% points for Furcellaria tran-
sect with the highest coverage (transect SM07_2_bio).
The last and most important differences in our study
were observed using frames predictions with an un-
derestimate of 5.89% and an overestimate of 8.41%,
both for the Furcellaria class. The differences for
other classes were distributed relatively uniformly in
that range. There was a tendency to overestimate geo-
logical class and underestimate biological classes when
estimating visual coverage from frame predictions.

Coverage totals. When summarizing the coverage es-
timates by the Totals in Tables 5–7 we can make the
following insights. Taking mosaics as the ground truth,

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.4 30



Furcellaria transects
Mosaic Frames

GT DL ∆ DL GT ∆ GT DL ∆ DL

SM07_1_bio 9.75 9.44 0.31 8.32 1.43 9.01 0.74
SM07_2_bio 11.91 11.05 0.86 9.88 2.03 9.25 2.66

SM08_1A_bio 43.15 43.83 -0.68 47.56 -4.41 49.04 -5.89
SM08_1B_bio 57.48 57.07 0.41 49.23 8.24 49.07 8.41

Totals: 28.81 28.57 0.24 27.18 1.63 27.55 1.26

Table 5: Coverage estimates for Furcellaria class. Abbreviations: GT – results from ground truth annotations; DL
– results from deep learning model-based predictions; ∆ – difference from mosaic-wise ground truth annotations.

Mytilus transects
Mosaic Frames

GT DL ∆ DL GT ∆ GT DL ∆ DL

Denoflit_2_bio 18.11 17.92 0.20 15.25 2.86 16.25 1.86
Denoflit_30s_bio 22.83 22.07 0.76 21.61 1.21 19.21 3.62

Totals: 20.19 19.75 0.44 18.43 1.76 17.73 2.46

Table 6: Coverage estimates for Mytilus class. Abbreviations: GT – results from ground truth annotations; DL –
results from deep learning model-based predictions; ∆ – difference from mosaic-wise ground truth annotations.

Boulder transects
Mosaic Frames

GT DL ∆ DL GT ∆ GT DL ∆ DL

Denoflit_2_geo 29.65 28.05 1.61 30.62 -0.97 25.84 3.82
SM07_1_geo 34.95 41.07 -6.12 34.52 0.43 36.24 -1.29

SM08_1A_geo 76.41 81.95 -5.54 77.05 -0.64 81.17 -4.77
SM08_1B_geo 76.55 81.70 -5.15 76.72 -0.17 80.90 -4.35

Totals: 53.01 57.03 -4.02 53.61 -0.60 55.08 -2.06

Table 7: Coverage estimates for boulder class. Abbreviations: GT – results from ground truth annotations; DL –
results from deep learning model-based predictions; ∆ – difference from mosaic-wise ground truth annotations.

we can notice lower coverage for biological classes
(28.81% for Furcellaria and 20.19% for Mytilus) than
for the geological class (53.01% for boulders). Expert-
based annotations of frames deviated from the anno-
tations of mosaics only slightly: more for biological
classes (by 1.63% for Furcellaria and by 1.76% for
Mytilus) and less for the geological class (by 0.6% for
boulders). Model-based predictions when training on
the transects’ bottom half and testing on the top half (or
vice versa), if compared to previously mentioned devia-
tions of expert-based frames annotations, deviated only
slightly more with underestimates of 1.26% for Furcel-
laria and 2.46% for Mytillus classes and an overesti-
mate of 2.06% for boulders class.

Visual comparison. Examples of segmentation predic-
tions are provided in Figures 4–5, where we can com-
pare how poor results differ from acceptable with seg-
mentation false positives/negatives in green/blue colors.

5 CONCLUSIONS
Segmentation success was better than average with in-
tersection over union varying between 0.56 and 0.84,

depending on the class and transect, but slightly better
for frames than for the mosaics overall. Lower visual
coverage estimates from ground truth mosaic annota-
tions were for biological classes (28.81% for Furcel-
laria and 20.19% for Mytilus) than for the geological
class (53.01% for boulders).

Expert-based annotations of frames deviated from the
annotations of mosaics only slightly (largest deviation
of 1.76%), model-based predictions - a bit more (largest
deviation of 2.46%). The largest differences were ob-
served for Mytilus class, which was composed of many
tiny objects and had the lowest coverage. Due to the
deviations being in an acceptable range, the reported
results of visual coverage estimates suggest that the mo-
saicking step could be safely skipped in favour of a few
equally spaced sample frames.

The main limitation of the experiments performed is the
balance between training and testing data amounts, and
the transect-stratified type of cross-validation, ensuring
that the model has seen part of the tested transect during
training. Future work should address these limitations.
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(a) Furcellaria (b) Mytilus (c) Boulders

Figure 4: Segmentation success using mosaics: acceptable (top) and poor (bottom) results. Color coding: false
negative pixels are marked in blue, false positive pixels in green, and ground truth annotations are outlined in red.

(a) Furcellaria (b) Mytilus (c) Boulders

Figure 5: Segmentation success using frames: acceptable (top) and poor (bottom) results. Color coding: false
negative pixels are marked in blue, false positive pixels in green, and ground truth annotations are outlined in red.
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Figure 1: Mip-NeRF RGB-D uses RGB-D frames to represent 3D scenes using neural radiance fields. Depth in-
formation is used for local sampling and geometric loss. It produces significantly better photometry and geometry.

ABSTRACT
Neural scene representations, such as Neural Radiance Fields (NeRF), are based on training a multilayer perceptron
(MLP) using a set of color images with known poses. An increasing number of devices now produce RGB-D(color
+ depth) information, which has been shown to be very important for a wide range of tasks. Therefore, the aim
of this paper is to investigate what improvements can be made to these promising implicit representations by
incorporating depth information with the color images. In particular, the recently proposed Mip-NeRF approach,
which uses conical frustums instead of rays for volume rendering, allows one to account for the varying area of
a pixel with distance from the camera center. The proposed method additionally models depth uncertainty. This
allows to address major limitations of NeRF-based approaches including improving the accuracy of geometry,
reduced artifacts, faster training time, and shortened prediction time. Experiments are performed on well-known
benchmark scenes, and comparisons show improved accuracy in scene geometry and photometric reconstruction,
while reducing the training time by 3 - 5 times.

Keywords
Computer vision, RGB-D NeRF, NeRF, Neural Scene Representation, Neural Rendering, Volume Rendering.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1 INTRODUCTION
Recent advances in neural scene representations
[Sitzmann et al., 2019, Mildenhall et al., 2020] have
demonstrated that neural networks can be used to rep-
resent 3D scenes as weights of a neural network for the
purpose of rendering novel photorealistic views. Meth-
ods such as [Mildenhall et al., 2020, Saito et al., 2019,
Lombardi et al., 2019] learned a volumetric repre-
sentation from a sparse set of RGB images captured
from color camera sensors. This method requires pre-
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computation of camera poses and uses two multilayer
perceptron networks to represent scene geometry and
lighting effects. Although the NeRF models and their
variants have shown impressive results, the underlying
model is computationally inefficient, largely due to
its volumetric search space for intersecting viewing
rays, leading to extended training times. For example,
volume rendering involves sampling points along each
viewing ray (256 for NeRF) to calculate the color of
the ray from the volume density and radiance of each
sample point. Furthermore, the multiview triangulation
problem is sometimes intractable from only images,
which leads to artifacts and inaccurate geometry.

Although color-only approaches work well for appli-
cations that only have RGB images available, this ap-
proach can be improved by considering depth informa-
tion alongside color. Many devices, including mobile
phones, now include RGB-D sensors, and the aim of
this paper is to investigate and devise a methodology to
incorporate depth information into a neural scene rep-
resentation.

Only a few methods have been proposed to take
advantage of depth measurements simultane-
ously with color within the volumetric rendering
pipeline [Neff et al., 2021, Deng et al., 2021]. How-
ever, these methods do not explicitly model the
uncertainty of the sensor. To successfully incor-
porate noisy depth measurements into the volu-
metric rendering pipeline, the recent Mip-NeRF
approach [Barron et al., 2021] provides a framework
that accounts for the uncertainty of color pixel with
varying depth by replacing classic 3D ray sampling
with conic region sampling. This approach provides an
elegant framework for including multivariate Gaussian
uncertainty and will be extended in this paper to
include depth uncertainty.

In this paper, it will be demonstrated that considering
depth information can improve geometry considerably
compared to only color information at several differ-
ent levels. First, this method shows how local sam-
pling along the rays, guided by surface information
from RGB-D frames, can reduce the number of samples
along the ray and replace the coarse network of NeRF.
Second, a joint color-and-depth-loss term will be shown
to allow the network to learn the geometry and color of
the scene from a limited number of input views. Third,
the proposed method shows how depth uncertainty can
be incorporated into a multivariate Gaussian method to
query the MLP. Finally, an adaptive training method
will be proposed that allows the network to learn mul-
tiple scales of uncertainty within the representation.

To sum up, the proposed method is based on a RGB-D
neural radiance field combined with an implicit occu-
pancy representation that takes into account both color
and depth observations.

The key contributions of the article are summarized as
follows:

• Depth information is used for efficient sampling.

• The representation is optimized simultaneously on
scene geometry and photometry.

• Depth uncertainty is handled adaptatively via a new
local sampling strategy.

2 RELATED WORK
The proposed Mip-NeRF RGB-D uses a set of RGB-D
inputs to learn a volumetric scene representation of the
observed scene using a multilayer perceptron by lever-
aging both depth and color information. In the follow-
ing, related work to this research will be discussed.

2.1 Novel view synthesis from images
Image-based view synthesis uses a number of tech-
niques to generate novel images, such as transforming
or warping an existing set of images using esti-
mated geometry and camera poses to create novel
views [Hedman et al., 2016, Gortler et al., 1996].
[Heigl et al., 1999] used a sequence of images and
directly rendered the views by projective mapping
of all images to a common plane of mean geometry.
To generate a novel view from a set of captured
images of different poses requires blending them
to target views; even though the geometry of the
static objects is constant in different views, the
appearance can change depending on lighting and
object properties. To overcome these drawbacks
[Hedman et al., 2018, Thies et al., 2020] used artificial
neural networks to reduce artifacts and view-dependent
effects in the generated novel views.

2.2 Implicit neural surface representation
These methods use neural networks to learn a neu-
ral surface representation of the object using voxels,
meshes, and point cloud data. Although they are ca-
pable of achieving impressive results, they are limited
by their internal resolution and high-frequency details.
Mescheder et al. [Mescheder et al., 2019] used a neural
network to learn a continuous 3D occupancy function;
Given 3D points as input to an occupancy network, the
network predicts binary occupancy at that 3D location.
Later, [Chen and Zhang, 2019] used an MLP to predict
occupancy from a feature vector and the 3D coordinates
of the location. On the other hand, [Park et al., 2019]
learned a signed distance function(SDF) instead of oc-
cupancy to improve the quality of the reconstruction.
[Saito et al., 2019] showed that it is possible to infer 3D
surfaces and texture from a single image using an im-
plicit function.
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Figure 2: An overview of the proposed Mip-NeRF RGB-D. (a) The input to the network is the integrated positional
encoding of a conical frustum segment. (b) The network outputs volume density and color. (c) The color and depth
of a ray is generated using the classic volume rendering method. (d) The network is optimized using a color and
depth loss.

2.3 Neural volume rendering
Lombardi et al. [Lombardi et al., 2019] initially
introduced volume rendering for novel view synthe-
sis using a CNN-based encoder and an MLP-based
decoder to produce density and color for each point
in space. The well-known Neural Radiance Fields
approach was introduced in [Mildenhall et al., 2020]
and demonstrated compelling results with a simple
method that takes 3D points and the associated view
direction as input to an MLP and outputs density
and color. Some of the drawbacks of NeRF are its
long training time, its long rendering time, the need
to train a separate model for each scene, and it only
works on static scenes. Various investigations have
been conducted since the original NeRF to address
these problems. [Liu et al., 2020, Neff et al., 2021,
Garbin et al., 2021, Reiser et al., 2021, Yu et al., 2021]
addressed the slow inference time of NeRF by
using a tiny MLP and a better sampling strategy.
[Deng et al., 2021] used sparse depth supervision dur-
ing training to improve the training time of the NeRF
model. [Pumarola et al., 2020, Gafni et al., 2020,
Noguchi et al., 2021] address the problem of static
scenes. [Yu et al., 2020, Schwarz et al., 2020,
Tancik et al., 2020, Chan et al., 2020] have gener-
alized NeRF models using fully convolutional image
features, a generator discriminator, and meta-learning.
Saito et al.[Barron et al., 2021] focused on NeRF
aliasing and sampling problems. They proposed an
integrated positional encoding, which uses a conical
frustum defined by the mean and covariance of the
rays, and the neural radiance field is integrated over the
region represented by 3D Gaussian encoding.

2.4 Neural radiance field with depth
To solve the problem of incorrect geometry prediction
when a limited number of input views are given,
[Deng et al., 2021] proposed using depth as alternate

supervision. Ds-NeRF uses a sparse 3D point cloud
and then reprojects the errors between the detected 2D
keypoints and projected 3D points, generated by com-
monly used structure-from-motion (SfM) algorithms
which are error-prone. They optimize the model over
a combined color and depth loss function. Similarly,
NerfingMVS [Wei et al., 2021] uses a monocular
depth network to generate depth prior from SfM
reconstruction of the scene. The adapted depth priors
are used to guide the sampling process of points along
the ray. Unlike DS-NeRF, it generates a dense depth
prior from sparse SfM points using a pretrained depth
network. Azinovic et al.[Azinović et al., 2021] also
demonstrated the incorporation of depth with NeRF
to produce a better and more detailed reconstruction
than simply using color or depth alone. Unlike others,
it uses a truncated signed distance function(TSDF)
instead of volume density to represent the underlying
geometry. It still uses two networks that significantly
affect training and prediction time. On the other hand,
iMap [Sucar et al., 2021] shows that NeRF can be used
to represent scenes in a real-time SLAM system. It
jointly optimizes the 3D map and camera pose using
keyframes. iMap uses a smaller MLP (4 layers) than
NeRF and does not consider the viewing direction to
model lighting effects. DONeRF [Neff et al., 2021]
proposed a compact dual network design to reduce
evaluation cost, leading to a faster prediction time. The
coarse NeRF network is replaced by a depth oracle
network based on a classification network. To reduce
the number of samples along the rays, they suggested
nonlinear transformation and a local sampling strategy,
which helped them to achieve a similar result to NeRF
with a fraction of the samples, but the method is limited
to forward facing scenes.

3 METHODS
Now the proposed Mip-NeRF RGB-D will be pre-
sented. First, the implicit scene representation used by
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NeRF based methods will be over-viewed, followed by
the explanation of the rendering process. After that, an
efficient network architecture will be proposed and a
joint optimization method using RGB-D data will be
presented. Finally, the local sampling strategy used
to reduce the number of samples along the rays and
reduce training time will be described.

3.1 Implicit scene representation
The proposed system is based on the Mip-NeRF
[Barron et al., 2021] method which is an extension of
NeRF for handling anti-aliasing. Vanilla NeRF based
methods use a set of images and corresponding poses
to train a MLP network that represents the scene by
outputting the emitted radiance and volume density
of 3D locations. Given 5D coordinates(3D location +
viewing direction) as input, the network FΘ learns an
implicit function that estimates color C = (r,g,b) and
volume density τ as:

FΘ : (x,y,z,θ ,φ)→ (C,τ). (1)

First, rays r(t) = o+ td passing through each pixel of
the image are generated, where the ray origin o is the
camera center and d is the ray direction. Then N sam-
ple points are placed along the ray stratified manner
between predefined near and far bounds. The color of
each pixel is computed using a radiance and a volume
density along the ray. In Mip-NeRF the rays are re-
placed with cones generated using the camera center
and the pixel size. The cone is split into N intervals
T⟩ = [ti, ti + 1) and for each interval the integrated po-
sitional encoding of the mean and the covariance (µ,Σ)
of the corresponding conical frustum is computed. In-
tegrated positional encoding encodes the Gaussian ap-
proximation of the conical frustum as follows:

γ(µ,Σ) =

{[
sin(2l µ)exp(−2l−1diag(Σ))
cos(2l µ)exp(−2l−1diag(Σ))

]}L−1

l=0
,

(2)
where Σ is the covariance of the Gaussian approxima-
tion:

Σ = σ
2
t (d ·dT)+σ

2
r

(
I − d ·dT

||d||22

)
. (3)

The variance along the ray is denoted by σ2
t and the

variance perpendicular to the ray is σ2
r . Mip-NeRF uses

this integrated positional encoding instead of the fre-
quency positional encoding as input to the neural net-
work. One of the key difference between Mip-NeRF
and the proposed method is the local sampling strate-
gies, which will be discussed in the subsequent part of
this article.

3.2 Volume rendering
Similarly to NeRF, a volume rendering formula was
used to calculate the color and the depth of pixels from

radiance and volume density of the conical frustum.
The volume density τ(P) at location P = (x,y,z) can
be interpreted as the differential probability of ray ter-
mination. The expected color C(r) of a camera ray
r(t) = o+ td with near and far bounds tn and t f is:

C(r) =
∫ t f

tn
T (t)τ(r(t))c(r(t),d)dt, (4)

where
T (t) = exp(−

∫ t

tn
τ(r(s))ds). (5)

The function T (t) denotes the accumulated transmit-
tance along the ray from tn to t, i.e., the probability that
the ray travels from tn to t without hitting any other par-
ticle. In the stratified sampling approach [tn, t f ] is parti-
tioned into N evenly-spaced bins and then one sample is
drawn uniformly at random from within each bin. The
samples are used to estimate predicted color Ĉ(r) as:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−τiδi))ci, (6)

where

Ti = exp(−
i−1

∑
j=1

τ jδ j). (7)

Here δ j = t j+1 − t j is the distance between adjacent
samples. Similarly [Wei et al., 2021], the depth can be
represented with volume density using:

D̂(r) =
N

∑
i=1

Ti(1− exp(−τiδi))ti, (8)

where Ti is the accumulated transmittance. To optimize
the network, NeRF uses a squared error between the
rendered and true pixel colors.

3.3 Optimization
The network parameters θ are optimized using a set of
RGB-D frames, each of which has a color, depth, and
camera pose information. The proposed method mini-
mizes the geometric and photometric loss together on a
set of frames as the rendering functions are completely
differentiable. The photometric loss lp is the abso-
lute difference (L1-norm)[Sucar et al., 2021] between
the predicted color and the ground truth color of the
ray. The photometric loss over a set of rays is defined
as:

lp = ∑
r∈R

|Ĉ(r)−C(r)|. (9)

The geometric loss is the absolute difference between
predicted and true depths, normalized by the depth
variance [Sucar et al., 2021] to discourage weights with
high uncertainty:

lg = ∑
r∈R

|D̂(r)−D(r)|√
D̂var(r)

, (10)
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where D̂var(r) = ∑
N
i=1 Ti(1 − exp(−τiδi))(D̂(r) − ti)2

depth variance of the image. The neural network
can be optimized by combining photometric, and
geometric losses together using empirically chosen
scale factors λp:

minθ (lg +λplp). (11)

3.4 Network architecture
The network architecture is similar to the original NeRF
with some modifications. The proposed method uses
only one network with 4 hidden layers of feature size
256. The skip connection is used in layer 3. The view-
ing direction is concatenated to the fourth layer before
the color and volume density are output. The integrated
positional encoding was applied to the conical frustum
and a positional encoding of frequency 4 is applied to
the viewing directions as was done in Mip-NeRF. By
decreasing the network size, faster training and predic-
tion time were achieved without significantly compro-
mising the novel view quality.

3.5 Local sampling
NeRF based methods estimate pixel color by placing
samples on viewing rays traced through the pixels. The
final color of the pixels is calculated by the alpha com-
position [Max, 1995] of the volume density and the ra-
diances of the samples along the ray. Samples relevant
to the volume produce higher volume density, so sam-
ples close to the surface are more relevant to the pixel’s
final color. NeRF uses 256 samples in a stratified man-
ner and 2 networks to ensure that samples are placed on
relevant parts of the ray. To compute a pixel color, each
sample on that ray needs a full network evaluation, so
the training time increases exponentially with the num-
ber of samples on the ray. Although Mip-NeRF uses a
conical frustum instead of viewing rays, it still requires
2 network passes and a large number of bins to create
integrated positional encoding. In reality, the majority
of the scene volume is empty space (for 360 scenes),
and the samples placed on the empty space have less
contribution to the final color. Therefore, given the
depth information of an image, it is possible to place
fewer samples and to place them directly on the relevant
parts of the ray, while achieving similar quality results.
Finally, in this case, it is also possible to eliminate the
coarse network with local sampling, which NeRF uses
to find important sampling locations along the ray. Var-
ious depth-guided sampling strategies have been con-
sidered. Figure:3 shows the comparison between the
proposed local sampling and the baseline approaches.

3.5.1 Stratified sampling
The so-called stratified sampling strategy is very simi-
lar to the original Mip-NeRF sampling, but the conical

NeRF

Mip-NeRF

Mip-NeRF RGBD

Stratified

Mip-NeRF RGBD

Gaussian

Mip-NeRF RGBD

Adaptive

Near Far

Near Far

Depth

Near
Far

Depth

Depth

Gaussian

Adaptive Gaussian

(a)

(b)

(c)

(d)

(e)

Figure 3: Visualization of the proposed sampling strate-
gies(c, d, e) compared to NeRF(a) and Mip-NeRF(b).
Black arrows represent ray direction and purple ellip-
soids represent a Gaussian approximation of the conical
frustum.

frustums are generated only close to the surface based
on depth information(Figure:3(c)). Here the space be-
tween the near and far bounds [tn, t f ] is divided into N
evenly spaced bins and a sample is drawn uniformly
at random from each bin where tn = D−αn and t f =
D+α f , αn and α f are empirically chosen based on the
depth uncertainty. The samples are then used as the
bounds of the conical frustum. This allows the network
to avoid empty space and eventually decrease the num-
ber of bins needed for each ray.

3.5.2 Gaussian sampling
In this strategy, instead of placing the bins equidistantly
around the surface, the limits of the conical segments
are selected from a normal distribution where the mean
is the depth and the standard deviation ς is empirically
chosen based on the depth uncertainty. In this way, it
ensured that the conical frustums are smaller (toward
the ray direction) on the relevant part of the ray(close
to the true depth as in Figure:3(d)) to emphasize the
high-frequency details on the surface. This allows the
network to handle the generalized uncertainty present
in the depth estimate.

3.5.3 Adaptive sampling
The adaptive sampling strategy uses a normal distribu-
tion with a varying standard deviation ς(r) based on
the number of epochs and the depth of the ray. There-
fore, the normal distribution (the mean is the depth
measurement) is used to define the limits of the con-
ical frustums(Figure:3(e)). ς(r) varies during training
according to the number of epochs in a coarse to fine
manner to improve the fine photometric details. Addi-
tionally, this sampling strategy takes into account the
depth uncertainty, which increases with distance. The
standard deviation of each ray is calculated as follows:
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ς(r) =
D(r)

4
(exp−λr i+λm), (12)

where i is the epoch number, λr is the rate of decrease,
λm is minimum standard deviation, and D(r) is the true
depth of the ray. λr and λm are empirically chosen
based on dataset and depth uncertainty.

4 EXPERIMENTAL RESULTS
In this section, the proposed methods are evaluated on
various datasets and compared with other state-of-the-
art NeRF based methods.

4.1 Experimental Setup
4.1.1 Datasets
Simulated datasets were used for all experiments. Each
data set contained RGB images, depth maps, and their
corresponding camera poses. All poses in the datasets
belong to an upper hemisphere, where the object is
placed in the center. Four different scenes were con-
sidered for the experiments: Lego1, Cube, Human 2,
and Drums3. The input images have 800×800 resolu-
tion, and the depth measurements are in meters. Each
of the datasets has three versions, in which the number
of training images is 8, 30, and 100.

4.1.2 Implementation Details
The proposed method is implemented using a combina-
tion of PyTorch and CUDA. The ADAM optimizer with
a learning rate of 5×10−4 and an exponential decay of
the learning rate of 5× 10−1 in every five epoches has
been used. A batch size of 2048 on 2 Nvidia Rtx 3090
GPUs was used for all experiments. 16 frequency bands
were used for integrated positional encoding of the con-
ical frustum and 4 frequency bands to encode viewing
directions with positional encoding.

For all experiments, the following parameters are used
as default: the photometric scale factor for the loss
function is λp = 100, standard deviation for Gaussian
sampling is 0.3, λr = 0.09 and λm = 0.1 for adaptive
sampling.

4.1.3 Metrics
Four metrics are used to evaluate the predicted RGB im-
age quality and depth map: Peak Signal-to-Noise Ratio
(PSNR in dB): to compare the quality of the RGB re-
construction, the higher is better; Absolute Relative dis-
tance (Abs Rel in m): to compare the quality of the gen-
erated depth map, the lower is better; Structural Simi-
larity Index (SSIM in %) [Wang et al., 2004]: quantifies

1 https://www.blendswap.com/blend/11490
2 https://renderpeople.com/free-3d-people/
3 https://www.blendswap.com/blend/13383

the degradation of image quality in the reconstructed
image, the higher is better; Learned Perceptual Im-
age Patch Similarity (LPIPS) [Zhang et al., 2018]: the
distance between the patches of the image, the lower
means that the patches are more similar.

4.2 Comparison
First, local sampling strategies are compared in Section
4.2.1. Then, the effect of a different number of samples
on the proposed model is discussed. After that, the pro-
posed method is applied in different scenes. Finally, in
Section 4.2.5, the proposed method is compared with
other NeRF-based methods that use depth supervision.

