
Learning Cell Nuclei Segmentation Using Labels
Generated with Classical Image Analysis Methods

Damian J. Matuszewski

Department of Information
Technology, Uppsala University

 Sweden, 75105 Uppsala

damian.matuszewski@it.uu.se

Petter Ranefall

Department of Information Technology,
Uppsala University, and SciLifeLab

BioImage Informatics Facility
 Sweden, 75105 Uppsala

petter.ranefall@it.uu.se

ABSTRACT

Creating manual annotations in a large number of images is a tedious bottleneck that limits deep learning use in

many applications. Here, we present a study in which we used the output of a classical image analysis pipeline as

labels when training a convolutional neural network (CNN). This may not only reduce the time experts spend

annotating images but it may also lead to an improvement of results when compared to the output from the classical

pipeline used in training. In our application, i.e., cell nuclei segmentation, we generated the annotations using

CellProfiler (a tool for developing classical image analysis pipelines for biomedical applications) and trained on

them a U-Net-based CNN model. The best model achieved a 0.96 dice-coefficient of the segmented Nuclei and a

0.84 object-wise Jaccard index which was better than the classical method used for generating the annotations by

0.02 and 0.34, respectively. Our experimental results show that in this application, not only such training is feasible

but also that the deep learning segmentations are a clear improvement compared to the output from the classical

pipeline used for generating the annotations.

Keywords
Deep learning, U-Net, CellProfiler, Data annotation, Microscopy

1. INTRODUCTION

Neural network-based image segmentation and

classification have made huge progress in the last

decade. However, the ground truth creation is still a

major bottleneck for training deep learning models in

many applications [Lec15a, Xin17a, Gup19a]. Here,

we propose a simple and efficient way to

automatically generate training labels for the

segmentation of cell nuclei – with minimal manual

interaction. Of course, some data still has to be

manually annotated to evaluate the automatic label

generation and the network’s performance. However,

our approach limits this only to the images in the test

set as the network is trained entirely on the

automatically generated labels. Moreover, our deep

learning (DL) model has shown to substantially

improve the results compared to the classical image

analysis pipeline that was used for generating its

training labels.

 In Sect. 2, we describe the proposed method and

neural network design, as well as the dataset that has

been used for evaluation. In Sect. 3, we describe the

metrics used for evaluation and present the results of

the experiment.

2. METHOD

2.1 Dataset

As the application for demonstrating the proposed

method, we have selected the task of cell nuclei

segmentation. We used the BBBC039v1 dataset,

available from the Broad Bioimage Benchmark

Collection [Cai19a, Ljo12a]. This dataset has a

manually created ground truth (GT), here only used

for evaluating the results and not for training. The

images are 690x520 pixels, and the nuclei typically

have a diameter between 10 and 50 pixels. An

example of an image from this dataset is shown in Fig.

1. For practical reasons, each image was tiled into four

overlapping tiles of size 512x512 pixels. The tiles

from the same image were always kept in the same Fig. 1. Raw input image.

ISSN 2464-4617 (print)
SSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3101 WSCG 2021 Proceedings

335 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.37

data partition: training, validation, or test data subset,

respectively. The initial dataset had 200 images with a

recommended fixed split of 100-50-50, which resulted

in 400 image tiles for training, 200 for validation, and

200 for the test. Before feeding the image tiles to the

network, we first augmented them with all

combinations of flipping and multiple 90 degrees

rotations (this resulted in 8 image tiles from 1; it was

done only with the training and validation sets and not

the test set) and then normalized them by subtracting

the corresponding mean intensity value from each

augmented image tile and dividing it by the standard

deviation, which is a standard procedure in deep

learning.

