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ABSTRACT
New methods for hypersurface (that is, 3-dimensional manifold) curvature determination in volumetric data are
introduced. One method is convolution-based. Another method is spline-based. Method accuracy is also analyzed,
with that analysis involving comparison of the methods with each other as well as against two existing convolution-
based methods. The accuracy analysis utilizes a novel framework that enables curvature determination method
accuracy analysis via dynamically generated synthetic test datasets formed from continuous trivariate functions.
Such functions enable accuracy analysis versus ground truth. The framework is also described here.
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1 INTRODUCTION
Curvature, a translation- and rotation-invariant descrip-
tor, describes the shape of the underlying data (e.g., a
continuous function or discrete dataset) at a given point
within the data. It is commonly used for many tasks in
areas including quality control, healthcare, visualization,
computer graphics, etc. Because curvature is a shape
descriptor, uses in such areas often exploit curvature for
model analysis [Hul12], object recognition, and general
shape-based analysis tasks or tasks that benefit from
its translation- and rotation-invariant shape descriptive
capabilities, e.g., [Wan16, Lef18, Bib16, Bes86, Bel12,
Sou16]. Curvature’s use also extends to less obvious
shape-based tasks, such as in initializing streamlines in
vector field visualization [Wei02] and image denoising
[Myl15], as well as in improving the accuracy of neu-
ral networks used for object detection [Wan16], surface
reconstruction [Lef17], biometrics [Sya17], etc.

While it is possible to compute and utilize curvature
within 3-dimensional (3D) manifolds, many tasks, in-
cluding the ones just described, instead compute cur-
vature within surfaces (2-dimensional manifolds), even
when the underlying data from which curvature is mea-
sured is 3D (e.g., volumetric data). Methods to find cur-
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vatures on surface intersection curves also exist, with
new methods recently reported for intersection curves of
surfaces of high dimension [Özc21]. Other recent work
considering curvature of 3D manifolds (also known as
hypersurfaces [Mon92]) has shown promise for shape-
descriptive tasks within volumetric data, especially in
healthcare [Suz18, Hir18] and seismological applica-
tions [Ald14].
Varied measures of surface and hypersurface curvatures
exist. The principal curvatures are among the most com-
monly used, including in aforementioned tasks. In the
case of surfaces, there are two principal curvatures (de-
noted κ1 and κ2), and, for each point on the surface,
these curvatures represent the minimum and maximum
curvature at the point (ordered such that κ1 > κ2). In
contrast, for hypersurfaces, there are three principal cur-
vatures (denoted κ1, κ2, and κ3) for each point on the
hypersurface (ordered such that κ1 > κ2 > κ3).
While many curvature tasks utilize the principal curva-
tures, these curvatures may not be computed exactly,
because the data on which curvature is to be computed
is real, sensed data (such as from a medical scanner). As
a second derivative quantity, exact computation of the
principal curvatures requires knowledge of the underly-
ing continuous form of the surface or hypersurface to
compute the necessary derivatives. In the case of real,
sensed data, the continuous form is typically unknown
and only discrete data is available; the principal curva-
tures must then be determined by other means (e.g., by
estimating the necessary derivative quantities from the
discrete data). Determination of curvature from discrete
data is often inexact. Different determination methods
may produce differing levels of accuracy on a given data
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set, as recently noted in two studies of surface curvature
determination methods [Hau20, Kro19].
Our focus in this work is to determine hypersurface
principal curvatures from discrete volumetric datasets
(henceforth simply volumes). We describe two new meth-
ods for determination of such principal curvatures. We
also describe a framework that can be used to dynam-
ically generate volumes, along with ground truth cur-
vature values, to evaluate and compare the accuracy of
each method’s curvature determination. Furthermore, we
use this framework to evaluate the accuracy of our two
new methods for principal curvature determination (as
well as two existing methods).
In the paper, Section 2 provides background on the math-
ematics of hypersurface curvature and related methods
for determining hypersurface and surface curvature in
volumes. Section 3 discusses our new methods for de-
termining hypersurface curvature in volumes. Section 4
describes our testing and evaluation framework. Sec-
tion 5 describes the volumes we generated using the
framework. Section 6 details results obtained from these
volumes. Section 7 concludes the work.

