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ABSTRACT
Elevators, a vital means for urban transportation, are generally lacking proper emergency call systems besides
an emergency button. In the case of unconscious or otherwise incapacitated passengers this can lead to lethal
situations. A camera-based surveillance system with AI-based alerts utilizing an elevator state machine can help
passengers unable to initiate an emergency call. In this research work, the applicability of RGB-D images as
input for instance segmentation in the highly reflective environment of an elevator cabin is evaluated. For object
segmentation, a Region-based Convolution Neural Network (R-CNN) deep learning model is adapted to use depth
input data besides RGB by applying transfer learning, hyperparameter optimization and re-training on a newly
prepared elevator image dataset. Evaluations prove that with the chosen strategy, the accuracy of R-CNN instance
segmentation is applicable on RGB-D data, thereby resolving lack of image quality in the noise affected and
reflective elevator cabins. The mean average precision (mAP) of 0.753 is increased to 0.768 after the incorporation
of additional depth data and with additional FuseNet-FPN backbone on RGB-D the mAP is further increased to
0.794. With the proposed instance segmentation model, reliable elevator surveillance becomes feasible as first
prototypes and on-road tests proof.
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1 INTRODUCTION
Elevators are an essential part of modern urban life to
enable accessibility in buildings with multiple stories.
In Austria, public buildings with more than one story
require an integrated elevator system, equipped with an
emergency button to establish a call center voice con-
nection with minimal effort [Nat06a, Mos18a]. These
emergency buttons show a key drawback. When the
person in need of help is no longer able to push the but-
ton, e.g. an elderly person has fallen and can’t get up,
or a person has fallen unconscious. Thus, a viable de-
mand for camera-driven and preferably fully-automated
emergency detection arises.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In the context of an industry-oriented project, research
on the algorithmic and technological foundation for a
reliable and automated emergency system is being con-
ducted. With the camera systems mounted in corners of
the elevator cabin, unorthodox views on the passengers
arise. This point of view is rarely trained in current deep
learning (DL) models for instance segmentation. Fur-
thermore, the generally metallic and thus highly reflec-
tive nature of the elevator cabins presents a significant
challenge for the task of analysing RGB video feed.
The research questions are:

• Can depth information be used to improve the per-
formance of instance segmentation in highly reflec-
tive and noisy elevator environments?

• Does incorporation of depth data generally increase
the performance of instance segmentation?

• Can the use of a FuseNet-FPN as a backbone net-
work together with transfer learning and hyperpa-
rameter optimization improve the performance of
Mask R-CNN adapting to RGB-D?
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1.1 State of the Art
Instance segmentation, i.e. the detection of all pixels
belonging to a specific class instance, is a highly chal-
lenging and relevant task in computer vision that has
been a focus in research since the very first days of dig-
ital imaging. With the use of static camera systems, ob-
ject segmentation is achievable from background mod-
elling to calculate a difference image from the actual
frame [Wu10a] with local intensity variance, motion
and overlapping color spectrum hardening practical ap-
plicability. In the past, the focus was laid on semi-
automated single-feature approaches such as flood-fill
[Gon01a, Gom07a] incorporating the image intensities
or Live-Wire [Bar97a] contour tracing based on the im-
age edges. With Grab Cut a highly relevant tool for
instance segmentation on RGB images was introduced,
reducing the demand for user-interaction to zero in op-
timal scenarios [Rot04a, Tan15a].

Incorporating the expected object shape besides the
image characteristics, as proposed for active shape
[Gin02a] and active appearance models [Coo01a],
allowed advances e.g. in the field of face detection and
instance segmentation in general. Thus, knowing the
statistical shape of the target structure, segmentation
can be implicitly defined as registration problem
[Xia16a, All18a]. With registration strategies, deep
learning (DL) and frame-to-frame propagation, nowa-
days instance segmentation in RGB video sequences
become feasible as object-tracking tasks [Hou19a].

