
FastRIFE: Optimization of Real-Time Intermediate Flow
Estimation for Video Frame Interpolation

Malwina Kubas
Warsaw University of Technology
Faculty of Electrical Engineering

ul. Koszykowa 75
00-662 Warszawa, Poland

malwina.kubas.stud@pw.edu.pl

Grzegorz Sarwas
Warsaw University of Technology
Faculty of Electrical Engineering

ul. Koszykowa 75
00-662 Warszawa, Poland

grzegorz.sarwas@pw.edu.pl

Abstract
The problem of video inter-frame interpolation is an essential task in the field of image processing. Correctly
increasing the number of frames in the recording while maintaining smooth movement allows to improve the
quality of played video sequence, enables more effective compression and creating a slow-motion recording. This
paper proposes the FastRIFE algorithm, which is some speed improvement of the RIFE (Real-Time Intermediate
Flow Estimation) model. The novel method was examined and compared with other recently published algorithms.
All source codes are available at:
https://gitlab.com/malwinq/interpolation-of-images-for-slow-motion-videos .

Keywords
Video Interpolation, Flow Estimation, Slow-Motion

1 INTRODUCTION

Video frame interpolation is one of the most impor-
tant issues in the field of image processing. Correctly
reproduced or multiplied inter-frame information al-
lows its use in a whole range of problems, from video
compression [Wu18], through improving the quality of
records, to generating slow-motion videos [Men20] or
even view synthesis [Fly16]. Mid-frame interpolation
performed in real-time on high-resolution images also
increases the image’s smoothness in video games or
live broadcasts. With fast and accurate algorithms, we
can reduce the costs associated with the construction of
high-speed video cameras or provide services to users
with limited hardware or transmission resources.

Algorithms of this class should deal with complex, non-
linear motion models, as well as with changing param-
eters of the real vision scene, such as shadows, chang-
ing the color temperature, or brightness. Conventional
approaches are based on motion prediction and com-
pensation [Haa93; Bao18], which are used in various
display devices [Wu15].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Motion estimation is used to determine motion vectors
in a block or pixel pattern between two frames. Block-
based methods [Haa93] assume that pixels in a block
have the same inter-frame shift and use search strategies
[Zhu00; Gao00], and selection criteria [Haa93; Wan10]
to obtain the optimal motion vector. Other methods of
movement estimation are optical flow algorithms that
estimate the motion vector for each pixel separately,
which makes them more computationally expensive. In
recent years there has been noticed significant progress
in this area. New algorithms have been developed based
on the optimization of variance [Bro04], searching for
the nearest neighbors [Che13], filtering the size of costs
[Xu17] and deep convolutional neural networks (CNN)
[Ran17; Dos15]. However, very often, the quality of the
obtained interpolations is burdened with an increase in
the required computing resources and often limits their
use in the case of users working on standard equipment
or mobile phones.

Flow-based video frame interpolation algorithms
achieve very good results [Jia18; Nik18; Bao19;
Xue19; Hua21]. These solutions include two steps:
warping the input frames according to approximated
optical flows and fusing and refining the warped frames
using CNN. Flow-based algorithms can be divided
into forward warping methods and more often used
back-warping methods. A common operation of these
methods is to calculate bidirectional optical flow to
generate an intermediate flow. These operations require
a large number of computing resources and are not
suitable for real-time scenarios.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

21DOI:10.24132/JWSCG.2021.29.3

https://gitlab.com/malwinq/interpolation-of-images-for-slow-motion-videos

Figure 1: Architecture of the proposed video frame interpolation algorithm. We estimate the optical flow with
analytical methods and use fine-tuned neural network models from RIFE: ContextNet and FusionNet.