2 BACKGROUND / PREVIOUS WORK
First, we provide a brief overview of the mathematics
for determining curvature of hypersurfaces within con-
tinuous volumetric data. The presentation here closely
follows the formulations in both [Mon92] and [Ham94].
Next, we briefly describe the two existing methods for
determining hypersurface curvature in volumes consid-
ered in our studies presented later as well as an existing
study of the two methods. Finally, we present some de-
tails on methods for determining conventional surface
curvature in volumes, as our two new hypersurface curva-
ture determination methods, presented later, are inspired
by these methods.
The mathematics notation we use is as follows. A grid
(or sample) point within the volume is denoted as (x,y,z),
where 0≤x<Nx, 0≤y<Ny, 0≤z<Nz for a volume of
size Nx×Ny×Nz. The value at point (x,y,z) is denoted
f (x,y,z); f represents the underlying continuous func-
tion that generates the discrete volume. fx represents the
partial derivative of f in the x direction.

2.1 Hypersurface Curvature Mathemat-
ics

When the continuous form of the function f that gener-
ates the volume is known, the three principal curvatures
of the hypersurface can be computed at each point within
the volume fairly easily. They are simply, at each point
in the volume, the eigenvalues of the matrix:

1
l

 fxx fxy fxz
fxy fyy fyz
fxz fyz fzz

1+ f 2
x fx fy fx fz

fx fy 1+ f 2
y fy fz

fx fz fy fz 1+ f 2
z

−1

,

(1)

where

l =
√

1+ f 2
x + f 2

y + f 2
z . (2)

We denote these eigenvalues λ1, λ2, and λ3. As men-
tioned previously, computation of κ1, κ2, and κ3 at any
point requires knowledge of the first and second deriva-
tives of f at the point, and, for many curvature-based
tasks, the continuous form of f is unknown because the
data is not continuous. Consequently, the first and second
derivatives often must be estimated to determine κ1, κ2,
and κ3. All of the hypersurface curvature determination
methods discussed in this work operate by estimating
the necessary derivatives using varying approaches and
then using those estimated derivatives to evaluate Eq. (1)
(i.e., compute λ1, λ2, and λ3).

2.2 Existing Hypersurface Curvature
Methods and Comparative Studies

In our studies we compare our new methods with two
existing methods for determining hypersurface curva-
ture in volumes. First, we describe these two existing
methods. The first, denoted TEF, uses convolution with
kernels based on the Taylor Expansion in order to es-
timate derivatives (from which curvature is then com-
puted). The second, denoted as OPF, uses convolution
with a set of orthogonal polynomials in order to estimate
derivatives.

2.2.1 TEF
The TEF method uses convolution filters derived from
the Taylor Expansion. It determines hypersurface cur-
vatures by first estimating all derivatives necessary for
computing hypersurface curvature. These estimates are
made through doing a series of convolutions along each
axis of the volume. Once these convolutions are com-
pleted, the three principal curvatures are computed as
λ1, λ2, and λ3 using the estimated derivatives.

The convolution filters used by TEF were developed us-
ing a framework described by Möller et al. [Möl98]. The
same framework was also previously used in a surface
curvature method for volumes [Kin03].

For the TEF method, convolution filters are sampled
from the Taylor Expansion using specified accuracy and
continuity parameters. Previous studies of both hypersur-
face curvature and surface curvature methods that utilize
the Möller et al. framework have used filters with C3

continuity and fourth order accuracy [Hau19, Hau20],
and we follow that usage in our own studies. When no
noise or other errors are present, such filters allow for
exact reconstruction of functions of degree 3 or lower.

When configured as described, the TEF first derivative
filter is:

{− 1
12

,
2
3
,0,−2

3
,

1
12
}, (3)
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and the second derivative filter is:

{− 1
24

,
1
6
,

17
24

,−5
3
,

17
24

,
1
6
,− 1

24
}. (4)

2.2.2 OPF
The OPF method uses convolution filters derived from
orthogonal polynomials to estimate all the necessary
derivatives for determination of hypersurface curvature.
Convolution with such filters is equivalent to a least
squares fitting, and it thus gives identical results to that
of a linear regression-based approach. Like the TEF
approach, the OPF approach uses these derivative esti-
mates to compute the three principal curvatures at each
point in the volume as λ1, λ2, and λ3 of Eq. (1).