To date, with the evolution of hardware and availabil-
ity of machine learning frameworks, instance segmen-
tation is generally considered as a machine learning
topic. With more and more hidden layers introduced
and the availability of training datasets and pre-trained
models, convolutional neural networks became the gold
standard in segmentation and classification. A broad
range of published network types is available and ap-
plicable for various input data and application domains.
With the progression of recurrent networks [Rum87a]
allowing to construct a spatio-temporal memory of the
processed input sequence, cf. long-short-term-memory
(LSTM) [Hoc97a], significant advances in optical char-
acter recognition (OCR) and video processing in gen-
eral have been possible [Sab18a].

For the task of image instance segmentation on visual
input data, a broad range of different network types
have been published in the past. With larger network
structures increasing the number of hidden layers, ap-
plication of simple layer-wise back-propagation leads
to the so called vanishing gradient problem, i.e. up-
date influence becomes marginal for the lower layers.
This problem is counteracted by He et al. present-
ing the Residual Network (ResNet) [He16a] introduc-
ing bypassing of the updates and thus allowing an in-
creased depth of 100+ layers. The common principle of

filter pyramids for instance detection at varying scale
is proposed by Lin et al. with the Feature Pyramid
Networks (FPN) [Lin16a]. While FPN is practical for
detection and classification tasks, pyramid up-scaling
as introduced by Encoder/Decoder pattern of the U-net
[Ron15a] finally features instance segmentation tasks.
Besides using a filter pyramid for multi-resolution ob-
ject localization, the Region Proposal Network (RPN)
[Uij13a, Ren15a] detects objects invariant to translation
and scale together with their bounding box and an ob-
jectness score as confidence metric. The RPN is thereby
introduced by Ren et al. to speed up the R-CNN ini-
tially introduced by Graves et al. [Gra13a] then denoted
as the Faster R-CNN [Ren15a].

The Fully Convolutional Instance-aware Semantic Seg-
mentation (FCIS) introduced by Li et al. [Li16a] ex-
tends the Region-based Fully Convolutional Networks
(R-FCN) introduced by Dai et al. [Dai16a] to perform
instance segmentation besides object location. With the
Mask R-CNN as evolution introduced by He et al. in
2017 [He17a], Faster R-CNN is adapted for instance
segmentation, too. Instead of sliding windows, single-
shot approaches utilize a scale bipyramid as introduced
for TensorMask by Chen [Che19a]. Single-shot ap-
proaches are utilized for Single Shot MultiBox De-
tector (SSD) [Liu15a], RetinaNet [Lin17b] and YOLO
[Red15a] respectively in a similar way, too.

Nevertheless, these approaches for instance detection
and segmentation show high accuracy in case of good
image quality only. With reflections and a bad SNR,
even the sophisticated DL models for image process-
ing often fail [Ahm11a]. Thus, specific pre-processing
is necessitated, e.g. removing the shadows in traffic
surveillance videos [Kil92a] or removing mirror-based
reflections [Chi18a]. To overcome visual noise in im-
age data and to improve accuracy in general, incorpora-
tion of depth data with RGB-D images is an adaequate
strategy [Ye17a].

1.2 Related Work
With RGB-D data provided, Watershed transform
[Beu79a] is applicable onto the varying local depth
profiles leading to a first rough fragmentation of the
scene. These pre-segmented regions can be utilized
as input for semantic classifiers to detect humans and
classify the body pose. As machine learning classifiers,
Support Vectors [Cor95a], Random Forest [Ho95a] and
XGBoost [Che16a] are applied.

Although most of the DL models only consider 3-
channel RGB data as input, some CNNs incorporat-
ing depth data have already been published [Bo13a,
Cou13a]. Thus, to incorporate arbitrary DL models
for instance segmentation, transfer learning [Wei16a] or
hyperparameter optimization [Los16a] are applicable
to re-train the model with data augmentation or GAN
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Figure 1: Pixel-wise standard deviation in the depth im-
ages of a recording of a closed elevator. The frequency
is scaled logarithmically.