2.2 Automatic generation of training

labels
We used segmentation results of classical image

analysis methods as the labels for training our neural

network model. The segmentations were created using

the CellProfiler [Mcq18a] module IdentifyPrimary-

Objects with the threshold method ‘Minimum cross-

entropy’ and the default Threshold smoothing

scale=1.3488 to detect the objects [Sez04a], ‘Shape’

as the Method to distinguish clumped objects, and

‘Intensity’ as the Method to draw dividing lines. The

object separation in CellProfiler is done using the

Watershed algorithm [Vin91a]. The difference

between ‘Shape’ and ‘Intensity’ when distinguishing

clumped objects is that ‘Shape’ uses the local maxima

of the distance transform [Bor86a] of the binary

objects as seeds, whereas ‘Intensity’ uses the local

maxima of the input image intensities as seeds. The

separation lines are drawn by the Watershed algorithm

for the previously defined seeds, based on the distance

transform for ‘Shape’ or the input image intensities for

‘Intensity’.

 We also tried the three other segmentation

configurations: Shape/Shape, Intensity/Shape, and

Intensity/Intensity. However, the selected

Shape/Intensity configuration gave the best results by

a great margin. In all configurations, we used the same

10 to 50 pixels interval for the allowed object size

(diameter). Finally, we tried the consensus between

different segmentations: a combination of the three

best segmentation configurations obtained by masking

out (so that they are ignored during the training of the

neural network) those cell clusters that did not get the

same number of objects after the separation. The main

idea behind it was to purify the training data by

excluding difficult cases that were most likely

erroneously labeled. However, this did not improve

the results with respect to using only the best of the

segmentation settings (Shape/Intensity), as shown in

Section 3.

2.3 Neural network design
We used a modified U-Net [Ron15a], a fully

convolutional neural network presented in Fig. 2.

Following [Mat19a], we reduced the number of

feature maps in each layer with respect to the original

U-Net and increased it in the last convolutional block.

We kept the same depth of the architecture as the

original U-Net, i.e., 4. However, we added dropout

layers [Sri14a] after each max-pooling with increasing

rates: 0.2, 0.25, 0.3, and 0.35, respectively. We used

zero padding and selu [Kla17a] as the activation

function in all convolutional layers except the last one

in which we used softmax. We also used L2 weights

regularization with l=0.0001 in all convolutional

layers except the output layer. We optimized the

models using Adam [Kin14a] with the default

hyperparameters except for the learning rate which

was set to 0.00001. To make the training reproducible

and to reduce the stochastic factors in our comparisons

of training with different labels, we used the same

Fig. 2. The U-Net-based deep learning architecture.

ISSN 2464-4617 (print)
SSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3101 WSCG 2021 Proceedings

336 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.37

network architecture and hyper-parameters in all

models. Moreover, we fixed the random initialization

seeds of the network weights (we used Glorot normal

initialization [Glo10a]) in all models as well. As a

consequence, all models started with the same values

in the corresponding network weights.

 We trained the network to assign each pixel in the

input image to one of the three classes: background

(BG), nucleus (N), or nuclei separation lines (SL). We

used a custom loss function λD: the class-weighted

sum of the log Dice coefficient losses [Mat19a]

defined by:

𝜆𝐷(𝒚, �̂�) = −(0.2 log 𝛿𝐵𝐺 + 0.4 log 𝛿𝑁 + 0.4 log 𝛿𝑆𝐿), (1)

 𝛿𝐶 =
2 ∑ 𝑦𝑖𝑦�̂� + 1

∑ 𝑦𝑖+∑ 𝑦�̂� + 1
, (2)

where 𝑦 is the ground truth, �̂� is the segmentation of

class 𝐶, and δC is the pixel-wise Dice coefficient for

that class. We trained each model for 50 epochs and

selected the version with the smallest loss on the

validation set annotated in the same way as the

corresponding training set.

2.4 Post-processing
To ensure that the resulting division lines separate the

clumped nuclei, we dilated them with a 3x3 pixel

square structuring element, merged them with the

background, and then skeletonized, followed by

dilating the skeleton by 1 pixel. Finally, we subtracted

the new divisions from the nuclei mask. Nuclei

touching the edges of the images were also excluded,

both in the ground truth and in the segmentations. See

Fig. 3.