OPF uses convolution filters of size N, where N is an
odd number. The filters are generated by sampling or-
thogonal polynomials, denoted b0, b1, b2, at N sample
locations. b0, b1, and b2 are given by:

b0(θ) =
1
N

, (5)

b1(θ) =
3

M(M+1)(2M+1)
θ , (6)

b2(θ) =
1

P(M)
(θ 2− M(M+1)

3
), (7)

where M = N−1
2 and P(M) is given by:

P(M) =
8
45

M5 +
4
9

M4 +
2
9

M3− 1
9

M2− 1
15

M. (8)

θ denotes the locations at which each polynomial is
sampled, where θ ∈ {−N−1

2 , ...,−1,0,1, ..., N−1
2 }. The

b0 filter smooths; b1 estimates the first derivative; and
b2 estimates the second derivative.

Previous works have recommended N = 7 [Hau20], but,
in our studies, we test varying values of N including
N = 3, N = 5, N = 7, and N = 9. When considering OPF
at a specific N value, we will use the notation OPFN,
where N is one of 3, 5, 7, or 9.

2.2.3 Comparative Studies
We are aware of only one existing study that compara-
tively evaluated methods for determination of hypersur-
face curvature in volumes. In that study [Hau19], two
hypersurface curvature methods were compared. That
study compared performance of the TEF and OPF meth-
ods and concluded that (1) TEF exhibits relatively low
error (i.e., high accuracy) in curvature when no noise
is present in the data, and (2) OPF generally is more
accurate in the presence of noise.

2.3 Related Methods for Surface Curva-
ture in Volumes

The two new methods for determining hypersurface cur-
vature later described in this paper are analogous to two

existing methods for determining surface curvature in
volumes. Here, we describe those two existing surface
curvature methods. Both of these methods determine
surface curvature by first estimating derivatives at every
point in the volume and then computing the curvature at
every point in the volume using the estimated derivatives.
The first described existing method uses B-Spline fitting
to estimate surface curvatures. The second described
method uses convolution with Deriche filters.

2.3.1 B-Spline
Soldea et al. [Sol06] described a method for determin-
ing surface curvature in volumes using B-Spline fitting.
The approach used by Soldea et al. directly uses the
volume data as the coefficients for a trivariate B-Spline.
Since the trivariate B-Spline formed from the data is a
continuous function that approximates the volume, the
necessary derivatives of the B-Spline can be computed
at each point, and these derivatives are used to compute
curvature.

2.3.2 Deriche Filters
Monga et al. [Mon92] described a method for determin-
ing surface curvature in volumes using convolution with
3D Deriche filters. Such filters are of special interest
because they are formulated such that they can be imple-
mented as infinite impulse response (IIR) filters, making
them conducive to implementation on some hardware
[Der90]. The Monga et al. strategy uses three filters.
One filter is used to smooth, one filter is used to estimate
the first derivative, and one filter is used to to estimate
the second derivative. From these estimated derivatives,
curvature is determined.

3 NOVEL METHODS FOR HYPER-
SURFACE CURVATURE DETERMI-
NATION

Here, we describe the two new methods we introduce
here for determining hypersurface curvature in volumes.

3.1 B-Splines (BS)
Our first new method for determining hypersurface cur-
vature in volumes, denoted BS, forms a B-Spline that
provides a continuous form approximation of the input
volume f . It is analogous to the approach used by Soldea
et al. [Sol06] for determining surface curvature in vol-
umes. The method determines curvature by first forming
a continuous trivariate B-Spline, denoted f̂ , from the
discrete volume. f̂ is then used to compute derivatives
from which curvature is calculated, and f̂ uses a volume
of form:

f̂ (x,y,z) = (9)
Nx

∑
i=0

Ny

∑
j=0

Nz

∑
k=0

f (i, j,k)Bi,sx,τx(x)B j,sy,τy(y)Bk,sz,τz(z),
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where each Bl,s,τ term denotes the l-th B-Spline blending
function of degree s over a knot sequence τ . Since f̂
is continuous, its first and second derivatives can be
calculated at each point, and they are used to determine
curvature (as λ1, λ2, and λ3) at each point.

