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ABSTRACT
Real-time physically based rendering has long been looked at as the holy grail in Computer Graphics. With the
introduction of Nvidia RTX-enabled GPUs family, light transport simulations under real-time constraint started
to look like a reality. This paper presents Lift, an educational framework written in C++ that explores the RTX
hardware pipeline by using the low-level Vulkan API and its Ray Tracing extension, recently made available by
Khronos Group. Furthermore, to accomplish low variance rendered images, we integrated the AI-based denoiser
available from the Nvidia´s OptiX framework. Lift’s development arose primarily in the context of the graduate
3D Programming course taught at Instituto Superior Técnico and Master Theses focused on Real-Time Ray Trac-
ing and provides the foundations for laboratory assignments and projects development. The platform aims to make
easier students to learn and to develop, by programming the shaders of the RT pipeline, their physically-based ren-
dering approaches and to compare them with the built-in progressive unidirectional and bidirectional path tracers.
The GUI allows a user to specify camera settings and navigation speed, to select the input scene as well as the
rendering method, to define the number of samples per pixel and the path length as well as to denoise the generated
image either every frame or just the final frame. Statistics related with the timings, image resolution and total
number of accumulated samples are provided too. Such platform will teach that nowadays physically-accurate
images can be rendered in real-time under different lighting conditions and how well a denoiser can reconstruct
images rendered with just one sample per pixel.
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1 INTRODUCTION
1.1 Motivation
For a long time, Real-Time Ray Tracing has been con-
sidered a far to reach dream where physically-based
rendering would be calculated fast enough so that we
would be able to interact with the scene and perceive
the changes in real-time. Now that Nvidia RTX tech-
nology (Burgess, 2020) is available, the dream has be-
come feasible more than ever before. Typical produc-
tion renderers deal with offline image synthesis by us-
ing a large number of samples per pixel to render the
best-looking image possible. Under time constraint,
even the fastest ray tracers can only trace few rays per
pixel at 1080p and 30Hz. While this number increases
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every few years, the trend is partially countered by the
move towards higher resolution displays and higher re-
fresh rates. It therefore seems likely that a realistic
sampling budget for real-time applications will remain
on the order of a low number of short paths per pixel
which implies that the usage of Monte Carlo integra-
tion of indirect illumination leads to images containing
very high levels of variance. To bridge this gap, recent
research was able to design real-time reconstruction fil-
ters to remove the noise (denoise) from extremely low
sample count images, thus allowing to synthesize noise-
free images at real-time refresh rates (30Hz). These
state-of-the-art denoisers often resort to machine learn-
ing methods like the works of (Chaitanya et al., 2017)
and (Vicini et al., 2019). Over the years, multiple ray-
tracing algorithms have been proposed to physically
simulate the light transport and the interactions with
materials of a scene under different lighting conditions.
Now that it is possible to make these simulations at rates
never seen before, it seems relevant to develop an edu-
cational framework that helps Master students to imple-
ment such algorithms by exploiting the RTX technol-
ogy and by adding a denoising step, and then perform
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a comparison between them to assess both the perfor-
mance and the perceptual image quality.

1.2 Objectives
This paper describes the implementation of the Lift sys-
tem which aims to provide an educational platform that
makes easier students to learn and to program new light
transport algorithms into a Vulkan RT-based working
pipeline. Lift additionally provides a set of settings
and statistics in order to facilitate the comparison of
the students’ programs with the built-in Monte Carlo al-
gorithms, namely Path Tracing (PT) and Bidirectional
Path Tracing (BDPT). The implementation of these two
algorithms was leveraged on the graphics card RTX ca-
pabilities through the use of the Ray Tracing extension
for the low-level Vulkan API (Daniel Koch Tobias Hec-
tor and Werness, 2020), recently made available by
Khronos Group.