3. RESULTS

3.1 Metrics
As the metrics for comparing our results, we used two

types of accuracy: 1) the pixel-wise Dice coefficient

for the nuclei and separation lines before the post-

processing; and 2) the object-wise Jaccard index 𝐽 of

the segmented nuclei after the post-processing:

 𝐽 =
|𝑀|

|𝐺|+|𝑅|−|𝑀|
, (3)

where |𝐺| is the number of nuclei in the ground truth

(GT), |𝑅| is the number of nuclei in the result, and |𝑀|
is the number of 1-to-1-matched nuclei between the

results and the GT. There is a results-GT nucleus

match if a segmented nucleus has a spatial overlap

with exactly one nucleus in the GT, and that

corresponding GT nucleus overlaps with exactly one

nucleus in the segmentation results. The overlaps were

computed between eroded (with a 3x3 pixels square

structuring element) masks to avoid confusion of

objects near the separation lines. The advantage of this

metric is that it penalizes the wrong number of objects,

but tolerates minor pixel differences. On the other

hand, the Dice score coefficient penalizes wrong

object boundaries but does not evaluate the number of

segmented objects. Some applications require

accurate nuclei counting while others need their

precise boundary segmentation. As the proposed

approach is not bound to any particular application, we

report and compare our results with both metrics.

3.2 Results
Tables 1 and 2 present the results of the proposed

methods evaluated on the test set with the GT (the

manual annotations of the dataset). We can clearly see

that adding the DL improved the results compared to

the classical segmentations that had been used as input

for its training. The DL results when trained on the

best of the classical segmentation configurations

(Shape/Intensity) are not far behind the results when

training the same network (and with the same hyper-

parameters) on the manual GT. Therefore, we can

conclude that training on the output of a classical

segmentation method is a good way to avoid the

tedious work of creating manual labels for training and

validation sets. However, the test set still has to be

fully annotated to allow a proper assessment of the DL

performance.

 We can also observe that, contrary to our initial

expectations, the segmentation consensus gave worse

results in training DL than the best segmentation

configuration alone. One possible explanation is that a

noticeable part of the training data was masked out,

and thus, the network had to learn how to perform

segmentation on a smaller number of cells. A smaller,

less representative training dataset usually leads to

poorer generalization; and that is what we believe

happened here. This may lead to the conclusion that it

is better to include noisy or imprecise annotations

rather than removing them from the training dataset.

However, this hypothesis has to be tested in a much

larger study with multiple datasets, various types, and

levels of data corruption, and hence, it is outside the

scope of this paper.

3.3 Processing Time
The initial segmentation and the post-processing were

done in CellProfiler 3.1.9 on a laptop computer (64

GB RAM, 2.90 GHz Intel® Core™ i7-6920HQ CPU,

Fig. 3. Post-processing. From left to right: 1) raw

input image, 2) segmentation results, 3) the cell

separation lines are dilated and merged with the

background; the resulting image is then

skeletonized and dilated, 4) new separation lines

are subtracted from the nuclei segmentation

results; the objects touching the image edges are

removed.

ISSN 2464-4617 (print)
SSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3101 WSCG 2021 Proceedings

337 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.37

Windows 10 64 bit). The initial segmentation took

about 5s/image and the post-processing took about

9s/image. These values are if run non-parallel, and

only including the actual image processing – not

saving, etc. However, in practice, this is automatically

parallelized in CellProfiler. The neural network

training and inference were done on a stationary

computer (32 GB RAM, 3.30 GHz Intel® Core™ i9-

7900X CPU, NVIDIA GeForce RTX 2060 SUPER 8

GB GPU, Windows 10 64 bit). Training time: ~

43ms/update step, 140s/epoch (3200 image tiles),

inference time: ~ 12ms/image tile, 2s/test set (200

image tiles).