In our experiments on the BS method, reported later, τ

is a uniformly spaced knot vector, and we test several
values of s, including s = 2, s = 3, s = 4, and s = 5. To
our knowledge, these experiments are the first reports
on the use of splines of higher than cubic degree in any
variety of curvature determination. When considering
BS at a specific s value, we will use the notation BSs,
where s is one of 2, 3, 4, or 5.

3.2 Deriche Filters (DF)
Our second new method for determining hypersurface
curvature in volumes, denoted DF, uses convolution with
the Deriche filters. It is analogous to the approach used
by Monga et al. [Mon92] for determining surface cur-
vature in volumes. The method determines curvature
by first convolving with the three Deriche filters to esti-
mate derivatives from which curvature is calculated. We
denote the three filters as f̂0, f̂1, and f̂2. The filters are
defined as continuous functions, and they are sampled
to produce the parameters for the convolution with the
volume. Convolution with the sampling of f̂0 provides
smoothing, with the sampling of f̂1 provides estimates
for the first derivative, and with the sampling of f̂2 pro-
vides estimates for the second derivative. Convolution is
always applied along all three axes at each point, with
the directional derivatives estimated using the relevant
derivative estimation filters along any axis on which
derivatives are to be estimated. In this convolution, the
smoothing filter is applied along all other axes (i.e., other
than the axis for the directional derivative). f̂0, f̂1, and
f̂2 are defined as [Mon92]:

f̂0(t) =c0(1+α|t|)e−α|t|, (10)

f̂1(t) =− c1tα2e−α|t|, (11)

f̂2(t) =c2(1− c3α|t|)e−α|t|, (12)

where c0, c1, c2, and c3 are defined by

c0 =
(1− e−α)2

1+2e−α α− e−2α
, (13)

c1 =
−(1− e−α 3

)

2α2e−α(1+ e−α)
, (14)

c2 =
−2(1− e−α 4

)

1+2e−α −2e−3α − e−4α
, and (15)

c3 =
(1− e−2α)

2αe−α
. (16)

The α term controls the level of smoothing when esti-
mating derivatives, with smaller values providing more

smoothing. The optimal value for it depends on a num-
ber of factors, including the amount and type of noise
in the volume. In our experiments on the DF method,
reported later, we test a variety of α values, including
α = 1.0, α = 3.0, α = 5.0, and α = 10.0. When consid-
ering DF at a specific α value, we will use the notation
DFα , where α is one of 1.0, 3.0, 5.0, or 10.0.

4 VOLUME GENERATION AND EVAL-
UATION FRAMEWORK

This section describes our framework for generating vol-
umes and evaluating curvature determination method
accuracy. This framework is used to generate volumes
(including application of rotations, shifts, and scalings)
from continuous form trivariate expressions, compute
the ground truth curvatures in such volumes, and eval-
uate the accuracy of the hypersurface curvatures deter-
mined by each determination method on the generated
volumes.

4.1 Overview
Our testing and evaluation framework enables rapid eval-
uation of hypersurface curvature determination method
accuracy. It is capable of dynamically generating vol-
umes of a user-specified number of samples directly
from continuous form trivariate expressions. These vol-
umes can be generated at arbitrary, user specified rota-
tions, shifts, and scales. Because these volumes are dy-
namically generated at run-time, the framework allows
for rapid testing of accuracy on many volumes. This
characteristic makes the framework particularly useful
for generation of many closely related volumes, such as
generation of many different rotations of volumes from
the same continuous expression, e.g., in order to evaluate
the sensitivity of hypersurface curvature determination
methods to changes in rotation. Because all volumes, re-
gardless of rotation, shift, or scale, are generated directly
from the continuous form expression, ground truth val-
ues are always available to use for accuracy evaluation
of all determination methods.

The framework maintains a list of all curvature deter-
mination methods for which accuracy is to be evalu-
ated, including any relevant parameter settings for each
method. Each combination of determination method and
parameters defines a determination method set. Because
a single determination method can be included on this
list at differing parameter settings (i.e., in different deter-
mination method sets), the framework makes it possible
to rapidly test curvature determination methods at a va-
riety of possible parameter settings.