Furthermore, we integrated an AI-accelerated denoiser
to be used together with both PT and BDPT algo-
rithms.This denoiser is available in Optix (Parker et al.,
2010), a programmable general-purpose ray tracing
framework. The purpose was to create a platform that
allows not only to achieve, in real-time, high-quality
images with just one sample per pixel but also to
check whether it is worth investing in more complex
raytracing algorithms, like the BDPT algorithm,
when compared to the unidirectional path tracer with
denoiser.

Since OptiX’s denoiser was our choice, we could
use this API also to develop the internal RT working
pipeline. However, one of the requisites of the 3D
Programming Master course at Instituto Superior
Técnico (IST) is to teach the Vulkan low level API and
since its RTX extension was made available this year
we decided to use Vulkan in the Lift framework. The
development of the prototype was technically challeng-
ing because we had to build the Vulkan interoperability
with the OptiX framework.

Summarizing, Lift is an educational framework that
will help advanced students to learn and to tackle the
following state-of-the-art questions:

• Can Ray Tracing algorithms render in real-time
physically-accurate images, under different lighting
conditions?

• How well a denoiser behaves in reconstructing im-
ages rendered with one sample per pixel?

• Is it worth investing on complex light transport algo-
rithms over the simple path tracer with denoising?

In order to check if Lift was robust enough to address
properly the above questions, we gathered data from

Figure 1: Lift: the graphical interface

Figure 2: Tool’s GUI zoom in

multiple scenes rendered with both algorithms, PT and
BDPT, with image denoising feature enabled and dis-
abled. Then, we compared both performance and im-
age quality results. This evaluation is described in the
paper too.

2 LIFT IMPLEMENTATION
2.1 Overview
The prototype was designed around a rendering ar-
chitecture with progressive refinement that allows the
choice of one of the two light transport techniques, the
selection of the input scene and the enabling of a fea-
ture to denoise the generated image either every frame
or just the final frame. Concerning the final frame of
the progressive rendering, the platform’s GUI allows
the user to set either a target number of accumulated
samples or a desired rendering’s elapsed time. Statis-
tics related with the timings, image resolution and total
number of accumulated samples are provided too. Fig-
ures 1 and 2 show the tool’s graphical interface with the
following configuration settings: path tracer selected,
denoiser disabled, 1 sample per pixel (spp), 32 bounces
for the maximum path length and the rendering target
defined as 30 seconds elapsed time.

The denoising step is performed by the graphics card
CUDA cores exposed via the Optix framework. Op-
tiX provides a function that takes as input noisy images
generated by light transport algorithms with a small
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Figure 3: Architecture of the recurrent auto-encoder
used in the OptiX denoiser (Chaitanya et al., 2017)

Figure 4: Vulkan’s Ray Tracing Pipeline

number of samples and displays images with much
higher quality, resembling images generated with many
more samples.The denoiser is based on the work of
(Chaitanya et al., 2017) which uses a variation of a deep
convolutional network, namely the Recurrent Neural
Network represented in Figure 3. The network archi-
tecture includes distinct encoder and decoder stages
that operate on decreasing and increasing spatial res-
olutions, respectively. A recurrent block is placed at
every encoding stage. Each recurrent block consists of
three convolution layers with a 3 × 3-pixel spatial sup-
port. One layer processes the input features from the
previous layer of the encoder. It then concatenates the
results with the features from the previous hidden state,
and passes it through two remaining convolution layers.
The result becomes both the new hidden state and the
output of the recurrent block.

2.2 Vulkan ray tracing pipeline
In order to render images by using Vulkan’s Ray Trac-
ing Pipeline, firstly it is necessary to setup up the way
the Acceleration Structures (AS) are laid out in the De-
vice Memory. Secondly, these structures should be
loaded with the geometry of the scene. Finally, it would
be also needed to perform their update configuration in
order to support dynamic scenes which is not our case.
The pipeline behaviour depends on the GLSL coding of
a set of shaders: Ray Generation, Intersection, Hit, and
Miss shaders. The relationship between these shaders
(green blocks) is depicted in Figure 4.

