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ABSTRACT 

Creating manual annotations in a large number of images is a tedious bottleneck that limits deep learning use in 

many applications. Here, we present a study in which we used the output of a classical image analysis pipeline as 

labels when training a convolutional neural network (CNN). This may not only reduce the time experts spend 

annotating images but it may also lead to an improvement of results when compared to the output from the classical 

pipeline used in training. In our application, i.e., cell nuclei segmentation, we generated the annotations using 

CellProfiler (a tool for developing classical image analysis pipelines for biomedical applications) and trained on 

them a U-Net-based CNN model. The best model achieved a 0.96 dice-coefficient of the segmented Nuclei and a 

0.84 object-wise Jaccard index which was better than the classical method used for generating the annotations by 

0.02 and 0.34, respectively. Our experimental results show that in this application, not only such training is feasible 

but also that the deep learning segmentations are a clear improvement compared to the output from the classical 

pipeline used for generating the annotations. 
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1. INTRODUCTION 

Neural network-based image segmentation and 

classification have made huge progress in the last 

decade. However, the ground truth creation is still a 

major bottleneck for training deep learning models in 

many applications [Lec15a, Xin17a, Gup19a]. Here, 

we propose a simple and efficient way to 

automatically generate training labels for the 

segmentation of cell nuclei – with minimal manual 

interaction. Of course, some data still has to be 

manually annotated to evaluate the automatic label 

generation and the network’s performance. However, 

our approach limits this only to the images in the test 

set as the network is trained entirely on the 

automatically generated labels. Moreover, our deep 

learning (DL) model has shown to substantially 

improve the results compared to the classical image 

analysis pipeline that was used for generating its 

training labels.  

 In Sect. 2, we describe the proposed method and 

neural network design, as well as the dataset that has 

been used for evaluation. In Sect. 3, we describe the 

metrics used for evaluation and present the results of 

the experiment. 

2. METHOD 

2.1 Dataset 

As the application for demonstrating the proposed 

method, we have selected the task of cell nuclei 

segmentation. We used the BBBC039v1 dataset, 

available from the Broad Bioimage Benchmark 

Collection [Cai19a, Ljo12a]. This dataset has a 

manually created ground truth (GT), here only used 

for evaluating the results and not for training. The 

images are 690x520 pixels, and the nuclei typically 

have a diameter between 10 and 50 pixels. An 

example of an image from this dataset is shown in Fig. 

1. For practical reasons, each image was tiled into four 

overlapping tiles of size 512x512 pixels. The tiles 

from the same image were always kept in the same Fig. 1. Raw input image. 
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data partition: training, validation, or test data subset, 

respectively. The initial dataset had 200 images with a 

recommended fixed split of 100-50-50, which resulted 

in 400 image tiles for training, 200 for validation, and 

200 for the test. Before feeding the image tiles to the 

network, we first augmented them with all 

combinations of flipping and multiple 90 degrees 

rotations (this resulted in 8 image tiles from 1; it was 

done only with the training and validation sets and not 

the test set) and then normalized them by subtracting 

the corresponding mean intensity value from each 

augmented image tile and dividing it by the standard 

deviation, which is a standard procedure in deep 

learning.  

2.2 Automatic generation of training 

labels 
We used segmentation results of classical image 

analysis methods as the labels for training our neural 

network model. The segmentations were created using 

the CellProfiler [Mcq18a] module IdentifyPrimary-

Objects with the threshold method ‘Minimum cross-

entropy’ and the default Threshold smoothing 

scale=1.3488 to detect the objects [Sez04a], ‘Shape’ 

as the Method to distinguish clumped objects, and 

‘Intensity’ as the Method to draw dividing lines. The 

object separation in CellProfiler is done using the 

Watershed algorithm [Vin91a]. The difference 

between ‘Shape’ and ‘Intensity’ when distinguishing 

clumped objects is that ‘Shape’ uses the local maxima 

of the distance transform [Bor86a] of the binary 

objects as seeds, whereas ‘Intensity’ uses the local 

maxima of the input image intensities as seeds. The 

separation lines are drawn by the Watershed algorithm 

for the previously defined seeds, based on the distance 

transform for ‘Shape’ or the input image intensities for 

‘Intensity’.  