This work aims to create an efficient video frame inter-
polation model, which can be implemented on many
devices and run in real-time. Authors will compare
state-of-the-art techniques, best in image interpolation
field at the moment, and propose an improvement in
terms of execution time in one of them. Algorithms
which will be analyzed and compared are: MEMC-Net
[Bao21], SepConv [Nik17], Softmax Splatting [Nik20],
DAIN [Bao19] and RIFE [Hua21], all using different
approaches.

2 RELATED WORK
The topic of video frame interpolation has been widely
discussed in the research papers [Kim14; Dos15;
Nik17; Bao21; Jia18]. The first groundbreaking
method was proposed in [Lon16]. Long et al. were
the first to use the convolutional neural network, which
aimed to estimate the result frame directly. Next
generations of image interpolation algorithms brought
significantly better results, each using more extensive
neural network structures.

Some algorithms, like SepConv [Nik17], were built
and trained end-to-end using only one pass through the
encoder-decoder structure. However the majority of
methods use an additional sub-networks, of which the
most important is the optical flow estimation. Having
the information about pixels transition allows generat-
ing more accurate results and boost benchmark met-
rics. This approach was used e.g. in the MEMC-
Net method, which combines both motion estimation,
motion compensation and post-processing by four sub-
networks [Bao21].

Bao et al. composed an improvement of MEMC-Net
model called DAIN (Depth-Aware INterpolation)
[Bao19], where the information of pixels depth was
used, improving dealing with the problems related to
occlusion and large object motion by sampling closer
objects better. Depth estimation is one of the most
challenging tasks in the image processing field of study,
so the whole process takes a noticeable amount of
time. Authors used a fine-tuned model called hourglass
[Che16] network learned on the MegaDepth dataset

[Li18]. DAIN method estimates the bi-directional
optical flow using an off-the-shelf solution called
PWC-Net [Xue19].

Another excellent flow-based method is Softmax Splat-
ting [Nik20]. Niklaus and Liu proposed a solution of
forward warping operator, which works conversely to
backward warping and is used in most methods. Soft-
max Splatting uses an importance mask and weights
all pixels in the input frame. Authors used fine-tuned
PWC-Net for estimating optical flow, similarly to
DAIN.

One of the newest algorithm is RIFE - Real-Time In-
termediate Flow Estimation [Hua21], which is able
to achieve comparable results on standard benchmarks
when compared to previous methods but also works sig-
nificantly faster. More details about this solution are
presented in the next section.

3 PROPOSED SOLUTION
Most state-of-the-art algorithms generate intermediate
frames by combining bi-directional optical flows and
additional networks, e.g. estimating depth, which
makes these methods unable to real-time work. Huang
et al. proposed in RIFE [Hua21] a solution of simple
neural network for estimating optical flows called
IFNet and a network for generating interpolated frames
called FusionNet.

The IFNet comprises three IFBlocks, each built with
six ResNet modules and operating on increasing image
resolutions. The output flow is very good quality and
runs six times faster than the PWCNet and 20 times
faster than the LiteFlowNet [Hui18]. After estimating
the flow, coarse reconstructions are generated by back-
ward warping and then the fusion process is performed.
The process includes context extraction and the Fusion-
Net with an architecture similar to U-Net, both consist-
ing four ResNet blocks.

In this paper authors will analyze the RIFE model with
different module for estimating optical flow. Although
the IFNet gives excellent results and runs very fast, au-
thors wanted to test analytical methods and compare the

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

22DOI:10.24132/JWSCG.2021.29.3

Overlayed
inputs

Optical flow
by GF method

Optical flow
by LK method

Interpolated frame
with GF method

Interpolated frame
with LK method

Ground-truth
frame

Figure 2: Example of video frame interpolation results. Authors propose a simplified RIFE model with optical
flow estimated using analytical methods: Gunnar-Farnebäck and Lucas-Kanade.

results of such a simplified model in terms of runtime
and quality. This change can speed up the algorithm
even more, making the whole process capable of run-
ning real-time on many more devices.