Ray Generation shaders are the entry point of the ray
tracing process: they are executed for each pixel on a
multi-threaded 2D grid. This shader typically initializes
a ray starting at the location of the camera and in a di-
rection given by evaluating the camera lens model at the
pixel location. It will then cast the rays into the scene.
Other shaders below it will process further events, and
return their result to the Ray Generation shader through
the ray payload record. Finally, it will write the algo-
rithm’s output to memory, e.g., the screen or a texture.
Two Ray Generation shaders were coded regarding both
PT and BDPT algorithms. These two shaders are de-
tailed in the next subsection.

Intersection shaders are used to implement ray-
primitive intersection algorithms, other than ray-
triangle intersections which have built-in support.This
provides flexibility by allowing scenes with custom
primitives like hair or spheres. An Intersection shader
was programmed to support the classical optimized
sphere-ray intersection algorithm (Akenine-Moller
et al., 2018).

There are two types of Hit shaders in Vulkan: one is op-
tional and is named Any Hit, the other is called Closest
Hit. An Any Hit shader is run every time any inter-
section is found. The Closest Hit shader is called only
for the closest intersection. A typical usage for an Any
Hit shader is related with alpha testing: if the ray hits a
transparent point then the intersection will be discarded
and the traversal continues with that ray.

We didn’t use the Any Hit shaders and our Closest Hit
shaders are just responsible for creating the ray payload
record which stores both the geometry and material in-
formation of the intersected primitive. This record is
then sent back to the Ray Generation shader.

Miss shaders are called when a ray fails to intersect with
any geometry in the scene. These shaders typically re-
turn the scene’s background color or a texel from an
environment map.

2.3 Ray Generation shaders
Two Ray Generation shaders were GLSL coded regard-
ing both PT and BDPT algorithms and are described
below.

2.3.1 Path Tracing

With Path Tracing the color of a pixel is computed by
the averaged sum of all the paths starting from that pixel
and eventually hit an emissive object. The number of
paths per pixel is defined by the number of samples per
pixel (spp). Progressive refinement allows the user to
start rendering and to watch the image as its quality
improves and stop the process once satisfied. To ac-
complish progressive refinement on the displayed im-
age frame, each current pixel color is accumulated with
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the contribution from previous frames and then submit-
ted to post-processing effects, like exposure, tone map-
ping, and gamma correction before to be stored in a tex-
ture. The PT Ray Generation shader can be represented
by the following pseudo-code:

void main() {
vec3 pixel_color = vec3(0);
for(int s = 0; s < number_of_samples; s++)
{

origin = pixel + random_offset();
pixel_color += traceEyePath(origin,direction);

}
pixel_color /= number_of_samples;
accumulateWithPreviousFrames(pixel_color);
applyPostProcessing(pixel_color);
storePixel(pixel_color);

}

The contribution of a path is calculated by the function
traceEyePath, which starts a path based on both origin
and direction data inputs. Importance sampling, Next
Event Estimation (NEE) and Russian Roulette tech-
niques were deployed in its implementation. At the
closest intersection, it’s firstly checked if the material
is emissive resulting, in that case, the termination of the
path and the return of the emissive color. Otherwise, the
Bidirectional Scattering Distribution Function (BSDF)
of the material is importance sampled in order to calcu-
late the direction of the path’s next bounce. Then, the
NEE is implemented by shooting a shadow ray from
the current intersection towards an importance sampled
point in a luminary or emissive object. In terms of
luminaries, area lights are supported in our prototype.
If there is no intersection, it means that the hit point
is directly illuminated and therefore a contribution is
added to that path. This contribution is weighted by
the reciprocal of the probability density function (pdf)
of the chosen luminary importance sampling operation.
Finally, further extending of the current path is deter-
mined by the Russian Roulette Termination method.
Russian roulette allows us to randomly stop comput-
ing terms in a sum as long as we reweight the terms
that are not terminated. This implies the definition of a
termination probability q based on the path throughput
weight.Thus, the contributions of the surviving bounces
will be increased by a factor 1/q in order to compen-
sate the terminated bounces. The code of the function
traceEyePath is listed below:

