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ABSTRACT
Visual defect detection is a key technology in modern industrial manufacturing systems. There are many possible
appearances of product defects, including distortions in color, shape, contamination, missing or superfluous parts.
For the detection of those, besides traditional image processing techniques, convolutional neural networks based
methods have also appeared to avoid the usage of hand-crafted features and to build more efficient detection
mechanisms. In our article we deal with autoencoder convolutional networks (AEs) which do not require examples
of defects for training. Unfortunately, the manual and/or trial-and-error design of AEs is still required to achieve
good performance, since there are many unknown parameters of AEs which can greatly influence the detection
abilities. For our study we have chosen a well performing AE known as structural similarity AE (SSIM-AE),
where the loss function and the comparison of the output with the input is implemented via the SSIM instead of
the often used L1 or L2 norms. Investigating the performance of SSIM-AE on different data-sets, we found that its
performance can be improved with modified convolutional structures without modifying the size of latent space.
We also show that finding a model with low reconstruction error during training does not mean good detection
abilities and denoising AEs can increase efficiency.
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1 INTRODUCTION
There are several applications of neural networks in
manufacturing systems [Wang2018], visual inspection
of products is a critical step during their production. To
have the greatest freedom in the handling and imaging
of objects we need sophisticated methods to allow
different distortions such as changes in lighting, posi-
tion and orientation, especially in case of 3D objects.
Due to this problem, in recent times, different deep
learning solutions have been developed, autoencoder
(AE) neural networks are very promising for anomaly
detection in visual quality inspection, surveillance, or
medical image analysis.
As we will discuss, there are several types of autoen-
coders, it is not clear which one suits best unsupervised
defect detection and segmentation. Recent improve-
ments in generative networks mainly focused on
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creating photo-realistic "natural" images as faces,
nature, cityscapes, etc. In defect detection, while we
have the advantage of the narrower image domain (we
can train separate AEs for each class of products),
reconstruction errors are much less tolerable, otherwise
the succeeding detection phase may fail. Moreover,
there is a large set of parameters which significantly
influence detection abilities. Our purpose is to investi-
gate the applicability of a well-performing autoencoder
(namely SSIM-AE) for the fault detection on repetitive
and partly repetitive structures. A great advantage of
using AEs is that unsupervised training and detection is
possible without making efforts to collect samples with
anomalies. However, there is no guarantee that images
with errors will not be reconstructed making detection
unsuccessful since many times errors are reproduced
in the decoded image. Fig. 1 shows a good example
for failing anomaly detection with the otherwise well
performing SSIM-AE [Bergmann2019]. Input image
has a missing capacitor and the AE reproduced the
image with the same defect.
First, we overview the different approaches for visual
anomaly detection mainly focusing on AE networks,
then, in Section 3, the SSIM-AE and its variants are
introduced. Section 4 details the selected data-sets,
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while in Section 5, we explain our experiments and
discuss the performance of SSIM-AEs with different
settings for the pixel-wise segmentation of different
errors. Finally, we summarize our paper in the last
section.

(a) Defect free image. (b) CPU with missing capaci-
tors.

(c) Reconstructed image. (d) Failing detection map.

Figure 1: Illustration of failed detection of missing
components from a CPU with SSIM-AE at resolution
512×512.

2 ALTERNATIVES FOR VISUAL IN-
SPECTION

Optical defect detection approaches can be grouped
in the following main categories: Template matching
[Buniatyan2017], [Zhou2019] local feature based
methods [Gai2016],[Xi2017], statistical texture mod-
els [Cogranne2014],[Cao2015], neural networks
[Weimer2016], [Tuluptceva2019], [Tuluptceva2020],
[Alaverdyan2020], [Nagy2021]. There can be overlap
among these groups, and each category have some
advantages, but there is no doubt that due to the
generality, robustness and accuracy of deep learning
convolutional AE approaches, they are getting more
focus in recent years. In our article we discuss only AE
networks having the main advantage of unsupervised
training and the ability to handle various imaging
conditions.