4.2.1 Comparison between different local sam-
pling strategies

Instead of placing samples over the entire ray, local
sampling places samples only on the relevant regions
of the ray using depth information. In this section, pro-
posed local sampling strategies are compared. Table 1
shows the quantitative performance of the three sam-
pling strategies mentioned.

Metrics
Strategy PSNR

↑
SSIM
↑

Abs
Rel↓

LPIPS
↓

Equidistant 19.86 0.87 0.02 0.0023
Gaussian 20.75 0.88 0.04 0.0022
Adaptive 21.09 0.89 0.04 0.0024
NeRF 19.21 0.88 0.34 0.0036

Table 1: Comparison of three different sampling strate-
gies. The Lego spherical dataset containing 8 training
images has been used for all experiments. All experi-
ments used 16 sampling points per ray. Best values are
highlighted by green, significant wrose values by red,
and darker shades represent best values.

The results show that adaptive sampling performs best
among the proposed sampling strategies. All local sam-
pling strategies improve the underlying geometry com-
pared to NeRF.

4.2.2 Effect of ray sample size

NeRF based methods use a large number of ray sam-
ples to estimate volume density and produce fine output
details. The number of samples is arguably the most
important parameter for any NeRF model because it is
directly related to the training time, the prediction time,
and the quality of the novel view. The following experi-
ments in Table 2 demonstrate that the proposed method
performs significantly well even when the number of
samples is low. The 64 samples provide the best com-
promise between novel view quality and training time.
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Figure 4: Qualitative comparison on blender scenes: Visual comparison between generated RGB ground truth
images and the true depth maps generated by the proposed method, where (a) Ground truth RGB images; (b)
Predicted RGB images; (c) True depth maps; (d) Predicted depth maps; (e) Absolute error between predicted and
true depth maps.

Number of samples
Metrics 16 64 128
PSNR ↑ 19.4 21.18 22.13
SSIM ↑ 0.86 0.89 0.9
Abs Rel ↓ 0.05 0.04 0.05
LPIPS ↓ 0.0025 0.0023 0.0018
Training Time ↓ 38m 44m 1.54h

Table 2: A comparison between training time and novel
view quality based on the number of samples per ray.

4.2.3 Different datasets
The proposed method was evaluated with 4 different
datasets with different characteristics to demonstrate its
robustness in different types of scenes. The cube has
a simple geometry but a complicated texture. Alterna-
tively, the drums have a complicated and very detailed
3D structure. The Lego scene is a good mix of photo-
metric and geometric details. The human scene mimics
some real-world applications. Quantitative results are
shown in Table 3 and qualitative results are shown in
Figure 4.

Metrics
dataset PSNR↑ SSIM↑ AbsRel↓ LPIPS↓
Lego 28.21 0.93 0.02 0.0013
Cube 22.78 0.95 0.01 0.0001
Human 37.7 0.97 0.02 0.00008
Drums 27.85 0.9 0.02 0.0012

Table 3: Performance of the proposed method on 4 dif-
ferent simulated datasets.

4.2.4 Fewer input views
To demonstrate that the proposed method can perform
well even when the number of training images is lim-
ited, three different datasets with different numbers of
training images have been considered for experiments.
Table 4 shows a comparison between different datasets.
Although increasing the number of inputs increases the
quality of the novel view, the training time also in-
creases significantly.

Number of input views
Metrics 8 30 100
PSNR ↑ 21.18 25.25 28.21
SSIM ↑ 0.89 0.92 0.93
Abs Rel ↓ 0.04 0.04 0.02
LPIPS ↓ 0.0023 0.0017 0.0013
Training Time ↓ 44m 2.15h 6.45h

Table 4: More samples in the training set provides more
supervision for the network to learn the scene represen-
tation. With an increasing number of input views, geo-
metric and photometric metrics improve. Subsequently,
training time increases significantly. A dataset with 100
images takes 11 times longer to train than dataset with
8 images.

4.2.5 Scene representation
In this section, the proposed method is compared with
other state-of-the-art NeRF-based methods.
NeRF [Mildenhall et al., 2020]: The implementation
of PyTorch Lighting of the NeRF by [Quei-An, 2020]
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Figure 5: Qualitative comparison: Visual comparison results between the proposed method and other state-of-the-
art methods.
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Figure 6: Qualitative result of the proposed method on 3 different real sensor datasets. (a) Ground truth RGB
images; (b) Predicted RGB images; (c) Ground-truth depth maps; (d) Predicted depth maps.

Metrics
Method PSNR

↑
SSIM
↑

Abs
Rel↓

LPIPS
↓

Time
↓

DSNeRF 29.31 0.87 0.489 0.003 3:37h
DONeRF 39.23 0.98 0.008 0.00001 5:08h
NeRF 27.36 0.94 0.34 0.0015 3.40h
MipNeRF 30.66 0.95 0.334 0.006 1:27h
Proposed 32.72 0.95 0.001 0.0004 1.15h

Table 5: Quantitative comparison for novel view syn-
thesis and depth estimation between the proposed
method and state-of-the-art methods. The Lego dataset
is used for all these experiments.

Metrics
dataset PSNR↑ SSIM↑ AbsRel↓ LPIPS↓
scene0521 25.48 0.724 0.025 0.0004
scene0316 16.99 0.57 0.05 0.001
scene0158 24.93 0.74 0.02 0.0007

Table 6: Performance of the proposed method on 4 dif-
ferent real RGB-D datasets.

has been considered for the experiments. NeRF can
be trained using simulated 360-degree Blender data or
real data. For these particular experiments, simulated
Blender scenes were used.

DSNeRF [Deng et al., 2021]: DSNeRF works
only on the forward facing scenes where depth
supervision data is generated using Colmap

[Schonberger and Frahm, 2016]. The official imple-
mentation of DSNeRF was used for these experiments.
DONeRF [Neff et al., 2021]: DONeRF works only on
forward-facing datasets where all poses belong to a
view cell. This method works only with simulated data
with a dense depth map. The official implementation of
the DONeRF was used for the experiments.
Mip-NeRF [Barron et al., 2021]: The official Mip-
NeRF implementation on JAX was converted to
PyTorch for convenience of comparison.
All experiments were carried out on the same Lego
scene dataset that contains 30 training images with res-
olution 800× 800. The quantitative results in Table: 5
and the qualitative results in Figure: 5 show that DON-
eRF [Neff et al., 2021] can produce the best photomet-
ric quality, but is limited to forward-facing scenes, a
longer training time, and oracle network-based depth
prediction, where the proposed method uses only one
smaller network (less space requirement), trains faster
(4 times faster), and produces more accurate geometry.
Three different real-world datasets have been used from
the NerfingMVS [Wei et al., 2021] for experimenting
on real acquired depth images. Pre-processed depth
maps were used instead of using raw depth maps
because the raw depth maps contain areas without
depth information (holes where sensors cannot esti-
mate depth). NerfingMVS uses a monocular depth
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prediction network to complete the missing depths.
Alternatively, holes in the raw depth maps could be
handled as in the classic RGB NeRF implementa-
tion, however, this randomly affects computational
performance and comparisons. Table:6 shows the
quantitative results of the proposed method on 3
different datasets. The adaptive sampling strategy with
16 samples was used for all of these experiments. The
qualitative results of the experiments are shown in the
Figure:6. The ground-truth depth shows that it is not
very detailed and that some areas have wrong depth
measurements, which results in some artifacts in the
predicted image generated by the proposed method.

4.3 Analysis
Fewer views: The proposed method can learn a scene
representation from fewer views, as depth supervision
provides additional supervision and effective sampling.
Depth supervsion allows the network to learn scene ge-
ometry and multi-view constancy from a very limited
number of views.
Faster training: The results show a quantifiable
speed improvement in training time with the proposed
method compared to other state-of-the-art methods.
Faster training was achieved using fewer samples, a
smaller network architecture, and local sampling. The
Mip-NeRF RGB-D method is 3− 5× faster compared
to other similar NeRF-based methods.
Accurate depth estimation: The proposed method is
capable of producing a more accurate geometry com-
pared to other state-of-the-art methods. The network
can learn accurate geometry from small number of in-
puts as few as 8 frames.

5 DISCUSSION
In this article, a new method was presented for repre-
senting 3D scenes from RGB-D data using recent neu-
ral radiance fields. Instead of learning the radiance field
from RGB images, the proposed method uses RGB-D
frames, which allows achieving better underlying ge-
ometry and faster training and prediction times. Addi-
tional depth supervision of dense depth maps is shown
to have a significant improvement on the training time
through local sampling. The proposed method trains
3− 5× faster and improves the novel view and depth
quality. The experiments show significant improve-
ments over the state-of-the-art methods, both quantita-
tively and qualitatively. Future perspective will be fo-
cused on extending this approach to dynamic scenes.
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ABSTRACT
Registering partial point clouds is crucial in numerous applications in the field of robotics, vision, and graphics.
For arbitrary configurations, the registration problem requires an initial global alignment, which is computationally
expensive and often still requires refinement. In this paper, we propose a pair-wise global registration method that
combines the fast convergence made possible by global hierarchical surface descriptors with the arbitrarily fine
sampling enabled by continuous surface representations. Registration is performed by matching descriptors of
increasing resolution – which the continuous surfaces allow us to choose arbitrarily high – while restricting the
search space according to the hierarchy. We evaluated our method on a large set of pair-wise registration problems,
demonstrating very competitive registration accuracy that often makes subsequent refinement with a local method
unnecessary.
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1 INTRODUCTION
Acquiring 3D geometry of physical objects and envi-

ronments has become an integral part of numerous dis-
ciplines, ranging from applications in mechanical en-
gineering and computer vision to asset generation for
movies and games. Rapid development of 3D sensing
technology over the last decades led to affordable high
precision devices being widely available. Most tech-
niques follow a sequential scanning paradigm where an
object or scene is scanned from different view points.
The result of this acquisition process is a set of scans,
each in a local coordinate system defined by the pose
of the scanning device, with different degrees of over-
lap. These scans have to be aligned with respect to a
unique reference to obtain a final reconstructed model
of an object. The accuracy of this registration step is of
significant importance to the quality of the final model
but is often hampered due to low-overlap between scans
and inherent noise. Along with that, the registration er-
rors may lead to artificial creases and reconstruction ar-
tifacts (oscillations or even holes).

The goal of pairwise registration is to find a transfor-
mation that aligns a source scan as close as possible to
the surface represented by a target scan. The possible
approach that could assist in precise registration accu-
racy is combination of coarse alignment followed by an
iterative local refinement that results in higher conver-
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gence. The local refinement is performed effectively
using variants of Iterative closest point (ICP) [Bes92]
which highly depends on a good initial guess.
Coarse registration approaches usually depend on a de-
scriptor [MPD06,Zah12,Tom10,Pet15] associated with
a set of feature points encoding useful geometric infor-
mation from the data based on a local neighborhood.
Correspondences between descriptors are established
based on similarity, resulting in a rigid transformation
that best aligns the set of feature points and using some
robust estimator.
The object surface is generally not sampled at the same
locations between partial scans (an effect which we re-
fer to as sampling discrepancy), and every sample is
subject to measurement noise. Methods that directly
rely on descriptor computation are inherently limited
by these measurement issues. In addition to these
external factors, methods relying on localized feature
descriptors often suffer from a certain percentage of
false matches, typically caused by insufficient discrim-
inating capabilities of the descriptor and/or an under-
performing similarity measure. These factors, to vary-
ing degrees, prevent them from achieving higher levels
of accuracy, and the resulting rigid transformation neg-
atively affects the convergence of local iterative algo-
rithms employed for refinement. We propose a method
that mitigates these drawbacks. Our contributions are
as follows:
• novel adaption of an existing hierarchical surface de-

scriptor to continuous surface representations
• based on that, a new pair-wise global registration

pipeline for partial scans, featuring:
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– high precision that compares favorably to state-
of-the-art global methods

– competitive processing times
– either eliminates the need for refinement with

a local method completely or gives close-to-
optimal initial guesses

Additionally, the paper contributes a comprehensive
evaluation of the proposed approach and compares
it to the state-of-the-art global registration method
by [Zho16], demonstrating measurable improvements
in terms of accuracy and robustness.

2 RELATED WORK
Registration is a widely researched problem with vast
applicability in various domains like 3D scanning,
shape analysis, or motion capturing. For an overview
of existing registration algorithms, we refer the reader
to the respective surveys [Rus01], Salvi et al. [Sal07],
Tam et al. [Tam13], Bellekens et al. [Bel14], Huang et
al. [Hua21]. According to the aforementioned surveys,
registration approaches can be classified with respect
to the following criteria:

Pairwise / Multi-Way. Pairwise registration meth-
ods [Bel14] aim at registering two partially overlapping
scans. Overall registration of a data set can be achieved
by successively adding scans and registering them to
their predecessors or to all preceding scans. On the
other hand, multi-way registration [Goj09] optimizes
all transforms at the same time, usually by iterating
pairwise registrations or by modeling the problem with
a single registration objective.

Rigid / Non-Rigid. Rigid registration methods [Bel14]
only allow rigid body transforms for the individual
scans, whereas non-rigid methods allow arbitrary ones.
However, non-rigid approaches [Hua22] usually regu-
larize the objective in order to avoid degenerate solu-
tions (e.g. by demanding the transform to be as rigid as
possible).

Local / Global. Local methods [Bes92, Hua11] use
an initial transform estimation (e.g. provided by the
user) and refine this transformation to optimize an ob-
jective. Global methods [Zho16, Pet15] do not require
any input other than the geometry and find the registra-
tion transforms with arbitrary initial alignment of scans.
Such global methods usually produce coarse registra-
tions that can be refined with local methods. Further-
more these methods are not directly based on spatial
proximity (but on, e.g., geometric feature descriptors).

Learning-based Registration. In recent years, data-
driven approaches are emerging for registering point
clouds primarily owing to exemplary results in both
2D and 3D applications. Researchers have used neu-
ral networks (NNs) in different ways, either to ex-
tract feature from individual point cloud followed by

correspondence search or even focused on end-to-end
pipeline for transformation estimation. Feature learn-
ing methods [Zen17, Hao18, Goj19] use the deep neu-
ral network to learn a robust feature correspondence
search. Then, the transformation matrix is obtained
by one step estimation (SVD, RANSAC) without it-
eration. Those NNs could provide robust and accu-
rate correspondence searching but are fairly limited by
availability of large training data and lesser general-
ization capabilities, resulting in a large-scale failure
for unknown scenes with different distribution com-
pared to the training data. End-to-end learning-based
method [Yan19, Wan19] solves the problem of regis-
tration with complete end-to-end network, i.e, along
with the correspondence search, transformation esti-
mation is also embedded into the framework and dif-
fers from feature learning method whose focus in en-
tirely on point feature learning. DeepGMR [Yua20] re-
lies on a neural network to initially learn pose-invariant
point-to-distribution parameter correspondences. Then,
these correspondences are fed into the GMM optimiza-
tion module to estimate the transformation matrix.

Descriptors

Many 3D descriptors based on point clouds have been
introduced and importantly applied to the task of point
cloud registration. A comprehensive reviews for point
cloud descriptors in terms of computational efficiency
and accuracy are detailed in [Ale12, Guo16, Han18,
Ran20, Han18]. Based on the process of descriptor
extraction, the descriptors can be approximately clas-
sified as local, global, and hybrid. Local descriptors,
for every point, embeds spatial distribution or geomet-
ric attributes extracted in the neighborhood and is pro-
duced by a histogram representing the descriptors for
each point. It is less discriminating exactly, but suitable
for cluttered scenes. Spin Image [Joh99] is a popular
descriptor often used in applications of shape match-
ing, object recognition. It creates a cylindrical support
around a keypoint, divides it into radial and vertical vol-
umes, and then counts the number of points that falls
within each volume. On the other hand, a global de-
scriptor, for the entire point cloud, is produced with a
single context vector by integrating a set of features or
incorporating spatial distribution of the complete data.
Global-based features are generally used in 3D ob-
ject recognition and object categorization, additionally
some global descriptors can be used for pose estimation
of the objects as they also contain local descriptors in-
formation, such as Viewpoint Feature Histogram (VFH)
and Local-to-Global Signature (LGS) descriptor. More-
over, global-based methods demands less computation
compared with the local features and better to describe
the whole point cloud but are majorly affected by oc-
clusions and clutter [Had14]. Hybrid-based descriptors
incorporate local and global descriptors together with
most of the advantages from them.
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Sampling Discrepancy

As briefly mentioned when motivating our work in sec-
tion 1, sampling discrepancy is a major factor limiting
the accuracy of point cloud registration, as it means
that in general, no exact correspondences can be found.
Thus, many strategies have been proposed to reduce
its impact. Chen and Medioni [Chen91] project points
from the source shape onto their closest position in
the target depth image with an iterative algorithm now
known as normal shooting [Rus01]. The resulting point
will yield an interpolated closest point on the target.

The Adaptive moving least squares (AMLS) surface
based approach [Hua11] for ICP registration emphasize
on the efficiency of the technique to overcome issues
of sampling discrepancy. The essential concept of the
AMLS method is to reconstruct a smooth and accurate
representation of a surface for ICP based registration
by adaptively selecting the width of a Gaussian kernel
based on the principal curvature of the MLS surface
through local integral invariant analysis [Yan06]. In-
stead of trying to minimize the distance between corre-
sponding entities, [Mit04, Pot06] estimate the distance
field of the underlying surface with local quadratic ap-
proximates and directly optimize the distance of the
scan and the target surface. Kubacki et al. [Kub12]
integrated multiple depth images into a model repre-
sented by implicit moving least squares (IMLS) on a
grid based on signed distance function updates. Similar
ideas appeared in [Par03, Mun07]. However, any such
method inherently suffers from discretization artifacts
at reasonable resolutions.

3 METHODOLOGY
The proposed method relies on the core concept of de-
scriptor matching in order to estimate the rigid transfor-
mation. Our approach is based on the Circon descriptor
proposed by Ferrero et al. [Car12] that represents an or-
dered set of radial contours around a point of interest
within a point cloud. The descriptor associated with a
particular point-of-interest is used to express the point
cloud in a local frame. The environment around a point-
of-interest is divided into sectors each representing an
angle ρθ , and are further divided radially into cells with
length ρr.

The points are mapped into cells of the descriptor in a
way that the cell-value represents the height (z-value)
with respect to the local reference frame. Figure 1 de-
picts a descriptor associated with a point-of-interest (cf.
section 3.1) encoding the structural information from a
point cloud.

We built upon the registration method Ferrero et al.
[Car12] tailored for this descriptor. While the core hi-
erarchical approach is the same, the way they use the
point cloud directly to build the descriptors ties the
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Figure 1: Descriptor spawned by a point-of-interest
defining a local reference frame with cell division into
sectors represented by green and red shows contour
formed by maximum z within each cell.

achievable accuracy to the point cloud resolution. We
propose to utilize a continuous surface representation
instead, enabling us to construct descriptors of arbitrar-
ily high resolution.

The exact choice of surface representation poses a
trade-off of surface expressiveness vs. computational
complexity. We opted for NURBS surfaces, as their
desirable properties include the ability to exactly
represent relevant algebraic shapes (like ellipsoids),
and many manufactured objects are likely to have been
CAD-designed using NURBS originally. They also
render computation of the Circon descriptor non-trivial,
which required additional measures to tackle the added
computational cost. Our proposed algorithm can be
summarized as follows:

AL.1 (pre-processing) Fit NURBS surfaces to the
source and target point clouds.1 We first perform
Euclidean clustering [Rad09] (see Appendix A
for details) on both to account for highly frag-
mented scans, and each cluster is fitted with
its own surface. We refer to the union of all
surfaces fitted to a point cloud as the surface of
the point cloud.

AL.2 (pre-processing) Sample each fitted surface at a
resolution of 256×256 in parameter space to get
a collection of (u0,v0) footpoints needed later for
descriptor construction (see section 3.2).

AL.3 (pre-processing) Point-of-interest (poi) selection
for both surfaces (section 3.1).

1 We fit trimmed cubic surfaces using the iterative tangent
distance-based refinement strategy proposed by Mörwald et
al. [Moe13] as implemented in PCL [Rus11] using default pa-
rameters.
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AL.4 (pre-processing) Initial sorting of poi (section
3.4) pairs at a coarse resolution according to their
similarity score (section 3.3), so step AL.5 can
start with the most promising pairs.

AL.5 Descriptor computation across resolutions (sec-
tion 3.4) for a pair of poi from source and target
surfaces.

AL.6 Estimate transformation from point-pairs with
highest similarity score at maximum resolution
(user-defined) and evaluate stopping criterion.

AL.7 Repeat from AL.5 until the stopping is criterion
satisfied.

We elaborate on the key details of the registration meth-
ods in the following sections.

3.1 Selecting Points-of-Interest
Points-of-interest (poi) for the source and target shapes
are essential for the proposed approach. They define
where descriptors are initially constructed and should
be chosen in a way such that the resulting descriptors
cover every location on the shape at least once. The
original registration algorithm by Ferrero et al. [Car12]
adapts a strategy to select non-edge points by perform-
ing edge detection and thresholding based on the Lapla-
cian of the normal vectors, essentially restricting their
selection to relatively flat areas. We did not find this to
provide measurable benefits, so we chose our poi based
on a random sampling of locations on the respective
surfaces to obtain the final set of points-of-interest, rep-
resented by: spoi = {s1

poi,s
2
poi,s

3
poi...,s

m
poi} ⊂ S, tpoi =

{t1
poi, t

2
poi, t

3
poi..., t

n
poi} ⊂ T , m < N1,n < N2, where N1,

N2 are total no. of samples from the continuous surface
representation of the source and target scan.

3.2 Descriptor Construction
Descriptors are natural choice for estimating transfor-
mation in a global registration framework as detailed in
section 2. It encodes local or global structural informa-
tion of a 3D shape.

The local reference frame of a Circon descriptor is de-
fined by the normal at the point-of-interest zl (queried
from the parametric surface representing the shape),
some perpendicular vectors yl and xl = zl × yl , as well
as the keypoint itself as origin. We refer to the plane
with normal zl which the kepoint lies on as the refer-
ence plane of the descriptor.

Circon descriptors can form a hierarchy, as each cell
in turn implies another keypoint that spawns a descrip-
tor. By doubling the resolution at each level, a tree of
course-to-fine representations is formed. The points-of-
interest we determined in section 3.1 form roots of such
a hierarchy.

So, at a given resolution, we can iterate over each valid
cell (i, j) of the descriptor and further build descriptors
associated with the 3D point of the cell. In this regard,
the descriptors are identical to [Car12], but we largely
modified the construction process to work with para-
metric surfaces as follows: To obtain a cell value, we
cast a ray from the cell along the z-direction of the local
reference frame and compute the intersection of the ray
with the surface transformed to this local frame. Since
we use NURBS surfaces, the intersection has to be de-
termined numerically as no exact analytical solution is
known: We start at certain point S(u0,v0) on the surface
and optimize its position (u,v) so that it lies on the ray
originating from the cell center o⃗ along its direction d̂
defined by the local frame z-axis. This yields the fol-
lowing optimization problem:

argmin
u,v

∥∥(⃗o+< S(u,v)− o⃗, d̂ > d̂)−S(u,v))
∥∥2

2 (1)

We use the simple Nelder-Mead algorithm [Nel65] to
solve this, since the problem is low-dimensional and the
evaluation of the objective function is cheap. This strat-
egy requires an initial guess though, which we obtain in
the following way:
During pre-processing, we perform a regular sampling
of the NURBS surfaces in parameter space, giving us a
database of footpoints on the surface and their associ-
ated parameters (u0,v0). When transforming a surface
into the local frame of the current descriptor, we can
transform these footpoints along with it. Using a simple
regular grid on the descriptor reference plane, descrip-
tor cells can collect those footpoints that project close
to them. We then select the most promising initial guess
by applying a multi-criterion sort according to (a) foot-
point height z above the descriptor reference plane and
(b) closeness to the ray.
We accomplish (a) by binning the footpoints in the cell
according to their height z, and (b) results from sorting
them inside each bin. For selecting the initial guess, we
begin with the highest z-bin and choose the first (and
thus, closest) sample from it. If no intersection could
be found, we continue with the next sample in the bin,
or the next lower bin if the current bin does not contain
more samples, and so on.
The NURBS surface is then evaluated at the optimized
parameter (u

′
,v

′
) to determine corresponding 3D point

along with its normal. The cell value ci, j is obtained
from the z-coordinate of the point quantized with re-
spect to a height resolution ρz as in equation 2, i.e.

ci, j = ⌈ z
ρz

⌉ (2)

The x, y coordinate of each cell is given by

x = j ∗ρr ∗ cos(−(i−1)∗ρθ ))

y = j ∗ρr ∗ sin(−(i−1)∗ρθ ))
(3)
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As the descriptor embeds an environment of the poi,
it represents a closed sequence such that the first and
last row is considered adjacent and also the elements
with the same column index corresponds to adjacent
cell. Hence, the descriptor exhibits a cyclical property
that is crucial for matching and determining the rotation
parameter of the alignment transformation it represents
(see section 3.4).

3.3 Similarity Measure
There exist multiple measure, for instance, correlation
coefficient, mutual information, join entropy to obtain a
quantitative value and are largely dependent on the pro-
portion of overlap area to arrive at a score. To compare
the source and target descriptors for each resolution, we
rely on a specific similarity measure [Car09]. In point
clouds with low overlap region, it is likely that the en-
vironment around the corresponding points of source
and target scan appear similar resulting in selection of
false pairs. To circumvent false matching that could be
detrimental to registration accuracy, the similarity mea-
sure incorporates information from the non-overlapping
region enlarging its descriptive capabilities. The objec-
tive of the algorithm is to maximize similarity S(Ds,Dt )
in equation 5 while comparing descriptors from two
surfaces. D(s, p) and D(t,q) refers to a descriptor with
respect to point p,q from two surfaces s, t respectively.

argmax
p,q

S(D(s, p ∈ s),D(t,q ∈ t)) (4)

S(Ds,Dt) =
ϕOL(Ds,Dt )

(α∗dOL(Ds,Dt )+β
′
)+ϕOL(Ds,Dt )(1−β

′
)

(5)

The similarity measure S(Ds,Dt ) in equation 5 relies on
the percentage of overlap (ϕOL) between two surfaces
and their proximity (dOL), representing the average dis-
tance in overlapped area. The affect of overlap in the
similarity measure can be modified using β

′
whereas α

directly influences the average distance dOL. The de-
tailed derivation and additional concepts are provided
in [Car12] and [Car09].