synthesis as a potential strategy in case of insufficient
amount of training data in medicine [Zwe20a]. For the
domain of elevator surveillance, lack of data generally
is immanent due to the uncommon perspective.
Depth perception data has already been successfully ap-
plied to detect the doors of an elevator, including the
difference between elevator and outside floor heights
with precision < 20mm and the opening state of the
door as an accurate and generic alternative to mechan-
ical sensor systems in the field of predictive mainte-
nance. This is important for emergencies as this can
mean that the elevator will not move to another floor if
the door is blocked, or that first response help is being
provided in case of a medical emergency [Ign99a].
An attempt has also been made to conduct classification
purely with RGB data, omitting depth information uti-
lizing different methods such as K-Nearest Neighbor,
Support Vector Machine, Random Forest and Neural
Networks. This has been shown to work at detection
success of 92% in non-reflective environments. The
noise introduced by reflections as well as movement of
the elevator, i.e. vibrations also apply to the camera and
greatly reduces the detection rate [Sti99a].

2 MATERIAL
To train the machine learning models we use two
datasets. Since there are no RGB-D datasets containing
samples recorded in highly reflective and noisy elevator
scenes, we introduce the Elevator RGB-D dataset. In
addition we use the SUN RGB-D dataset [Son15a].
The Elevator RGB-D dataset consists of 1138 samples,
where each of these samples is composed of a three-
channel RGB image, a one-channel depth image and
labels. Each label consists of one or more 2D polygons
with a corresponding class label.
The RGB and depth images are derived from 21
recorded RGB-D videos from scenes of humans and

objects in four different elevators. The RGB-D videos
are recorded using the Intel RealSense D-400 RGB-D
camera [Kes17a]. One sample per second of recorded
video is extracted. Samples without a label are removed
from the dataset. The noise in the depth images varies
between each elevator. The majority of the pixels in
a recording have a very minor standard deviation, as
seen in Figure 1. But some pixels in the recording have
a standard deviation of over one meter. This recording
contains RGB-D images of a closed elevator without
changes in lighting conditions.

The depth images are aligned with the RGB image, so
that the position of objects in the depth image corre-
sponds to the position of objects in the RGB image. The
depth image contains values from 0 to 65535, where the
value of a pixel represents the distance from an object
to the camera in millimeters.

The samples of the Elevator RGB-D dataset are
labeled to contain objects of nine different classes
{ human_standing, human_lying, human_sitting,
human_other, object, box, bag, chair, plant}, where
object can be any object that is not a box, bag, chair
or plant. Class human_other describes humans in any
pose different to standing/lying/sitting such as e.g.
crouching or indistinct/unknown poses. Furthermore,
human_standing also includes walking humans, as
long as they are in an upright pose. The number of
objects per class are not distributed evenly, as seen in
Figure 2. The object categories such as bag or box
are utilized to detect potential hazardous objects left
in the elevator cabin, too. Especially at airports static
objects need to be treated as a threat and thus triggering
an emergency. The label with the most occurrences
human_standing is thrice as common as the label with
the second most occurrences. Samples of this dataset
can be seen in Figure 3.

The Elevator RGB-D dataset is inherently biased,
since the RGB-D recordings only contained images
of 10 different male persons with light skin color
wearing various different outfits, also including beards
or glasses. This bias can prevent generalization of
image recognition models trained using this dataset
[Tor11a, Tom15a].

The samples have different sizes, therefore all RGB and
depth images are resized and zero-padded to a size of
512×512. The depth images are normalized to a range
of 0 to 255 using min-max normalization as described
by Patro and Sahu [Pat15a]. Furthermore, to allow pro-
cessing the Mask R-CNN, each of the polygons of the
n labels of a sample is converted to a binary mask per
label. The n masks of a sample are combined to an
n-channel image. Additionally, a n-dimensional vector
with an integer representation c of the class label is de-
rived from the labels with zero encoding background.
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Figure 2: Number of objects per class in the Ele-
vator RGB-D dataset, scaled logarithmically with hu-
man_lying and human_sitting theerby replicating med-
ical emergency situations.

Both the Elevator RGB-D dataset and the SUN RGB-
D dataset are randomly split into three different cate-
gories for training, validation and testing. The SUN
RGB-D dataset has 5285 training samples, 475 valida-
tion samples and 4575 test samples. The Elevator RGB-
D dataset has 797 training samples, 228 validation sam-
ples and 113 test samples, all randomly assigned.