2.1 About Autoencoders
An autoencoder is a special kind of feed-forward neural
network containing three main sequential components:
the encoder network E : Rk×h×w→Rd , the latent space

Rd , and the decoder network D : Rd → Rk×h×w.

x̂ = D(E(x)) = D(z), (1)

where x is the input image, z is the latent information,
and x̂ is the output of the network.
AEs were originally used for dimensionality reduction,
feature extraction, but nowadays they are very popular
tools for generative modeling. The similarity of
principal component analysis (PCA) and AEs is well
know, moreover, in many scenarios AEs outperformed
linear or kernel PCAs [Sakurada2014].
The low-level neural structure in AEs can be con-
volutional or can utilize extreme learning machines
[Kasun2013].
They can also be categorized according to their regu-
larization techniques. The loss function (J), to learn a
specific task, can be generally formed this way:

J(x,θ) =
1
n ∑‖x− x̂‖+R(z), (2)

where θ = (wE ,bE ,wD,bD) are the weights and bi-
ases of the encoder and decoder networks and n is the
number of elements. In sparse AEs R is based on the
Kullback-Leibler divergence or on the L1 norm, the
purpose is to make the most of the hidden unit’s acti-
vations close to zero. Contractive AEs apply the Frobe-
nius norm on the derivative of z as a function of x to
make the model resistant to small perturbations; and in
an information theoretic-learning autoencoder Renyi’s
entropy is used.
Variational AEs (VAEs) impose constraints on the la-
tent variables in a different way, they estimate posteriori
probability p(z|x) with an assumption of a prior knowl-
edge p(z) being a normal Gaussian distribution. Adver-
sarial AEs (AAEs) use generative adversarial networks
(GANs) to perform variational inference. VAEs and
AAEs are both generative models, and both are based
on maximum likelihood. The difference between VAEs
and AAEs can be characterized that while VAEs apply
explicit rules on z, AAEs control its distribution implic-
itly.
Denoising autoencoder (DAE) is an extension of the
basic autoencoder, which is trained to reconstruct cor-
rupted input data. In [Vincent2010] not only Gaussian
noise, but also salt-and-pepper noise and zero-masking
noise was also investigated. C denotes the corrupting
function generating x̃. Eq. 1 now becomes:

x̂ = D(E(C(x))) = D(E(x̃)) = D(z). (3)

The applied loss puts an emphasis on the corrupted ar-
eas by proper weighting:

J(x, x̃,θ) = α ∑
i∈C

(xi− x̂i)
2 +β ∑

i/∈C
(xi− x̂i)

2, (4)
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where C denotes the indexes of corrupted components.
Feature matching autoencoder [Dosovitskiy] enforces
the features of the input and its reconstruction to be
equal:

J(x, x̃,θ) = wim ∑(x− x̂)2 +w f t ∑(F(x)−F(x̂))2,

(5)

where F is a feature extractor which can be fixed or
also trained. In [Dosovitskiy], besides using features
for evaluation, adversarial discriminator was also
utilized.
We guide people, with more interest in the overview of
AEs, to papers [Zhai2018] and [Yuan2019].

2.2 Autoencoders for Defect Detection
In general, trained AEs can generate very similar out-
puts to their inputs, if the later fits the trained model
or with other words, the image models could learn the
inherent features properly. That is if the difference be-
tween the two is above a threshold T h, we set the de-
tection map to 1:

m =

{
1, if ||x− x̂||> T h,
0, otherwise.

(6)

The applied ||.|| can be various (e.g. L1, L2, SSIM
[Bergmann2019]).
In [Beggel2019] they deal with the problem of training
AEs when the training set is contaminated with a
small fraction of outliers. Their proposed adversarial
autoencoder imposes a prior distribution on the latent
representation, placing anomalies into low likelihood
regions, thus potential anomalies can be identified and
rejected already during training.
[Tuluptceva2020] proposes perceptual deep au-
toencoders where relative-perceptual-L1 loss
[Tuluptceva2019], robust to low contrast and noise, is
applied for training and also to predict the abnormality
for new inputs. The applied progressive growing
technique helped the efficiency of training: in the
beginning of the training, the loss function computes
the dissimilarity between the low-resolution images
using the features from the coarse layers of the net-
work, whereas, as the training advances, the "level" of
this information is increased by including deeper and
deeper features. The addition of the new layers to the
autoencoder with the gradual increase of the depth of
the features entailed in the calculation of the perceptual
loss was synchronized.
Siamese networks are good for supervised anomaly
detection, since they can learn discriminating features
efficiently [Nagy2021]. In [Alaverdyan2020] an
unsupervised siamese convolutional autoencoder is
proposed to detect anomalies in brain MRI images.

Anomalies are detected by a one class SVM in latent
space. The role of the siamese network is to regularize
the latent space: R(z) (Eq. 2) is the cosine distance of
two independent samples in the two siamese branches
in the latent space. Since each voxel of the MRI data
is handled independently (with its own SVM), thus
anomalies are learnt for every location.
The approach we utilize in our study is from
[Bergmann2019], which applies structural similar-
ity (SSIM) in the loss function. It was reported
that it outperforms many other AEs and reaches the
state-of-art on some data-set. It is discussed in details
in the next section.