3.4 Multi-resolution Descriptor and
Matching

The descriptor computation in section 3.2 and similar-
ity measure in section 3.3 are core blocks of our hier-
archical registration pipeline. The algorithm initially
performs a descriptor matching at a coarse resolution
of 16 × 16 with similarity measure described in sec-
tion 3.3 between two sets of point-of-interest spoi and
tpoi. The pairs (si

poi, t
j
poi) are sorted in decreasing or-

der of their similarity score at this coarse resolution to
obtain a feasible set of starting points for the hierarchi-
cal matching of descriptors. We try the highest-ranked
pairs first, avoiding initial match ups that are unlikely
to yield good results.

The actual process of descriptor comparison then works
on some (si

poi, t
j
poi) pair in isolation. We name the ini-

tial pair of descriptors at some resolution the primary
descriptors for source and target, respectively. A search
is performed over each cell and its associated point on
the surface of the primary source descriptor to find a
secondary source descriptor that gives the greatest sim-
ilarity to the target at some row shift k. This row shift
represents rotation around the normal of the keypoint
that spawned the secondary descriptor, determining the
remaining free parameter needed to form a rigid trans-
formation. When the rows of the secondary source de-
scriptor had to be shifted k times for highest similarity,
then the rotation angle is kρθ , where ρθ is the angular
step at the given resolution.

The 3D point and rotation associated with the sec-
ondary descriptor that gave the best match at the cur-
rent resolution becomes the starting point for the pri-
mary descriptor at the next higher resolution. Figure 2
depicts a series of primary descriptors from coarse to
fine resolution. The process terminates for a specific
(si

poi, t
j
poi) pair once the specified maximum resolution

is reached.

The final alignment transformation for a points-of-
interest pair results from the best-matching secondary
source descriptor at the highest resolution. Since we
now assume both source and target descriptors to
describe the same point on the surface, we can find
this alignment by going from world space W into
the local reference frame s of the final secondary
source descriptor, applying the rotation resulting from
the final row shift k, and finally concatenating the
transformation back to W from the reference frame t of
the target descriptor:

Talign =
W T−1

s · R(k) · W Tt (6)

The transformation W Tl for some descriptor reference
frame l is given directly from the keypoint p that
spawned the descriptor and its associated normal n (see
section 3.2). The rotational part of the transformation
from W to l is obtained as follows:

W Rl = [⃗xl n⃗× x⃗l n⃗]T (7)

The full transformation W Tl then follows as

W Tl =

[W Rl −W Rl · p
01×3 1

]
(8)

Finally, a rotation matrix parametrized by some row
shift k is obtained as follows:

R(k) =


cos(ρθ · k) sin(ρθ · k) 0 0
−sin(ρθ · k) cos(ρθ · k 0 0

0 0 1 0
0 0 0 1

 (9)
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(a) 32X32 (b) 64X64 (c) 128X128 (d) 256X256

Figure 2: Descriptor cell values mapped to an image at the top and corresponding point cloud represented by the
descriptor at the bottom of Bunny model. The restriction of higher resolution descriptors to 64 columns is visible
in image (d).

Our key contribution of adapting the construction of
Circon descriptors to continuous surfaces enables us to
extend the hierarchy with much higher resolution de-
scriptors, without being constrained by the original res-
olution of the point cloud. Like [Car12], we also re-
duce the search space further down in the hierarchy by
halving the number of columns (i.e. radial steps away
from the contour center) considered at each level. This
is especially important for us since descriptor compu-
tation is significantly more expensive, and there is no
need to consider points far away from the center of the
radial contour at later stages. To mitigate the perfor-
mance impact of our construction process even further,
we also limit descriptor construction to 64 columns (see
figure 2d). Every cell further away than 64 radial steps
will thus be invalid, which the similarity measure is
able to handle naturally as part of its down-weighting
of non-overlapping regions (see section 3.3).

3.5 Stopping Criterion
The stopping criterion is essential for the iterative
search to be convergent and importantly must embed
characteristics of the descriptor. To this end, we choose
three non-colinear points from the final source and
target descriptors that each form a triangle around
the respective Circon descriptor center. Such points
can be easily obtained by selecting the same three
equidistantly spaced cells from the first column of each
descriptor and computing their 3D point equivalents.
These triangles form a fictitious correspondence pair
in accordance with Ferrero et al. [Car12]. The cen-
troid of each triangle defines a local reference frame
with fictitious transformation T f ict between them as

represented by equation 6. T f ict is compared with rigid
transformation Talign in terms of a delta transformation:

∆T = Talign ·T−1
f ict (10)

This delta transformation is evaluated for rotational and
translational difference separately (see Appendix A for
details). If the rotational difference ∆r and translation
distance ∆ts extracted from ∆T are smaller than their re-
spective thresholds, the algorithm terminates and Talign
is returned as the final alignment transformation.

4 EVALUATION
To demonstrate the effectiveness of the proposed hi-
erarchical registration method (HER), we perform our
analysis on a publicly available dataset and compare
quantitative measure with state-of-the art registration
method and and also the hierarchical method proposed
by Ferrero et al. [Car12] and for simplicity name it as
ORI-HER. We ran all our experiments on an Intel Core
i5-6500 clocked at 3.20GHz. The following section
presents how we performed our evaluation including
dataset description and the tested methods.

4.1 Dataset
We performed an evaluation on the comprehensive
benchmark provided2 by Petrelli et al. [Pet15], which
we refer to as the LRF dataset. This dataset contains
multiple objects captured by sensors of different
quality, ranging from consumer-level depth cameras
to professional laser scanners resulting in point clouds
with varying point density. Moreover, the benchmark
includes challenging low-overlap registration pairs.

2 http://www.vision.deis.unibo.it/list-all-categories
/78-cvlab/108-pairwiseregistrationbenchmark
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(a) ORI-HER (b) FGR (c) HER

Figure 3: Registration of a view-pair From LRF OilPump dataset

(a) ORI-HER (b) FGR (c) HER

Figure 4: Registration of a view-pair From LRF WoodChair dataset

4.2 Methods
We base our comparisons with ORI-HER [Car12] that
uses hierarchical descriptors with similarity measure
for coarse point cloud registration and state-of-the-art
global registration method FGR [Zho16]. This meth-
ods has been shown to rival the accuracy of local meth-
ods and therefore ideal for comparison to understand
the difference of accuracy with our proposed approach.
The parameters for each methods and their respective
values adapted during the evaluation process are de-
scribed in separate Appendix-A.

4.3 Metrics
After solving the various registration problems with dif-
ferent methods based on the dataset discussed in sec-
tion 4.1, we evaluate how well the results match the
ground truth transforms with a data-dependent metric.
We use root mean square error (RMSE) as a metric to
quantify registration accuracy. The RMSE measures
the mean error over all source cloud point locations
for some computed transformation Tout with respect to
ground truth transformation Tg:

RMSE(Tout) =
1
d

√
1
n

n

∑
i=1

∥Tout pi −Tg pi∥2 (11)

The normalization factor d represents the sampling dis-
tance. For the LRF dataset, where scans are repre-
sented as polygon meshes, we use the average mesh
edge length.

5 RESULTS

The section elucidates on the results of our experiments
that verify the proposed approach produces more accu-
rate registration results than state-of-the art approach.
We will also examine various characteristics of our al-
gorithm.

5.1 Accuracy

The accuracy comparison is based on datasets intro-
duced in section 4.1 with multiple registration problems
and RMSE defined in section 4.3 on the registration
output after convergence. We categorize RMSE results
into fine (< 20d), coarse (

[
20d,50d

]
), failed (rest) and

measure the number of view pairs (Table 1) that fall
under these categories with respect to the total num-
ber of registration problems. To refine the compari-
son, we concentrate on the fine registration view-pairs
and Figure 5 shows the accuracy results for the LRF
datasets falling under this category. Figure 5 asserts that
the highest accuracy are obtained by our method com-
pared to FGR and ORI-HER. Furthermore, The statisti-
cal measures in Table 2 based on fine RMSE delineates
lowest values for our method among others. The con-
tinuous representation of scans followed by descriptor
computation with finer resolution attributes to the sig-
nificant improvement in the accuracy. Figure 3 and Fig-
ure 4 depict particularly difficult registration problems
from the LRF dataset that FGR and ORI-HER failed to
align, while our method achieved fine alignment.
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No.Pairs Fine Coarse Fail
ORI-HER 1840 57 427 1356
FGR 1840 279 642 919
HER 1840 355 711 774

Table 1: Categorization of registration view pairs from
LRF datasets based on threshold as discussed in sec-
tion 5.1

Min Max Avg Std.dev
ORI-HER 1.162 23.66 5.99 4.07
FGR 0.48 21.67 3.49 2.77
HER 0.34 20.24 2.58 2.25

Table 2: Statistical Comparison of RMSE based on Fine
threshold as discussed in section 5.1

Figure 5: Accuracy comparison of pairwise registration
methods for the LRF datasets. The box height repre-
sents the 25th and 75th percentile. The whiskers repre-
sent the 5th and 95th percentiles. The middle line rep-
resents the median. Better registration results are char-
acterized by lower RMSE.

5.2 Runtime
We examined the computational time of ORI-HER,
FGR and our approach taking into account the prepro-
cessing steps and the core-algorithm. An analysis was
performed on 10 randomly selected models from the
LRF dataset. For our proposed approach, we consider
three major components, i.e surface fitting, coarse res-
olution sorting and the iterative core algorithm. As de-
picted in the Figure 6, the runtime for sorting is neg-
ligible with respect to the other two components. The
FGR algorithm relies on feature descriptors from a pre-
processing step, which tend to be expensive to com-
pute. Time computing the alignment is spend largely
on matching these features for FGR and varies a lot
depending on the point clouds. Nevertheless, it is the
fastest method on average. ORI-HER exhibits the high-
est runtime across the comparison. We observed that
it has to run through a large number of keypoint pairs
(and thus, descriptor hierarchies) to determine an opti-
mal transformation. While descriptors are significantly

0 10 20 30 40 50 60 70 80 90 100

HER

FGR

ORI-HER

Time(s)

surface fitting time Keypoints comput. time

Feature Descriptor comput.time Sorting time

core-algorithm

Figure 6: Runtime comparison of the proposed ap-
proach with ORI-HER, FGR including the preprocess-
ing step for each methods. Our method exhibits higher
runtime in the core algorithm part owing to its multiple
descriptor computation compared to FGR but consider-
ably lesser to ORI-HER

more expensive to compute for our method, we typi-
cally find an optimal solution within the first few key-
point pairs, as we can use higher resolution descriptors
independent of the sampling situation, greatly speeding
up convergence.

6 CONCLUSION AND OUTLOOK
In this paper, we have presented a hierarchical (coarse-
to-fine) global registration method. The 2D descrip-
tors built from a continuous representation of each point
cloud enables us to embed higher accuracy into them.
Our evaluation based on the diverse LRF dataset shows
considerable improvement in the accuracy compared to
the state-of-the-art FGR algorithm.
Nonetheless, a handful of improvements could be
made, most obviously concerning speed. We chose
NURBS surfaces for their versatility and ready avail-
ability of implementations, but the fitting process is
expensive. Furthermore, as described in section 3.2,
intersecting rays with a NURBS surface requires,
in general, a numeric solution. A more specialized
surface representation could accelerate both fitting
and descriptor building, in turn making the use of
higher resolution descriptors more feasible and thus
improving accuracy even further.
Alternatively, leveraging GPU hardware to compute the
descriptors promises immense speedups. This could be
achieved using the programmable rasterization pipeline
to generate orthographic depth maps of the continuous
surfaces as viewed in the descriptor reference frame.
The resolution of these depth maps can be chosen as
high as needed to enable artifact-free sampling at the
Circon cell centers. We expect this would bring down
the computation time spend on building descriptors to a
fraction of what it is in our current implementation.
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ABSTRACT 
In this paper, the authors describe two methods designed for reducing the spatiotemporal redundancy of the video 

within the MPEG Immersive video (MIV) encoder: patch occupation modification and cluster splitting. These 

methods allow optimizing two important parameters of the immersive video: bitrate and pixelrate. The patch 

occupation modification method significantly decreases the number of active pixels within texture and depth video 

produced by the MIV encoder. Cluster splitting decreases the total area needed for storing the texture and depth 

information from multiple input views, decreasing the pixelrate. Both methods proposed by the authors of this 

paper were appreciated by the experts of the ISO/IEC JTC1/SC29/WG11 MPEG and are included in the Test 

Model for MPEG Immersive video (TMIV), which is the reference software implementation of the MIV standard. 

Keywords 
Immersive video coding, multiview compression, virtual reality. 

1. INTRODUCTION 
Recently, there is a common interest in immersive 

video [Isg14] and virtual reality systems, where a user 

virtually immerses into the scene. Such systems are an 

evolution of previous free-viewpoint television and 

free navigation systems [Tan12], [Sta18], where a user 

may virtually navigate around the scene. 

In the immersive video system, a scene is acquired by 

a set of multiple precisely calibrated [Tao21] cameras. 

The number of cameras may vary, depending on the 

system, from less than ten [Mie20b] to even hundreds 

of cameras [Fuj06]. 

However, even in the most expensive systems 

equipped with dozens of cameras, the user should not 

be limited to watch the videos explicitly captured by 

the cameras. In order to provide smooth virtual 

navigation, the user should be able to choose his or her 

own viewport, which has to be rendered [Ceu18], 

[Fac18], [Zhu19] using data from input cameras. 

Such a rendering requires the creation of the 3D model 

of the scene, i.e., calculation of the exact position of 

each captured object. The 3D scene model can be 

stored using various representations, e.g., meshes, 

voxels, or point clouds [Cui19], [Zha20], but the most 

commonly used representation is the MVD (multiview 

video plus depth) [Mül11]. In the MVD representation 

each input view is complemented by the 

corresponding depth map (either captured by time-of-

flight cameras or estimated based on input views 

[Mie20a]). 

Obviously, the user of the immersive video system has 

to receive the multiview content, i.e., multiple views, 

corresponding depth maps, and exact camera 

parameters. Without efficient compression, such 

content would require hundreds of megabits per 

second of the video, making the system highly 

impractical. The most straightforward method of the 

compression of the multiview content is performing 

the simulcast encoding, i.e., using separate instances 

of the video encoder (e.g., the newest VVC [Bro21]) 

for each input view and depth map. However, such an 

approach does not reduce the inter-view redundancy 

of input videos, thus wastes bits for coding of 

unnecessary information. 

A better solution is to use dedicated video encoders, 

which utilize the similarity between several input 

views, e.g., MVC [Nem10], MV-HEVC, or 3D-

HEVC [Tec15], which are the multiview extensions of 

the AVC [Sul05] and HEVC [Sul12] encoders. 

However, these techniques either restrict the camera 

arrangement (3D-HEVC, which allows compression 

of multiview video captured by linear camera systems) 

or do not efficiently use the information about the 3D 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee. 

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.7 54



 

 

 

Figure 1. Simplified scheme of the MIV encoder. 
 

scene model (MVC and MV-HEVC, which do not use 

depth maps for inter-view redundancy removal). 

Mentioned flaws of existing multiview coding 

techniques motivated the development of the new 

technique – MPEG Immersive video (MIV) [Boy21], 

dedicated for any type of immersive video, including 

simple free navigation, free-viewpoint television, and 

virtual reality systems, where a user immerses into the 

3D scene using the head-mounted device (HMD). The 

MPEG Immersive video is being developed by the 

ISO/IEC JTC1/SC29 WG04 MPEG VC group since 

2019 and became a standard this year [ISO22]. 

2. MPEG IMMERSIVE VIDEO 
The purpose of the MPEG Immersive video standard 

is to remove the inter-view consistency of the 

multiview video. As presented in Fig. 1, MIV is 

designed to be a preprocessing step before the actual 

video compression, which is performed using a typical 

video encoding algorithm, e.g., VVC. However, MIV 

is codec agnostic, so another video encoders (HEVC, 

AVC, or even M-JPEG) may be used as well. 

The input data for the MIV encoder are n input views 

(including texture, depth map, and camera parameters 

for each input view). 

  

 

 

Figure 2. Atlases for sequence Group: two texture 

atlases and two depth atlases (reduced resolution). 

Based on these data, MIV creates k atlases – videos 

containing information from n input views. An 

example of atlases is presented in Fig. 2. 

At the first step, the MIV encoder chooses views, 

which will be sent without inter-view redundancy 

removal. These views are called “base views” and are 

pasted into the first atlas as full views. The base views 

are selected automatically based on camera 

parameters to cover the possibly largest part of the 

scene. Any other view (“additional view”) is pruned in 

order to reduce the inter-view redundancy. 

The pruning operation is performed by reprojecting 

pixels between views. Any pixel of an additional view 

is removed (pruned) if its depth and color are similar 

to the depth and color of the pixel reprojected to its 

position from base views and other (already pruned) 

additional views. 

A:

 

B:

 

C:

 

D:

 

Figure 3. Pruning and clustering; A: input view 

(sequence Museum), B: view after pruning, C: 

preserved pixels after clustering, D: preview of 

clusters within input view. 

All the preserved (non-pruned) pixels of each view are 

then merged into consistent clusters containing 

mutually connected pixels. An example of pruning 
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Figure 4. Simplified scheme of the MIV decoder.

and clustering is presented in Fig. 3. In Fig. 3A, an 

additional view is shown. All inter-view redundant 

pixels were pruned and only areas non-visible in other 

views were preserved (Fig. 3B). Fig. 3C presents the 

effect of pixel clustering, where each cluster was 

colored differently. In Fig. 3D, colored clusters were 

pasted into the input view to highlight, which areas of 

the view were preserved (disocclusions behind 

foreground objects and the bottom part of a view, 

which was out of field of view in other cameras). 

In the next step, all the clusters are packed into atlases 

as “patches”, containing a cluster together with its 

bounding box. 

A: 

 

B: 

 

Figure 5. Cluster vs. patch; A: green cluster from 

Fig. 3, B: patch containing texture information for 

the cluster and its entire bounding box. 

The packing process tries to efficiently fit non-pruned 

information from all input views in atlases, 

significantly reducing the total pixelrate (total number 

of pixels that have to be processed by the decoder) of 

the video (compared to the pixelrate of input video). 

Of course, the packing operation has to be reversible 

in order to allow the unpacking of the atlas at the 

decoder side (Fig. 4). Reversibility of the packing 

process is provided by sending additional metadata for 

each patch, including its size, position within the input 

view, position within the atlas, and input view number. 

In the last step, each atlas is separately encoded by the 

typical video encoder, e.g., VVC. The MIV standard 

[ISO22] describes also the process of multiplexing 

video bitstreams with metadata, as well as many other 

minor video processing techniques providing more 

efficient encoding of immersive video. However, this 

paper does not focus on them. The detailed description 

of the MIV encoder can be found in [Boy21] or 

[MPEG21]. 

On the decoder side, k video bitstreams are decoded 

using a typical video encoder (e.g., VVC). After video 

decoding, the input views are restored by unpacking 

patches from the atlases. Base views are restored 

completely. Restored additional views have many 

unoccupied areas, which were pruned in the encoder. 

The last step of the decoding is the rendering of the 

view being watched by the user of the immersive 

video system. The user provides his or her position 

and orientation, and the renderer creates demanded 

virtual view. 

3. PATCH OCCUPATION 

MODIFICATION 
As presented in Fig. 5, a patch is a rectangular 

fragment of the input view, containing a cluster of 

non-pruned pixels together with its entire bounding 

box (Fig. 6A). 

Such an approach has a major flaw: when the video 

encoder processes an entire patch, it wastes many bits 

for encoding useless texture information (pixels 

qualified as inter-view redundant by the pruner). 

On the other hand, patches could contain only the non-

redundant pixels (Fig. 6B), i.e., any pixel outside of 

the cluster could be greyed out and signaled as 

unoccupied by setting its depth value to a restricted 

level [MPEG21]. 

A:  

 

B: 

 

C: 

 

Figure 6. Various approaches to patch occupation; 

A: fully occupied patch, B: patch containing only 

non-pruned pixels, C: patch with modified 

occupation; sequence Carpark. 

However, clusters have irregular shapes and thus are 

more difficult to efficiently encode by the video 

encoder, which has to handle many irregular edges 

between preserved and pruned (greyed out) areas. 

Moreover, the shape of a cluster changes in time 

because of the movement of objects in the scene, 

additionally reducing the efficiency of the inter-frame 

prediction. 
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We proposed an encoder-oriented solution, which 

adapts to the grid of the coding tree in the video 

encoder. In the proposed approach, the cluster is 

divided into blocks (e.g., blocks of size 16×16 pixels), 

and the entire block is greyed out if it does not contain 

any preserved pixels. Otherwise, all pixels within the 

block have a texture (Fig. 6C). 

Figs. 7 and 8 compare both texture atlases created 

using two approaches: default with fully occupied 

patches (Fig. 7) and the proposed one (Fig. 8). 

  

Figure 7. Texture atlases without patch occupation 

modification (sequence Frog). 

  

Figure 8. Texture atlases with patch occupation 

modification (sequence Frog). 

As presented, the proposed modification significantly 

reduces the number of non-grey pixels within the 

second atlas. It does not change base views in the first 

atlas, as they are not pruned (cf. Fig. 1). 

Regarding the temporal domain, the active blocks 

within atlases change over time, slightly decreasing 

the inter-frame prediction efficiency, but due to the 

fact, that the patch position does not change in 

consecutive frames, active blocks still have a similar 

texture and the decrease is very slight (Fig. 9). 

  

  

Figure 9. Fragment of the second atlas from Figs. 7 

and 8, frames 0 and 10; top: with fully occupied 

patches, bottom: with proposed patch occupation 

modification. 

The method proposed by the authors of this paper was 

appreciated by the ISO/IEC MPEG VC experts 

[Dzi20b] and is included in the Test Model for MPEG 

Immersive video (TMIV) [MPEG21], which is the 

reference software implementation of MIV. 

4. CLUSTER SPLITTING 
The method of changing patch occupancy can 

decrease the bitrate needed for encoding of the atlases 

(especially the second one, as it does not contain base 

views), but it does not change the second crucial 

parameter of the practical immersive video system – 

the pixelrate, which defines the total number of pixels 

that have to be decoded. Therefore, we proposed a 

second technique, which allows reducing this 

parameter by allowing the splitting of large irregular 

clusters, e.g., the big red cluster presented in Fig. 3. 

If a cluster is L-shaped (Fig. 10A), the patch 

containing this cluster has many unoccupied pixels 

(red area in Fig. 10B). If such a cluster will be split 

into two smaller clusters, the total area of two patches 

may be significantly smaller (red and blue areas in Fig. 

10D). 

The split line is parallel to the shorter side of the patch 

(Fig. 10C) and is placed in a position, which 

minimizes the total area of patches after the split. If 

the total area of patches after the split is similar to the 

area before splitting, the cluster is not split. 
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A: 

 

B: 

 

C: 

 

D: 

 

Figure 10. Splitting of the L-shaped cluster; A: 

initial cluster, B: patch for cluster A, C: the 

splitting of cluster A, D: cluster A split into two 

smaller clusters. 

If the cluster has irregular contour but is not L-shaped 

(Fig. 11A), a different splitting algorithm is 

performed. For such a patch, occupied and non-

occupied areas are being compared. If most pixels 

within the patch are non-occupied, the cluster is split 

into two halves, along the line parallel to the shorter 

side of the patch (Fig. 11B), resulting in two smaller 

clusters (Fig. 11C). 

A:

 

B:

 

C:

 

Figure 11. Splitting of the C-shaped cluster; A: 

initial cluster, B: the splitting of cluster A, C: 

cluster A split into two smaller clusters. 

 

Figure 12. Recursive splitting of irregular cluster. 

As presented in Fig. 11, the result of the splitting of 

the C-shaped cluster is two L-shaped clusters. To 

provide a reduction of the total area of patches, such 

clusters have to be split again, as shown in Fig. 10. 

Multiple splitting of a cluster is possible due to the 

recursiveness of the proposed method – each cluster is 

split until the splitting significantly minimizes the total 

area of the patches (Fig. 12). 

As presented in Figs. 13 and 14, the proposed method 

of cluster splitting allows to significantly decrease the 

total occupied area of the atlas (the non-occupied, grey 

area in the second atlas in Fig. 14 is much bigger than 

the non-occupied area in Fig. 13). 

 

 

Figure 13. Two atlases without cluster splitting 

(sequence Hijack). 

 

 

Figure 14. Two atlases with cluster splitting 

(sequence Hijack). 
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Similarly to the method presented in the previous 

section, also the cluster splitting method proposed by 

the authors of this paper was appreciated by the 

ISO/IEC MPEG VC experts [Dzi20a] and is included 

in the Test Model for MPEG Immersive video (TMIV) 

[MPEG21]. 

5. EXPERIMENTAL RESULTS 
Both techniques presented in this paper were tested 

under the common test conditions for MPEG 

Immersive video (MIV CTC) [MPEG22], on 16 

miscellaneous test sequences, including both natural 

content (NC) and computer-generated (CG) sequences 

of different resolutions, the number of cameras, and 

camera types (perspective and omnidirectional, 

represented in equirectangular projection – ERP). Key 

parameters of the test set are presented in Table 1. 