vec3 traceEyePath(vec3 origin, vec3 direction) {
vec3 color = vec3(0);
for(int bounce=0;bounce < path_length;bounce++){

traceRay(scene, origin, direction);
if (Hit is Emissive)

return color * emissive;
sampleBSDF();
if (Ray missed) return env_color;

//Next event estimation
bool in_shadow = traceShadowRay();
if (not in_shadow)

color += material_clr / pdf;
russian_roulette_termination();

}
return color;

}

2.3.2 Bidirectional Path Tracing
When compared to the Path Tracing algorithm, BDPT
traces paths from the luminaries in addition to paths
from the camera and connects the paths with shadow
rays. The BDPT Ray Generation shader is similar to
the PT one. The main difference consists of tracing,
in first place, the light paths from the luminaries and
performing a random walk into the scene. At each in-
tersection, it is recorded the vertex position, the mate-
rial as well as the pdf associated with the sampling of
the material’s BSDF function to determine the direc-
tion of the light path’s next bounce. Next step consists
of tracing the camera paths. And finally, at each ver-
tex of a camera path, we connect it to all the vertices
of a light path by using shadow rays: if no object is
occluding the two vertices, the weight of this edge is
properly computed with Multiple Importance Sampling
(MIS) technique by using the balance heuristic estima-
tor from (Veach and Guibas, 1995), and divided by the
corresponding pdf. The pseudo-code for the BDPT Ray
Generation shader is listed below.

void main() {
vec3 pixel_color = vec3(0);
for(int s = 0; s < number_of_samples; s++)
{

origin = pixel + random_offset();
buildLightPath();
pixel_color += traceEyePath(origin,direction);

}
pixel_color /= number_of_samples;
accumulateWithPreviousFrames(pixel_color);
applyPostProcessing(pixel_color);
storePixel(pixel_color);

}

The function buildLightpath builds the light paths from
the luminaries which will be used in the traceEyePath
function to combine with the eye paths, as listed below:

vec3 traceEyePath(vec3 origin, vec3 direction) {
vec3 color = vec3(0);
for(int bounce=0;bounce < path_length;bounce++){

traceRay(scene, origin, direction);
if (Hit is Emissive)

return color * emissive;
sampleBSDF();
if (Ray missed) return env_color;
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for (int l = 0; l < LIGHTPATHLENGTH; l++) {
bool in_shadow=traceShadowRay(light_paths[l]);
if (not in_shadow)

color += material_clr / pdf / MIS weight;
}
russian_roulette_termination();

}
return color;

}

2.4 OptiX - Vulkan interoperability
The denoiser uses Cuda and rendering is done with
Vulkan. The OptiX – Vulkan interoperability was built
through image sharing buffers with semaphore synchro-
nization.

The OptiX denoiser is using Cuda, so the rendered im-
age will need to be shared between Vulkan and Cuda.
The denoiser actually requires linear images, which are
not available to Vulkan. So instead of directly sharing
the images, we create buffers which are shared between
Vulkan and Cuda and we copy the images to the buffers,
converting them to linear images.

A semaphore strategy was used to tackle the problem
of synchronization between denoising and rendering
tasks. We use a Vulkan timeline semaphore to sig-
nal when the ray traced image is rendered and trans-
ferred to the buffer and a Cuda wait semaphore to hold
the execution of the denoiser on the GPU. We add
the inverse process at the end of the denoiser with a
Cuda semaphore signaling the image is denoised and
on Vulkan a wait semaphore to copy the buffer back to
an image, tonemap it and display.