Figure 3: Samples of the Elevator RGB-D dataset. Each
sample consists of an RGB image (left), a depth image
(middle) and labels (right).

3 METHODS
To answer the question, whether depth data can be
used to improve the performance of instance segmen-
tation in highly reflective and noisy elevator environ-
ments, three different approaches of the Mask R-CNN
model [He17a] are compared. The approach RGB uses
solely the three-channel RGB images as input of the
Mask R-CNN, the approach D3 uses the depth image
duplicated over three channels to achieve tensor con-
formity at the cost of redundancy, the approach RGBD
uses a four-channel image consisting of the three chan-
nels of the RGB image and one corresponding depth
channel. These three approaches use a ResNet-FPN
[He16a] as backbone network. In addition to these
three approaches the approach RGBD-F also uses a
four-channel RGB-D image as input, but also uses an
adapted FuseNet-FPN as a backbone network to answer
the question whether this usage can improve the perfor-
mance of Mask R-CNN with RGB-D images in highly
reflective noisy elevator environments.

The adapted FuseNet-FPN consists of the encoder part
of the FuseNet introduced by Hazirbas et al. [Haz16a]
and thus consists of five different stages. The filter ker-
nels have a size of 7× 7 in the first stage and 3× 3 in
the following stages. The ResNet and the FuseNet are
used as a feature pyramid networks (FPN) [Lin17a].

Usually transfer learning using weights of a ResNet-
101 or a ResNet-50 trained with the MS COCO dataset
[Lin14a] is applied to initialize the Mask R-CNN model
[He17a]. But since four different approaches with RGB
and depth information are used and the MS COCO
dataset only contains RGB information, initializing the
weights would undermine the comparability of these
approaches. Therefore, the training procedure consists
of the following three steps:

1. A hyperparameter optimization is performed using
the SUN RGB-D dataset.

2. The models are pre-trained using the optimized hy-
perparameters and the SUN RGB-D dataset.

3. Transfer learning performed by transferring the
weights learned training the models with the SUN
RGB-D dataset and further training the models with
the Elevator RGB-D dataset.

3.1 Hyperparameter Optimization
The approaches differ in input data and backbone ar-
chitecture. Thus, their hyperparameters are optimized
separately. The hyperparameter space consists of the
backbone architecture, the number of regions of inter-
est per image, the minimum detection confidence and
choice of the optimizer.

The backbone architecture determines the kind of CNN
that is used to extract features from the input image.
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The approaches RGB, D3 and RGBD can either use a
ResNet101 with a mini-batch size of 1, a ResNet50 with
a mini-batch size of 1 or a ResNet50 with a mini-batch
size of 2. The backbone architecture of the approach
RGBD-F is a FuseNet that is separated into five differ-
ent stages. The number of filters in each Conv layer for
the five stages ( f1, f2, f3, f4, f5) can be one of the three
different configurations:

( f1, f2, f3, f4, f5) ∈
{(32,32,64,128,256),
(64,64,128,256,512),

(128,128,256,512,1024)}.
(1)

The minimum detection confidence determines whether
regions of interest are considered to be a valid result.
Regions of interest with a class score below the min-
imum detection confidence are discarded. The em-
pirically chosen minimum detection confidence ranges
from 0.6 to 0.8. The maximum number of regions of
interest per image can either be 50, 100 or 200. As op-
timizer either a SGD [Kie52a] with mini-batches and
momentum or an ADAM optimizer [Kin14a] can be
used. In total, the hyperparameter space consists of 54
different configurations.

Tree-structured Parzen Estimators (TPE) [Ber11a]
is used to minimize the total number of evaluations
needed for a use-able result. TPE is a sequential
model-based optimization algorithm (SMBO) com-
monly used to optimize hyper parameters of machine
learning algorithms. TPE searches a minimum in a
surrogate model of the hyperparameter space, which it
evaluates by training a machine learning model with
said minimum as hyperparameter configuration. The
resulting score value is used to adapt the surrogate
model. The number of evaluations per approach is
chosen to be 10. To evaluate a hyperparameter con-
figuration a model is trained for 100 epochs, however
an epoch during hyperparameter optimization is set to
use only 500 samples. Afterwards the sample-wise F1
scores are calculated using all the validation samples.
The mean of these sample-wise F1 scores is used as
metric that the TPE algorithm has to maximize. F1
scores are calculated using the bounding boxes with an
intersection over union (IoU) threshold of 0.5.