Figure 3: Speed and accuracy trade-off measured on
RTX 2080 Ti GPU. Our models compared with previ-
ous frame interpolation methods: RIFE [Hua21], Soft-
max Splatting [Nik20], DAIN [Bao19], MEMC-Net
[Bao21], SuperSloMo [Jia18] and SepConv [Nik17].
Comparison done on Vimeo90K test dataset. Please
note the logarithmic runtime scale.

Authors replaced the IFNet part with analytical meth-
ods described below. Then, new FusionNet and Con-
textNet models were fine-tuned on the proposed solu-
tion. The full architecture is shown in Figure 1. Au-
thors decided to test two of the most widely used algo-
rithms, one generating dense flow and one which esti-
mates sparse results. The example of optical flows and
frame interpolation results are shown in Figure 2 and
the speed/accuracy trade-off is presented in Figure 3.

3.1 Gunnar-Farnebäck algorithm
The Gunnar-Farnebäck method [Far03] gives dense re-
sults, which means that flow values are generated for
every pixel. The algorithm detects changes in pixel in-
tensity between two images using polynomial expan-
sions and highlights pixels with the most significant
changes.

The idea depends on an approximation of neighbour-
hood pixels in both frames by quadratic polynomials.
Pixels’ displacements are estimated from the differen-
tiation of transforms of polynomials under translations.
The algorithm is implemented by hierarchical convolu-
tions what makes the process very efficient.

After the tests authors set the parameters of the Gunnar-
Farnebäck (GF) method as follows:

• scale of image pyramids: 0.2,

• number of pyramid layers: 3,

• size of the pixel neighborhood: 5,

• size of averaging windows: 15×15.

The above sets give the best runtime to accuracy trade-
off.

3.2 Lucas-Kanade algorithm
Dense methods can give very accurate results. How-
ever, sometimes the speed to accurate ratio might be
more favorable for sparse methods. These algorithms
calculate optical flow only for some number for pixels,
extracted by the detector as feature points. To feed the
results to the FusionNet it was needed to change the
values from sparse to dense form.

Authors used Lucas-Kanade (LK) algorithm, which is
the most commonly used analytical method for gener-
ating optical flow. It takes a 3× 3 patch around the
point and assumes all nine pixels will have the same
flow. The solution is calculated with the least squares
method. It is proven that the Lucas-Kanade works bet-
ter with corner points, so for feature points detections
authors used the Shi-Tomasi algorithm. The function
calculates corner quality measure in each pixel’s region
using minimum eigenvalues and Harris Corner Detec-
tion.

Parameters which were used in the Lucas-Kanade algo-
rithm are:

• size of search window: 15×15,

• number of pyramids: 1 (single level),

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

23DOI:10.24132/JWSCG.2021.29.3

• termination criteria: epsilon and criteria count,

and for the Shi-Tomasi detector:

• maximum number of corners: 100,

• minimum accepted quality of corners: 0.1,

• minimum possible distance between the corners: 10,

• size of computing block: 7.

3.3 Runtime
Runtime comparison can be found in Table 1. IFNet
works much faster than any other state-of-the-art
method, but anyway optical flow can be obtained by
analytical methods in less time. One of the important
issues is that most of the standard flow methods have to
run the estimation process twice if a bi-directional flow
is desired. The results were measured again on RTX
2080 Ti GPU.

Method Runtime [ms]
PWCNet 125
LiteFlowNet 370
IFNet 34
Ours - GF 9
Ours - LK 7

Table 1: Runtime comparison of optical flow estimation
algorithms

4 EXPERIMENTS
This section will provide evaluation results, comparing
the last and best methods with our proposal. Compari-
son is made based on quantitative and visual results us-
ing common metrics and datasets as well as algorithms
runtime.

4.1 Learning strategy
Our solution was trained on Vimeo90K dataset with op-
tical flow labels generated by the LiteFlowNet [Hui18]
in PyTorch version [Nik19]. Authors used the AdamW
optimizer, the same as used in RIFE [Hua21].