3 SSIM AUTOENCODERS FOR DE-
FECT DETECTION

In our understanding SSIM-AE [Bergmann2019] is a
kind of feature matching AE (Eq. 5) with the following
loss function:

J(x,θ) =
1−SSIM(x, x̂)

2
=

1− l(x, x̂)α c(x, x̂)β s(x, x̂)γ

2
.

(7)

l stands for the luminance measure, estimated by com-
paring the patches’ mean intensities, c for the contrast
responsible for the local variance, and s evaluates
the covariance of patches. We set all three exponents
to 1, and other inner variables (not detailed here) as
follows: c1 = 0.01, c2 = 0.03, and the window size of
the patches K = 11. SSIM is not only utilized in the
loss but also in the comparison of the input and outputs:

m =

{
1, if 1−SSIM(x,x̂)

2 > T h,
0, otherwise.

(8)

Since SSIM already includes the luminance of pixel
values, wim = 0 in Eq. 5, colors are simply neglected.
The SSIM index was originally designed to create an
accurate perceptual quality metrics for the comparison
of two K×K image patches [Wang2004]. In our case
not the perceptual information makes it appealing to use
it in the loss function but its efficient extraction of struc-
tural information: SSIM-AE is forced to represent, be-
side luminance, local variance and covariance. Accord-
ing to [Bergmann2019] SSIM-AE could significantly
outperform the FM-AE of [Dosovitskiy] and a tested
VAE. The code available at the Internet1 is not fully
identical to the description in their paper. In our ex-
periments we followed the paper except for setting the
stride of overlapping windows when fusing the cropped
images for reconstruction (32 instead of 30).
The structure of the encoder is given in Table 1, the de-
coder has the opposite structure, as generally.

1 https://github.com/plutoyuxie/AutoEncoder-SSIM-for-
unsupervised-anomaly-detection-

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

183 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.20



Layer Output Size Kernel Stride Padding
Input 128x128x3

Conv1 64x64x32 4x4 2 1
Conv2 32x32x32 4x4 2 1
Conv3 32x32x32 3x3 1 1
Conv4 16x16x64 4x4 2 1
Conv5 16x16x64 3x3 1 1
Conv6 8x8x128 4x4 2 1
Conv7 8x8x64 3x3 1 1
Conv8 8x8x32 3x3 1 1
Conv9 1x1xd 8x8 1 0

Table 1: Architecture of the encoder of SSIM-AE
[Bergmann2019] for input image 128 × 128 × 3.
d = 100 for the texture images, d = 500 for the CPUs.

In our experiments we investigated several questions:
Can the results be improved by increasing the number
of layers but keeping the size of the latent space? How
does SSIM-AE perform in case of less periodic struc-
tures? What happens if some components are added or
removed from the original images?
We made two modifications to the original SSIM-AE:

1. In one modification (named SSIM-AEe) we in-
creased the number of convolutional layers as
depicted in Table 2. We kept the latent layers
untouched.

2. In SSIM-DAE we followed Eq. 3 to build a denois-
ing AE trained with masked blocks (see Section 5
for details). The purpose of our SSIM-DAE was to
implement an implicit regularization of the network
to reconstruct patches from a larger vicinity. There
is low probability that during decoding both the tar-
get and source areas are all affected by defects. But
either one is distorted ||x̂− x̃|| will have high value.

4 DATA-SETS
The visually observable defects can be various such
as faulty color, contamination, geometrical distortion,
missing parts, or superfluous parts. We assume that our
objects are almost 2D (like the surface of a rectangular
object without significant bulges or holes), and images
have variations in translation, orientation, and lighting
conditions.
In our study, we used five data-sets. Two of them, pro-
vided by [Bergmann2019], contain regular patterns of
woven fabric textures. Each of these two sets include
100 defect-free images, and 50 test images with vari-
ous defects. Ground truth images were also provided
in binary maps. We have chosen these textures, since
they are good representatives of roughly regular repet-
itive patterns. Since we focus on convolutional AEs,
the radius of convolutions and the number of layers can