3.2 Pre-training
In order to perform transfer learning, the models are
pre-trained using the SUN RGB-D dataset and the op-
timized hyperparameters. One model per approach is
trained for 50 epochs. One epoch during training using
the SUN RGB-D dataset consists of 2643 mini-batches.
After 25 epochs learning rate decay reduces the learn-
ing rate from 0.005 to 0.001. The Region Proposal Net-
work of the Mask R-CNN uses 15 anchor boxes that are
defined with scales s∈ {16,32,64,128,256} and aspect

ratios ar ∈ {0.5,1,2}. The approach RGBD-F uses a
dropout rate of 0.3.

Stochastic Gradient Descent (SGD) [Rob51a] and
Adaptive Moment Estimation (ADAM) [Kin14a] are
optimizers commonly used to train convolutional
neural networks. We used ADAM and SGD as choices
in the hyperparameter optimization. Although ADAM
optimizer produced the best results during the hyper-
parameter optimization, SGD with mini-batch and
momentum is used to train the models, since training
with the ADAM optimizer performs worse on the
validation samples. The ADAM optimizer initially has
a lower validation loss than the SGD optimizer. But the
validation loss of the ADAM optimizer stagnates over
the course of the training, whereas the validation loss
of the SGD optimizer drops, while both training losses
converge towards a minimum, indicating overfitting.

3.3 Transfer Learning and Training
The Elevator RGB-D dataset is only a tenth in size com-
pared to the SUN RGB-D dataset. Therefore, transfer
learning is applied, so that the pre-trained weights can
be reused and the models trained on the Elevator RGB-
D dataset converge towards a minimum faster and pro-
duce better results.

The model weights learned during the pre-training are
reused to initialize the models for the training. For each
approach a model is trained for another 50 epochs us-
ing the SGD optimizer. An epoch during training us-
ing the Elevator RGB-D dataset consists of 399 mini-
batches. Learning rate decay reduces the learning rate
from 0.005 to 0.0001 after 25 epochs.

3.4 Evaluation
The four approaches are evaluated after the training by
calculating the mean average precision, the mean re-
call and the mean F1 score. The mean average preci-
sion (mAP) is calculated as described by Padilla et al.
[Pad20a]. Similar to the mAP, the mean average recall
(mAR) is calculated by averaging the average of the re-
call for each class for each sample. The mean F1 score
is calculated by averaging the sample-wise F1 scores.
The sample-wise F1 score is calculated using the aver-
age precision and the average recall of a sample. Ad-
ditionally a precision-recall curve is calculated for each
approach as described by Padilla et al. [Pad20a]. To
derive these metrics the bounding boxes generated by
the Mask R-CNN, the ground-truth bounding boxes, an
IoU threshold of 0.5 and the test samples of the Elevator
RGB-D dataset are used.

3.5 Implementation Details
To annotate the Elevator RGB-D dataset with labels the
Label Studio software by Tkachenko et al. [Tka20a]
is used. OpenCV [Bradski00a] is used to implement
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RoIs DMC Backbone
RGB 100 0.6 ResNet50 - BS2
D3 200 0.7 ResNet50 - BS2
RGBD 50 0.8 ResNet50 - BS2
RGBD-F 50 0.8 [32,32,64,128,256]

Table 1: Optimal configurations for each of the four
approaches all utilizing ADAM optimizer.

Input Resolution PTE mAP mAR F1 score
256×256 50 0.031 0.272 0.129
512×512 50 0.131 0.219 0.268

Table 2: A comparison of models of the approach RGB
using input images of different resolution.

Approach mAP mAR F1 score
RGB 0.131 0.219 0.268
D3 0.155 0.241 0.312
RGBD 0.126 0.271 0.320
RGBD-F 0.156 0.258 0.331

Table 3: Mean average precision (mAP), their mean av-
erage recall (mAR) and F1 score for the approaches af-
ter pre-training.