3 EVALUATION AND RESULTS
3.1 Testing Methodology
The evaluation of Lift tool was performed by using a
set of scenes with different types of BSDFs in different
lighting conditions in order to encompass a diversity of
optical effects simulation like specular and glossy re-
flections/refractions, color bleeding or caustics reflec-
tions. The used scenes are illustrated in Figures 5, 6, 7
and 8 which were rendered in our prototype.

The Teapot Cornell Box is a simple scene with few
primitives, featuring the classic Cornell Box with a
teapot and showcasing different types of materials such
as diffuse, glass, and colored metal.This way, optical
effects like color bleeding, glossy reflection and refrac-
tion as well as caustics can be tested. The Covered
Dragon scene includes the same classic Cornell Box
too but we added a rectangular area to cover the ceiling
luminary in order to make it difficult to reach. To raise
the scene’s geometric complexity, the known Standford
Dragon, with approximately 5,500,000 triangles and

Figure 5: Teapot Cornell Box

Figure 6: Covered Dragon

Figure 7: Breakfast Room (Bitterli, 2016)

Figure 8: Japanese Classroom (Bitterli, 2016)
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a sphere were added. The Breakfast Room (Bitterli,
2016) scene features multiple different geometries and
includes a lightsource placed outside the room which is
illuminated through a window with blinders. Finally,
we chose the Japanese Classroom (Bitterli, 2016), a
commonly used scene to benchmark ray tracing appli-
cations and denoisers.

Both qualitative and quantitative metrics were used
to benchmark the PT and BDPT algorithms. Regard-
ing the qualitative metric to make the final image
quality assessment, Structural Similarity Index Metric
(SSIM) (Zhou Wang et al., 2004) is the preferred
method for Monte Carlo rendered images (Whit-
tle et al., 2017). We used a tool that computes
(dis)similarity (DSSIM) between two or more PNG
images using the SSIM algorithm at multiple weighed
resolutions (Kornelski, 2020). The returned value is
1/SSIM−1, where 0 value means identical image, and
> 0 (unbounded) represents the amount of difference.

The rendering experiments in both ray tracing algo-
rithms were conducted with progressive refinement by
tracing into the scene, in each frame, a single random
walk per pixel (1 spp) with a maximum path length of
32 bounces. The ground truth images used in the per-
ceptual image quality assessment (Figures 5, 6, 7 and
8) were generated with the above settings and addition-
ally with the target rendering´s elapsed time set to 90
minutes.

The specifications of the testing computer machine
were a AMD Ryzen 7 2700 8-Core CPU with a base
clock frequency of 3.2GHz and 16GB of DDR4 RAM,
and an NVIDIA GeForce RTX 2070 GPU with 8GB of
GDDR6.

3.2 RESULTS
3.2.1 Performance

The performance of both ray tracing algorithms, PT and
BDPT, was measured. The chart depicted in Figure 9
exhibits the average frames per second (fps) reached by
each algorithm taking into account the time to render a
frame. Consult Table 1 for more figures at different res-
olutions. At 1920x1080 resolution, Path tracing easily
accomplished real-time rates in every benchmark scene.
As far as it concerns to the BDPT, despite of its algorith-
mic complexity and consequently lower performance
figures, it was also capable to sustain real-time fram-
erates on the testing scenes. The worst performance
scenario occurred with the Japanese Classroom scene
where BDPT only performed at 19 fps.