4.1.1 Loss function
To address the problem of training the IFNet module,
Huang et al. proposed a solution of leakage distilla-
tion schema, which compares the network result with
the output of the pre-trained optical flow estimation
method. The training loss is a linear combination of
reconstruction loss Lrec, census loss Lcen and leakage
distillation loss Ldis. Our solution was trained using the
same loss function:

L = Lrec +Lcen +λLdis, (1)

with the weight of leakage distillation loss 10 times
smaller than the two others (λ = 0.1).

4.1.2 Training dataset
Vimeo90K is a video dataset containing 73,171 frame
triplets with 448×256 pixels image resolution [Xue19].
This dataset was used as a training set in all compared
methods.

4.1.3 Computational efficiency
All analyzed algorithms are implemented in PyTorch
[Pas17] using CUDA, cuDNN, and CuPy [Che14]. The
proposed solutions was implemented using OpenCV
functions, and RIFE model was fine-tuned on Nvidia
RTX 2080 Ti GPU with 11GB of RAM for 150 epochs
which took 15 days to converge.

4.2 Evaluation datasets
For evaluation, the following publicly available datasets
have been used:

4.2.1 Middlebury
Middlebury contains two subsets: Other with ground
truth interpolation results and Evaluation, which output
frames are not publicly available [Bak07]. It is the most
widely used dataset for testing image interpolation al-
gorithms. The resolution of frames is 640×480 pixels.

4.2.2 UCF101
UCF101 provides 379 frame triplets from action videos
with 101 categories [Soo12] [Liu17]. Images resolution
is 256×256 pixels.

4.2.3 Vimeo90K
Vimeo90K was used for training, but it contains also the
test subset - 3,782 triplets with 448×256 pixels image
resolution [Xue19].

4.3 Metrics
The following metrics have evaluated each algorithm.
PSNR (Peak Signal-to-Noise Ratio):

PSNR(i, j) = 10 · log10
2552

MSE(i, j)
. (2)

SSIM (Structural Similarity, l - luminance, c - contrast
and s - structure):

SSIM(i, j) = l(i, j) · c(i, j) · s(i, j). (3)

IE (Interpolation Error) is the arithmetic average of
a difference between the interpolated image and the
ground truth frame:

IE(i, j) = |i− j|, (4)

where i is interpolated frame and j is the ground truth
image [Wan04]. On UCF101 and Vimeo90K datasets
we used PSNR and SSIM (higher values mean better
results), on Middlebury Evaluation and Other we eval-
uated IE (lower values mean better results). This set of
benchmarks is used in the majority of frame interpola-
tion articles and datasets websites.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

24DOI:10.24132/JWSCG.2021.29.3

Figure 4: Qualitative comparison on UCF101 dataset

Method Middlebury UCF101 Vimeo90K Parameters
IE PSNR SSIM PSNR SSIM (million)

SepConv 2.27 34.78 0.967 33.79 0.970 21.6
MEMC-Net 2.12 35.01 0.968 34.29 0.970 70.3
DAIN 2.04 34.99 0.968 34.71 0.976 24.0
SoftSplat 1.81 35.10 0.948 35.48 0.964 7.7
RIFE 1.96 35.25 0.969 35.51 0.978 9.8
Ours: FastRIFE - GF 2.89 34.84 0.968 34.18 0.968 4.1
Ours: FastRIFE - LK 2.91 34.26 0.967 33.97 0.967 4.1

Table 2: Quantitative comparison of described methods on Middlebury Other, UCF101 and Vimeo90K test

4.4 Quantitative comparison
Table 2 shows a comparison of the results obtained on
datasets: Middlebury Other, UCF101 and Vimeo90K,
red marks the best performance, blue marks second best
score. Results of evaluation on Middlebury benchmark
are not available yet.
The proposed model performs comparably to other
methods, scoring very similar results in both PSNR and
SSIM. The most significant gap is between the results
of Interpolation Error in Middlebury Other dataset.
FastRIFE generates better values than the SepConv
model in UCF101 and Vimeo90K benchmarks and
worse results than other algorithms, but a significant
reduction is shown on the parameters column.
Evaluation of both optical flow methods gives similar
results. However, the model which uses the Gunnar-
Farnebäck algorithm performs slightly better in every
benchmark, which means that the FusionNet behaves
better with dense flow estimation.