Pre-trained on none SUN RGB-D MS COCO
Epochs 0 50 320
ResNet layers 50 50 101
mAP 0.661 0.753 0.862
mAR 0.569 0.560 0.585
F1 score 0.535 0.579 0.636

Table 4: A comparison of models of the approach RGB
using transfer learning and without transfer learning.

the preprocessing steps. The Matterport Mask R-CNN
implementation by Abdulla [Abd17a] is used to train
and evaluate a Mask R-CNN model. The Matterport
Mask R-CNN is altered to be compatible with Tensor-
Flow version 2.0 made by Abadi et al. [Aba15a]. To
perform the hyperparameter optimization using Tree-
structured Parzen Estimators, hyperopt by Bergstra et
al. [Ber13a] is used. Models are trained on a single
NVIDIA GeForce RTX 2070 with 8GB of memory.

4 RESULTS
Table 1 shows the optimal hyperparameters for each ap-
proach. In this table each configuration consists of the
maximum number of regions per image (RoIs), the min-
imum detection confidence (DMC), the backbone ar-
chitecture and the optimizer. The correlations between
the hyperparameters, as well as the F1 score and the
runtime of each evaluation run (time) for each approach
can be seen in Figure 4. These correlations are calcu-
lated using Pearson’s R [Pear96a].

Since the mini-batch size is limited by the GPU mem-
ory, only a mini-batch size of 2 is possible with 512×
512 sized input images. As seen in Table 2 reducing
the size of the images to 256×256 to increase the size

(a) RGB (b) D3

(c) RGBD (d) RGBD-F

Figure 4: The correlations between the hyperparame-
ters for the four approaches.

of the mini-batches to 8 worsens the results, at least for
the approach RGB. Table 2 shows models of the ap-
proach RGB using input images of different resolution,
with the number of epochs that they were pre-trained
(PTE), their mean average precision (mAP), their mean
average recall (mAR) and their F1 score after 50 epochs
of training using the SUN RGB-D dataset. The scores
mAP, mAR and F1 are calculated using the test data of
the SUN RGB-D dataset.
The approaches that use RGB-D images have better F1
scores than the approaches that solely rely on the RGB
image and the depth image. The depth images of the
SUN RGB-D dataset do not contain as many reflections
and noise as the depth images of the Elevator RGB-D
dataset. Therefore, one cannot conclude that the ap-
proaches RGBD and RGBD-F perform similarly well
on the Elevator RGB-D dataset, see Table 3.
Using transfer learning to initialize the models with
weights pre-trained with the SUN RGB-D dataset leads
to better results, as seen in Table 4. This table shows
models with and without pre-trained weights the dataset
that they were pre-trained on, the number of epochs
that they were pre-trained, their mean average preci-
sion (mAP), their mean average recall (mAR) and their
F1 score after 50 epochs of training using the Elevator
RGB-D dataset. mAP, mAR and F1 score are calculated
using the test data of the Elevator RGB-D dataset. As
seen in this table using transfer learning with weights
pre-trained on the MS COCO dataset, provided by Ab-
dulla [Abd17a], yields the best results after training for
additional 50 epochs, although, this validation is only
done for the approach RGB.
The RGB-D images utilizing a FuseNet-FPN backbone
network perform best on the Elevator RGB-D dataset
with a mean average precision of 0.794, a mean aver-
age recall of 0.565 and an mean F1 score of 0.599, see
Table 5. Whereas relying on solely the RGB images or
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Approach mAP mAR F1 Score
RGB 0.753 0.560 0.579
D3 0.707 0.558 0.569
RGBD 0.768 0.558 0.578
RGBD-F 0.794 0.565 0.599

Table 5: Approaches evaluated w.r.t. their mAP, mAR
and their mean F1 score.

the RGB images in combination with the depth image
but with a ResNet50-FPN backbone network leads to
similar results. Both are worse than the results of the
approach RGBD-F. The approach that solely uses the
depth images achieves the worst results. The precision-
recall curves, as seen in Figure 5, supports this obser-
vation.