The Table 2 exhibits the time spent on denoising a sin-
gle frame. We verified that the duration of the denois-
ing operation is independent of both the scene and the
ray tracing algorithm being only affected by the im-
age resolution. Mostly important, real-time framerates

Figure 9: Average Frame Rate on 1920x1080 Resolution

Frame Duration [ms]
PT BDPT

Teapot Cornell Box
1280x720 2.3 9.6

Covered Dragon
1280x720 4.6 11.3

Breakfast Room
1280x720 2.9 8.5

Japanese Classroom
1280x720 9.3 22.2

Teapot Cornell Box
1920x1080 4.8 20.8

Covered Dragon
1920x1080 9.5 24.4

Breakfast Room
1920x1080 6.3 18.6

Japanese Classroom
1920x1080 20.2 52.4

Table 1: Frame Rendering times

were always accomplished by using the denoiser with
PT algorithm and sometimes with the BDPT approach.
For instance, consulting Table 1, the worst performance
of PT algorithm occurred with the Japanese Classroom
scene where the rendering of a 1920x1080 frame reso-
lution took 20.2 milliseconds. By enabling the denoiser
every frame we got 29 fps which is consistent with the
duration of 14.5 milliseconds for the denoising step.

The downloaded supplemental material includes a
video sequence with an animation of the movement of
the camera in several scenes.

Image Resolution 1280x720 1920x1080
Denoiser Duration [ms] 7.5 14.5

Table 2: Denoiser working times

It is worth mentioning that we were able to run in Lift
platform both light transport algorithms exceeding real-
time rates at 1920x1080 resolution, as long as we kept
a single random walk per pixel every frame. For in-
stance, in the Japanese Classroom scene, by running
PT algorithm with 16 spp and keeping 32 as the max
path length, we achieved only 0.5 fps.
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Figure 10: "Covered Dragon" image rendering after
5 seconds - Left: PT with 601 accumulated frames;
Right: BDPT with 210 accumulated frames

3.2.2 Perceptual Image Quality Assessment

Visual inspection and convergence rates analysis were
the main strategies to benchmark the perceptual qual-
ity. The progressive refinement feature allows the user
to watch the image rendering as its quality improves
and converges to the corresponding ground truth im-
age. Thus, the temporal evolution of the DSSIM metric
defines the convergence rate.

Firstly, we used visual inspection to compare both
BDPT and PT algorithms without denoising. As
expected, due to its algorithmic complexity, for the
same rendering elapsed time, we got higher noisy
BDPT rendered images than with PT for all scenes
except for the Covered Dragon scene. As explained
before, indirect illumination predominates in this scene
since the luminary is covered. Thus, BDPT excels
due to the combination of eye paths with light paths.
Figure 10 depicts the rendered image after 5 seconds
for both algorithms. We can notice that BDPT even
with a lower number of accumulated samples per pixel
(210 versus 601) performed better than PT algorithm.

Secondly, we analyzed how the application of the re-
construction (denoising) step affects the image qual-
ity for both light transport algorithms. This class of
experiments was performed by setting the target ren-
dering´s elapsed time to 16 milliseconds. The Fig-
ure 11 exhibits the final image frame after rendering
the Japanese Classroom scene with PT algorithm dur-
ing 16ms. This image rendering implied the accumu-
lation of 8 frames, meaning that every pixel just re-
ceived a contribution of 8 paths with a maximum of 32
bounces length each. Due to this low sample count, a
significant amount of variance can be perceived in the
image. Then, we repeated the experiment but now with
the BDPT algorithm and the result is represented in Fig-
ure 12. It’s noticeable the higher variance in the im-
age due to the fact that, with 16ms elapsed rendering
time, only 4 samples were accumulated for every pixel.
Lastly, we ran again the PT algorithm but now with the
denoiser set to remove the noise just in the final frame.
This image frame is illustrated in Figure 13 and the very
low level of variance is immediately evident when com-

Figure 11: "Japanese Classroom" image rendering with
PT algorithm after 16 milliseconds: 8 accumulated
samples per pixel

Figure 12: "Japanese Classroom" image rendering with
BDPT algorithm after 16 milliseconds: 4 accumulated
samples per pixel

Figure 13: "Japanese Classroom" image rendering with
PT w/Denoiser after 30.5 milliseconds - 8 accumulated
samples per pixel

pared with the previously performed experiments. As
already mentioned before, enabling the denoising step
to clean the final frame implied to extend the elapsed
rendering time of 14.5 milliseconds. Figure 14 reveals
a side by side comparison of these images.