 We also tried the three other segmentation 

configurations: Shape/Shape, Intensity/Shape, and 

Intensity/Intensity. However, the selected 

Shape/Intensity configuration gave the best results by 

a great margin. In all configurations, we used the same 

10 to 50 pixels interval for the allowed object size 

(diameter). Finally, we tried the consensus between 

different segmentations: a combination of the three 

best segmentation configurations obtained by masking 

out (so that they are ignored during the training of the 

neural network) those cell clusters that did not get the 

same number of objects after the separation. The main 

idea behind it was to purify the training data by 

excluding difficult cases that were most likely 

erroneously labeled. However, this did not improve 

the results with respect to using only the best of the 

segmentation settings (Shape/Intensity), as shown in 

Section 3. 

2.3 Neural network design 
We used a modified U-Net [Ron15a], a fully 

convolutional neural network presented in Fig. 2. 

Following [Mat19a], we reduced the number of 

feature maps in each layer with respect to the original 

U-Net and increased it in the last convolutional block. 

We kept the same depth of the architecture as the 

original U-Net, i.e., 4. However, we added dropout 

layers [Sri14a] after each max-pooling with increasing 

rates: 0.2, 0.25, 0.3, and 0.35, respectively. We used 

zero padding and selu [Kla17a] as the activation 

function in all convolutional layers except the last one 

in which we used softmax. We also used L2 weights 

regularization with l=0.0001 in all convolutional 

layers except the output layer. We optimized the 

models using Adam [Kin14a] with the default 

hyperparameters except for the learning rate which 

was set to 0.00001. To make the training reproducible 

and to reduce the stochastic factors in our comparisons 

of training with different labels, we used the same 

Fig. 2. The U-Net-based deep learning architecture. 
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network architecture and hyper-parameters in all 

models. Moreover, we fixed the random initialization 

seeds of the network weights (we used Glorot normal 

initialization [Glo10a]) in all models as well. As a 

consequence, all models started with the same values 

in the corresponding network weights.  

 We trained the network to assign each pixel in the 

input image to one of the three classes: background 

(BG), nucleus (N), or nuclei separation lines (SL). We 

used a custom loss function λD: the class-weighted 

sum of the log Dice coefficient losses [Mat19a] 

defined by:  

𝜆𝐷(𝒚, �̂�) = −(0.2 log 𝛿𝐵𝐺 + 0.4 log 𝛿𝑁 + 0.4 log 𝛿𝑆𝐿), (1) 

 𝛿𝐶 =
2 ∑ 𝑦𝑖𝑦�̂� + 1

∑ 𝑦𝑖+∑ 𝑦�̂� + 1
, (2) 

where 𝑦 is the ground truth, �̂�  is the segmentation of 

class 𝐶, and δC is the pixel-wise Dice coefficient for 

that class. We trained each model for 50 epochs and 

selected the version with the smallest loss on the 

validation set annotated in the same way as the 

corresponding training set.  

2.4 Post-processing 
To ensure that the resulting division lines separate the 

clumped nuclei, we dilated them with a 3x3 pixel 

square structuring element, merged them with the 

background, and then skeletonized, followed by 

dilating the skeleton by 1 pixel. Finally, we subtracted 

the new divisions from the nuclei mask. Nuclei 

touching the edges of the images were also excluded, 

both in the ground truth and in the segmentations. See 

Fig. 3. 

3. RESULTS 

3.1 Metrics 
As the metrics for comparing our results, we used two 

types of accuracy: 1) the pixel-wise Dice coefficient 

for the nuclei and separation lines before the post-

processing; and 2) the object-wise Jaccard index 𝐽 of 

the segmented nuclei after the post-processing:  

 𝐽 =
|𝑀|

|𝐺|+|𝑅|−|𝑀|
, (3) 

where |𝐺| is the number of nuclei in the ground truth 

(GT), |𝑅| is the number of nuclei in the result, and |𝑀| 
is the number of 1-to-1-matched nuclei between the 

results and the GT. There is a results-GT nucleus 

match if a segmented nucleus has a spatial overlap 

with exactly one nucleus in the GT, and that 

corresponding GT nucleus overlaps with exactly one 

nucleus in the segmentation results. The overlaps were 

computed between eroded (with a 3x3 pixels square 

structuring element) masks to avoid confusion of 

objects near the separation lines. The advantage of this 

metric is that it penalizes the wrong number of objects, 

but tolerates minor pixel differences. On the other 

hand, the Dice score coefficient penalizes wrong 

object boundaries but does not evaluate the number of 

segmented objects. Some applications require 

accurate nuclei counting while others need their 

precise boundary segmentation. As the proposed 

approach is not bound to any particular application, we 

report and compare our results with both metrics.  