Sequence name Views Type Resolution Source 

Cadillac 15 NC/Persp. 1920×1080 [Dor21a] 

Carpark 9 NC/Persp. 1920×1088 [Mie20b] 

Chess 10 CG/Omni 2048×2048 [Ilo19] 

ChessPieces 10 CG/Omni 2048×2048 [Ilo20] 

ClassroomVideo 16 CG/Omni 1920×1080 [Kro18] 

Fan 15 NC/Persp. 1920×1080 [Dor20a] 

Fencing 10 NC/Persp. 1920×1080 [Dom16] 

Frog 13 NC/Persp. 1920×1080 [Sal18] 

Group 21 NC/Persp. 1920×1080 [Dor20b] 

Hall 9 NC/Persp 1920×1088 [Mie20b] 

Hijack 10 CG/Omni 4096×2048 [Dor18] 

Kitchen 25 CG/Persp. 1920×1080 [Boi18] 

Mirror 15 CG/Persp. 1920×1080 [Dor21b] 

Museum 24 CG/Omni 2048×2048 [Dor18] 

Painter 16 NC/Persp 2048×1088 [Doy18] 

Street 9 NC/Persp 1920×1088 [Mie20b] 

Table 1. Test sequences used in experiments. 

To present a variety of content within the test set, Figs. 

15 and 16 contain a single frame from each sequence. 

  

  

  

Figure 15. Natural sequences. Left column: 

Carpark, Street, Frog; right column: Hall, 

Fencing, Painter. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Computer-generated sequences. Left 

column: Group, Cadillac, Mirror, Kitchen, Fan, 

and ClassroomVideo; right column: Chess, 

Museum, ChessPieces, and Hijack. 

Table 2 shows the gain of the proposed patch 

occupation modification method presented as bitrate 

reduction (compared to an atlas with fully occupied 

patches), separately for texture atlases, depth atlases, 

and total reduction for all video bitstreams. 

As presented, the proposed method allows to 

significantly decrease the total bitrate needed for the 

representation of encoded video bitstreams, especially 

for higher bitrates (25 Mbps, on average). For low 

bitrates, the reduction is lower but noticeable.  

Different efficiency between low and high bitrate was 

expected, as for higher bitrates, the encoder tries to 

encode all the high-frequency details of the video (and 

fully occupied patches have much more details than 

plain grey area), while for lower bitrates the details are 

destroyed (so the number of bits needed for encoding 

of grey area and highly compressed texture and depth 

is more similar). 

Differences between various sequences, which can be 

spotted for low bitrates are caused by the sequence 
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characteristics. For example, texture of the Fan 

sequence is very detailed and has many areas with 

high frequencies which are very hard to be encoded at 

low bitrates. Therefore, when these areas are greyed 

out, the encoding is more efficient. On the other hand, 

for less-detailed sequences (e.g., ChessPieces) 

proposed technique increases a number of high 

frequencies (by adding edges between occupied and 

non-occupied regions), decreasing the efficiency of 

the VVC at higher QPs. 

 

Table 2. Bitrate reduction caused by the proposed 

patch occupation modification method; NC: 

natural content, CG-O: computer-generated 

omnidirectional video, CG-P: computer-generated 

perspective video. 

In Table 3, the influence of the second proposed 

method – cluster splitting – is presented. The cluster 

splitting purpose is to decrease the pixelrate of the 

immersive video. However, in the MIV CTC 

[MPEG22], the pixelrates are explicitly set to the limit 

defined for HEVC Level 5.2: 1,069,547,520 luma 

samples. 

Therefore, to be compliant with the MIV CTC, we did 

not change the atlas size (thus pixelrate), but we have 

calculated the total area occupied by patches. This 

approach allows to estimate the possible pixelrate 

reduction without modifying the CTC. 

As presented in Table 3, proposed cluster splitting 

allows to significantly reduce the total occupied area 

of the second atlas. The first atlas is practically 

unchanged, as it contains mostly the base views. 

 

 

Table 3. Area occupied by patches in the second 

atlas with and without the proposed cluster 

splitting method. 

The possible pixelrate for both approaches can be 

calculated as follows: 

𝑃 [
𝑝𝑖𝑥

𝑠
] = (1 + 𝑂) ⋅ 𝑊𝐴 ⋅ 𝐻𝐴 ⋅ 𝐹𝑃𝑆 ⋅ 1.25 

where: 𝑂 is the occupied area percentage presented in 

Table 3, 𝑊𝐴 and 𝐻𝐴 are atlas width and height (defined 

in the MIV CTC [MPEG22]), 𝐹𝑃𝑆 is the frame rate of 

the sequence (25 for Carpark, Fencing, Hall, and 

Street; 30 for other sequences). Multiplier 1.25 allows 

to include both texture and geometry atlas (1 for 

texture with full resolution and 0.25 for depth atlas, 

decimated by 2 in both directions [MPEG21]). 

Figs. 17 and 18 present the influence of both proposed 

methods, in terms of both bitrate and pixelrate. 

 
Figure 17. Bitrate vs. pixelrate for natural content; 

black dot: without proposed methods, color dot: 

with proposed modifications. 

Texture Depth All Texture Depth All

Carpark 5.0% 5.0% 5.1% 0.9% 3.8% 3.0%

Fencing 4.6% 3.5% 4.3% -6.1% -1.3% -2.6%

Frog 26.4% 14.1% 22.2% 24.2% 9.5% 17.4%

Hall 4.7% 9.5% 8.5% -8.2% 7.1% 5.1%

Painter 10.5% 9.6% 10.1% 5.6% 5.6% 5.6%

Street 7.0% 8.4% 7.4% 6.0% 8.1% 7.0%

NC: Average 9.7% 8.3% 9.6% 3.7% 5.5% 5.9%

Cadillac 6.5% 4.8% 6.3% -7.0% -15.6% -13.1%

Fan 25.0% 35.6% 32.5% 17.5% 34.2% 32.1%

Group 7.6% 3.3% 6.8% -4.0% -1.9% -2.4%

Kitchen 14.6% 12.8% 14.3% 8.4% 9.0% 8.7%

Mirror -2.1% 1.8% -0.6% -6.2% 0.1% -1.7%

CG-P: Average 10.3% 11.7% 11.9% 1.7% 5.2% 4.7%

Chess 14.8% 4.3% 12.7% 2.8% -6.5% -1.0%

ChessPieces 9.6% -2.5% 6.4% -6.8% -19.3% -13.3%

ClassroomVideo 15.3% 10.7% 14.4% 1.4% 3.4% 2.6%

Hijack 32.3% 9.9% 27.6% 19.8% 6.8% 12.9%

Museum 20.3% 7.5% 18.0% 10.5% -0.3% 5.3%

CG-O: Average 18.5% 6.0% 15.8% 5.5% -3.2% 1.3%

All: Average 12.6% 8.6% 12.3% 3.7% 2.7% 4.1%

Test sequence

Bitrate reduction (patch occupation modification 

vs. fully occupied patches)

High bitrate (~25 Mbps) Low bitrate (~7 Mbps)

No cluster 

splitting
Cluster splitting Difference

Carpark 25.41% 25.62%  0.21%

Fencing 47.54% 42.61% − 4.94%

Frog 15.63% 11.98% − 3.65%

Hall 43.62% 41.66% − 1.97%

Painter 20.98% 21.23%  0.25%

Street 8.99% 5.89% − 3.10%

NC: Average 27.03% 24.83% − 2.20%

Cadillac 96.47% 94.75% − 1.72%

Fan 43.13% 38.65% − 4.49%

Group 89.38% 79.44% − 9.95%

Kitchen 39.87% 40.32%  0.45%

Mirror 92.60% 79.97% − 12.63%

CG-P: Average 72.29% 66.63% − 5.67%

Chess 97.70% 85.10% − 12.60%

ChessPieces 98.66% 84.81% − 13.85%

ClassroomVideo 21.62% 21.82%  0.20%

Hijack 93.27% 79.43% − 13.84%

Museum 69.12% 40.26% − 28.86%

CG-O: Average 76.07% 62.28% − 13.79%

All: Average 56.50% 49.60% − 6.91%

Test sequence

Occupied area in second atlas
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Figure 18. Bitrate vs. pixelrate for computer-

generated sequences; black dot: without proposed 

methods, color dot: with proposed modifications. 

As presented, the combination of patch occupation 

modification and cluster splitting allows to 

significantly decrease bitrate and pixelrate, 

irrespectively to the type of content. 

Moreover, both proposed methods do not affect the 

rendering quality, as they do not modify the non-

pruned pixels, which are used for rendering the virtual 

view watched by user of the immersive video system. 

Regarding the computational time, video encoding 

(i.e., VVC) is much faster than without proposed 

techniques, while time needed for MIV encoding (i.e., 

atlas creation) is not influenced (Table 4). 

 

Table 4. Encoding time change (compared to the 

approach without proposed techniques); A: patch 

occupation modification, B: cluster splitting, C: 

both proposed techniques enabled. 

6. CONCLUSIONS 
The paper presents two techniques which allow to 

reduce the spatiotemporal redundancy of video within 

the MPEG Immersive video (MIV) encoder. 

The first method is the patch occupation modification, 

which decreases the total bitrate of the immersive 

video encoded by MIV by decreasing the number of 

occupied pixels within texture and depth atlases. 

The second method – cluster splitting allows to split 

large irregular clusters in order to decrease the total 

area of patches thus the pixelrate of the video. 

Both ideas proposed by the authors of this paper were 

evaluated by experts of the ISO/IEC JTC1/SC29/WG 

11 MPEG and are included in the Test Model for 

MPEG Immersive video (TMIV), which is the 

reference software implementation of the MIV. 
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ABSTRACT
Machine learning has become a standard tool in computer vision. Nowadays, neural networks are one of the most
prominent representatives in this class of algorithms that usually require training and evaluation to work as desired.
There exist a variety of evaluation metrics to determine the quality of a trained neural network, which are usually
threshold dependent. This results in massive changes in the resulting evaluation when the threshold is changed
slightly. Further, measurements of uncertainty such as resulting from Bayesian approaches, are not considered
in this analysis. In this paper, we present evaluation metrics for machine learning approaches that are able to
attach a probability distribution to the utilized threshold and include uncertainty measures. We demonstrate the
applicability of our approach by applying the defined metrics to a real-world example where a Bayesian neural
network has been used to predict stroke lesions.

Keywords
Evaluation Measures, Uncertainty-awareness, Machine Learning

1 INTRODUCTION
Machine learning approaches become increasingly im-
portant in the area of computer vision [1]. Especially in
classification tasks, machine learning approaches have
developed into a standard tool, massively reshaping the
respective area. In this process, the evaluation of ma-
chine learning approaches is a crucial factor. Here, a
variety of measures exist that aim to examine the per-
formance using different assumptions and focus points.

As input data, models, and the use of visualization usu-
ally include uncertainty [2], the evaluation of machine
learning approaches can be affected. Sacha et al. [3]

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

proposed, that uncertainty has a crucial impact on the
decision-making process. Unfortunately, the existing
measures do not include uncertainty in their computa-
tion.

Evaluation measures such as DICE-coefficient (=F1
score) and accuracy for machine learning approaches,
usually do not consider the uncertainty inherent in
the machine learning process. Instead, they consider
a pre-selected threshold and build their computation
based on true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). Unfortunately,
the selection of this threshold holds a large potential
of uncertainty. Slight changes in the choice of the
threshold can have a massive impact on the resulting
evaluation.

In addition, fuzzy machine learning approaches, such
as Bayesian Neural Networks [4], output a measure of
uncertainty in addition to the classification prediction,
which is usually not considered in the evaluation of ma-
chine learning approaches. This results in an evaluation
that is equally balanced along all classifications made in
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a machine learning model, independent of how certain
the prediction is (see Section 2).

In this work, we aim to revisit popular evaluation mea-
sures for machine learning approaches that target binary
classification tasks (see Section 3). To achieve this, we
first rephrase the terms TP, TN, FP, FN, such that we use
an uncertainty-aware threshold. Based on this, we can
rebuild popular machine learning evaluation measures
to include the uncertainty-aware threshold. Further, we
include a damping factor that allows adjusting the im-
portance of predicted classifications based on measured
uncertainty.

Therefore, this paper contributes:

• Uncertainty-aware classification of machine learn-
ing results

• A mechanism to include uncertain classification re-
sults in machine learning evaluation

• Uncertainty-aware evaluation measures for machine
learning approaches

We show how the defined uncertainty-aware measures
can be used in machine learning performance evalua-
tion using varying examples as shown in Section 4. Our
results will be discussed in Section 5.

2 RELATED WORK
In the context of the presented approach, we aim
to analyze previous work conducted in the area of
uncertainty-aware machine learning and the evaluation
of these approaches.

2.1 Uncertainty-aware Machine Learning
The importance of uncertainty analysis in the area of
machine learning has been highlighted by Klaes et al.
[5]. In their work, they summarize potential sources of
uncertainty in the respective area. The presented tax-
onomy holds a valuable starting point in the presented
area of research. This approach was also refined for
machine learning approaches in medical imaging [6].
The described sources of uncertainty are manifold and
therefore various approaches exist that aim to target one
or multiple sources of uncertainty.

Sluijterman et al. [7] provided an adapted approach of
regression, that aims to include uncertainty quantifica-
tion during the computation. Nieradzik et al. [8] ex-
changed the output activation function which is usually
set to the sigmoid function with further functions and
examined their suitability regarding the resulting pre-
diction and their uncertainty. Ding et al. [9] proposed
an uncertainty-aware training, where training data is
adapted such that more reliable data points become
more important in the training process. Eldesokey et

al. [10] aimed for a holistic uncertainty-aware ma-
chine learning approach that includes multiple sources
of uncertainty. Here, uncertainty arising from the data
as well as the uncertainty of the model is included
throughout the entire computation of the machine learn-
ing approach. Although these approaches all target the
incorporation of uncertainty into the training process,
they rely on the classic evaluation approaches for ma-
chine learning approaches, which are threshold-based.
In this work, we aim to extend these approaches such
that the threshold holds a probability distribution func-
tion to indicate its potential uncertainty.

Recently, the number of machine learning approaches
that explicitly work with mathematical concepts that di-
rectly include uncertainty increased. Here, approaches
such as fuzzy deep networks [11] or Bayesian neural
networks [4] that can output epistemic and aleatoric un-
certainty [12] in their prediction have been developed.
Epistemic uncertainty refers to uncertainty inherent in
a model, as models are always making assumptions.
On the other hand, aleatoric uncertainty refers to uncer-
tainty inherent in captured data due to random effects
and measurement imprecision.

Also, Sacco et al. [13] proposed a neural network ap-
proach that builds a second neural network to predict
the uncertainty inherent in the computational process.
All these approaches are able to attach an uncertainty to
the made prediction. Still, these values are usually only
reviewed visually but are not considered in the evalua-
tion of the proposed approach. In this work, we aim to
provide a mechanism to include this knowledge.

2.2 Uncertainty-aware evaluation of Ma-
chine Learning

The evaluation of machine learning approaches is a key
point while using them. There exist a variety of surveys
and books that summarize and categorize them [14, 15].
These measures include DICE-coefficient, accuracy, re-
call, and precision and are used for benchmarking [16].
Their selection is dependent on the underlying problem
and type of used machine learning approach [17]. All
these measures are based on the separation of predicted
values into TP, TN, FP, and FN. Here, a threshold is
selected to achieve this separation. The choice of this
threshold can have a massive influence on the evalua-
tion of the machine learning approach and needs to be
adjusted in each case.

Gao et al. [18], presented an approach that aims to gen-
erate a self-adapting threshold for the evaluation of a
neural network. The method is built on an analysis of
the imbalance of classes that are predicted. Thada et
al. [19] adapted the threshold for evaluation based on
the underlying scale of predicted classifications. Here,
different scales obtain different thresholds. Li et al.
[20] provided a machine learning approach that aims
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to guess a proper threshold based on the underlying
dataset. Here, different thresholds are examined to un-
derstand the resulting classification. Although these
approaches aim to select the threshold that is used
for evaluation, the choice may still remain uncertain.
Therefore, our approach aims to add a probability dis-
tribution function to the selected threshold to express
the uncertainty in this decision.
Taha et al. [21] presented a set of evaluation metrics
that are based on fuzzy theory. Here, the prediction and
the ground truths are considered as fuzzy sets, and met-
rics are presented that compare them. Although this
gives a valuable starting point for the presented work,
the approach is not able to indicate an uncertainty-
aware threshold. In addition, the inclusion of uncer-
tainty that can result from a neural network cannot be
included in this approach.
Psaros et al. [22] provided evaluation metrics that aim
to include the uncertainty that can be outputted by ma-
chine learning approaches. Here, prominent metrics
are adapted individually to include uncertainty informa-
tion. Still, this approach is based on a fixed threshold.
In the presented approach we aim to present a general-
ized way to include an uncertainty-aware threshold as
well as a damping factor that adjusts made classifica-
tions based on the underlying uncertainty.

3 METHODS
To achieve uncertainty-aware evaluation measures for
machine learning, we first aim to extend prominent
measures of neural network performance to include a
probability distribution to the user-defined threshold.
Based on this, we will further include potential uncer-
tainty measures that can be outputted by Bayesian Net-
work approaches.

3.1 Uncertainty-aware classification
Neural Networks aim to learn from existing datasets.
To test the performance of the neural network, the pre-
dicted results are compared to a ground truth. In gen-
eral, the closer both are to each other, the better the per-
formance. Here, each datapoint i, and its classification
c(i) is compared to the prediction p(i). Note that we
restrict the range of c(i) to 1 and 0, while the range of
p(i) is the interval [0,1], as most machine learning ap-
proaches output probabilities instead of fixed class as-
signments.
Most evaluation measures for neural networks work
based on a classification of values into TP, FP, TN, FN,
which are based on a pre-selected threshold t. There-
fore, the following definitions are known:

T Pi(t) =


A︷︸︸︷
1

B︷︸︸︷
c(i) ∧

C︷ ︸︸ ︷
[p(i)≥ t]

0 else
(1)

T Ni(t) =

{
1 !c(i)∧ [p(i)≤ t]
0 else

(2)

FPi(t) =

{
1 !c(i)∧ [p(i)> t]
0 else

(3)

FNi(t) =

{
1 c(i)∧ [p(i)< t]
0 else

(4)

with respect to the threshold t. We define subequations
for future reference in this manuscript to allow easy to
follow changes that we make. A is defined as the func-
tion output of the classification functions. B represents
the classification that was made by a neural network
and C represents the groundtruth that is is used for the
comparison.

By definition, the result of these functions can only be
0 or 1. A is either 0 or 1 in a fixed case. In our ap-
proach, we also consider uncertain ground truths. Al-
though most of the available training databases provide
a fixed classification, the number of ground truths that
hold fuzzy values increases. Therefore, we redefine c(i)
and allow it to lie in the range of [0,1]. Now, we also
have to adjust the decision to which class a point be-
longs. Here, B = [c(i)> t] holds. Still, we need to find
a mechanism that allows rating the certainty of this de-
cision.

Considering that we no longer work with fixed values
of 1 and 0, we need to make an adaptation. We aim to
define a general way to compare values to a threshold
that has a probability distribution attached.

0 1

Figure 1: Schematic description of incorporation of
Gaussian distribution of the threshold t.

As mentioned, the decision based on a fixed threshold
results in fixed classifications. The decision to choose a
threshold can be very hard as it is usually dependent on
the underlying application. In addition, slight changes
in the choice of the threshold can have a massive influ-
ence on the quality measures. Here, we use a Gaussian
distribution function that is normalized:

g(x|µ,σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5)
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A normalized Gaussian distribution function has bene-
ficial attributes in the presented case. As the area under
the curve is always 1, we can use this measure to adapt
our previous classifications. Here, σ decides how sharp
or flat the resulting Gaussian distribution is. We allow
users to set the standard deviation σ in conjunction with
the threshold t.

Here, a probabilistic measure if a threshold is exceeded
can be expressed as:

Ax1 = 2
∫ t

x1

g(x|t,σ)dx (6)

As the peak of the Gaussian distribution function is lo-
cated at the threshold t, the maximum size of the area
under the curve can be 0.5. As we aim for a measure
that is located in the range of [0,1], we need to double
this area. If t and x1 are located close to each other,
the resulting area under the curve converges to 0. A
close location means a high uncertainty, which means
that under this condition we aim to tone down the result
of the classification. On the other hand, if the points are
not close to each other, the area under the curve con-
verges to 1. This results in low uncertainty. Resulting
from this consideration, the classification scheme A can
be rephrased as:

T Pi(t,σ)

{
Ap(i) ·Ac(i) [c(i)> t]∧ [p(i)> t]
0 else

(7)

The values of A computed in the measures T Ni(t,σ),
FPi(t,σ) and FNi(t,σ) are computed like this as well.
Based on these extended definitions of TP, TN, FP, and
FN, we further aim to include uncertainty that is cap-
tured in predictions by machine learning approaches.

3.2 Inclusion of predicted uncertainty
Recently, a variety of machine learning approaches is
able to output uncertainty measures related to the made
prediction. Here, especially Bayesian neural networks
are able to output aleatoric as well as epistemic un-
certainty measures. In this work, we aim to include
these measures into the classifications. Here, we aim
to achieve a weighting of the classification according to
the outputted uncertainty measures. In particular, we
aim for a classification scheme, that extends the ex-
isting scheme in the following manner T Pi(t,σ ,d) =
T Pi(t,σ) ·Cd , where Cd is supposed to work as a damp-
ing factor.

The goal of this factor is to tone down prediction values
that are considered uncertain in the measures that can
be outputted by uncertainty-aware machine learning ap-
proaches. We consider u(i) as the uncertainty attached
to the prediction value p(i). Here, the uncertainty can
be located in the range of [0,∞).

To define Cd , we aim for a function that outputs 1, if the
uncertainty predicted by a machine learning approach
is 0. In this case, the made classification will remain
the same. In contrast, if a data point is classified as
uncertain, we aim to let the damping function converge
to 0. Here, we utilize the function:

Cd = e−(u(i)·d) , (8)

where d works as an additional damping factor, that can
be located in the range [0,∞).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2
e 0.5x

e x

e 2x

Figure 2: Different damping functions, based on the
damping factor d. Examples are shown for d = 1

2 , d =
1, d = 2.

To indicate the effect of d, Figure 2 shows examples of
interesting classes of the damping factor. The higher
the damping factor, the more pronounced is the influ-
ence of the damping on the result. This gives the user a
further input parameter with which to control the damp-
ing of the classification based on uncertainty quantifi-
cation of the predictions made by machine learning ap-
proaches. If this quantification does not exist or cannot
be achieved, Cd can be set to 1 and therefore does not
change the made classifications.
Based on the made extensions of the classification
schemes, we can extend the formulas from equations 1,
2, 4 and 3 using the scheme as explained:

T Pi(t,σ ,d) =

{
T Pi(t,σ) ·Cd [c(i)> t]∧ [p(i)≥ t]
0 else

(9)

T Ni(t,σ ,d) =

{
T Ni(t,σ) ·Cd [c(i)≤ t]∧ [p(i)≤ t]
0 else

(10)

FPi(t,σ ,d) =

{
FPi(t,σ) ·Cd [c(i)≤ t]∧ [p(i)> t]
0 else

(11)
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FNi(t,σ ,d) =

{
FNi(t,σ) ·Cd [c(i)> t]∧ [p(i)< t]
0 else

(12)

Based on these definitions, we are able to extend
well-known evaluation metrics for machine learning
approaches.

3.3 Uncertainty-aware evaluation mea-
sures

In the following, we will summarize potential evalua-
tion measures that are based on the prior classifications.
The measures have been chosen as they are popular
choices for machine learning evaluation [23]. Here,
we need to sum all values that will be outputted
when considering all n datapoints. Therefore we
define T P(t,σ ,d) := Σn

i=0T Pi(t,σ ,d). Respectively,
T N(t,σ ,d), FP(t,σ ,d) and FN(t,σ ,d) can be defined.

Accuracy :=

T P(t,σ ,d)+T N(t,σ ,d)
T P(t,σ ,d)+T N(t,σ ,d)+FP(t,σ ,d)+FN(t,σ ,d)

(13)

Precision :=
T P(t,σ ,d)

T P(t,σ ,d)+FP(t,σ ,d)
(14)

Recall :=
T P(t,σ ,d)

T P(t,σ ,d)+FN(t,σ ,d)
(15)

FalsePositiveRate :=
FP(t,σ ,d)

FP(t,σ ,d)+T N(t,σ ,d)
(16)

F1 :=
2 ·Precision ·Recall
Precision+Recall

(17)

4 CASE STUDY
In this section, we aim to apply the developed
uncertainty-aware evaluation metrics to a trained
Bayesian U-Net (BNN) [24] for stroke lesion predic-
tion [25]. We aim to show how the defined metrics can
be used and how the defined parameters influence the
computation.

4.1 Use Case Description
The provided BNN generates lesion maps from stroke
patients that predict their final formation. Here, a multi-
modal input is used to predict a lesion map that can be
found in the work of Gillmann et al. [26]. In addi-
tion, it predicts voxel-wise epistemic and heteroscedas-
tic aleatoric uncertainty alongside [27]. The epistemic

uncertainty stems from Monte Carlo dropout and is a
property of the model used to describe the real-world
process. It expresses not knowing exactly, which model
generated the data in the real world. The heteroscedas-
tic aleatoric uncertainty was trained as an unsupervised
parameter in the loss function. We will use this model
to demonstrate the applicability of the presented ap-
proach.

(a) (b) (c) (d) (e)

Figure 3: Cross section of lesion map prediction (a)
and epistemic uncertainties (b) from BNN, thresholded
at t = 0.8 (c) and compared to the ground truth (d).
(e) shows the groundtruth (in red) overlayed on top of
the CT Angiography, which is one of the inputs to the
BNN.