4.5 Visual Comparison
Figure 4 shows examples of frame estimation with com-
parison made on the DAIN and RIFE methods. These

Figure 5: Visual comparison on HD frames

images show dynamic scenes, which are more challeng-
ing to analyze for frames interpolation methods. The
resolution of images is small (256×256), but both GF
and LK methods generate acceptable results, similar to
DAIN. The worst smudging is shown on RIFE results,
which works better with high-resolution videos.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

25DOI:10.24132/JWSCG.2021.29.3

Method Inference time on Time of learning
448×256 image [ms] one epoch [h]

SepConv 125 -
MEMC-Net 293 -
SoftSplat 329 -
DAIN 320 9
RIFE 39 4.5
Ours: FastRIFE - GF 29 2.4
Ours: FastRIFE - LK 26 2.4

Table 3: Runtime comparison of described methods tested on 448×256 image (device: RTX 2080 Ti GPU)

The results of high-resolution image interpolation are
shown in Figure 5. Both FastRIFE models generate
very blurry frames. It is probably caused by includ-
ing only small resolution videos in the training process
and setting constant parameters when calculating opti-
cal flow. The issue could be repaired as future work.
Other methods: DAIN and RIFE work well with HD
resolution frames.

The advantage of the proposed models is the size of
occupied memory. For most methods, analyzing HD
images results in an out-of-memory error on our GPU,
while RIFE allocates only 3 GB and FastRIFE only 1.5
GB of RAM.

FastRIFE - LK FastRIFE - GF

Figure 6: Sparse optical flow issue. Sometimes output
frames suffers from spots visible in zoom

One important issue related to using the sparse opti-
cal flow method (Lucas-Kanade) is overlapping fea-
ture points as visible spots, as shown in Figure 6. The
spots are noticeable after zooming small resolution im-
ages. Such a problem can be reported only for a model
with the LK method. FastRIFE which uses the Gunnar-
Farnebäck algorithm is this issue free.

4.6 Runtime Comparison
The usage of analytical methods and simplified RIFE
model caused that FastRIFE performs favourably faster
than any other state-of-the-art algorithm. Our models
have 4 million parameters, which is the smallest neu-
ral network structure from all video frame interpolation
methods. The runtime comparison is shown in Table 3.

Compared to any other model, except for RIFE, our so-
lution runs up to 10 times faster. FastRIFE has slightly

better benchmark results from SepConv, but runtime
has been compressed from 125 to less than 30 mil-
liseconds. The replacement of the optical flow module
in RIFE saved 25% of the time needed to interpolate
frames. As shown in Table 3, also the time of learning
one epoch was significantly reduced.

5 CONCLUSION
In this paper, we proposed a solution to RIFE model
simplification in terms of optical flow estimation. Fas-
tRIFE uses well-known analytical methods instead of
additional neural network modules, which results in ex-
cellent runtime improvement with an acceptable slight
drop in the quality of output frames.

Another advantage of model compression is the reduc-
tion of memory usage. Thanks to the small number of
parameters, FastRIFE is able to generate output frames
with the allocation of max 1.5 GB of RAM in the case
of HD videos. Low memory consumption with short
execution time makes the model possible to implement
on many devices, including mobile phones.

The FastRIFE algorithm was analyzed with two
method types for estimating optical flow: sparse
(Lucas-Kanade) and dense (Gunnar-Farnebäck).
Sparse flow performs faster, but better-quality results
were always generated with the GF method. FastRIFE
works appropriately in small resolution images but in-
troduces prominently blurry regions when interpolating
HD videos.