Thus, one can conclude that using RGB and RGB-D
data for instance segmentation with Mask R-CNN in
an elevator environment leads to equal results, whereas
relying solely on depth images achieves worse results.
Therefore, depth information does not improve the per-
formance of instance segmentation with Mask R-CNN
in highly reflective and noisy elevator environments.
Furthermore, the usage of a FuseNet-FPN as a back-
bone network improves the resulting model in a highly
reflective elevator environment. Figure 6 shows images
segmented with these models.

5 CONCLUSION AND OUTLOOK
In this paper a comparison is done on whether instance
segmentation using the Mask R-CNN algorithm can be
improved by the usage of depth images. The images
are recorded in highly noisy and reflective elevator en-
vironments. To perform this comparison four different
approaches are compared. The four approaches use:

1. RGB image with a ResNet-FPN backbone

2. depth image duplicated on three channels with a
ResNet-FPN backbone network

3. RGB-D image with a ResNet-FPN backbone

Figure 5: Precision recall curves of the four approaches.

Figure 6: Samples of the Elevator RGB-D dataset
instance-wise segmented with the pre-trained models.
From left to right: ground truth, RGB, D3, RGBD,
RGBD-F. The colors correspond to instances.

4. RGB-D image with an adapted FuseNet-FPN back-
bone network.

For each of these four approaches first the hyperparam-
eters are optimized, pre-training is performed using the
SUN RGB-D dataset, which contains images from in-
door scenes and using transfer learning the pre-trained
weights are further trained using images from an eleva-
tor environment. This comparison is done to answer the
following research questions:

• Can depth information be used to improve the per-
formance of instance segmentation in highly reflec-
tive elevator environments which generally show a
bad signal-to-noise ratio (SNR)?

The approach using an RGB image produces com-
parable results to the approach using RGB-D im-
ages, when training the Mask R-CNN models using
a ResNet50-FPN as backbone network with a differ-
ence in the F1 score of 0.001. Solely relying on the
depth image produces worse results than these two
approaches.

• Does incorporation of depth data generally increase
the performance of instance segmentation?

After the pre-training using images from indoor
scenes, the approach using the RGB image leads
to the worst F1 score of all four approaches. The
approach using the depth image in addition to
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the RGB image results in a better F1 score. The
approach using solely the depth image leads to a F1
score between these two approaches.

• Can the use of a FuseNet-FPN as a backbone net-
work together with transfer learning and hyperpa-
rameter optimization improve the performance of
Mask R-CNN adapting to RGB-D images?

The approach using a FuseNet-FPN as a backbone
network and RGB-D images results in a better F1
score than the approach using a ResNet50-FPN and
RGB-D images using the images from an elevator
environment as well as images from an indoor scene.

5.1 Outlook
Hyperparameter optimization using an SMBO algo-
rithm can lead to configurations that tend to increase
overfitting, since only one score metric is optimized.
To improve the hyperparameter optimization, the eval-
uation runs during hyperparameter optimization can be
performed for as long as the pre-training. This negates
the necessity of the pre-training, since each iteration of
the SMBO algorithm produces the pre-trained weights.
Although this will also increase the time needed for the
hyperparameter optimization by the increase in the total
number of learned training data.

This problem that occurred during the hyperparame-
ter optimization lead to the switch from the ADAM
optimizer to the SGD optimizer, since the SGD opti-
mizer is less likely to converge towards a local min-
imum [Wu16a, Kes17a, Aki17a]. Alternatively, this
problem can be avoided by switching from ADAM to
SGD during training [Wu16a, Kes17a] or using an op-
timizer with this switching behavior [Luo19a].

Since the mini-batch size is limited by the GPU mem-
ory only a mini-batch size of 2 is possible with 512×
512 sized input images. The training process thus can
be further improved by using multiple GPUs in parallel.
He et al. used 8 GPUs in parallel to train the Mask R-
CNN on the MS COCO dataset [He17a]. Loshchilov et
al. use 30 GPUs in parallel to perform hyperparameter
optimization of CNNs [Los16a].

The models are each only trained for 50 epochs to pro-
vide a fair comparison between them. They can be
improved by increasing the number of epochs and use
early-stopping if overfitting occurs. Additionally, pre-
training can also be extended, which as shown in table
4 can improve the performance of the resulting model.
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