In this use case, we consider a particular cross-section
of the 3D volume of a patient. Figure 3(a) shows the
prediction made by the BNN, whereas 3(b) shows the
predicted epistemic uncertainty. The prediction holds
values between 0 (no lesion predicted) and 1 (lesion
predicted). The ground truth that was labeled by med-
ical experts is shown in Figure 3(d). Usually, perfor-
mance measures are computed based on the thresh-
olded prediction (Fig. 3(c)) and the pre-labeled ground
truth. In this case, the groundtruth was created by med-
ical experts that reviewed each patient individually and
marked areas in the image that show a stroke lesion. For
this example we show how the presented uncertainty-
aware measures can be applied.

4.2 Results
In the following we aim to discuss the influence of the
user-selected values σ and d to the classification values
as well as the resulting metrics that can be computed
based on these classifications. We define a consistent
colorscheme for the four classes, i.e. TP (green), FP
(red), TN (blue) and FN (purple).

Influence of σ to classifications As mentioned, the
user-defined variability of the selected threshold shapes
the sharpness of the classification result. The resulting
classification of the presented prediction of stroke le-
sion into TP, FP, TN and FN with varying σ can be
seen in Figure 4. 4(a), 4(e), 4(i) and 4(m) show the
original computation of the classification. Here, clear
boundaries can be identified due to the strict separation
of classifiers. This coincides with an application of our
evaluation approach when σ → 0. Therefore, the pre-
sented measures extend the existing ones.

When increasing σ , the crisp boundaries of the clas-
sifications vanish and the separation into the classes is
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(a) no σ (b) σ = 0.1 (c) σ = 0.2 (d) σ = 0.3

0.0

0.5

1.0

(e) no σ (f) σ = 0.1 (g) σ = 0.2 (h) σ = 0.3

0.0

0.5

1.0

(i) no σ (j) σ = 0.1 (k) σ = 0.2 (l) σ = 0.3

0.0

0.5

1.0

(m) no σ (n) σ = 0.1 (o) σ = 0.2 (p) σ = 0.3

0.0

0.5

1.0

Figure 4: Classification of TP, FP, TN and FN (rows)
with varying σ (columns). With larger σ , the score for
classifications decreases according to the closeness to
the threshold.

less clear. This matches with the intuition that a high σ

represents a large uncertainty of the selected threshold.

Figure 5 shows the merged visualization of the made
classification with varying σ . Figure 5(a) show the
strict separation of the made prediction into the four
classes. For increasing σ , an area with uncertain val-
ues is visible that indicates values of the prediction that
are close to the threshold but would be considered as
certain as the other predictions if the threshold is set
fixed.

(a) no σ (b) σ = 0.1 (c) σ = 0.2 (d) σ = 0.3

Figure 5: Classification of TP, FP, TN and FN with
different values for σ and fixed d = 0.

Influence of d The damping factor d has a large influ-
ence where the uncertainty of the BNN is high.

This effect to the classification metrics can be seen in
Figure 6. Here, the value of σ is set to 0.1 in all cases.
d is altered with 0,0.5,1 and 2.

The damping factor controls the influence of the un-
certainty on the made classifications. With increasing
d, values that contain a high uncertainty will result in

(a) d = 0 (b) d = 0.5 (c) d = 1 (d) d = 2

0.0

0.5

1.0

(e) d = 0 (f) d = 0.5 (g) d = 1 (h) d = 2

0.0

0.5

1.0

(i) d = 0 (j) d = 0.5 (k) d = 1 (l) d = 2

0.0

0.5

1.0

(m) d = 0 (n) d = 0.5 (o) d = 1 (p) d = 2

0.0

0.5

1.0

Figure 6: Classification of TP, FP, TN and FN (rows)
for a fixed σ = 0.1 and varying d (columns).

a less strong classification. This effect can be seen
very clearly when considering Figure 6(i) 6(j), 6(k) and
6(l). When setting d to 0, the result is almost binary.
While increasing d, values with a high uncertainty get
a lower classification score. When comparing the result
of Figure 6(l) with Figure 3(b) we can identify the large
influence of uncertain values in the prediction. Here,
the uncertainty results in areas that cannot be separated
clearly. Further, areas that do not contain a high un-
certainty will not be affected by the application of the
damping factor.

(a) d = 0 (b) d = 0.5 (c) d = 1 (d) d = 2

Figure 7: Classification of TP, FP, TN and FN with
fixed σ = 0.1 and varying d.

The effect of varying the damping factor d on the com-
bined image of the classifications into TP, FP, TN and
FN is shown in Figure 7. Here, we can identify that a
high uncertainty lowers the overall classification score
of datapoints. When increasing d, uncertain areas will
result in unclassified data values.

Influence on evaluation metrics Based on the made
classifications, we adapted prominent examples of eval-
uation metrics.
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0.0 0.1 0.2 0.3 0.4 0.5

0.50

0.55

0.60

0.65

0.70

0.75

0.80
F1

F1, with t=0.8

d = 0
d = 0.5
d = 1
d = 2
standard F1

Figure 8: Results of adapted F1 metric. By incorporat-
ing the epistemic uncertainty information we get higher
scores from the metric. The F1 score increases for
small σ , but for large σ we get lower scores.

Figure 8 shows the results of the adapted F1 metric (also
known as DICE-coefficient) with a threshold of t = 0.8,
variable σ and selected values for the damping factor d
(0, 0.5, 1 and 2).

The unmodified F1 score is also highlighted in the
graph (indicated with a black x). Incorporating the
epistemic uncertainty into the classification by using
a damping factor improved the final F1 score signifi-
cantly while increasing the σ reduced the score overall.
This results from the fact, that an increased σ removes
confidence in the classifications and therefore lowers
the result of the measurement output.

On the other hand, the damping factor removes uncer-
tain values from the computation. Usually, these values
are located around the boundary of areas in the ground
truth which turn out to be classified wrongly in many
cases. The damping factor removes these areas and
therefore increases the overall performance result. At
this point, we want to highlight that this effect might be
reversed when uncertain areas are located within cor-
rectly predicted regions.

Interestingly, the best output of the evaluation metrics
can be achieved with a sigma slightly lower than 0.1 and
a damping factor of 2. In the given case this means that
a consideration of an uncertainty-aware threshold leads
to a better rating of the network performance. This fits
with the intention of this work which aims to remove
the fixed thresholding.

We also applied our adapted measures to further evalua-
tion measures as shown in Figure 9. Here, we examined
the measures Accuracy, Precision, Recall and FPR.

When considering Accuracy (Figure 9(a)), we can iden-
tify that the unmodified accuracy metric shows a good
result for the network (0.97). In the presented case,
this is not surprising as the network predicts a high

amount of TN correctly. Increasing σ results in even
better ratings for the network as uncertain classifica-
tions are weighted less than certain classifications. In
addition, an increased d further improves the network
performance.

Figure 9(b) shows the results of the measure Precision,
when varying σ and d. Here, we can observe that the
best choice of σ in the presented case is 0.1. Interest-
ingly a further increase of σ leads to a dramatic loss in
precision. This matches with the observation that can
be made in Figure 4(d) and 4(h). Increasing σ results
in a slow vanishing of FP and a faster vanishing of TP.
Resulting from this, the output of precision decreases
as well. Overall the effect of d is low in the considered
case.

A similar effect can be seen when considering Recall.
Again the best results are achieved when using σ at
around 0.1. The measure is computed using TP and
TN. In Figure 4(l), we can observe that increasing σ

results in less vanished values for TN. Therefore, this
effects the Recall metric similarly to the Precision met-
ric. In contrast to precision, for recall, the effect of d is
high in the given case.

The effect of σ and d for FPR can be seen in Figure
9(d). When increasing σ , the result improves. This
also holds for an increased d.

5 DISCUSSION
General Observations The presented metrics allow
generalizing original machine learning performance
metrics. When setting σ and d to 0, the resulting values
are equal to the original computations.

The classifications that we proposed are based on a
Gaussian distribution function but can be exchanged
with any distribution function that holds an overall in-
tegral of 1. Also, the used damping function could be
adapted if required. Here, functions that output 1, when
a damping factor of 0 is used can be considered.

By using the adapted definitions of TP, FP, TN, and FN
with a σ > 0 we can basically encode how far away
the predictions are from the threshold. The benefit of
this can be seen in Figure 5, wherewith increasing σ

one can easily assess the quality of the threshold. For
this particular example, it seems like the threshold is
well chosen to classify the TN while keeping FN to a
minimum. With increasing σ the TN stays the same,
except at the boundaries, while the FN quickly fades
away, which means that they are close to the threshold
– they are classified with high uncertainty. The classifi-
cations of TP and FP also fade away relatively quickly.
They are also relatively close to the threshold, and thus
also relatively uncertain.

Using the damping factor allows to include the uncer-
tainty captured in the made prediction of a machine
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(a) Accuracy
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(b) Precision
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0.70 d = 0
d = 0.5
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standard recall

(c) Recall
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0.001

0.002

0.003

0.004

0.005 d = 0
d = 0.5
d = 1
d = 2
standard falsePositiveRate

(d) FPR

Figure 9: Results of the adapted metrics. Accuracy, Precision, Recall and FPR are affected by the choice of σ and
d. The unmodified values of these metrics are indicated by a black x.

learning approach into the classification scheme. In
Figure 7 it can be clearly seen that the classification
around the general area of the lesion in the ground truth
data is very uncertain. The same effect happens at the
boundaries of the brain. Interestingly, the BNN predicts
with high certainty FP. This is of course not desirable
and such errors can be easily spotted with the method
presented in this paper.

As a rule of thumb, it holds, that if for high σ and d
the classifications of TP and TN are high and for the FP
and negatives it is low, the model is trustworthy. This is
also reflected in the adapted metrics, for example in the
adapted accuracy metric depicted in Figure 9(a). The
values are monotonically increasing with increasing σ

and overall higher with higher d. One could infer, that
our model is generally trustworthy where the uncer-
tainty is low. If the graph in Figure 9(a) was mono-
tonically decreasing, it would mean that the model pre-
dicts with high certainty wrong results, i.e. it is not
that trustworthy. Care has to be taken for very unbal-
anced datasets, or datasets where one class can be much
more easily identified than the other. This is the case for
our model because a brain lesion can only occur in the
brain, therefore a significant portion of the head scan
can be easily classified as a TN with very high certainty.
These problems can be alleviated by also considering
the other metrics, like the F1-score.

Limitations Although the presented approach provides
large flexibility, it also results in more input parameters.
In this work, we showed that the influence of the input
parameters can be inspected visually. Here, contrary
to the original measurements, a visual inspection of the
parameters is required.

In the presented work we showed that the provided
measures are applicable for a BNN. We do not see lim-
itations in the application to further networks, but we
have not proven this statement.

6 CONCLUSION
This paper introduced adaptations to existing metrics
for evaluating a binary classifier, that can incorporate
uncertainty information from the model itself and un-
certainty regarding the exact location of the thresh-

old. For that, we use a Gaussian distribution func-
tion attached to the threshold and allow a damping
factor for uncertainty-aware machine learning outputs.
These metrics were applied to a real-world example of
a Bayesian neural network to prove applicability.

As future work, we aim to use the measures in the back-
propagation in the learning phase of neural networks.
In addition, we further research the visual inspection of
the chosen parameters of the presented measures.
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Figure 1: Signed Distance Function (SDF) reconstructed from ScanNet [Dai17] scan. Left image: Original SDF.
The ceiling is shaded very dark as the virtual light source is located inside the room. Right image: Cleaned SDF
using the implemented manipulation possibilities. The editing time amounted to 5 minutes.

ABSTRACT

Signed distance functions computed in discrete form from given RGB-D data as regular voxel grids can represent manifold
shapes as the zero crossing of a trivariate function; the corresponding meshes can be derived by the Marching Cubes algorithm.
However, 3D models automatically reconstructed in this way often contain irrelevant objects or artifacts, such as holes or noise,
due to erroneous scan data and error-prone reconstruction processes. This paper presents an approach for interactive editing
of signed distance functions, derived from RGB-D data in the form of regular voxel grids, that enables the manual refinement
and enhancement of reconstructed 3D geometry. To this end, we combine concepts known from constructive solid geometry,
where complex models are created from simple base shapes, with the voxel-based representation of geometry reconstructed
from real-world scans. Our approach can be implemented entirely on GPU to enable real-time interaction. Further, we present
how to implement high-level operators, such as copy, move, and unification.

Keywords: Signed Distance Fields, Interactive Editing, GPU, CUDA

1 INTRODUCTION

Automated 3D reconstruction is a key functionality re-
quired in a growing number of application fields, such
as robotics, autonomous driving, manufacturing, and
spatial digital twins [Kha19]. Volumetric methods for
3D reconstruction are based on computing Signed Dis-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

tance Functions (SDFs) for regular voxel grids, which
encode manifold surfaces as zero-sets of a trivariate
implicit function, allowing the acquisition of a large
class of objects [Ber02]. Among the most popular raw
data formats for volumetric 3D reconstruction meth-
ods are colored point clouds or depth-sensitive image
data (RGB-D) [Keh14], generated by various scanning
and acquisition technologies such as Light Detection
and Ranging (LiDAR) sensors, which recently have
even become built-in features in mobile devices (e.g.,
iOS TrueDepth camera); an overview of general 3D re-
construction methods based on RGB-D data is given
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in [Zol18]. However, “completely digitizing an object
or even an entire scene at high-quality is a tedious and
time consuming process” [Zol18]. 3D reconstruction
results are almost always not perfect. For example, a
reconstructed 3D model can contain holes if parts of
the scene were occluded during scanning, it can show
artifacts that result from noise due to reflection in the
scan data, or it can contain objects that are irrelevant
for the concrete task.

In this paper, we investigate editing techniques that
enable the manual refinement of geometry recon-
structed based on RGB-D data from real-world indoor
and outdoor scenes. To this end, we first convert RGB-
D data into a regular voxel-based SDF representation.
By combining the voxel-based SDF and procedural
shapes into a hybrid scene representation, we enable
interactive editing of reconstructed 3D geometry, e.g.,
for refinement and correction purposes, as shown in
Figure 1.

1.1 Problem Statement
The use of SDFs for representing real-world scenes
as voxel grids is common since 3D reconstruction by
means of volumetric fusion of range data results in such
a voxel grid [Cur96]. Furthermore, the creation and ma-
nipulation of SDF scenes using Constructive Solid Ge-
ometry (CSG) to combine multiple simple shapes into
complex objects is also well known; tools such as Magi-
caCSG enable the creation of SDF scenes in exactly this
manner. However, approaches are missing that combine
the voxel-grid based SDF representation of real-world
scenes reconstructed from scan data with the editing ca-
pabilities of CSG, i.e., the combination of procedural
geometric shapes by means of set operations [Har95].
With respect to this, the following main challenges have
to be considered:

C1: Handling Hybrid Scenes for SDFs: Editing
techniques have to handle the hybrid character
of SDF scenes, which consist of both procedural
primitives (e.g., spheres, boxes) and voxel grids
storing the SDF values.

C2: Real-Time Rendering for SDFs: Real-time edit-
ing needs interactive frame rates. Rendering voxel-
based SDFs requires trilinear interpolation, result-
ing in many memory reads. If reasonably detailed
resolutions for scenes should be achieved and addi-
tional (procedural) objects are present in the scene,
a Graphics Processing Unit (GPU)-based implemen-
tation strategy has to be taken.

1.2 Approach & Contributions
We use a GPU-based approach for creating an SDF
from RGB-D scans of real-world objects and scenes. To
enable editing and refinement of such scenes at interac-
tive frame rates, we present a new approach that can be

implemented entirely on GPUs. It combines the repre-
sentation of an SDF using a voxel grid with procedural
shapes that can be integrated into the grid using set op-
erations. Further, it enables the duplication as well as
the translation of scene parts. Additionally, a unifica-
tion approach enables the merging of the voxel-based
and procedural-based SDF representation into a single
representation, to increase rendering performance after
editing. The presented manipulation techniques could
also be transferred to neural geometry representations.

To summarize, this paper presents

1. interaction and manipulation techniques for voxel-
based SDFs using procedural shapes,

2. an approach for unification of the scene with subse-
quent SDF recalculation for persisting changes after
editing and thus increasing rendering performance,
and

3. a GPU-based implementation of the presented tech-
niques.

The remainder of this work is structured as follows:
Section 2 reviews related work with respect to syn-
thesis, rendering, and manipulation of SDF-encoded
scenes. Section 3 presents a conceptual overview of
the proposed approach. Section 4 details implemen-
tation aspects of our Compute Unified Device Archi-
tecture (CUDA)-based system. Section 5 evaluates the
system’s performance and discusses results and limi-
tations. Finally, Section 6 concludes this work and
presents ideas for future research.

2 BACKGROUND & RELATED WORK
In the following, we review related work regarding SDF
representation, synthesis, rendering, and manipulation.

2.1 SDF Synthesis & Representation
SDFs can be represented by a combination of procedu-
rally defined shapes, in form of voxel volumes, or as
weights of a neural network. These representations dif-
fer with respect to use-cases and applications.

The procedural representation is mostly used in the
context of CSG to build complex objects from simple
base shapes. With respect to polygon-based geometry,
Willis et al. presented PSML (Procedural Shape Model-
ing Language), which combines shape grammars with
sequential statements and can be used to model com-
plex models from 19 simple, predefined base shapes in
a hierarchical manner [Wil21]. With respect to SDFs,
Reiner et al. presented a modeling system that also uses
a hierarchical scene graph structure and a CSG-based
approach [Rei11]. The advantages of procedural ap-
proaches are the low memory consumption and, if vi-
sual editing is provided, the user-friendly creation pro-
cess. The main disadvantage is the tedious nature of
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the creation process for very complex objects or real-
world-based scenes.

The voxel-based representation is commonly used for
representing real-world scenes, reconstructed from scan
data. Curless and Levoy proposed volumetric fusion
for creating such voxel-based SDFs from range im-
ages [Cur96]. The range images are fused iteratively
into an SDF voxel volume, utilizing the camera extrin-
sics and intrinsics. Based on that, Izadi et al. proposed
KinectFusion [Iza11]; camera poses are estimated and
utilized for fusing depth images GPU-based in real-
time into a global implicit surface model. Such fu-
sion approaches result in Truncated Signed Distance
Field (TSDF) volumes that contain distance values only
in vicinity to the geometry’s surface.
Apart from automatic reconstruction from scan data,
voxel-based SDFs can also be created from polygo-
nal meshes or point clouds using distance transform
algorithms. An example is the Jump Flooding Algo-
rithm (JFA) [Ron06] that derives a Voronoi tessellation
of a voxel grid, with respect to starting seed points.
Based on this tessellation, the distance to the nearest
seed can be computed per voxel cell. Using the points
of a point cloud as starting seeds, the JFA can be used to
compute an SDF approximation of the input geometry.
Other algorithms utilize hierarchical data structures to
directly compute mesh-to-voxel distances, e.g., Mesh-
Sweeper [Gue01]. The automatic creation from RGB-D
data is one of the main advantages of voxel-based SDF
representations. However, the manipulation of such ge-
ometry can be challenging due to the fine-grained na-
ture of voxel-grids.

Recent neural approaches store the distance infor-
mation in the weights of a neural net, which leads
to a compact representation with respect to memory
consumption [Tak21; Wan21], but increases rendering
time, compared to classical representations. Addition-
ally, the editing of such neural representations is chal-
lenging and an area of active research.

Our approach combines the procedural and voxel-
based representation in order to be able to use automatic
reconstruction from RGB-D data together with the easy
manipulation known from CSG. The approach can be
also adapted to neural representations.

2.2 SDF Rendering
SDFs are typically rendered using ray-marching, where
for each pixel of the result image, a ray is emitted into
the scene. The ray is advanced, using a fixed step size,
until the distance to the surface at the ray’s endpoint
lies below a certain threshold. Subsequently, the final
position of the ray can be used for determining color
and normal information for shading.

Hart presented sphere tracing as a faster alternative to
the classical ray marching [Har95]. The distance to the
surface at a point in space corresponds to the radius of

a sphere, in which no geometry is present. Therefore,
in each iteration during ray-marching, a ray can be ad-
vanced by the distance retrieved from the SDF at the
ray’s current position, without intersecting geometry.
This leads to shorter rendering times compared to clas-
sical ray marching. Keinert et al. proposed several tech-
niques to enhance sphere tracing, for example an over-
relaxation approach for faster tracing [Kei14]. While
classical ray-marching can also be used for TSDFs,
sphere tracing requires a full SDF. For rendering our
scene representation, we rely on sphere tracing, as pro-
posed by Hart.

2.3 SDF Manipulation

In his work on sphere tracing, Hart proved that set op-
erations known from Boolean algebra can be imple-
mented for SDFs using the min/max operators [Har95].
CSG approaches for SDFs, such as the one presented
by Reiner [Rei10], utilize this insight for manipulation
of procedural-based SDF representations. Zhang pre-
sented a GPU-accelerated system for voxel-based SDF
modeling, also utilizing these set operations, as well as
skeleton-based animation approaches [Zha16]. The fo-
cus of his work was, however, on manipulating single
objects in rather small voxel grids that could be used,
for example, for 3D printing. Our work also utilizes set
operations for SDFs, but for real-world-based scenes
stored in voxel grids. Additionally, we propose high-
level manipulation techniques, such as copy and move
functionalities.

3 METHOD

In the following, we give an overview of our SDF cre-
ation and rendering process, present our hybrid scene
representation, and describe the user interaction con-
cept for SDF scene editing.

3.1 Process Overview

For SDF creation, we iteratively fuse captured RGB-D
data into a TSDF volume, as described in [Cur96]. To
enable shpere tracing of the reconstructed geometry,
we then convert the TSDF into a full SDF. For this
we use the JFA, as described in Section 2.1. First,
starting seed points are extracted from the TSDF vol-
ume by converting to a surface mesh, using Marching
Cubes [Lor87], and subsequently sampling the mesh
triangles uniformly. Then the JFA is used on these seed
points to compute the full SDF. A volume containing
color information can be created in the same way.

Rendering the SDF is achieved by means of sphere
tracing with additional soft shadow rendering. Subse-
quently, the SDF can be manipulated, utilizing our het-
erogeneous SDF representation (Section 1.1, C1).
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Figure 2: Overview of the processes and data in our approach: Green elements represent data and white arrows
represent processes that can be initiated by the user. The static scene consists of two voxel grids, storing distance
and color information, as well as a list of shapes that were added to the scene using set operations. The active
element can be moved and placed in the scene and is either the currently selected, procedural shape, or a copy of a
part of the static scene.

3.2 SDF Scene Representation
The hybrid SDF scene representation, we present, con-
sists of the following components:

Distance & Color Grid: These voxel grids are recon-
structed from RGB-D data, as described in Sec-
tion 3.1.

List of Shapes: A list of procedural shapes that were
added to the scene using set operations.

Active Element: The currently selected scene element
(shape or voxel grid copy).

(a) Original. (b) Union.

(c) Subtraction. (d) Intersection.

Figure 3: Set operations of an SDF voxel grid (a) with
a sphere shape in (b) and (c) and a box shape in (d).

The voxel grids and the list of shapes form the static
scene, while the active element represents the dynamic
part of the scene that is currently manipulated by the
user.

3.3 User Interaction Concept
Figure 2 shows an overview of our system for inter-
active editing of SDFs. An SDF can be manipulated
by creating new, procedural shapes ("Create Shape")
and integrating them into the static scene ("Integrate
Procedural Shape"). Additionally, parts of the static
scene can be copied ("Copy Grid Part") and integrated
into the scene at another position ("Integrate Grid
Copy"). This copy functionality depends on a unifi-
cation operation that can also be used for increasing
rendering performance. All of the mentioned interac-
tion techniques are described in the following.

Basic Operations. In our approach, geometry is manip-
ulated by geometric shapes (such as spheres or boxes),
introduced to a scene. Each shape possesses attributes,
such as the position, orientation, size, color, and the
scene integration type, all of which can be set by the
user, using a Graphical User Interface (GUI). A pointer
device (e.g., a mouse) is used to move and place the dif-
ferent shapes in the scene. A once added shape can be
selected again by the user to edit its attributes or remove
it from the scene.

With respect to the integration type of a shape, three
types are supported, corresponding to set operations
known from Boolean algebra (Figure 3). They can be
implemented for SDFs, using the minimum and maxi-
mum operators, as described by Hart [Har95]:

Given two SDFs a and b; an SDF c, resulting from
a set operation on the implicit surfaces defined by a
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(a) Selecting part of the scene. (b) Placing the copy in the scene.

Figure 4: Example of a copy operation.

and b, can be computed as: c = min(a,b) (Union), or
max(−a,b) (Subtraction), or max(a,b) (Intersection).

High-Level Operations. High-level manipulation
features include copy and move functionalities, en-
abling the user to duplicate or move parts of the scene,
such as single pieces of furniture in a room. First,
the user selects the part of the scene to copy, using a
“rubber-band” selection box. The selected part of the
static scene is then copied and can be translated and
rotated within the scene. Subsequently, the copied part
is placed and integrated again into the scene. Figure 4
shows an example for a copy operation In the case of a
move operation, a box with the size and position of the
selection box is subtracted from the scene after copying.

Unification Operation. With an increasing number
of shapes in the scene, the performance of sphere trac-
ing decreases, due to more intricate distance queries.
Therefore, the implemented system provides a unifica-
tion functionality to convert a scene, consisting of a
voxel grid and a list of procedural shapes, into a uni-
fied voxel grid to improve rendering performance (Sec-
tion 1.1, C2). This functionality is also used when a
copied part of the scene should be integrated back into
the scene. After unification, the list of shapes is cleared
and the new, unified voxel grid replaces the old one.