Upon generation of a volume, the framework runs each
hypersurface curvature determination method set in the
list on the volume, collects the determined curvatures
from each method, and computes the absolute and rela-
tive error for each point of interest within the volume.
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The framework thus enables rapid generation of volumes
and rapid testing of curvature determination methods.

4.2 Generation of Test Volumes
To generate a volume used for testing a list of determina-
tion method sets via our testing framework, a number of
characteristics that describe the volume to be generated
must be specified (i.e., input). We describe here those
characteristics and how the volume is generated.

The number of samples in each of the x, y, and z direc-
tions for the generated volume, Nx, Ny, and Nz, must be
specified. For our experiments, described later, we have
set Nx = Ny = Nz = 32.

The scale and shift parameters must be specified for each
axis. At a shift of 0.0 and scale of 1.0 on each axis, the
volume will be generated by sampling the continuous
form expression f at unit spacing along each axis, re-
sulting in samples at locations ranging from 0 to Nx−1
along the x-axis, from 0 to Ny−1 along the y-axis, and
from 0 to Nz−1 along the z-axis. That is, the sample at
location (xs,ys,zs) within the discrete volume will con-
tain the value f (xs,ys,zs). In contrast, using the same
shift but a scaling of 0.5 on each axis, the volume will be
generated by sampling the continuous form expression
at a spacing of 0.5 along each axis starting from 0. That
is, the sample at location (xs,ys,zs) within the discrete
volume will contain the value f (0.5xs,0.5ys,0.5zs). If
a shift of −1 is also applied on each axis, the volume
will be generated by sampling the continuous form start-
ing at −1 on each axis. That is, the sample at location
(xs,ys,zs) within the discrete volume will contain the
value f (0.5xs−1.0,0.5ys−1.0,0.5zs−1.0). Thus, the
scaling parameter selects the spacing used for sampling,
and the shift parameter selects the region where the sam-
pling takes place.

The continuous form expression f must be specified.
It is specified using a standard C-style mathematical
notation understood by the libmatheval library [Fre14],
but with placeholder variables XFIX, YFIX, and ZFIX
used in place of the x, y, and z variables in the ex-
pression. These placeholder variables are replaced by
the framework with appropriately scaled versions of
the x, y, and z variables using a string find-and-replace
within the expression. For example, if all scales along
each axis are set at 0.5, the continuous form expression
specified as XFIX + YFIX + ZFIX would be replaced
with (0.5∗x) + (0.5∗y) + (0.5∗z). In general, XFIX is
replaced with (ρx∗x), where ρx is the scaling along the
x-axis. YFIX and ZFIX are replaced analogously.

The rotation parameters must also be specified. By de-
fault, no rotation is applied, and sampling of the con-
tinuous expression is done exactly along the x-, y-, and
z-axis as described in the prior two paragraphs. However,
the framework allows for arbitrary rotation through the
origin by specifying the angle of rotation and the axis

of rotation. When a rotation is specified, the framework
generates a rotation matrix describing the requested ro-
tation, and the rotation is applied by multiplying each
sample point’s coordinates by the rotation matrix prior
to sampling the continuous expression. For example,
if a rotation angle of 90 degrees and a rotation axis of
(0,0,1) is specified, the continuous expression’s x-axis
will be mapped to the resulting volume’s y-axis (e.g.,
location (0,1,0) in the volume will contain the value
sampled via f (1,0,0)). When generating the volume,
rotation is applied prior to shifting or scaling.

Additionally, the level of Gaussian noise must be con-
figured. It is specified by standard deviation, and the
standard deviation value is used to generate Gaussian
noise of mean zero and specified standard deviation.

Finally, the volume is generated by sampling the re-
placed expression, resulting in a volume generated from
the continuous expression at the appropriate scale and
shift. Because the continuous form expression is known
for the underlying volume, the framework is able to
compute the ground truth curvature at each point in the
volume (utilizing libmatheval’s symbolic derivative ca-
pabilities [Fre14]).