Layer Output Size Kernel Stride Padding
Input 128x128x3 3x3
Conv1 64x64x32 3x3 2 1
Conv2 64x64x32 3x3 1 1
Conv3 64x64x32 3x3 1 1
Conv4 32x32x64 3x3 2 1
Conv5 32x32x64 3x3 1 1
Conv6 32x32x64 3x3 1 1
Conv7 16x16x128 3x3 2 1
Conv8 16x16x128 3x3 1 1
Conv9 16x16x128 3x3 1 1
Conv10 8x8x256 3x3 2 1
Conv11 8x8x256 3x3 1 1
Conv12 8x8x256 3x3 1 1
Conv13 1x1xd 8x8 1 0

Table 2: Architecture of the encoder of SSIM-AEe for
input image 128× 128× 3. d = 100,500 for the texture
images, d = 500 for the CPUs.

have a great impact on the generation abilities depend-
ing on the texture size.
The other data-sets involve 60 genuine images of the
backside of a CPU of size 37.50 mm × 37.50 mm. We
separated 48 images for training purposes and the re-
maining 12 for various tests. Three different test cases
were generated for the CPUs:

• CPUa: we added extra components with visually re-
alistic appearance;

• CPUc: the test images are loaded with synthetic
contamination;

• CPUm: some components (such as pins or capaci-
tors) are removed.

Table 3 summarizes the mean and standard deviation of
the defected areas for all 5 data-sets. In case of textures,
anomalies are significantly larger.

Texture 1 Texture 2 CPUa CPUc CPUm
mean 8.00 5.52 0.16 0.69 0.31
standard deviation 4.56 2.20 0.07 0.26 0.28

Table 3: Mean and standard deviation of defected areas
(in percentage) in the different test sets.

The selection of the CPU images is twofold: first,
such and similar images are typical in the production
of electronic components; second, the image of the
CPU contains regularly repetitive (outward areas with
contacts) and regular but much less repetitive regions
(central capacitor area). Besides, the CPU images
contain more finer details than the textures.
All images are of size 512 × 512, their illustration with
defects is in Fig. 2. Ground truth images were also
provided as binary maps.
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(a) Sample from Texture 1
with a defect.

(b) Sample from Texture 2
with a defect.

(c) An example of the CPU
without defects.

(d) Sample from CPUa with
added extra components.

(e) Sample from CPUm with a
missing capacitor.

(f) Sample from CPUc with
synthetic contamination.

Figure 2: Illustration of test images with various de-
fects.

5 TRAINING, TESTING, AND EVALU-
ATION

During training we followed the method and hyper-
parameters described in [Bergmann2019]. They first
resized images to 256 × 256, then image cropping
was applied to the size of 128 × 128. Networks were
trained on NVIDIA RTX 2070 GPU for 200 epochs
with ADAM optimizer, initial learning rate was 2×
10−4 with 10−5 weight decay. The latent space was
set to d = 100 and d = 500 for Texture 1 and Texture
2, and d = 500 for the CPU, considering its structural
complexity and finer details. Furthermore, the window
size of the SSIM was adjusted to 11.
In [Bergmann2019], for both texture data-sets, they in-
creased the variability of training data by generating
10,000 images using various augmentation procedures
such as rotation, cropping, and flipping (both vertically
and horizontally). In our study, we did the same, except
in the case of the CPU tests, where no flip was involved
to keep the asymmetric structure.
To train the SSIM-DAE we added noise to the input

images: small, homogeneous masks were added to the
48 images of the original training data-set. The size of
masks were set to 20×20, being greater than the size of
one capacitor in the middle of the CPU; the color was
set to the dominant color of the actual (128×128) crop.
Each training image contained one masks, α = β = 1
in Eq. 4.
For evaluation, we have chosen the standard receiver
operating characteristic (ROC) curves and the area un-
der curve (AUC) values. We defined the true positive
rate (TPR) as the rate of pixels that were correctly clas-
sified as defect, and false positive rate (FPR) as the ratio
of pixels that were misclassified as defect. The process
of testing was accomplished by the reconstructions of
image patches of 128 × 128, by moving over the test
images (with stride of 32). Residual maps were created
using SSIM (Eq. 8), then ROC curves and AUC values
were computed thresholding with increasing SSIM val-
ues.
To monitor the reconstruction abilities of the differ-
ent networks, we also computed the SSIM and mean
squared error (MSE) of reconstructions for defect-free
testing images (last columns of Table 5).