4 IMPLEMENTATION ASPECTS
The SDF creation from RGB-D data (TSDF fusion and
JFA) was implemented using Python and C++ together
with CUDA kernels for hardware acceleration. The
SDF rendering and editing was implemented using C++
and CUDA version 11.3 and will be detailed in the fol-
lowing.

4.1 Scene Rendering
Listing 1 shows example code for the querySDF func-
tion that is invoked during sphere tracing to retrieve the
distance to the surface for any point in space. Instead of
only trilinearly interpolating in the voxel grid, the list of
added shapes, as well as the active element have to be
considered.

1 float querySDF(float3 p, float *voxelGrid, /*...*/) {
2 float result = FLT_MAX;
3 // Handling voxel grid SDF
4 if(bboxHit[0]) { result = queryVoxelGrid(p, voxelGrid); }
5 // Handling procedural shapes
6 for(int i = 0; i < numberOfShapes; i++) {
7 if(bool(bboxHit[i+1])){
8 float3 queryPoint = mul(sceneShapes[i].rotation,
9 p-sceneShapes[i].position);

10 auto combinationFunc = sdfCombinationFunc[sceneShapes[i].
integrationType];

11 auto shapeFunc = sdfShapeFunc[sceneShapes[i].type];
12 result = combinationFunc(result, shapeFunc(queryPoint, sceneShapes

[i].size));
13 }
14 }
15 // Handling active element
16 if(bool(bboxHit[numberOfShapes+1])) {
17 float3 queryPoint = mul(activeElement.rotation,
18 p-activeElement.position);
19 auto combinationFunc = sdfCombinationFunc[activeElement.

integrationType];
20 result = combinationFunc(result, activeElementSdf(queryPoint,

activeElement));
21 }
22 return result;
23 }

Listing 1: CUDA code for querying the distance in an
SDF scene.

Before sphere tracing, for each ray, the intersection
of the ray with the bounding box of each shape and the
voxel grid is tested. The results of these bounding box
tests are stored into an array (bboxHit). This array
can then be used to skip all shapes that the ray cannot
hit. Apart from that, the following variables and func-
tions are used in the code:

sceneShapes is the array of shapes that were al-
ready added to the scene.

activeElement is the currently selected shape or
grid copy.

sdfCombinationFunc is an array of functions,
implementing different set operations.

sdfShapeFunc is an array of signed distance func-
tions for different shapes. By indexing into this ar-
ray (and the sdfCombinationFunc array) with
the corresponding shape type, unnecessary branch-
ing is avoided.

queryVoxelGrid() performs trilinear interpola-
tion in a voxel grid.

mul() applies a transformation matrix to a point and
is used for realizing rotation of objects.

activeElementSdf() returns the signed distance
for the active element by either calling the corre-
sponding sdfShapeFunc in the case of a proce-
dural shape or queryVoxelGrid in the case of a
voxel grid copy.

After a ray has terminated, the ray’s endpoint is used
to retrieve the surface color from the color volume. Ad-
ditionally, synthetic soft shadows can be rendered by in-
cluding an additional tracing step from the surface point
to a light source to check for occluding geometry in be-
tween.
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(a) (b) (c)

Figure 5: Copying parts of the input scene (a) can lead to shadowing artefacts (b). An SDF recalculation step
resolves the problem (c).

4.2 Scene Manipulation
As described in Section 3.3, procedural shapes can be
added to the scene using set operations implemented by
means of min/max operators. Whenever a user adds
a shape, it is set as the activeElement that can
be moved and rotated. On integration (e.g., triggered
by clicking the left mouse button), the currently active
shape gets appended to the sceneShapes array. Dur-
ing scene rendering, for each ray, the shape ID of the
shape with the minimal distance to the ray’s endpoint
is stored. This allows for shape selection by point-
and-click, as each pixel of the rendered frame can be
matched to the corresponding shape by means of the
stored shape ID. This ID is also used during shading to
retrieve the respective material.

For the copy functionality, the querySDF function
is used to fill a voxel grid of the size of the selection box
with signed distance values. Negative values at border
voxels are set to zero to avoid “leaking” at cut borders.
This grid copy is then set as the active element. How-
ever, for sphere tracing the SDF has to be defined at any
point in space, which is not the case for the grid copy,
which is only defined within its bounds. This leads
to incorrect rendering results. To mitigate this prob-
lem, the grid copy therefore returns the distance to its
bounding box for points outside this bounding box and
the real distances for points inside the bounding box (as
suggested by [Rei10]). However, to ensure that the rays
during sphere tracing do not stop at the bounding box,
the distance to a slightly shrinked bounding box is re-
turned. When the user places the grid copy within the
scene, a unification step is performed to integrate the
copied geometry.

4.3 Unification & Recalculation
The unification is implemented as a CUDA kernel that
executes the querySDF function (Listing 1) for each
voxel, storing the retrieved distances in a new voxel
grid. However, if integrating copied parts into the scene
in this manner, problems can arise during shadow com-

putation. As these copied parts return the distance to
their bounding box for query points located outside of
it, the otherwise invisible bounding boxes result in un-
wanted shadows and shadowing artefacts (Figure 5(b)).
Additionally, the rendering performance can decrease,
as a ray first has to approach the bounding box of a
copied part and only inside this bounding box can re-
trieve the actual distances, increasing the number of
sphere tracing steps. Further, the number of tracing
steps also increases after subtraction and intersection
operations, as the computation using minimum and
maximum operators only results in a lower bound to
the actual distance, as Hart notes in [Har95]. An SDF
recalculation step was implemented to mitigate the de-
scribed problems.

d C

P

n

S

Figure 6: Computation
of surface point P.

It first converts the SDF
into a voxel grid, contain-
ing seed points for a JFA
pass. For each voxel that
implicitly contains parts of
the geometry’s surface, a
surface point is required.
Since, SDFs store only
distances not the surface
points itself, we compute
the surface point as fol-
lows (Figure 6). The surface normal n⃗, which corre-
sponds to the gradient at this point, is computed using
central differences. Subsequently, the center point C
and the distance d to the surface S are used for comput-
ing surface point P =C− n⃗ ·d.

After the voxel grid has been filled with seed points,
the JFA is executed to obtain the exact distances to the
surface for every voxel (see Section 2.1). For the copied
parts, the bounding box is omitted before the JFA is ap-
plied. Figure 5(c) shows that the shadows are rendered
correctly after the recalculation step.

The JFA only results in an approximation of the sur-
face represented by the SDF. To reduce accumulation
of errors, when the recalculation is executed several
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(a) Original SDF from IPad scan (b) SDF after moving objects

Figure 9: Manipulation of an SDF using the move operator. The SDF was reconstructed from an RGB-D scan
obtained by an IPad.

times, we use an additional pass at the start of the JFA
(the so called 1+JFA variant). Using this JFA variant
lead to no observable errors in the geometry, even after
repeated SDF recalculation.

5 RESULTS & DISCUSSION
The following section presents exemplary results, cre-
ated with the implemented manipulation techniques.
Subsequently, the run-time performance is evaluated
and current limitations are discussed.

5.1 Exemplary Results
Figure 1 (on the first page) shows, how the presented
manipulation techniques can be used to refine the 3D
geometry of a scene reconstructed from RGB-D data.

(a) Original (b) Edited

Figure 7: Low-quality SDF of a pot tree, reconstructed
from a real-world scan with an IPad. (a) shows the orig-
inal, noisy, and incomplete SDF. (b) shows the edited
SDF, where the tree stump was connected to the tree
crown by merging spheres in the scene’s color. The
editing time amounted to 1-2 minutes.

Holes are filled with shapes in the scene’s color, noise
in the scene is removed, and unwanted parts, such as the
ceiling are cut away. This takes only a few minutes and
improves the reconstructed geometry noticeably. Fig-
ure 7 shows a similar scenario, where the geometry of a
tree, reconstructed from a low-resolution scan, is com-
pleted, using the implemented set operations. The com-
mon problem of faulty reconstructions from real-world
data can therefore be countered, using the proposed ma-
nipulation techniques.

Apart from countering problems, such as holes and
noise in the scene, the proposed techniques can also be
used to add new objects to the scene or alter existing
ones, e.g., for artistic purposes. Figure 8 shows an
example of this. Additionally, the move functionality
can be used for arranging furniture in a reconstructed
room anew (Figure 9). This can be useful for interior
design and room planning. First, a furnished room

(a) Input SDF (b) Edited SDF

Figure 8: Example of structure and appearance editing.
The original 3D reconstruction (a) was edited by filling
holes in the scene, changing the color of the stool by
merging a red sphere into it’s upper part, and adding
ears and eyes to the teddy bear by merging spheres of
the scene’s color (b).
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is scanned and reconstructed. Subsequently, new
furniture arrangements can be tested, without actually
having to move the furniture in the real world. All these
manipulation techniques are easy and fast to use, due
to the GPU-based implementation and the presented
user interaction concept.

5.2 Run-Time Performance Evaluation
In the following, we show an evaluation of the run-
time performance of the system. The performance
was measured on an AMD Ryzen 5 5600x (6 cores,
3.7 GHz) Central Processing Unit (CPU) with 32 GB
DDR4 RAM and an NVIDIA GeForce RTX 3090 GPU
with 24 GB VRAM. The application runs on a Win-
dows 10 operating system at a viewport resolution of
1200×960 pixels.

For the measurements, reconstructions from a
ScanNet scene with different voxel grid resolutions
were used, rendered from three different virtual camera
views (Figure 10). The rendering time per frame was
measured over 12 seconds and the results averaged.

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 10: The three different camera configurations
used for acquiring performance measurements. Inside
the room (a), above (b), and below (c).

Figure 11(a) shows the measurements for rendering
the test scene without soft shadows or any additional
objects. Even when the full scene is in view (which is
the case for camera 2 and 3), it can be rendered in real-
time. Figure 11(b) shows measurements for the same
set-up, but with soft shadows activated. An increase of
up to 2ms rendering time per frame can be observed, es-
pecially for the largest scene. Rendering is still possible
in real-time.

Figure 12(b) shows how the rendering timings
change if additional objects are present in a scene with
approx. 697 million voxels. A number of spheres
were placed randomly in the scene (Figure 12(a)). The
rendering time increases with an increasing amount of
objects. Up to 30 objects can be rendered together with
the voxel grid at a maximum frame time of around
16ms. For more than 30 objects, the higher frame times
result in less than 60 frames per second during render-
ing. After a unification step is applied, the rendering
time always decreases again to approximately the time
measured for zero objects in the scene.
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(b) With soft shadows

Figure 11: Performance results for rendering SDFs of
different sizes.

(a) Example scene for measuring the performance of
the SDF renderer when additional objects are present.
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(b) Performance for rendering SDF voxel grids with additional
objects added to the scene.

Figure 12: Rendering an SDF voxel grid (917×1044×
728) with additional objects.
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Voxel Grid Resolution #Voxels Unification SDF Recalculation

119×134×95 ∼ 1.5 ·106 3 ms 24 ms
229×260×181 ∼ 10.8 ·106 17 ms 204 ms
457×520×362 ∼ 86 ·106 146 ms 1024 ms
917×1044×728 ∼ 697 ·106 903 ms 8362 ms

Table 1: Runtime for executing the unification and SDF recalculation steps for different voxel grid resolutions.

Table 1 shows the processing times for the unification
and SDF recalculation for voxel grids of different size.
These steps can be used for increasing rendering perfor-
mance, fixing shadow computations after manipulation,
and integrating copied or moved parts of the scene. For
large voxel grids, the SDF recomputation can require
several seconds.

5.3 Limitations
While the feasibility of real-time rendering and editing
of real-world scenes represented as SDFs was demon-
strated in this work, there are still some open questions
and constraints that need to be addressed. A major limi-
tation is currently the memory consumption as full SDF
voxel volumes are used. With several hundred million
voxels, we are able to represent single rooms with suf-
ficient detail, but larger scenes are still difficult to re-
construct and render. Further, while the unification step
increases rendering performance, it is irreversible and
makes the subsequent editing of already added shapes
impossible. A snapshot-based approach could be used
to implement an undo operation. Additionally, while
the unification can be executed in less than a second,
the SDF recalculation step requires more time. If soft
shadows should be rendered, the recalculation step is
necessary after every copy/move operation, which can
interrupt the work flow if the voxel grid is large, as the
execution time of the recalculation step then amounts
to several seconds. With regard to user interaction, it
is possible to select and edit shapes that were added to
the scene using a union operator. Shapes that were in-
tegrated into the scene using subtraction or intersection
can not be selected for further editing, as during sphere
tracing only the shape IDs of shapes where the ray ter-
minates are retrieved. Suitable selection mechanisms
have to be developed in the future.

6 CONCLUSIONS & FUTURE WORK
This paper presented an approach for interactive edit-
ing of voxel-based signed distance fields. It builds on
a hybrid representation consisting of a voxel grid and a
number of procedural shapes (Section 1.1, C1), which
enables easy manipulation for refining geometry (e.g.,
closing holes or removing artefacts). Thus, this work
is a further building block for creation of high-quality
3D models from real-world scenes, by enabling manual

refinement of 3D reconstruction results. High-level ma-
nipulation methods, such as copy and move functional-
ity, provide suitable techniques for altering real-world-
based geometry and therefore facilitate design and plan-
ning processes. The GPU-based implementation of ren-
dering and manipulation enables real-time interaction
(Section 1.1, C2).

By exchanging the voxel grid with a neural repre-
sentation for rendering, the proposed techniques could
also be used for altering neural geometry representa-
tions. Nevertheless, an additional training phase would
be required to transfer the changes back into the neural
representation.

The SDF manipulation still has some limitations and
extension possibilities. In the future, we will address
the problem of memory consumption, by evaluating
sparse data structures to reduce memory constraints and
allow for larger scenes. Additionally, appearance ma-
nipulation (e.g., altering the color volume through a
painting technique) would be a useful extension to the
already implemented manipulation methods.
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ABSTRACT
The purpose of this paper is to in detail describe and analyse a Fourier based handcrafted descriptor for word
recognition. Especially, it is discussed how the Variability in the results can be analysed and visualised. This
efficiency of the descriptor is evaluated for the use with embedded prototype subspace classifiers for handwritten
word recognition. Nonetheless, it can be used with any classifier for any purpose. An hierarchical composition of
discrete semicircles in the Fourier-space is proposed and it will will be show how this compares to Gabor filters,
which can be used to extract edges in an image. In comparison to Histogram of Oriented Gradients, the proposed
feature descriptor performs better in this scenario. Compression using PCA turns out to be able to increase both
the F1-score as well as decreasing the Variability.

Keywords
Discrete Fourier Transform, Gabor Filters, Subspaces, Embedded Prototypes, Clustering, F1 score, Variability,
Deep Learning, t-SNE.

1 INTRODUCTION

In recent times, Embedded Prototype Subspace Clas-
sification (EPSC) [HV21, HLV19, HL20, HV21] has
proven to be able to classify datasets of various kinds,
containing everything from single digits, characters
to whole words, and even objects. Datasets used
have been the MNIST dataset of handwritten digits
[LCB10], E-MNIST containing letters [CATvS17],
the Kuzushiji-MNIST dataset containing Japanese
handwritten characters [CBK∗18], the Fashion MNIST
(F-MNIST) [XRV17] containing small images of
clothes and accessories and a recently published
dataset [HV21] based on the Esposalles dataset
[RFS∗13], where 30 different words were extracted to
create an imbalanced dataset with a total of 16354 word

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

images. This latter one will be used for the subsequent
analysis in this paper.

The main contributions of this paper are as fol-
lows. First of all the Fourier based handcrafted
feature descriptor (previously called mFFT) used
in [HLV19, HL20, HV21] will for the first time be
described and analysed in detail. Furthermore, an
hierarchical composition of discrete semicircles in the
Fourier-space is proposed and it will be shown how this
compares to Gabor filters, which can be used to extract
edges of different orientations and sizes in an image
[MNR92]. This more elaborate feature descriptor will
subsequently be called: Magnitude of Semicircle Tiles
in Fourier-space, or MoSTiF for short.

Moreover, it will be shown how the EPSC can be op-
timised to use the proposed feature descriptor for fast
matching. And last but not least, it will be shown that
the when performing bootstrapping on a dataset, vary-
ing the size of the split between learning and validation
partitions, the standard deviation (SD) of F1 score can
be a useful for understanding the behaviour of the clas-
sifier. The word Variability is often used as a synonym
to SD, but here it will subsequently be used to denote
the SD of the F1 score in particular.
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2 BACKGROUND
The main advantage of EPSC compared to many deep
learning based methods [Sha18] for handwritten text
recognition [KDJ18, DKMJ18, SF16] is that EPSC is
shallow to its nature, with no hidden layers, and there-
fore does not require powerful GPU resources in the
training process. In general, EPSC learns from the em-
bedding of feature vectors, using dimensionality reduc-
tion techniques like t-SNE, UMAP or SOM [HV21]
and then creates so-called subspaces from each clus-
ter [KLR∗77], which are a set of neurons specialised
on identifying the class variation captured in that clus-
ter. Obviously, EPSC does not always outperform the
state-of-the-art deep learning approaches when it comes
to accuracy. However, both learning and inference will
generally be much faster due to its simplicity and com-
pactness. Moreover, both the learning and classifica-
tion processes are inherently easy to interpret [Kri19,
CPC19], explain [ADRS∗19, GSC∗19, CPC19], and vi-
sualise.

The EPSC uses handcrafted features as input, while
deep learning approaches such as Convolutional Neu-
ral Networks (CNN) have been efficiently used to ex-
tract learned features from images [SSTF∗15, ZK15].
One drawback with learned features is the time con-
suming learning process. Since it has been noticed
that CNN’s produce Gabor-like features some efforts
have been done to replace the CNN with Gabor filters
[LCZ∗18, JJL07]. It will be shown that this idea can be
utilised by creating a hierarchical composition of dis-
crete semicircles in the Fourier-space.

Several handcrafted features have been proposed in
the literature, and some popular methods include
Scale Invariant Feature Transform (SIFT) [Low04],
Speeded Up Robust Features (SURF) [BETVG08]
and Histograms of Oriented Gradients (HOG) [DT05],
where some have been used in recognition systems
[GDDM14]. Fourier based detectors can be constructed
by taking the magnitude of the lowest frequency el-
ements of signals [HV18, HSSK18]. Matuszewski
et al. compute the magnitude from a few elements
close the the centre of the shifted Fourier transform
[MHWS17] while Buchholz and Jug [BJ21], create
what they call a Fourier Domain Encoding (FDE) by
computing normalised amplitude and phase of half the
concentric Fourier rings. Herein, a mix of these two
methods is proposed, by computing the magnitude of
neighbouring Fourier semicircles. This is basically
what was used previously for mFFT in [HLV19, HV21]
together with HOG. However, here is proposed the
extension of a hierarchy of image partitions making
the feature vector more effective, which can be used
without HOG. Since HOG has proven to be both simple
and effective, the proposed descriptor will be compared
to HOG as a reference.

Figure 1: The Gabor filter banks in Fourier-space. The
symmetric Gabor filter bank is distributed in four orien-
tations and three frequency bands in this example.

3 THE MAGNITUDE OF SEMICIRCLE
TILES IN FOURIER-SPACE

In this section the Magnitude of Semicircle Tiles in
Fourier-space (MoSTiF) feature descriptor is intro-
duced. The idea comes from the fact that CNN’s create
something similar to what Gabor filters does, which
can be used to detect lines in different directions and
frequencies. These are then combined in subsequent
levels to more complicated features. In the EPSC this
is done using the subspaces. Subspace classification is
done by computing the norm of the projected feature
vector to be classified into each subspace. The sub-
space of a certain class yielding the largest norm will
tell what class the feature vector most likely belongs
to. Subspace classification will be explained more in
detail later.
As shown in Figure 1, a Gabor filter bank can be created
by using Gaussians in a symmetric fashion. Each pair-
wise filter (placed diametrically with respect to the cen-
tre) corresponds to an orientation of the features. The
further away from the centre the pairs are placed, the
higher the frequency. Hence, only the innermost filters
are of interest since they detect shape, while higher fre-
quencies corresponds to very fine details or noise. Since
subspaces are used to determine the more complicated
features, elements are simply picked in a space filling
[BHB16] semicircle and the magnitude of the complex
Fourier value of the Discrete Fourier Transform (DFT)
is computed as:

|F [ f (n)]|=
√

ℜ(F [ f (n)])2 +ℑ(F [ f (n)])2. (1)

where f (n) is the image f at point n.
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Figure 2: The different space filling semi-circles are
shown in different colours.

Remember that the elements are diametrically dis-
tributed and therefore only half of the space filling
circle is needed to construct a feature vector. Hence, a
semicircle can be regarded as sampling the filter banks
for a thin band of frequencies in all possible directions.
Figure 2 shows the possible space filling semi-circles
for a 24×24 image patch. Note that the central pixel is
not used since it corresponds to the DC content of the
image, i.e. the overall brightness.
Computing one set of semi-circles on the whole im-
age would not be efficient enough. Therefore the semi-
circles are also computed on different partitionings of
the image in a hierarchical manner and then combined
into a longer feature vector. Figure 3 shows three differ-
ent combinations of partitions. The number above each
sub-partition shows the number of semicircles used.
The number to the right shows the total feature vector
length.
By choosing the size 120×120 the image width and/or
height can be evenly divided by 2,3,4,5 and 6. This
gives 36 different possible block partitions of the in-
put image. Each semicircle is concatenated in order to
construct each part of the feature vector, which is sub-
sequently normalised for each block in the partition.
When all blocks and partitions are computed the final
feature vector is also normalised.

3.1 Subspace Classification
Since it was first proposed by Watanabe et al. [WP73]
in 1967, Subspaces have been used for classification in
pattern recognition. This approach was later further de-
veloped by Kohonen and others [WLK∗67, KLR∗77,
KO76, KRMV76, OK88]. In general, subspace clas-
sification can be regarded as a two layer neural net-
work [HLV19, OK88, Laa07], where the weights are

not learned using time consuming backpropagation. In-
stead weights are mathematically defined through Prin-
cipal Component Analysis (PCA) [Laa07]. (Note that
PCANet [CWW15] also set weights using PCA. How-
ever, this is done for features in a sliding window man-
ner and is therefore fundamentally different from Sub-
space classification.) Last but not least, one important
advantage is that the whole learning process can eas-
ily be visualised, since it is based on visualisation tech-
niques (e.g. t-SNE), which makes it easy to both un-
derstand, interpret and explain, as compared to most of
the state-of-the-art deep learning approaches, which are
often regarded as black boxes.

Every image to be classified is represented by
a feature vector x with m real-valued elements
x j = {x1,z2...xm},∈ R, such that the operations take
place in a m-dimensional vector space Rm. Any set
of n linearly independent basis vectors {u1,u2, ...un},
where ui = {w1, j,w2, j...wm, j},wi, j ∈ R, which can
be combined into an m× n matrix U ∈ Rm×n, span a
subspace LU

LU = {x|x =
n

∑
i=1

ρiui,ρi ∈ R} (2)

where,

ρi = xT ui =
m

∑
j=1

x jwi, j (3)

Classification of a feature vector can be performed by
projecting x onto each and every subspace LUk . The
vector x̂ will in this way be a reconstruction of x, using
n vectors in the subspace through

x̂ =
n

∑
i=1

(xT ui)ui (4)

=
n

∑
i=1

ρiui (5)

=UT UxT (6)

By normalising all the vectors in U, the norm of the
projected vector can be simplified as

||x̂||2 =(UxT ) · (UxT ) (7)

=(UxT )2 (8)

=
n

∑
i=1

ρi
2 (9)

Therefore, the feature vector x, which is most similar to
the feature vectors that were used to construct the sub-
space in question LUk , will therefore have the largest
norm ||x̂||2.

3.2 Parameters to learn
As mentioned earlier, subspaces do not require learn-
ing through backpropagation, since the learning itself is
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Figure 3: Three different feature vectors and their different partitionings are shown, one per row. The number of
semicircles are denoted above each partition and the feature length is reported to the right.

done by the embedding obtained from some dimension-
ality reduction method such as t-SNE [MH08], UMAP
[MH18] or SOM [Koh82]. Moreover, all the weights in
the resulting neural network are set mathematically by
PCA.

Nevertheless, bootstrapping can be used to evaluate and
set parameters that are required for the overall perfor-
mance. Such parameters are the feature detector itself,
i.e. how many semicircles are to be used for different
partitions. So far we have not devised a technique for
doing that. Instead a Monte Carlo sampling approach
was used to find the best parameters. The draw back is
of course that this can be time consuming. Nonetheless,
we think that the proposed partitionings shown in Fig-
ure 3 can be used for any dataset of handwritten words.

The subspace projection itself is done using only 6 di-
mensions, and it has been noted that this can be varied
to improve performance when the size of the dataset
to learn from is changed. Moreover, the effectiveness
of PCA compression of the feature vector can also be
evaluated as will be shown later herein.

3.3 Improved Embedding and Clustering
The idea of EPSC [HV21, HLV19] is to use some em-
bedding technique to obtain prototypes for the con-
struction of each subspace. In this work t-SNE [MH08],
was used to reduce the number of dimensions of high
dimensional data down to 2 dimensions. In this pro-
cess, clusters are formed since t-SNE strives to move
similar features (represented by their projected points)
closer to each other and dissimilar points are kept fur-
ther away from each other.