Future work that may be performed includes the im-
provement of the FastRIFE model in order to obtain
better results on high resolution videos. It can proba-
bly be achieved by including HD images in the training
dataset or by adjusting optical flow algorithm parame-
ters on the fly based on video resolution or other crite-
ria. Our proposed method can result in future research
on increasing the efficiency of video frame interpola-
tion algorithms.

REFERENCES
[Bak07] S. Baker et al. “A Database and Evaluation

Methodology for Optical Flow”. In: 2007
IEEE 11th International Conference on

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

26DOI:10.24132/JWSCG.2021.29.3

Computer Vision. 2007, pp. 1–8. DOI:
10.1109/ICCV.2007.4408903.

[Bao18] W. Bao et al. “High-Order Model and
Dynamic Filtering for Frame Rate Up-
Conversion”. In: IEEE Transactions on Im-
age Processing 27.8 (2018), pp. 3813–3826.
DOI: 10.1109/TIP.2018.2825100.

[Bao19] W. Bao et al. “Depth-Aware Video Frame
Interpolation”. In: 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 3698–3707.
DOI: 10.1109/CVPR.2019.00382.

[Bao21] W. Bao et al. “MEMC-Net: Motion Esti-
mation and Motion Compensation Driven
Neural Network for Video Interpolation and
Enhancement”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence
43.3 (2021), pp. 933–948. DOI: 10.1109/
TPAMI.2019.2941941.

[Bro04] T. Brox et al. “High Accuracy Optical Flow
Estimation Based on a Theory for Warping”.
In: Computer Vision - ECCV 2004. Ed. by
T. Pajdla and J. Matas. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 25–
36. ISBN: 978-3-540-24673-2.

[Che13] Z. Chen et al. “Large Displacement Opti-
cal Flow from Nearest Neighbor Fields”. In:
2013 IEEE Conference on Computer Vision
and Pattern Recognition. 2013, pp. 2443–
2450. DOI: 10.1109/CVPR.2013.316.

[Che14] S. Chetlur et al. “CuDNN: Efficient prim-
itives for deep learning”. In: International
Journal of Computer Vision. 2014. DOI:
arXiv:1410.0759.

[Che16] W. Chen et al. “Single-Image Depth Per-
ception in the Wild”. In: Advances in Neu-
ral Information Processing Systems 29. Ed.
by D. D. Lee et al. Curran Associates, Inc.,
2016, pp. 730–738.

[Dos15] A. Dosovitskiy et al. “FlowNet: Learn-
ing Optical Flow with Convolutional
Networks”. In: 2015 IEEE Interna-
tional Conference on Computer Vision
(ICCV). 2015, pp. 2758–2766. DOI:
10.1109/ICCV.2015.316.

[Far03] G. Farnebäck. “Two-Frame Motion Estima-
tion Based on Polynomial Expansion”. In:
Scandinavian Conference on Image Anal-
ysis. 2003. DOI: 10 . 1007 / 3 - 540 -
45103-X_50.

[Fly16] J. Flynn et al. “Deep Stereo: Learning
to Predict New Views from the World’s
Imagery”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recogni-
tion (CVPR). 2016, pp. 5515–5524. DOI:
10.1109/CVPR.2016.595.

[Gao00] X. Q. Gao, C. J. Duanmu, and C. R. Zou. “A
multilevel successive elimination algorithm
for block matching motion estimation”. In:
IEEE Transactions on Image Processing 9.3
(2000), pp. 501–504. DOI: 10.1109/83.
826786.

[Haa93] G. de Haan et al. “True-motion estima-
tion with 3-D recursive search block
matching”. In: IEEE Transactions on
Circuits and Systems for Video Tech-
nology 3.5 (1993), pp. 368–379. DOI:
10.1109/76.246088.