5.1 Results and Discussion
Four kinds of AEs (SSIM-AE, SSIM-AEe, SSIM-
DAE, and SSIM-DAEe) were compared in 5 test
cases (Texture 1, Texture 2, CPUa, CPUc, CPUm) as
described before. Results are summarized in Table 4
and Table 5 (best values are in bold), ROC curves are
illustrated in Fig. 4 and Fig. 5.
For Texture 1 and Texture 2 SSIM-AE performed very
well, neither increasing the number of convolutions
(SSIM-AEe), nor increasing the size of the latent space
(from d = 100 to d = 500) could make (significant)
achievements. In general, Texture 1 and 2 are missing
fine details (see Fig. 2 a and b) making deeper convo-
lutions useless.
In case of the CPU tests we got different results. Com-
paring SSIM-AE to SSIM-AEe we see that increasing
the number of convolutional layers could increase the
accuracy of reconstruction but it could not help the
ability to detect anomalies (except for CPUm). That is
if a network is better in the reconstruction of defect-less
items, it does not mean it is also better to mishandle
defected inputs (thus to detect anomalies).
Since the CPU images had more details, SSIM-AEe
could learn the image models more accurately than
SSIM-AE (even with the same latent space): it is
shown by MSE and SSIM values, measured between
error-less inputs and their reconstructions, in Table 5.
Since CPUa contained small anomalies, detection went
quite well (AUC is between 0.9822 and 0.9952), while
CPUc had the worst results. Finally, we found that the
larger number of layers and the denoising type training
of SSIM-DAEe resulted in the best performance for all
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CPU test cases (bold in table).

Texture 1 Texture 2
SSIM-AE 0.9490 0.9710
SSIM-AEe 0.9445 0.9697
SSIM-AE, d = 500 0.9186 0.9773
SSIM-AEe, d = 500 0.9118 0.9709

Table 4: AUC values when testing AE methods on data-
set Texture 1 and Texture 2.

CPUa CPUc CPUm SSIM MSE
SSIM-AE 0.9930 0.9071 0.9262 0.7263 90.0472
SSIM-AEe 0.9822 0.8939 0.9557 0.8195 66.5257
SSIM-DAE 0.9914 0.9059 0.9651 0.7851 88.7726
SSIM-DAEe 0.9952 0.9499 0.9815 0.9133 57.3972

Table 5: Testing AE methods for different distortions
on the CPU data-set. AUC values are given in the first
three columns, SSIM and MSE is measured as the re-
construction error of error free test samples. SSIM is on
the [-1,1] scale, MSE stands for Mean Squared Error.

6 CONCLUSION
In case of visual quality inspection we are often not sat-
isfied with the statistical definition of normal patterns
and anomalies. For many products the strict topological
structures should be retained during production, thus,
the otherwise normal, missing or superfluous parts are
not acceptable.
We investigated the performance of different SSIM au-
toencoders for defect detection on repetitive and semi-
repetitive structures on 5 data-sets. By introducing
modifications to the proposed AE of [Bergmann2019]
we found, that:

1. If an AE can reproduce (anomaly free) images with
higher fidelity it does not strictly induce it is better
in anomaly detection. It is an important observa-
tion, since AE’s main application area is unsuper-
vised anomaly detection, where no examples of de-
fects are available to design and train optimal neural
networks.

2. Unsupervised AEs are not reliable for (at least
small) contamination or superfluous parts, DAEs
may fit many defect detection tasks better.

The proposed SSIM-DAEe outperformed other variants
in our CPU experiments without the growth of the la-
tent space, while in case of textures, the DAEe could
not increase detection accuracy. (We also outperformed
those feature matching and VAE approaches which are
used as reference methods in [Bergmann2019]). Some
illustrations of the results on CPU images are given in
Fig. 3 for the SSIM-AE and SSIM-DAEe.
We believe current AEs are very far from their limit for

(a) Input test image with missing capacitor and ground truth.

(b) Reconstruction with SSIM-AE and SSIM-DAEe.

(c) Corresponding detection maps with SSIM threshold set to
0.8425

Figure 3: Illustration of the detection performance of
SSIM-AE and SSIM-DAE for a CPU with missing ca-
pacitor.

defect detection, most recent regularization techniques
consider the probability density functions with less em-
phasis on strict structural features.
No systematic design is known to optimally set the en-
coder, decoder, and latent parts, or the type of regular-
ization. In future we plan to make more tests on the
industrial data-sets of [Bergmann2021], and to build
more structure awareness in the neural models inves-
tigating structural and contextual attention similar to
[Yu2018].
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(a) AEs on Texture 1 at resolution 256 × 256.

(b) AEs on Texture 2 at resolution 256 × 256.

Figure 4: The performance of the AEs on Texture 1 and
Texture 2.
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