Previously, Hast et al. [HLV19] used kernel density es-
timation (KDE) [CHTT96] and watershed transform on
the inverse image to find clusters in a two-dimensional
image space, which is basically the same as performing

Figure 4: The placement of each word in the 90× 160
rectangular bounding box. The background is removed
but the word is not binarised. And the red rectangle
shows how the word is cut out and then resampled to
120×120.

the Mean-Shift [CM02, FH75]. However, it was shown
that other algorithms that requires specifying the ex-
act number of clusters, such as K-means [HW79] could
also be used [HV21]. Moreover, it was shown that in-
stead of using a certain bandwidth for clustering, bet-
ter performance was achieved by computing k clusters,
striving for these clusters to contain a certain predefined
number of features n f . Herein it was chosen to use a
fixed k instead. In fact k = 2 was chosen as it gave
the best overall classification for this dataset (these ini-
tial experiments are not reported herein, since there are
reasons to believe that k depends on the data at hand
and possibly also the amount of data). Furthermore,
the process was simplified by replacing the inverse wa-
tershed with a gradient ascend method working on each
data point instead of each pixel in the KDE image. Both
these changes speeded up the learning process notice-
ably.

Another improvement, which gave an overall higher F1
score, is shown in Figure 4, where each word image
is cut out (red bounding box) and extracted from the
image and resampled to the size 120×120..
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4 EVALUATION AND METHOD
Opitz and Burst [OB21] show that the best choice to
compute the F1 scores for imbalanced datasets, is the
arithmetic mean over harmonic means. I.e. F1 scores
are computed for each class and then averaged via arith-
metic mean, such that

F=
1
n

n

∑
i=1

F1 =
1
n

n

∑
i=1

2PiRi

Pi +Ri
(10)

where Pi and Ri are precision and recall respectively for
each class i.

It was chosen to compute the F1 scores using the Boot-
strapping method [Koh95, KW96], with stratification
because the data is imbalanced. This means that the
bootstrap sample is taken from the original set by using
sampling with replacement, and that both the learning,
test and validation sets are forced, as much as possi-
ble, to contain a certain percentage of each class. The
validation set was kept the same throughout the experi-
ments, using 50% of the available data. The remaining
50% was split into a set for training and a set for test-
ing. The experiments where conducted 200 times for
each data split, varying the permutations randomly, in
order to be able to analyse the impact of what data are
in each split, i.e the training and test set. By varying the
percentage used for training, the change in F1 scores
could be analysed and parameters could be learned and
set accordingly, as previously discussed. Moreover the
SD of the F1 score for each run was computed and is be-
ing called Variability in the subsequent presentation of
the results. In any case, varying the split gives a chance
to analyse the impact on the overall performance of the
feature vectors in combination with EPSC.

5 RESULTS
Figure 5 shows the F1 score 5a and Variability 5b, re-
spectively for the training set. It can be noted that HOG
performs much better when the training set becomes
larger. The U-shape of the Variability can be explained
by the fact that when few data is used for training the
classification will heavily depend on how well those
data represents the test set as a whole. Similarly, when
the test set is small, the classification will heavily de-
pend on whether if it is difficult or not. In any case, the
MoSTiF outperforms HOG and generally have lesser
Variability.

Finally the Figure 6 and shows the F1-score 6a and
Variability 6b, respectively for the validation set. This
time MoSTiF generally outperforms HOG and the U-
shape is not visible in the Variability graph since the
validation set is kept fixed. Using all learning data
gives a validation F1 score of 0.995 and a Variability
of 9.116 ·10−4.

(a) F1-score

(b) Variability

Figure 5: F1-score and Variability (y-axis) for the test
set, for 200 random runs by varying the split of data
into a training and test set with varying sizes.

5.1 PCA Compression
In this section we analyse how to make faster train-
ing and classification by training on a fixed number of
principal components obtained from the features in the
training dataset, instead of using the full length of the
training features [HM18]. This lossy compression is
achieved by applying PCA on the matrix of features
in order to reduce the dimensionality into a smaller
number of principal components. The first Principal
Component will capture the maximum variance in the
features. The second will find variance that is incre-
mental to the first, while still being orthogonal to the
first. This process is repeated to find all the principal
components. In fact, PCA can only produce as many
principal components as there are features in the train-
ing dataset. Since each successive principal component
captures the variance that is left after its preceding com-
ponent, the components will be less discriminative and
at some point they can be discarded without lowering
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(a) F1-score

(b) Variability

Figure 6: F1-score and Variability for the validation set,
for 200 random runs by varying the split of data into a
training and test set with varying sizes.

the F1-score. In fact it might even make it higher since
this procedure will denoise the data, by capturing the
main signal in the data and hereby omitting the noise.

In practice, a number of the first components from the
matrix obtained by PCA are kept and the rest are dis-
carded. This matrix is subsequently multiplied to all
data (training, validation and test) in order to reduce the
dimensionality. This can actually be seen as a neural net
applied to the feature vectors, which extracts the most
important features in the data, since matrix multiplica-
tion is exactly what neurons do. The resulting features
are then normalised before being used for training and
inference.

Figure 7 shows both the F1-score 7a and the Variability
7b for different amounts of compression for 200 ran-
dom 50-50 splits of the data, i.e. while keeping the
same validation set as before, all the remaining data is
used for the learning. Interestingly all MoSTiF features
perform slightly better when compressed down to 50%

(a) F1-score (y-axis) for different amounts of compression (x-axis).

(b) variability (y-axis) for different amounts of compression (x-axis).

Figure 7: F1-score and Variability for different amounts
of compression for 200 random 50-50 splits of the data.

of its original size than using the full length. The MoS-
TiF 1816 even performs about just as well (99.99%) for
only 20% of its original length, i.e. 334 elements long,
and the Variability is even becoming lower.

6 DISCUSSION
Figure 8 shows the confusion matrix in 8a, which is not
so informative when the accuracy is rather high over-
all. Here the learning set is varied (50% of all avail-
able data) while the test set is kept fixed (the remaining
50%). A better view of where the classification do go
wrong can be achieved by showing the errors instead,
which can be done by computing a new diagonal, tak-
ing 1 minus the old diagonal, as shown in 8b.

Another way to show where the classification goes
wrong is to look at the Variability. This can be done by
computing the SD of the F1-score from the confusion
matrices for all runs as shown in 8c. Note, that if there
are outliers that always are misclassified, then they will
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(a) Confusion matrix for HOG with 50% learning data. Mean over 200
runs.

(b) Error matrix for HOG with 50% learning data. Mean over 200 runs.

(c) Variability matrix for HOG with 50% learning data. Standard devi-
ation over 200 runs.

Figure 8: Confusion, Error and Variability matrices.
When confusion is low, both the Error and variabil-
ity matrices tells more about when classifications goes
wrong, as the fluctuations become apparent.

(a) Variability matrix for MoSTiF 1512 with 50% learning data. Stan-
dard deviation over 200 runs.

(b) Variability matrix for MoSTiF 1670 with 50% learning data. Stan-
dard deviation over 200 runs.

(c) Variability matrix for MoSTiF 1816 with 50% learning data. Stan-
dard deviation over 200 runs.

Figure 9: Comparison of Variability Matrices for the
three different MoSTiF features. Words with high vari-
ability are more dependent on the set for learning.

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.10 88



appear in the error matrix but not in the variability ma-
trix, since they do not vary. Hence, the Variability ma-
trix will only show which classes that depends on the
actual set for learning, and therefore it will point out
which classes that would need more learning data to
become more stable.

Figure 9 shows the variability matrices for the three dif-
ferent MoSTiF feature vectors proposed. While com-
paring the three, one can note that some words are vary-
ing regardless of feature vector being used, which in-
dicates that more learning data is necessary for those
words. Some vary for only one of the vectors at a time,
which indicates that an ensamble of classifiers, using
different feature vectors, could be used to more cor-
rectly classify those words.

7 CONCLUSION
The MoSTiF feature descriptor turns out to be a better
choice than HOG for EPSC and word recognition. Of
the three different partitionings examined, the MoSTIF
1816 generally gives better F1-score, lower Variability
and performs better than the others when being com-
pressed. However, since only one dataset was tested,
it is not said that the results generalise to any kind of
data. Nevertheless, it works very well for the task of
word recognition together with EPSC. Furthermore, by
using only about 2 subspaces per class, performing only
6 projections per subspace, and being able to compress
the features down to only 20% of its original size, the
computational cost for inference is indeed very low.
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ABSTRACT 
This paper presents the color-dependent method of removing inter-view redundancy from multiview video. The 

pruning of input views decides which fragments of views are redundant, i.e., do not provide new information about 

the three-dimensional scene, as these fragments were already visible from different views. The proposed 

modification of the pruning uses both color and depth and utilizes the adaptive pruning threshold which increases 

the robustness against the noisy input. As performed experiments have shown, the proposal provides significant 

improvement in the quality of encoded multiview videos and decreases erroneous areas in the decoded video 

caused by different camera characteristics, specular surfaces, and mirror-like reflections. The pruning method 

proposed by the authors of this paper was evaluated by experts of the ISO/IEC JTC1/SC29/WG 11 MPEG and 

included by them in the Test Model of MPEG Immersive Video. 

Keywords 
Immersive video coding, multiview compression, virtual reality.

1. INTRODUCTION 
In an immersive video, the viewer can interactively 

change his/her position in the three-dimensional 

scene, allowing virtual traversing, e.g., using a virtual 

reality set [Dom17]. Typically, in order to generate 

a virtual view, some kind of three-dimensional 

representation of an acquired scene has to be utilized. 

The most widespread is the multiview video plus 

depth representation (MVD) [Mül11]. The so-called 

depth maps are used to store, in the form of an 

additional grayscale video, the distance from the 

camera to the 3D point for each pixel of the 

corresponding video. 

Immersive video applications are gaining recently a 

large interest both from the video processing 

researchers and from the standardization community, 

as dedicated compression standards are emerging 

[Boy21]. It makes the introduction of such kinds of 

services to possible consumers much easier. 

Independent compression of multiple views and 

corresponding depth maps (e.g., using HEVC [Sul12]) 

results in high bitrates [Dom21]. Instead, the 

compression of the immersive video should take 

advantage of the inter-view redundancy existing in the 

multiview representation. For example, input 

representation may consist of multiple typical 

camera-acquired videos with vastly overlapping fields 

of views, or it may consist of a few overlapping 

omnidirectional (360-degree) videos. The redundancy 

resulting from the spatial overlap between input views 

can be used to decrease the size of data required to 

fully represent the whole three-dimensional scene.  

Basic multiview encoders (such as MPEG’s 

Multiview Video Coding – MVC [Mer06] or 

Multiview extension of High Efficiency Video Coding 

– MV-HEVC [Tec16]) usually utilize the inter-view 

prediction, based on motion vectors estimated 

between neighboring frames (similarly as it is done in 

the temporal domain in typical inter-frame prediction). 

However, in this approach, textures and depth maps 

are encoded independently, so the searching of motion 

vectors does not utilize the information about 

three-dimensional geometry of an encoded scene. This 

improvement was introduced in 3D-HEVC in the form 

of the depth-based inter-view prediction [Tec16]. 

While both described types of prediction highly 

decrease the bitrate of encoded videos (more than 40% 

reduction in comparison with simulcast encoding), it 

still requires allocating a part of the bitstream for 

residual data left after the prediction. Moreover, as the 

prediction does not fully eliminate the inter-view 

redundancy, the pixel-rate (understood as the number 

of pixels to be decoded per second to produce the 

requested view) is not decreased. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee. 
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The current state-of-the-art technology for immersive 

video compression was developed by the MPEG 

ISO/IEC group under the MPEG Immersive video 

name (MIV) [ISO22]. The foundations of this 

standard were built on technologies presented by 

proponents of Call for Proposals for 3DoF+ video 

coding [Dom19], [Fle19]. Most of the proposals 

followed a similar core idea, that few base views that 

gather most of the information of the scene should be 

encoded in their entirety, while supplementary 

information (visible from the remaining viewpoints) 

can be transmitted in the form of a mosaic of patches, 

collectively forming an atlas. Fig. 1 presents an 

example of this representation: an atlas with base 

views is presented on the left, an atlas with patches is 

in the middle, while on the right two corresponding 

atlases with depth maps can be seen. These atlases are 

then encoded using a typical video encoder, e.g. 

HEVC [Sul12], while in the decoder, the atlases are 

used to synthesize the requested viewpoint for a final 

viewer. The full description of MPEG Immersive 

video can be found in [Boy21]. 

  

 

 

Figure 1. Atlases for sequence Kitchen [Boi18]: two 

texture atlases and two depth atlases (reduced 

resolution). 

In order to decide which information should be packed 

into atlases, the so-called pruning process is utilized. 

It is based on the recognition of the inter-view 

redundant parts of input views and removing them 

from further processing (the details are described in 

Section 2), as these areas do not provide new 

information about the three-dimensional scene – these 

fragments were already visible from different views. 

This paper introduces the pruning process 

improvement in which the color information is utilized 

in a way that minimizes the number of patches 

required to properly encode the non-Lambertian 

surfaces present in a 3D scene. The organization of the 

paper is as follows: Section 2 shows the description of 

the basic pruning process and the details of the 

proposed color-dependent pruning method; Section 3 

includes the results of the comparison of the proposed 

method with the basic depth-dependent pruning.  In 

the end, Section 4 summarizes the paper and includes 

conclusions drawn from the performed experiments. 

2. INTER-VIEW PRUNING OF 

MULTIVIEW VIDEOS 

Overview of the pruning process 
The simplified process of pruning is shown in Fig. 2. 

First of all, basic views are inserted into the pruning 

graph (as root nodes). Then, all pixels of basic views 

are projected (using the depth information) to each 

additional view. After creating the pruning mask for 

each additional view, the additional view with the 

maximum number of preserved pixels is selected (to 

prefer larger patches). This selected additional view is 

then added to the pruning graph (as a child node of 

other nodes in the graph). The projection of all 

preserved pixels of the selected view to remaining 

additional views is repeated and the pruning mask is 

iteratively updated for each remaining additional 

view. 

 
Figure 2. The idea of source views pruning. 

The described process is dependent on the condition 

which has to be met to decide if the element should be 

pruned from an input view. Initially, the pruning 

process was based only on depth information, i.e., if 

the difference between the depth of the transferred 

point and the point corresponding to it was higher than 

a depth pruning threshold (10%), then the 

corresponding point was marked as redundant and 

removed. This approach eliminated the problem of 

noisy input views, for which it is much harder to 

determine the similarity between the points in 

neighboring views when the decision is based on 

color. On the other hand, when non-Lambertian 

surfaces are present in the scene, the depth-based 

pruning was leaving only one instance of such surface 

(only from one of the views), because the depth of a 

reflective surface is the same in all views, so specular 

reflections are irreversibly lost in the pruning.  
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Removal of inter-view redundancy based only on 

depth of a point is also encountered in methods of 

producing the multiview layered depth image (LDI) 

[Anj17] and compression of meshes [Tan18] and 

voxels [Käm16]. Although LDI representation is used 

for efficient synthesis of virtual views rather than for 

compression purposes, abovementioned methods 

show that depth-based type of inter-view redundancy 

check was widely considered to be state-of-the-art in 

multiview processing. 

The proposed color-dependent pruning 
In the approach proposed by the authors of this paper, 

two types of information are taken into account: depth 

and texture. Depth information is analyzed in the same 

way as described above, while color information is 

analyzed in a point-to-block comparison (Fig. 3). In 

this example, a pixel from view v0 is reprojected to 

v1. Depth similarity is being checked only for the 

colocated pixel (dark blue). The color of the pixel 

marked in orange is compared to the color of all pixels 

in the 3×3 neighborhood of the colocated one.  

A similar approach was proposed earlier in [Mie21], 

where the point-to-block matching was used as an 

inter-view similarity metric for depth estimation 

purposes. This metric was shown to work especially 

well for highly compressed input views or when the 

amount of noise present in a multi-view sequence is 

significant. Even though the pruning is always 

performed on uncompressed views, the decreased 

influence of noise on inter-view matching is desirable 

and preferable in this part of multiview processing. 

Color-based matching of objects and points have also 

been shown to be efficient in single video temporal 

tracking [Ker10].  

 
Figure 3. The idea of point-to-block similarity 

measurement used in color-dependent pruning. 

In the proposal, if the minimum color error within a 

block is lower than a threshold (and the depth-based 

condition is also met), the pixel of view v1 is being 

pruned. Using of the 3×3 neighborhood instead of a 

larger one was based on results from [Mie21] which 

showed that such block size is the best for inter-view 

matching in multiview videos. Having this variable 

fixed, during the preliminary experiments, the pruning 

threshold was set to 4% of the bit depth of color (i.e., 

40 for 10 bits per sample views). 

As can be seen in Fig. 4, the same area can reflect the 

light differently when acquired with the camera facing 

different directions. The atlas generated with and 

without proposed color-dependent block-based 

pruning is presented in Fig. 5. As shown, the proposed 

solution allows preserving regions with different 

texture/lighting conditions, which were otherwise 

pruned.  

Moreover, because of block-based characteristics, the 

proposed pruning is less sensitive to noise and only 

slightly increases the non-pruned area for such type of 

content. Fig. 6 presents two consecutive frames of 

ClassroomVideo sequence and the difference between 

them (to illustrate the amount of noise), while Fig. 7 

presents the difference in the atlas when it is generated 

with color-dependent pruning.  

Nevertheless, in order to further decrease the influence 

of noise, we included further enhancement to the 

proposed pruning method, which allows adapting to 

sequence characteristics.  

The threshold for color-based pruning should be 

increased for noisy sequences to reduce redundancy in 

atlases. On the other hand, for sequences with 

negligible noise, the pruning threshold should be 

smaller to allow preserving also fragments of the 

scene with slight lighting inconsistencies. 

In the proposed solution, the fixed pruning threshold 

is multiplied by a global inter-view luma standard 

deviation. This value is calculated for the first frame 

of each encoded group of pictures (GoP) as a standard 

deviation of a set A, which contains luma differences 

between inter-view corresponding pixels. GoP can be 

changed in the configuration of MIV encoder, by 

default it is equal to 32 to match the GoP used in 

HEVC encoder. Calculating this threshold for a whole 

GoP is sufficient as in MIV the results of pruning are 

in the end gathered for these frames. 

In order to populate set A, first of all, all pixels are 

reprojected between all pairs of input views. For each 

pixel, the luma of the pixel is compared with the luma 

of all pixels in the 3×3 neighborhood of the pixel from 

another input view. If the smallest difference in this 

neighborhood is 0, then the inter-view correspondent 

pixels were found, so the luma difference between the 

reprojected pixel and the center of the co-located 

block is included in set A. 

  

Figure 4. Two views of multiview test sequence 

Chess [Ilo19]. 
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Figure 5. Atlas of patches generated for Chess 

sequence: depth-dependent pruning (left) vs. 

proposal (right). 

   

Figure 6. Fragments of two consecutive frames of 

ClassroomVideo sequence and the difference 

between them (on the right). 

  

Figure 7. Atlas of patches generated for 

ClassroomVideo sequence: depth-dependent 

pruning (left) vs. proposal (right). 

3. EXPERIMENTAL RESULTS 

Methodology and design of experiments 
To evaluate the proposed color-dependent pruning, the 

method was implemented in TMIV 5 [MPEG20c]. 

Test Model for Immersive Video is implemented as a 

C++ project which is publicly available. All changes 

which are being added to the standard and have to be 

implemented in TMIV, are earlier accepted by its 

software coordinator to avoid adding low-quality code 

to the repository. 

Two experiments were performed. The first one shows 

the results for encoding with color-dependent pruning 

without taking into account the noise characteristics, 

therefore, for the fixed pruning threshold. The latter 

experiment evaluates the encoding efficiency with an 

adaptive threshold automatically calculated for each 

encoded test sequence. 

11 multiview sequences from MIV Common Test 

Conditions (CTC) [MPEG20a] were used in 

experiments. Short characteristics of sequences are 

presented in Table 1, while an example of input view 

from each sequence was shown in Figs. 8 and 9. 

 

 

 

 

 

Figure 8. Computer-generated sequences. Left 

column: ClassroomVideo, Hijack, Kitchen; right 

column: Chess, Museum. 

  

  

  

Figure 9. Natural sequences. Left column: 

Carpark, Street, Frog; right column: Hall, 

Fencing, Painter. 

Test sequences were encoded with 5 different rate 

points (RP) using the default configuration of the 

TMIV encoder, described in the CTC document 

[MPEG20a]. The final performance was measured 
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using two objective quality metrics: WS-PSNR 

[Sun17], and IV-PSNR [MPEG20b]. The first of these 

metrics is based on the peak signal-to-noise ratio but 

it was adapted to take into account the spherical 

projection of 360-degree videos, while the latter is 

adapted to measure the distortion introduced by the 

virtual view synthesis process. 

The results are shown as Bjøntegaard delta (BD-rate 

[Bjo01]) change for low and high bitrates. The 

Bjøntegaard delta shows the percentage change in the 

bitrate required to achieve the same quality for two 

tested techniques. It was calculated both for the four 

smallest QPs (high bitrates – High-BR BD-rate) and 

for the four largest ones (low bitrates – Low-BR BD-

rate). A gain or a loss larger than 3% is indicated by a 

green or red cell respectively. 

Sequence 
name Views Type Resolution Source 

Pruning-related 
sources of 
difficulty 

Carpark 9 NC/Persp. 1920×1088 [Mie20] Reflections on 
cars 

Chess 10 CG/ERP 2048×2048 [Ilo19] 
Reflections on 
the floor 

Classroom 
Video 

16 CG/ERP 4096×2048 [Kro18] 
Highly 
noticeable noise 

Fencing 10 NC/Persp. 1920×1080 [Dom16] 
Not inter-view 
consistent color 
characteristics 

Frog 13 NC/Persp. 1920×1080 [Sal18] 
Not inter-view 
consistent color 
characteristics 

Hall 9 NC/Persp. 1920×1088 [Mie20] 
Reflections on 
the floor 

Hijack 10 CG/ERP 4096×2048 [Dor18] 
Reflections on 
clothes 

Kitchen 25 CG/Persp. 1920×1080 [Boi18] 
Reflections and 
transparency of 
kitchen objects 

Museum 24 CG/ERP 2048×2048 [Dor18] - 

Painter 16 NC/Persp. 2048×1088 [Doy18] - 

Street 9 NC/Persp. 1920×1088 [Mie20] Reflections on 
cars 

Table 1. Test sequences used in experiments: ERP 

– Equirectangular Projection, CG – Computer-

Generated, NC – Natural Content. 

 

The evaluation of color-dependent 

pruning with a fixed threshold 
The results for encoding with color-dependent pruning 

with a fixed threshold in comparison with the pruning 

dependent only on depth are presented in Table 2. As 

it can be observed, for most test sequences, the 

proposed pruning method significantly decreases the 

BD-rate, i.e., the same quality of a final decoded 

image can be obtained for reduced bitrate. On average, 

the bitrate is decreased by 20% for high bitrates.  

Fig. 10 shows the plot of the peak signal to noise ratio 

(PSNR) for different bitrates of encoded Carpark 

sequence, for which the results are the most similar to 

the averaged ones. It can be seen that the bitrate was 

slightly increased for all 5 rate points, what is the 

result of the increased number of patches observed in 

atlases. However, adding these patches caused a 

significant increase in the quality of the encoded 

video, what, in the end, results in increased 

compression efficiency. 

 

Table 2. BD-rate savings of MIV encoding with 

color-dependent pruning for a fixed threshold over 

MIV encoding with depth-dependent pruning.  

 

Figure 10. PSNR values for Carpark sequence 

encoded for 5 rate points using MIV encoder with 

depth-dependent pruning and with MIV encoder 

with color-dependent pruning. 

 

Sequence High-BR

BD rate

Y-PSNR

Low-BR

BD rate

Y-PSNR

High-BR

BD rate

IV-PSNR

Low-BR

BD rate

IV-PSNR

Carpark SP-19.8% -8.6% -17.2% -6.7%

Chess SN-64.0% -46.9% -61.8% -47.8%

ClassroomVideoSA 6.8% 15.4% 9.7% 15.3%

Fencing SL --- --- --- -39.4%

Frog SE-32.3% 11.5% -23.1% 14.7%

Hall ST-51.1% -33.5% -40.8% -29.4%

Hijack SC-19.8% -10.2% -24.9% -15.9%

Kitchen SJ-33.1% -9.0% -35.1% -14.0%

Museum SB 0.7% 1.5% 0.2% 1.2%

Painter SD 1.3% 2.0% 1.7% 2.0%

Street SU-10.9% -2.5% 0.5% 4.3%

-20.2% -7.3% -17.3% -10.5%Average
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As it was shown in Table 3, the proposal increases the 

runtime of MIV encoding and decoding, what is the 

result of the increased number of patches included in 

atlases. The runtime of HEVC encoding was increased 

insignificantly. 

 

Table 3. Runtime ratio of MIV and HEVC 

encoding and MIV decoding with color-dependent 

pruning for a fixed threshold over depth-

dependent threshold. 

 

The evaluation of color-dependent 

pruning with an adaptive threshold 
The adaptive pruning threshold is based on the global 

inter-view luma standard deviation, calculated at the 

beginning of the encoding. The values of standard 

deviations for tested sequences and the resulting 

pruning thresholds can be found in Table 4.  

Table 5 presents the efficiency of adaptive 

color-dependent pruning in comparison with 

fixed-threshold color-dependent pruning. The 

introduction of an adaptive threshold further improves 

the compression efficiency for almost all test 

sequences.  

Fig. 11 presents the fragments of the final encoded 

views for the encoder with depth-dependent pruner 

(left) and adaptive color-dependent pruner (right). 

These results prove that the proposal increases the 

quality of video presented to a viewer by eliminating 

the errors caused not only by specular surfaces (see 

Chess sequence), and mirror-like reflections (Hall) but 

also by different camera characteristics (Fencing). The 

possibility of increasing the quality in cases where 

camera color characteristics are not matched can be 

seen as surprising, as the presented color-based 

pruning is based only on luma value, however, results 

presented in [Dzi21] show that inter-view and 

temporal fluctuations of luma and chromas are 

correlated in natural sequences. 