[Hua21] Z. Huang et al. RIFE: Real-Time Interme-
diate Flow Estimation for Video Frame In-
terpolation. 2021. arXiv: 2011 . 06294
[cs.CV].

[Hui18] T.-W. Hui, X. Tang, and C. C. Loy. “Lite-
FlowNet: A Lightweight Convolutional
Neural Network for Optical Flow Estima-
tion”. In: IEEE Conference on Computer
Vision and Pattern Recognition. 2018.

[Jia18] H. Jiang et al. “Super SloMo: High Qual-
ity Estimation of Multiple Intermediate
Frames for Video Interpolation”. In: 2018
IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2018, pp. 9000–
9008. DOI: 10 . 1109 / CVPR . 2018 .
00938.

[Kim14] U. S. Kim and M. H. Sunwoo. “New
Frame Rate Up-Conversion Algorithms
With Low Computational Complexity”.
In: IEEE Transactions on Circuits and
Systems for Video Technology 24.3 (2014),
pp. 384–393. DOI: 10 . 1109 / TCSVT .
2013.2278142.

[Li18] Z. Li and N. Snavely. “MegaDepth: Learn-
ing Single-View Depth Prediction from
Internet Photos”. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern
Recognition. 2018, pp. 2041–2050. DOI:
10.1109/CVPR.2018.00218.

[Liu17] Z. Liu et al. “Video Frame Synthesis Us-
ing Deep Voxel Flow”. In: 2017 IEEE In-
ternational Conference on Computer Vision
(ICCV). 2017, pp. 4473–4481. DOI: 10 .
1109/ICCV.2017.478.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

27DOI:10.24132/JWSCG.2021.29.3

https://doi.org/10.1109/ICCV.2007.4408903
https://doi.org/10.1109/TIP.2018.2825100
https://doi.org/10.1109/CVPR.2019.00382
https://doi.org/10.1109/TPAMI.2019.2941941
https://doi.org/10.1109/TPAMI.2019.2941941
https://doi.org/10.1109/CVPR.2013.316
https://doi.org/arXiv:1410.0759
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1109/CVPR.2016.595
https://doi.org/10.1109/83.826786
https://doi.org/10.1109/83.826786
https://doi.org/10.1109/76.246088
https://arxiv.org/abs/2011.06294
https://arxiv.org/abs/2011.06294
https://doi.org/10.1109/CVPR.2018.00938
https://doi.org/10.1109/CVPR.2018.00938
https://doi.org/10.1109/TCSVT.2013.2278142
https://doi.org/10.1109/TCSVT.2013.2278142
https://doi.org/10.1109/CVPR.2018.00218
https://doi.org/10.1109/ICCV.2017.478
https://doi.org/10.1109/ICCV.2017.478

[Lon16] G. Long et al. “Learning Image Matching
by Simply Watching Video”. In: Computer
Vision – ECCV 2016. Ed. by B. Leibe et
al. Cham: Springer International Publish-
ing, 2016, pp. 434–450. ISBN: 978-3-319-
46466-4.

[Men20] H. Men et al. “Visual Quality Assessment
for Interpolated Slow-Motion Videos Based
on a Novel Database”. In: 2020 Twelfth In-
ternational Conference on Quality of Multi-
media Experience (QoMEX). 2020, pp. 1–6.
DOI: 10.1109/QoMEX48832.2020.
9123096.

[Nik17] S. Niklaus, L. Mai, and F. Liu. “Video
Frame Interpolation via Adaptive Sep-
arable Convolution”. In: 2017 IEEE
International Conference on Computer
Vision (ICCV). 2017, pp. 261–270. DOI:
10.1109/ICCV.2017.37.

[Nik18] S. Niklaus and F. Liu. “Context-Aware
Synthesis for Video Frame Interpo-
lation”. In: 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern
Recognition. 2018, pp. 1701–1710. DOI:
10.1109/CVPR.2018.00183.