4. CONCLUSION

We have demonstrated how classical image analysis

methods can be combined with deep learning not only

to reduce the tedious work of annotating images but

also to improve the results offered by the classical

pipelines. Our results show that it is possible to train a

successful neural network without using any manually

annotated ground truth; by using the output of a

classical segmentation pipeline as training labels

instead. Moreover, this approach gave a clear

performance improvement compared to the classical

methods that were used in generating the training data.

5. ACKNOWLEDGEMENTS
DJM received funding from the Swedish e-science initiative

eSSENCE. PR is funded by the Swedish Science for Life

Laboratory (SciLifeLab). The authors have no further

relevant financial or non-financial interests to disclose.

Method Nuclei Separations

DL trained on GT 0.964 0.492

DL trained on Shape/Intensity 0.958 0.355

DL trained on Consensus 0.948 0.257

Classical Shape/Intensity 0.939 0.29

Table 1. Pixel-wise Dice coefficient before post-

processing.

Method Jaccard index

DL trained on GT 0.892

DL trained on Shape/Intensity 0.838

DL trained on Consensus 0.805

Classical Shape/Intensity 0.504

Classical Intensity/Shape 0.481

Classical Shape/Shape 0.464

Classical Intensity/Intensity 0.251

Table 2. Object-wise Jaccard index after post-

processing.

6. REFERENCES
[Bor86a] Borgefors, G. (1986), Distance transformations in

digital images, Comput.vision, Graphics, Image

Processing, 34: pp. 334–371.

[Cai19a] Caicedo, J. C., et al. (2019). Evaluation of Deep

Learning Strategies for Nucleus Segmentation in

Fluorescence Images. Cytometry Part A, 95(9): pp. 952–

965.

[Glo10a] Glorot, X., Bengio, Y. (2010) Understanding the

difficulty of training deep feedforward neural networks.

In Proc. of the 13th International Conference on

Artificial Intelligence and Statistics: pp. 249–256.

[Gup19a] Gupta, A., et al. (2019) Deep learning in image

cytometry: a review. Cytometry Part A, 95(4): pp. 366–

380.

[Kin14a] Kingma, D.P., Ba, J.L. (2014) Adam: A method

for stochastic optimization. In Proc. of the International

Conference on Learning Representations (ICLR),

arXiv:1412.6980

[Kla17a] Klambauer, G., et al. (2017) Self-normalizing

neural networks. Advances in Neural Information

Processing Systems: pp. 971–980.

[Lec15a] LeCun, Y., et al. (2015) Deep learning. Nature,

521(7553): pp. 436–444.

[Ljo12a] Ljosa, V., et al. (2012). Annotated high-throughput

microscopy image sets for validation. Nature Methods,

9, 637.

[Mat19a] Matuszewski, D. J., Sintorn, I.-M. (2019)

Reducing the U-Net size for practical scenarios: Virus

recognition in electron microscopy images. Computer

Methods and Programs in Biomedicine, 178: pp. 21–39.

[Mcq18a] McQuin C., et al. (2018). CellProfiler 3.0: Next-

generation image processing for biology. PLoS Biology,

16(7): e2005970.

[Ron15a] Ronneberger, O., et al. (2015) U-net:

Convolutional networks for biomedical image

segmentation. In Proc. of the International Conference

on Medical Image Computing and Computer-Assisted

Intervention: pp. 234–241.

[Sez04a] Sezgin, M., Sankur, B. (2004), Survey over image

thresholding techniques and quantitative performance

evaluation. Journal of Electronic Imaging, 13(1): pp.

146–165.

[Sri14a] Srivastava, N., et al. (2014) Dropout: a simple way

to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1): pp.1929–1958.

[Vin91a] Vincent, L., Soile, P (1991)., Watersheds in digital

spaces: An efficient algorithm based on immersion

simulations. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(6): 583598.

[Xin17a] Xing, F., et al. (2017) Deep learning in microscopy

image analysis: A survey. IEEE Transactions on Neural

Networks and Learning Systems, 29(10): pp. 4550–4.

ISSN 2464-4617 (print)
SSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3101 WSCG 2021 Proceedings

338 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.37