And finally we analyzed the convergence rates. The
charts depicted in Figures 15, 16 and 17 exhibit the
temporal evolution of the DSSIM metric for the Cov-
ered Dragon, Breakfast Room and Japanese Classroom
benchmark scenes, i.e. how the rendered image quality
progressively increases by accumulating samples per
pixel. To conduct these experiments, we set 16384 for
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Figure 14: "Japanese Classroom" - Side by Side compar-
ison rendered in 16 milliseconds. Path Tracing (Top-
Left), Bidirectional Path Tracing (Top-Right), Path
Tracing Denoised (Bottom)

Figure 15: "Covered Dragon" - Top: DSSIM temporal
evolution when accumulating 16384 frames; Bottom:
Zoom in for the first 3s

the total number of accumulated frames as the render-
ing target.

As first observation, regardless of whether denoising
operation is enabled, both light transport approaches
converged to the ground truth images. This is confirmed
by the decreasing trajectory of DSSIM metric over time
until it gets close to 0.

A second observation, with the denoiser disabled, con-
cerns the worst performance of BDPT algorithm com-
pared to the unidirectional path tracer except for the
Covered Dragon scene which confirmed the previous
assessment done in Figure 10 with visual inspection.
Looking at Figure 15 we verify that BDPT performs
slightly better that PT algorithm.

As final observation, these charts clearly demonstrate
that, with the denoiser enabled, the unidirectional path
tracer, in all scenes, converged much faster to the corre-
sponding reference images. Still with the denoiser on,

Figure 16: "Breakfast Room" - Top: DSSIM temporal
evolution when accumulating 16384 frames; Bottom:
Zoom in for the first 3s

Figure 17: "Japanese Classroom" - Top: DSSIM tem-
poral evolution when accumulating 16384 frames; Bot-
tom: Zoom in for the first 3s

we verified that BDPT, in general, performed equally or
slightly worse than PT technique.

Regarding the usage of the AI-accelerated OptiX de-
noiser in animation, we can notice in the video se-
quence, included in the supplemental material, the ex-
istence of flicker artifacts when the denoising opera-
tion occurs while the camera is moving. Several ex-
periments lead us to conclude that this denoiser can be
used for animation. However it still requires high sam-
ple counts for good results. With low sample counts,
low frequency (blurry) noise can be visible in animation
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frames, even if it not becomes immediately apparent in
still images.

Thus, the evaluation of the two light transport algo-
rithms in both metrics, performance and image qual-
ity, seems to indicate that, with this type of benchmark
scenes, it is not worth investing in the more complex
BDPT approach, because we are able to get better or
similar results by using the unidirectional path tracer
with denoiser.

4 TEACHING WITH LIFT
The need to develop Lift, an educational RT platform
with an AI-Accelerated Denoiser, arose primarily in the
context of the 3D Programming course taught at In-
stituto Superior Técnico (IST) and Master Theses fo-
cused on physically-based rendering. Developing a de-
cent code base for the student projects or theses with
Vulkan that could be quickly picked up was really a
problem; students typically come from slightly differ-
ent undergraduate studies and one could not expect the
same level of competence in a programming language
like C++, let alone delve into the details of the currently
available ray tracing Vulkan API.

4.1 3D Programming Course
In our graduate course, 3D Programming, we supple-
ment the theoretical lectures with 12 weekly one and
half-hour laboratory sessions. Eight lab sessions are
devoted to the Ray Tracing topic and include the use of
Lift platform to solve the required exercises. The last
four sessions regard the use of Unity3D for application
development.