4.3 Evaluation of Accuracy of Test Vol-
umes

For evaluation of accuracy, a list of points of interest
(POI) within each test volume is also specified for the
framework. These POIs specify which sample locations
within the volume that the framework will include when
calculating the accuracy of each determination method
set. The use of POIs, as opposed to calculating accuracy
using every sample point in the volume, allows for finer
control over the accuracy evaluation process. For exam-
ple, determined curvatures are often very inaccurate at
volume edges due to insufficient support for convolution
kernels. But, POIs can be selected such that the edges
of the volume are not considered in accuracy evaluation.
Each POI may optionally be used as the center of rota-
tion when a rotation is applied. This results in the rotated
volumes and POIs being equal in number, where each
volume is rotated about a different POI. These volumes
can then be used to evaluate the sensitivity of a method
set to rotation, because, for each rotation, the value of
curvature at the POI about which the volume is rotated
should be unchanged. If the determined curvature value,
or the error in determined curvature value, changes at the
POI about which the volume is rotated, then the method
set is sensitive to rotation.

Once the POIs are specified, the framework computes
the absolute difference between the expected and actual
curvature results at each POI. Using the results from
each POI within the volume, the framework produces a
number of aggregate results across all POIs in the vol-
ume for each determination method set. These aggregate
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Figure 1: A rendering of a (2-D) isosurface of Genus3.

results include the arithmetic average of both the abso-
lute errors and relative errors in each of κ1, κ2, and κ3
for each determination method set on the volume.

5 GENERATED VOLUMES
Here, we describe the volumes generated by the frame-
work and considered in our accuracy experiments. For
all volumes, the framework is configured to generate
volume datasets of size 32×32×32, and the POIs se-
lected are all the points within a 3×3×3 neighborhood
centered at the sample location (15,15,15). This set of
POIs ensures that none of the points used in accuracy
evaluation are near the edge of the dataset.
The first volume is one generated from the quadratic
polynomial expression:

x2 + y2 + z2. (17)

This expression has been used previously to generate vol-
umes in other curvature studies (e.g., [Hau19, Hau20]).
Because the 2D surfaces contained within the volume
are spherical in shape, we will denote this expression
(and the volumes it generates) Spheres. For volumes
generated from this expression, we use a scaling of 1.0
and a shift of 0.0 on each axis. We consider the Spheres
volumes at a variety of rotations (from -45 degrees to
+45 degrees through the axis (0,0,1)), and both with and
without noise. For each of these rotations, one rotated
volume per POI is generated as described in Section 4.3.

The second volume is one generated from a higher de-
gree polynomial expression:

(1− (
x
6
)2− (

y
3.5

)2)((x−3.9)2 + y2−1.44)

(x2 + y2−1.44)[(x+3.9)2 + y2−1.44]−256z2. (18)

Because this expression exhibits a genus three 2D sur-
face [Woo10], we will denote this expression (and the
volumes it generates) Genus3. A rendering of a 2-D
isosurface of Genus3 is shown in Fig. 1. For volumes
generated from this expression, we use a scaling of 1

64
and a shift of 0.0 on each axis. We consider the Genus3
volumes at a variety of rotations (from -45 degrees to
+45 degrees through the axis (0,0,1)) and both with and
without noise. For each of these rotations, one rotated
volume per POI is generated as described in Section 4.3.

6 EXPERIMENTS AND RESULTS
In this section, we describe our experiments and results
comparing the accuracy of our new BS and DF methods
as well as the existing TEF and OPS methods. These
results were all obtained using the framework described
in Section 4, and the volumes generated for testing are
as described in Section 5. We start with experiments on
noise-free volumes.

6.1 Noise-Free Accuracy Results
First, we present an evaluation of how each method per-
forms on the volumes when no noise is present. For
these, the volumes were considered at 91 rotations (an-
gles) (as described in Section 5), allowing simultaneous
evaluation of the relative performance of each method
on noise-free data and evaluation of how sensitive each
method is to rotation (which should not change the cur-
vature values or amount of error).