3.2 Results 
Tables 1 and 2 present the results of the proposed 

methods evaluated on the test set with the GT (the 

manual annotations of the dataset). We can clearly see 

that adding the DL improved the results compared to 

the classical segmentations that had been used as input 

for its training. The DL results when trained on the 

best of the classical segmentation configurations 

(Shape/Intensity) are not far behind the results when 

training the same network (and with the same hyper-

parameters) on the manual GT. Therefore, we can 

conclude that training on the output of a classical 

segmentation method is a good way to avoid the 

tedious work of creating manual labels for training and 

validation sets. However, the test set still has to be 

fully annotated to allow a proper assessment of the DL 

performance.  

 We can also observe that, contrary to our initial 

expectations, the segmentation consensus gave worse 

results in training DL than the best segmentation 

configuration alone. One possible explanation is that a 

noticeable part of the training data was masked out, 

and thus, the network had to learn how to perform 

segmentation on a smaller number of cells. A smaller, 

less representative training dataset usually leads to 

poorer generalization; and that is what we believe 

happened here. This may lead to the conclusion that it 

is better to include noisy or imprecise annotations 

rather than removing them from the training dataset. 

However, this hypothesis has to be tested in a much 

larger study with multiple datasets, various types, and 

levels of data corruption, and hence, it is outside the 

scope of this paper. 

3.3 Processing Time 
The initial segmentation and the post-processing were 

done in CellProfiler 3.1.9 on a laptop computer (64 

GB RAM, 2.90 GHz Intel® Core™ i7-6920HQ CPU, 

Fig. 3. Post-processing. From left to right: 1) raw 

input image, 2) segmentation results, 3) the cell 

separation lines are dilated and merged with the 

background; the resulting image is then 

skeletonized and dilated, 4) new separation lines 

are subtracted from the nuclei segmentation 

results; the objects touching the image edges are 

removed. 
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Windows 10 64 bit). The initial segmentation took 

about 5s/image and the post-processing took about 

9s/image. These values are if run non-parallel, and 

only including the actual image processing – not 

saving, etc. However, in practice, this is automatically 

parallelized in CellProfiler. The neural network 

training and inference were done on a stationary 

computer (32 GB RAM, 3.30 GHz Intel® Core™ i9-

7900X CPU, NVIDIA GeForce RTX 2060 SUPER 8 

GB GPU, Windows 10 64 bit). Training time: ~ 

43ms/update step, 140s/epoch (3200 image tiles), 

inference time: ~ 12ms/image tile, 2s/test set (200 

image tiles). 

4. CONCLUSION 

We have demonstrated how classical image analysis 

methods can be combined with deep learning not only 

to reduce the tedious work of annotating images but 

also to improve the results offered by the classical 

pipelines. Our results show that it is possible to train a 

successful neural network without using any manually 

annotated ground truth; by using the output of a 

classical segmentation pipeline as training labels 

instead. Moreover, this approach gave a clear 

performance improvement compared to the classical 

methods that were used in generating the training data. 
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Method Nuclei Separations 

DL trained on GT 0.964 0.492 

DL trained on Shape/Intensity 0.958 0.355 

DL trained on Consensus 0.948 0.257 

Classical Shape/Intensity 0.939 0.29 

Table 1. Pixel-wise Dice coefficient before post-

processing. 

Method Jaccard index 

DL trained on GT 0.892 

DL trained on Shape/Intensity 0.838 

DL trained on Consensus 0.805 

Classical Shape/Intensity 0.504 

Classical Intensity/Shape 0.481 

Classical Shape/Shape 0.464 

Classical Intensity/Intensity 0.251 

Table 2. Object-wise Jaccard index after post-

processing. 
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