[Nik19] S. Niklaus. A Reimplementation of Lite-
FlowNet Using PyTorch. https : / /
github.com/sniklaus/pytorch-
liteflownet. 2019.

[Nik20] S. Niklaus and F. Liu. “Softmax Splat-
ting for Video Frame Interpolation”. In:
2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition
(CVPR). 2020, pp. 5436–5445. DOI:
10.1109/CVPR42600.2020.00548.

[Pas17] A. Paszke et al. “Automatic differentiation
in PyTorch”. In: NIPS 2017 Autodiff Work-
shop: The Future of Gradient-based Ma-
chine Learning Software and Techniques.
2017.

[Ran17] A. Ranjan and M. J. Black. “Optical
Flow Estimation Using a Spatial Pyramid
Network”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recogni-
tion (CVPR). 2017, pp. 2720–2729. DOI:
10.1109/CVPR.2017.291.

[Soo12] K. Soomro, A. R. Zamir, and M. Shah.
“UCF101: A dataset of 101 human actions
classes from videos in the wild”. In: Inter-
national Journal of Computer Vision. 2012.
DOI: arXiv:1212.0402.

[Wan04] Z. Wang et al. “Image quality assessment:
from error visibility to structural similarity”.
In: IEEE Transactions on Image Processing
13.4 (2004), pp. 600–612. DOI: 10.1109/
TIP.2003.819861.

[Wan10] C. Wang et al. “Frame Rate Up-Conversion
Using Trilateral Filtering”. In: IEEE Trans-
actions on Circuits and Systems for Video
Technology 20.6 (2010), pp. 886–893. DOI:
10.1109/TCSVT.2010.2046057.

[Wu15] J. Wu et al. “Enabling Adaptive High-
Frame-Rate Video Streaming in Mobile
Cloud Gaming Applications”. In: IEEE
Transactions on Circuits and Systems for
Video Technology 25.12 (2015), pp. 1988–
2001. DOI: 10.1109/TCSVT.2015.
2441412.

[Wu18] C.-Y. Wu, N. Singhal, and P. Krahenbuhl.
“Video Compression through Image Inter-
polation”. In: Proceedings of the European
Conference on Computer Vision (ECCV).
Sept. 2018.

[Xu17] J. Xu, R. Ranftl, and V. Koltun. “Accurate
Optical Flow via Direct Cost Volume
Processing”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recogni-
tion (CVPR). 2017, pp. 5807–5815. DOI:
10.1109/CVPR.2017.615.

[Xue19] T. Xue et al. “Video Enhancement with
Task-Oriented Flow”. In: International
Journal of Computer Vision (IJCV) 127.8
(2019), pp. 1106–1125.

[Zhu00] S. Zhu and K.-K. Ma. “A new diamond
search algorithm for fast block-matching
motion estimation”. In: IEEE Transactions
on Image Processing 9.2 (2000), pp. 287–
290. DOI: 10.1109/83.821744.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

28DOI:10.24132/JWSCG.2021.29.3

https://doi.org/10.1109/QoMEX48832.2020.9123096
https://doi.org/10.1109/QoMEX48832.2020.9123096
https://doi.org/10.1109/ICCV.2017.37
https://doi.org/10.1109/CVPR.2018.00183
https://github.com/sniklaus/pytorch-liteflownet
https://github.com/sniklaus/pytorch-liteflownet
https://github.com/sniklaus/pytorch-liteflownet
https://doi.org/10.1109/CVPR42600.2020.00548
https://doi.org/10.1109/CVPR.2017.291
https://doi.org/arXiv:1212.0402
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TCSVT.2010.2046057
https://doi.org/10.1109/TCSVT.2015.2441412
https://doi.org/10.1109/TCSVT.2015.2441412
https://doi.org/10.1109/CVPR.2017.615
https://doi.org/10.1109/83.821744