6.1.1 Spheres
For the relatively simple Spheres volumes, most meth-
ods exhibit little error in determined curvatures. Fig. 2(a)
shows the average absolute error in κ1 for the OPF
method at 91 rotations of Spheres volumes. While the
amount of error in the determined curvatures does vary
with the rotation, the amount of error at each rotation
is extremely small and likely attributable to the limita-
tions of floating point precision. Additionally, for these
volumes, the filter size does not seem to have any ap-
preciable impact on accuracy. This is likely because the
hypersurface shapes within the dataset do not exhibit
much variation over any of these filter sizes.

Fig. 2(b) shows the average absolute error in κ1 for BS
at the same 91 rotations. Here, BS3 exhibits much lower
error than the other degrees of BS. Like OPF, rotational
sensitivity is low enough that it can be attributed to float-
ing point precision.

Fig. 2(c) shows the average absolute error in κ1 for the
DF method at the same 91 rotations. Unlike OPF, here,
accuracy strongly depends on the parameter settings.
At lower α values, the error is much higher than at the
higher α values, with α = 10.0 exhibiting the smallest
error. Only at α = 10.0, where the errors are lowest, is it
possible to see any change in error with rotation. Like in
the OPF case, those changes are sufficiently small that
they are likely explained by limitations of floating point
precision.

Fig. 2(d) shows OPF3, BS3, DF10.00 (the most accu-
rate of each of OPF, BS, and DF) versus TEF. Here, the
BS3, OPF3, DF10.00, and TEF methods all perform
nearly identically and extremely accurately.

Due to space constraints, only plots of error in κ1 are
shown, but the results for κ2 and κ3 errors are very sim-
ilar to these in relative accuracy of the methods and
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Figure 2: Error levels in κ1 on 91 different rotations of noise-free Spheres volumes

rotational sensitivity. For κ2, the average absolute error
across all the rotations is about 4.6×10−13 for OPF at
all parameter settings, about 4.8×10−13 for DF10.00,
about 4.6×10−13 for BS3, and about 4.8×10−13 for
TEF. For κ3, the average absolute error across all the
rotations is nearly identical for OPF at all parameter set-
tings, DF10.00, BS3, and TEF, with all of them having
error of about 2.8×10−16.

6.1.2 Genus3

For Genus3 volumes, errors are notably higher than in
the simpler Spheres volume. Fig. 3(a) shows the average
absolute error in κ1 for OPF at 91 rotations. Compared
to Spheres, the change in error across rotation angles is
much more pronounced. Whereas, in the case of Spheres,
the changes in error with rotation were small enough that
they could be explained by floating point limitations, the
errors here are larger and likely indicate some amount
of rotational sensitivity within OPF. Also unlike the
Spheres, for these volumes, the filter size notably impacts
the results, with OPF3 exhibiting the least error.

Fig. 3(b) shows the average absolute error in κ1 for BS
at the same 91 rotations. Here, BS3 again exhibits the
lowest levels of error. BS3 exhibits similar accuracy to
OPF3, but it is more consistent in terms of exhibiting a
similar error level across all rotations.

Fig. 3(c) shows the average absolute error in κ1 for the
DF method at the same 91 rotations. Again, accuracy
strongly depends on the parameter settings for the DF
method. α = 10.0 again exhibits the smallest errors.
DF10.0 exhibits very small changes in error as rotation
changes, suggesting that the DF methods are not partic-
ularly sensitive to rotation.

Fig. 3(d) shows OPF3, BS3, DF10.00 (the most accu-
rate of each of OPF, BS, and DF) versus TEF. Here,
all methods exhibit low error, but TEF is much more
accurate than the others.

Due to space constraints, only plots of error in κ1 are
shown, but the results for κ2 and κ3 errors are very
similar to these in relative accuracy of the methods
and rotational sensitivity. For κ2, the average absolute
error across all the rotations is about 7.5×10−7 for
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Figure 3: Error levels in κ1 on 91 different rotations of noise-free Genus3 volumes

OPF3, about 5.5×10−7 for DF10.00, about 6.5×10−7

for BS3, and about 1.9×10−11 for TEF. For κ3, the
average absolute error across all the rotations is about
1.2×10−7 for OPF3, about 1.0×10−7 for DF10.00,
about 1.1×10−7 for BS3, and about 5.2×10−12 for
TEF.