In the respective 8 lab classes, the students use Lift
pipeline to develop two assignments which will be eval-
uated. In the first assignment the students should imple-
ment the Distribution ray tracer with support for glossy
reflections/refractions, motion-blur and depth-of-field
effects. In the second one, the students extend their
ray-tracer from the previous assignment to get a Path
Tracer and integrate it with the denoiser provided by
Lift. Then, by using a set of benchmark scenes as
well as their own scenes, the students should perform
a comparison of their solutions with the built-in PT and
BDPT, to assess both the performance and the percep-
tual image quality. In the end, the students will learn
that nowadays physically-accurate images can be ren-
dered in real-time under different lighting conditions
and how well a denoiser can reconstruct images ren-
dered with just one sample per pixel.

4.2 Master Theses
The preliminary results accomplished with Lift plat-
form seem to favour PT with AI-accelerated Denoiser
over BDPT as the best approach to obtain the highest

image quality in the shortest amount of time. How-
ever, other complex ray tracing algorithms may still be
able to outperform the path tracer under challenging
lighting scenarios. With the Lift tool, students doing
their Theses around physically-based rendering have
all the programming foundations to fully answer to the
question if is it worth investing on more complex al-
gorithms, namely to perform further testing with other
candidates like photon mapping-based techniques. Ver-
tex Connection and Merging (VCM) and Unified Path
Sampling (UPS) are effectively identical techniques in-
dependently developed by (Georgiev et al., 2012) and
(Hachisuka et al., 2012), respectively. VCM/UPS com-
bines bidirectional path tracing and progressive photon
mapping, and is particularly advantageous for specular-
diffuse paths and specular-diffuse-specular paths (i.e.
caustics and specular reflections of caustics). We have
currently four master students implementing over Lift
platform the UPBP (unified points, beams, and paths)
algorithm by (Křivánek et al., 2014) which is a general-
ization of VCM to volumes. It is particularly suitable
for rendering volume caustics and reflections of vol-
ume caustics. Their method uses both point and beam
lookups, and combines the results with Multiple Impor-
tance Sampling (MIS).

The Metropolis Light Transport-based approaches,
originally proposed by (Veach and Guibas, 1997),
would initially be off our radar because, in general
terms, they can be seen as an extension of the bidi-
rectional path tracer: instead of constantly creating
new paths from scratch, paths are mutated into new
ones. Anyway, two students are currently finalizing the
evaluation of a MLT implementation over Lift and the
preliminary results seem to indicate a slightly better
behaviour when compared with BDPT.

5 CONCLUSIONS
In order to allow Master students, in the context of the
3D Programming course or their Theses, to address the
current Real Time Ray Tracing questions formulated in
section 1.2, the main objective was to build successfully
an educational RT platform with an AI-Accelerated De-
noiser. With Lift, we have shown to be able to ac-
complish interactive low-variance stochastic ray trac-
ing. By using our prototype, the students will learn that
nowadays physically-accurate images can be rendered
in real-time under different lighting conditions and how
well a denoiser can reconstruct images rendered with
just one sample per pixel. In fact, with Lift they are able
to run both light transport algorithms, PT and BDPT, in
different lighting conditions exceeding real-time rates
at 1920x1080 resolution, as long as we kept a single
random walk per pixel every frame. We verified that
the denoiser penalized the algorithms’ performance by
introducing a fixed reduction factor but it did not pre-
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vent to achieve real-time framerates. Anyhow, this is-
sue was largely compensated by the huge image qual-
ity improvements provided by the reconstruction filter.
The OptiX denoiser revealed to own a remarkable be-
havior in reconstructing images rendered with just one
sample per pixel. Its main drawback was the observa-
tion of flicker artifacts when the denoising operation oc-
curs while the camera is moving. This means, that for
animations, the filter is not spatio-temporal stable and
our future roadmap includes its replacement by (Vicini
et al., 2019) approach.

Resources: The source code repository on github is
available at (Soares, 2020). The downloaded supple-
mental material includes a video sequence with an
animation of the movement of the camera in several
scenes.
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