Detailed results for Painter indicate that the PSNR was 

very slightly increased (0.03 dB), but the bitrate was 

increased by 2.5%. This sequence provided very high 

quality even without the proposal and does not include 

any reflective surfaces, what explains lower quality, as 

with the proposal we increased the amount of sent data 

and increased quality to a very minor degree. 

Sequence 
Calculated 
standard 
deviation 

Calculated 
pruning 

threshold for 10 
bps video 

Carpark 0.9337 38 

Chess 0.3891 16 

ClassroomVideo 0.9555 39 

Fencing 0.8132 33 

Frog 1.6505 68 

Hall 0.2664 11 

Hijack 0.2084 9 

Kitchen 0.8698 36 

Museum 0.8711 36 

Painter 0.5670 23 

Street 0.8560 35 

Table 4. The average global sequence inter-view 

luma standard deviation and calculated pruning 

threshold for used dataset. 

 

Table 5. BD-rate savings of MIV encoding with 

color-dependent pruning for an adaptive threshold 

over MIV encoding with color-dependent pruning 

for a fixed threshold. 

Table 6 shows the increase of runtime in comparison 

with the fixed threshold. As it can be observed, the 

increase of the runtime is correlated with the adaptive 

threshold – if the threshold is small, then the time of 

processing is increased, as the number of patches 

included in atlases is further increased. However, as 

indicated by the results of the quality of decoded 

views, these additional patches are required to achieve 

high-quality reconstruction in the decoder. 

Sequence MIV

encoding

HEVC

encoding

MIV

decoding

Carpark 100.5% 107.5% 103.0%

Chess 109.4% 103.4% 109.6%

ClassroomVideo 103.4% 95.0% 102.5%

Fencing 101.8% 107.2% 101.4%

Frog 113.3% 108.2% 115.3%

Hall 101.2% 93.2% 102.8%

Hijack 106.9% 115.0% 109.3%

Kitchen 110.7% 103.1% 109.2%

Museum 112.3% 105.0% 114.2%

Painter 101.2% 104.7% 102.0%

Street 103.4% 94.9% 105.5%

106.9% 101.9% 107.7%Average

Sequence High-BR

BD rate

Y-PSNR

Low-BR

BD rate

Y-PSNR

High-BR

BD rate

IV-PSNR

Low-BR

BD rate

IV-PSNR

Carpark SP -0.7% 0.0% 0.0% 0.3%

Chess SN-37.3% -4.9% -25.4% -0.3%

ClassroomVideoSA 0.4% 0.6% 1.1% 1.0%

Fencing SL-16.8% -5.3% -6.9% -0.7%

Frog SE -5.5% -8.3% -7.4% -9.4%

Hall ST-34.4% -12.4% -10.9% 1.4%

Hijack SC-11.7% 5.0% -18.0% 3.2%

Kitchen SJ-20.4% -10.8% -18.7% -10.5%

Museum SB 0.5% 0.5% 0.3% 0.4%

Painter SD 3.2% 5.2% 4.1% 5.6%

Street SU-9.4% -2.8% -7.9% -2.6%

-12.0% -3.0% -8.1% -1.0%Average
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Table 6. Runtime ratio of MIV and HEVC 

encoding and MIV decoding with color-dependent 

pruning for an adaptive threshold over color-

dependent pruning for a fixed threshold. 

  

  

  

Figure 11. The fragments of decoded views of 

Fencing, Chess, and Hall sequences for MIV with 

depth-dependent pruning (left) and MIV with 

color-dependent pruning (right). 

4. CONCLUSIONS AND FUTURE 

WORKS 
This paper presented the color-dependent method of 

removing inter-view redundancy from multiview 

video. In order to decide which fragments of views are 

redundant, i.e., do not provide new information about 

the three-dimensional scene, as these fragments were 

already visible from different views, the proposal uses 

both color and depth. The paper introduces the 

adaptive pruning threshold which increases the 

robustness against the noisy input.   

The proposed pruning method was shown to provide 

significant improvement in the quality of videos 

encoded using a modified Test Model of MPEG 

Immersive video codec. The largest improvement was 

due to the elimination of errors caused by different 

camera characteristics, specular surfaces, and mirror-

like reflections, therefore, the proposed method highly 

increases the efficiency of encoding for complex 

multiview sequences. 

The pruning method proposed by the authors of this 

paper was evaluated by experts of the ISO/IEC 

JTC1/SC29/WG 11 MPEG and included by them in 

the next version Test Model. As works on the new 

edition of MPEG Immersive video coding standard are 

starting in mid-2022, the authors of the proposal are 

planning to evaluate the color-based pruning in this 

new framework. MIV ed. 2 is planned to include the 

step of determining the non-Lambertian areas in the 

scene [MPEG22], so the proposed method can be 

potentially used for this application. 
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Figure 1: Result of vectorized pencil hatching using optimized tonal art maps based on the presented approach.

ABSTRACT

The paper presents a new approach of optimized vectorization to generate stylized artifacts such as drawings with a plotter or
cutouts with a laser cutter. For this, we developed a methodology for transformations between raster and vector space. More
over, we identify semiotic aspects of Geometry-based Stylization Techniques (GSTs) and the combination with raster-based
stylization techniques. Therefore, the system enables also Fused Stylization Techniques (FSTs).

Keywords: Image stylization, Image processing, Vectorization, Non-photorealistic Rendering, Plotting

1 INTRODUCTION

1.1 Motivation

Artists use different tools and materials for creative ex-
pression, e.g., from traditional techniques such as oil
painting or pencil hatching to modern digital fabrica-
tion. In recent years, research has focused on imitating
these techniques to create computer graphics-based im-
ages using Non-photorealistic Rendering (NPR) tech-
niques [Kyp13; Dev13]. The resulting images enjoy
great popularity and are increasingly used and shared
on social media platforms [Sem162].

While the visual quality of these results closely re-
sembles the original techniques, they lack certain qual-
ities during reproduction, e.g., using canvas printing
or similar. However, by using fabrication techniques
based on pen plotters — a commodity reproduction
hardware that enjoys popularity in the maker culture —
pencil hatching or stippling can be easily implemented
using a variety of real pencils. The capability and func-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

tionality of these devices range from professional to
hobby level, and are mainly self-built by participant of
the maker scene [Mee20]. For the latter, the building
instructions are freely available and partially customiz-
able, thus not limited to certain spatial sizes or resolu-
tions.

With respect to this, a pen plotter uses a vectorized
image representation to produce a line drawing. Vec-
tor graphics add advantages compared to raster im-
ages. For example, the resolution of the graphic is then
no longer limited and can be scaled up. In addition,
connectivity information of graphic primitives facilitate
editing processes. Furthermore and due to the geomet-
ric representation, vector graphics enable, next to print-
ers or plotters, the use of production or fabrication de-
vices such as laser cutters [Mue15].

1.2 Problem Statement
Mostly limited by input resolution, for a stylized photo
(e.g., transformed using a pencil hatching stylization
technique [Sem20]) it would be difficult to trace or
reconstruction the individual lines or edges when au-
tomatically converted to a vector graphic. This chal-
lenge exists due to crossing of lines and used tex-
tures to represent the pen pressure (cf. Tonal Art Maps
(TAMs) [Pra01]). To obtain an optimized and actu-
ally usable vector graphic representation, we need to
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Figure 2: From “Landscapes” by Jason Anderson.

examine how a stylization technique is concretely con-
structed.
On the one hand, there are raster-based stylization
techniques such as watercolor [Bou06], oil-painting
[Sem161], Cartoon [Win06], or pencil hatching
[Sem20]. On the other hand, there are Geometric
Stylization Techniques (GSTs), which denote image
stylization techniques that output a number of geo-
metric primitives to represent the stylization result. In
addition, there are also mixtures of both techniques,
e.g., the artist Jason Anderson and his work on “Land-
scapes” (Figure 2). His work shows a real-world
example of combining geometry-based and raster-
based image stylization techniques. We denote such
combinations as Fused Stylization Technique (FST).
The two classes of stylization techniques can be
differentiated of the different data representations of
the results, namely vector and raster.

1.3 Approach and Contributions
For the approach, a system generates image stylization
results based on a digital photo. Therefore, we develop
a general approach of semiotic aspects to classify dif-
ferent geometry-based stylization techniques. The sys-
tem provides different geometric stylization techniques.
In addition, we also investigate the combination with
raster-based techniques and how fused stylization tech-
niques can be achieved. This is based on the elabora-
tion of stylization operations between vector-based and
pixel-based representation. To summarize, this paper
makes the following contributions:

1. It presents the concept and semiotic aspects for Ge-
ometric Stylization Techniques (GSTs).

2. It Implementation of framework with various
geometry-based stylization techniques, which is
demonstrated by different application examples.

3. It presents the concept of fused stylization tech-
niques, which combines geometry-based and image-
based stylization techniques.

The remainder of this paper is structured as follows.
Section 2 reviews related work and present background

to image-based and geometry-based abstraction tech-
niques that represents the basis for our approach. Sec-
tion 3 presents the design space and fundamental con-
cept of geometry-based image abstraction techniques.
Based on this, Section 4 demonstrate it application by
means of different examples. Section 5 discusses the
presented approach and describes future research direc-
tions. Finally, Section 6 concludes this work.

2 BACKGROUND
For the classification of stylization techniques, a com-
prehensive review exists in the area of NPR [Kyp13].
Kyprianidis et al. presented a taxonomy of artistic styl-
ization techniques for images and video using Stroke-
based Rendering (SBR). The algorithms are grouped by
elementary artistic rendering primitive and their place-
ment (e.g. regions, strokes, stipples, tiles).

Mould and Rosin developed a standard benchmark
data set consisting of 20 photos [Mou17]. A list of
image characteristics was taken into account, ranging
from the level of detail to contrast and visual clutter.

Kumar et al. provided an extensive survey on NPR
techniques such as image abstraction, artistic styliza-
tion, line drawing, engraving, color enhancement, pen-
cil drawing, dithering, stippling, halftoning, hatching,
and mosaicking [Kum19]. Furthermore, they developed
a respective benchmark considering technology, algo-
rithms, parameter and design.

NPR techniques have been successfully classified
and have benchmarks. We now consider geometry-
based techniques and their vectorized representation
in more detail. Bertin’s Visual Variables (1967/83)
include seven properties, which distinguish one graphic
object from another [Ber67]. The variables consist
of shape, hue, value, position, size, orientation, and
texture. They are used in cartographic design, graphic
design, and data visualization. This research forms a
starting point in the study of geometry-based image
stylization, whereby mainly vector-based representa-
tions of image stylization are generated. For this we
want to find shapes and other properties to optimize
vectorization. Selinger described a polygon tracer and
how the algorithm generates Bézier curves as vector
outline for fonts or logos [Sel03].

There are only a few research about more complex
things like a vectorization of an NPR technique.
Glöckner et al. introduced an optimized vectorization
of GPU-based stylized images using intermediate
data representations [Glö20]. The approach allows
interaction manipulation of parameters and support for
various stylization pipelines.

Song et al. [Son08] proposed arty shapes and mixed
it with NPR techniques [Son08]. Song et al. generates
an image segmentation to be able fitting best shapes to
each segment. Afterwards, an NPR technique such as
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oil or crayon painting is applied. This approach sup-
ports the creation of synthetic artworks. Overall, this
research demonstrates a contribution to FSTs, which we
are further expanding with our contribution.

3 CONCEPT
This section first describes the notation of GSTs (Sec-
tion 3.1), describes their semiotic aspects (Section 3.2),
and briefly outlines a general approach towards a frame-
work that is used for implementation (Section 3.3).

3.1 Geometric Stylization Techniques
A Geometric Stylization Technique (GST) is a type of
stylization or abstraction of digital images by means
of geometric primitives and their appearance attributes
(e.g., color, outline, texture). Therefore, a number of
geometric primitives are generated and can be created
as a vector representation. These are particularly suit-
able for line-art production by a pen plotter, laser cutter,
programmable embroidery machines or CNC carving.
For feasibility, we implement several GSTs, includ-
ing Pencil Hatching [Pra01], Scribble [Lo19], Voronoi
Stippling [Sec03], and Shape Packing [Col03].

3.2 Semiotic Aspects
To characterize GSTs, we examined over 30 artists that
use geometry abstraction characteristics in their art-
work as well as more than 15 GSTs for characteristic
properties. As a result, we identified eight major cate-
gories as semiotic aspects (Figure 3), which are briefly
described in the following.

Shape Types: We distinguish in three different shapes.
Besides points (e.g., in stippling), the shape type can
also be one of three line types: single straight lines,
poly-lines, and curves. A circular shape is thus rep-
resented by a curve. In addition, three different types
of polygons are also used: convex polygons, non-
convex polygons, and general polygons.

Outline: A geometric primitive can have an outline
that can be regular or sketchy by style and comprise
stippling patterns.

Fill: The fill of a geometric primitive can be solid us-
ing a single, have a gradient, or a texture. The latter
two can be parameterized with respect to orienta-
tion, scaling, and offset transformations.

Shape Size: For the shape size, we basically distin-
guish between uniform and non-uniform shape sizes
used within a single artwork.

Shape Orientation: Similar to size, the orientation of
a geometric primitive is either the same (uniform) or
different (non-uniform) within a single artwork.

Shape Type Mixture: There are GSTs that either con-
sist of collection of the same shape types (uniform)
or combine different ones (non-uniform).

Shape Placement: The coverage of geometric primi-
tives among themselves can be distinguished into
overlapping or non-overlapping.

Placement Approach: The application of operations
can be applied local (e.g., by segmentation) or global
for the entire artwork.

3.3 Data Processing Operations
The implementation of GSTs usually comprises a
number of data processing operation. For the classifi-
cation of such operations, we distinguish between two
basic data representations they operate on: Vector (V)
and Raster (R). Based on these two representations,
four transformations can be performed: Vector-
to-Raster, Raster-to-Vector, Raster-to-Raster, and
Vector-to-Vector (Figure 4). In the following, the four
main operations are described by input, output, and
examples.

Vector-2-Raster (V2R): These type of operations use
geometric primitives with appearance information
as input and output a number of raster data layers.
These are usually implemented using rasterization
techniques or diffusion curves [Orz08].

Raster-2-Vector (R2V): These kind of operations im-
plements the inverse process to rasterization. It takes
raster data layers as input and computes geomet-
ric primitives with associated appearance informa-
tion. Exemplary implementations are tracing/vec-
torization with and without intermediate representa-
tions [Glö20].

Vector-2-Vector (V2V): These operations enable
transformations in the same vector space, e.g. prim-
itive filtering, geometry amplification, tessellation,
subdivision, or geometric mapping stages. Thus,
input and output consist of geometric primitives
with appearance information.

Raster-2-Raster (R2R): Similar to V2V, input and
output of the operations consist of the same, only
this time a number of raster data layers such as
color, depth, surface orientation, segments, struc-
ture, or flow. These operations are used for image
segmentation, Neural Style Transfer (NST), algo-
rithmic stylization techniques, as well as blending
or compositing.

Considering suitable input and output, the four trans-
formations can be combined to obtain optimized results
for the implementation of GSTs. However, these can

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.30, No-1-2, 2022

https://www.doi.org/10.24132/JWSCG.2022.12 101



Figure 3: Summarizing presentation of the semiotic aspects of GSTs.

Figure 4: Classification of data processing operation
between of vector and raster image representations.

also form the basis for FSTs, i.e., the combination of
GSTs and image-based stylization techniques [Kyp13].
This enables the implementation of a framework to im-
itate works by artists such as Kandinsky, Macdonald-
Wright, Vasarely, Gleizes, Malevich, Feitelson, Miró,
Picasso, Matisse, and Anderson.

4 APPLICATIONS
This section demonstrates the concept of GSTs by
means of different application examples. For each
example, we first describe the basic algorithm and
following thereto the respective semiotic aspects.

4.1 Vectorized Pencil Hatching
Algorithm. The pencil-hatching approach by Webb
et al. combines and aligns TAMs to simulate hatching
strokes [Pra01]. To achieve vectorized stroke repre-
sentations, we synthesized vectorized TAMs for enable
clear lines in the vectorization step (Figure 5). These
vectorized TAMs consist of three vector graphics, that
yield another three variation by drawing lines.

For the vectorization, we generate line paths based
on the edges in the image. The edges in the image were

Figure 5: Top row: Conventional grid-based TAMs.
Bottom row: new TAMs consisting of three line pat-
terns (A, B, and C) only.

created with the help of our modified TAMs depending
on the luminance in the input image. For the vector rep-
resentation we support a color gradient of the lines (Fig-
ure 1). Therefore, we read luminance and color value
of each node at position of input image and set the style
of the path as linear gradient with luminance as opac-
ity and individual color for each node. Listing 1 shows
that stop-color specifies the color, stop-opacity the lu-
minance, and offset the position on the path. The vec-
torized result consisting of lines can then also be pro-
duced with a plotter (Figure 6).

<svg ...>
<defs>
<linearGradient id="linearGradientvectorizeEdgePass">
<stop style="stop-color:#e3da3d;stop-opacity:0.97;" offset="0"/>
<stop style="stop-color:#d7c600;stop-opacity:0.48;" offset="1"/>
<stop style="stop-color:#ebe022;stop-opacity:0.67;" offset="2"/>
<stop style="stop-color:#e8dd43;stop-opacity:0.00;" offset="3"/>
<stop style="stop-color:#e3da3d;stop-opacity:0.97;" offset="4"/>

</linearGradient>
</defs>
<path
id="vectorizeEdgePassCPU1"
fill="none"
stroke-width="3.0"
stroke-linecap="round"
style="stroke:url(#linearGradientvectorizeEdgePass)"
d="M 5 1273.5 L 3 1254.5 L 4 1249.5 L 3 1235.5 L 1.5 1223.5 ">

</path>
</svg>

Listing 1: Exemplary structure of a SVG using linear
gradients to represent the results of a pencil hatching
stylization.
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for(segment in segments) do
{
trials = TRIALS;
shapes[] = generateShapes(numShapes, minSize, maxSize);

for(shape in shapes) do
{
while(trials-- > 0) do
{
position = generatePosition()

if(isInsideSegment(shape, position, segment)
&& !collisionPlacedShapes(shape, position))

{
placeShape(shape, position)

}
}

}
}

Listing 2: Non-overlapping placement of shapes with
varying dimensions in a limited space inside a segment.

Semiotic Aspects. Vectorized pencil hatching uses
straight lines and poly-lines as shape type (Table 1).
The outline comprises regular poly lines an no filled
polygons. These lines are of different lengths and direc-
tions, thus the shape size and shape orientation is non-
uniform. Since only lines are used, shape type mixing
is characterized as uniform. The lines are often over-
lapping, thus the shape placement is overlapping. The
algorithm is applied to the entire image, so the place-
ment approach is global.

4.2 Segment-based Shape Packing

Algorithm. Shape packing defines the arrange-
ment of shapes with or without overlapping each
other [Col03]. For a segment-based approach, shape
packing is applied locally in a confined space inside
a segment (Listing 2). For the image segments, an
instance segmentation was performed using the Mask
R-CNN model trained on Microsoft Coco dataset (with
80 common object categories) [Lin14]. This seg-
mentation was combined with conventional methods
such as Mean Shift [Geo03], Watershed [Vin91], or
DBSCAN [Est96] applied to the remaining input image
to facilitate the segmentation quality. We tested the
algorithm using different shape types, such as circular,
rectangular, hearts, and other polygons. Per segment
the appearance of the shapes can be different in size,
frequency, color, and rotation (Figure 7).

Semiotic Aspects. This effect can also be classified
according to the different semiotic aspects (Table 1).
We have implemented and tested different shape types
such as curved lines, convex polygons, as well as reg-
ular polygons. The outline appearance can be regular
or none. As shape fill is usually solid or none. Settings
such as gradients or textures can only hardly be repro-
duced by pen plotters. The shapes can be of different
sizes or uniform, the same for the orientation and the
mixing. The shapes should not overlap and the place-
ment approach is local within the segments.

4.3 Scribbled Line-Art
Algorithm. The basic idea of the Scribbled Line-
Art is to overlay multiple lines with on varying lumi-
nance (Listing 3). For this, random positions are cal-
culated as the start position for the path. After that in
a loop further points are calculated depending on the
brightness in the image. This way a new point is cre-
ated where it is the lowest luminance in the neighbor-
hood of the pixel. This point is then added to the path
with a slight rotation transformation. These points of
the path result later in a line. Several of these lines
stacked on top of each other then have the doodle effect.
This approach produces a different result each time and
is therefore part of the research field of generative art
[Gal03]. Similar to Vectorized Pencil Hatching, we set
per node of the path the color as it was in the input im-
age. Thus we get a color gradient along the line (Fig-
ure 9). This vectorized result can now serve as the ba-
sis for fused stylization techniques, where we mix vec-
tor and pixel-based image stylization techniques. This
is achieved by applying oil-painting, for example (Fig-
ure 9b).

1 position = randomPosition();
2 addPositionToPath(position);
3 count = 0;
4
5 while(loopCount-- > 0) do
6 {
7 offset = calculateOffsetBasedOnNeighborsBrightness();
8 rotation = calculateRotationWithPerlinNoise();
9 position += offset * rotation;

10 count++;
11
12 if(count < MAX_COUNT)
13 {
14 addPositionToPath(position);
15 fadePixelsOfPath();
16 } else {
17 addPathAsLineItemAndResetCount();
18 findNextStartPosBasedOnBrightness();
19 }
20 }

Listing 3: Sample algorithm for scribbled line-art,
which layers lines based on luminance.

Semiotic Aspects. For the semiotic aspects we use as
shape type straight lines and poly-lines (Table 1). The
outline is regular and the line has no filling. The lengths
of the lines vary, therefore shape size is non-uniform.
The lines have different rotations, so shape orientation
is non-uniform. Only lines are used, so shape type mix-
ing is uniform. The lines are superimposed, so shape
placement is overlap. The placement approach is glob-
ally applied to the whole image.

5 DISCUSSION
Evaluation. We categorized different GST accord-
ing to our concept, classification and semiotic aspects.
In our framework, we prototypically implemented dif-
ferent GST that can be combined for FST (Figure 10).
In general, the classification worked well to distinguish
between different GSTs. However, noticed that some
cases the respective GST share the same classification
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(a) Mono-colored vectorized pencil-hatching result. (b) Scan of pencil hatching using a Stabilo pen and silhouette plotter.

Figure 6: Comparison of vectorized pencil-hatching as digital and plotted result.

(a) Vectorized shape packing result with different elements. (b) Scan of scratch-art in shape packing style with silhouette plotter.

Figure 7: Comparison of vectorized shape packing as digital and plotted result.

results but the stylization computation show fundamen-
tally different visual appearance. For example, in Ta-
ble 1, there are the same selected categories for Sec-
tion 4.1 and Section 4.3.

Preliminary considerations should be made for the
particular GST to achieve optimum quality. Synthesis
of shape types is not trivial, e.g., Section 4.1 requires
new TAMs to make the line detection work. However,
there are clear differences between raster-based pencil
hatching and vector-based pencil hatching (Figure 8).
For example, vectorized lines with gradients applied do
not appear coherent and plausible compared to a TAM
based on hand-drawn strokes and matched imprint of
pencil on paper. Therefore, the vector file could be im-
proved in post-processing by making it exportable with
appropriate settings for different plotters. In addition,
the line density due to the vectorized TAMs is not as

dense as with the raster-based technique. A possible
approach would be to add more layers of lines to fill the
gaps.

Some materials and tools did not work well with the
plotter for certain GST. For example, using scratch pa-
per was not optimal for scribbled line-art because it
overlays different lines. A scratch paper consists of
only one black layer that covers a colored background.
Additionally, the shapes sizes of Section 4.2 should not
be set too small, to achieve a pleasing result.

Further, the plotter tools used have a fixed physical
width that limits the production with the plotter. Thus,
either the canvas size or the shape size need be to in-
creased. The properties in the SVG representing the
paths do not cover every desirable aspect, making the
differences between raster-based and vector-based re-
sults obvious. To counterbalance this, workarounds that
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are specific for a GST are required. For pencil hatching
example, the line segments could be grouped by pencil
print, as this would be individually selectable especially
for a silhouette printer.

Nevertheless, one would then have to draw each
group subsequently to achieve the desired quality.
However, that approach increases the reproduction
time required. In general, there are various plotters
on the consumer market, including home-built ones,
that usually offer a smaller range of options. It would
be desirable to specify different settings per GST for
different plotter types.
Limitations & Future Research. As already men-
tioned, the plotter hardware with its tools and the ma-
terial used is a major limiting factor with respect to the
quality of the reprodcution. Therefore, some GSTs are
not suitable for all types of production with the plot-
ter. One solution here was to divide the file into several
small parts. Further, we observed that FSTs are not suit-
able in all combinations.

In order to combine different GSTs and enhance the
user experience, a separated stylization and layering of
GSTs with parallel processing would be a possible ex-
tension. To improve or evaluate the described semiotic
aspects of GSTs, further techniques could be imple-
mented. Additionally, further FST can be implemented
to imitate geometric abstraction artists. More plotters
(manufacturers) should be tested to define settings in
each case, so that the production can then provide the
best result.

6 CONCLUSIONS
This paper presents the concept and semiotic aspects of
geometry-based stylization techniques. To demonstrate
its feasibility we developed a prototypical framework
for implementation. We evaluate this framework by
means of different application examples for geometry-
based stylization techniques. By integrating image-
based stylization techniques, the present approach en-
ables the implementation of fused stylization technique,
which denotes the combination of geometry-based and
raster-based stylization techniques. The frame repre-
sent a basis for future research in image stylization.
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Figure 10: Results produced with the proposed system for geometry stylization techniques: vectorized pencil
hatching, segment-based shape packing, scribbled line-art, and combinations. The input images are obtained from
the benchmark of Mould and Rosin.
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