6.2 Noise-Added Accuracy Results
Next, we present an evaluation of how each method
performs on the volumes when noise is added. For each
of these studies, the same level of random (Gaussian)
noise was added 30 times to both Spheres and Genus3,
resulting in 30 volumes (or trials) of each with the same
level of (different) random noise.

6.2.1 Spheres

Fig. 4(a) shows the average absolute error in κ1 for the
OPF method for 30 trials of noise with standard devi-
ation of 0.25. In the presence of noise, OPF benefits
from larger filter sizes, with OPF9 exhibiting the low-
est level of error in all trials, followed by OPF7 and

OPF5. The methods with the next lowest level of er-
ror are the B-Spline-based methods, with either BS4 or
BS5 most accurate in most trials. This is a change from
the noise-free cases, where BS3 was consistently the
most accurate, hinting that it may be beneficial to utilize
higher degree splines in the presence of noise. Fig. 4(b)
shows relative errors for the same volumes.

Again, due to space constraints, only results for κ1 are
shown, but relative performances are similar for κ2 and
κ3. Because κ3 is the smallest of the curvatures its rel-
ative error tends to be larger. For κ2, the average ab-
solute error across all the rotations is about 4.9×10−5

for OPF9, about 0.004 for DF3.00, about 0.003 for BS4,
and about 0.008 for TEF. For κ3, the average absolute er-
ror across all the rotations is about 1.3×10−8 for OPF9,
about 1.2×10−6 for DF3.00, about 1.4×10−6 for BS4,
and about 3.1×10−6 for TEF.

6.2.2 Genus3
Fig. 5(a) shows the average absolute error in κ1 for the
OPF method for 30 trials of noise with standard devia-
tion of 0.25. Here, the results are similar to the Spheres

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.29, No-1-2, 2021

18DOI:10.24132/JWSCG.2021.29.2 



0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

 0  5  10  15  20  25  30

A
vg

. A
bs

. E
rr

or
 in

 K
1

Trial Number

DF1.00
DF3.00
DF5.00

DF10.00
BS2
BS3
BS4
BS5

OPF3
OPF5
OPF7
OPF9

TEF

(a) Absolute Errors

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  5  10  15  20  25  30

A
vg

. R
el

. E
rr

or
 in

 K
1

Trial Number

DF1.00
DF3.00
DF5.00

DF10.00
BS2
BS3
BS4
BS5

OPF3
OPF5
OPF7
OPF9

TEF

(b) Relative Errors
Figure 4: Error levels in κ1 on noise-added Spheres
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Figure 5: Error levels in κ1 on noise-added Genus3

case. OPF9 is best followed by OPF7 and OPF5. Again,
either BS4 or BS5 is next most accurate. Fig. 5(b) shows
relative errors for the same volumes.

Again, due to space constraints, only results for κ1 are
shown, but relative performances are similar for κ2 and
κ3. Due to the fact that κ3 is the smallest of the curva-
tures, though, its relative error tends to be larger. For
κ2, the average absolute error across all the rotations
is about 0.0002 for OPF9, about 0.1 for DF2.00, about
0.01 for BS5, and about 0.07 for TEF. For κ3, the aver-
age absolute error across all the rotations is about 0.0005
for OPF9, about 0.03 for DF2.00, about 0.02 for BS5,
and about 0.1 for TEF.

7 CONCLUSION
In this paper we have exhibited a framework for gener-
ating volumes and testing the accuracy of hypersurface
curvature determination methods. In addition, we have
introduced two new methods for determining such cur-
vature. We have also compared these methods against

two existing methods. One of these new methods, BS,
uses B-Splines to estimate derivatives and then these
estimated derivatives are used to determine the three
hypersurface curvatures. The other method, DF, uses
convolution with Deriche filters to estimate derivatives.
In summary, in our tests we found that TEF often ex-
hibits the lowest error levels when no noise is present.
When noise is present, OPF tends to exhibit much lower
error levels than TEF, especially at larger filter sizes
like OPF9. The new BS3 method exhibits competitive
accuracy on noise-free data.
In future works, we plan to introduce additional cur-
vature determination methods and perform evaluations
on a larger number of volumes and a larger number of
parameter settings.
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