
Autonomous Parking Spot Detection System for Mobile
Phones using Drones and Deep Learning

Guilleum Budia Tirado
Department of Computer Sciene
University of Colorado Colorado

Springs
Colorado Springs, CO, 80918, USA

guillemgbt@gmail.com

Sudhanshu Kumar Semwal
Department of Computer Sciene
University of Colorado Colorado

Springs
Colorado Springs, CO, 80918, USA

ssemwal@uccs.edu

ABSTRACT
Many parking lot facilities suffer from capacity over-
loads and many times there are no monitoring tools to
provide feedback. As a consequence, the people, want-
ing to park, become frustrated as there is considerably
loss of time. In this paper, we present a novel proto-
type of an automatic parking-lot analysis platform us-
ing image-based machine learning to (a) guide a drone
autonomously; and (b) to process useful information to
be handled into a smartphone application to communi-
cate with the parking lot users.

We have collected a reasonable amount of test images
to build a classification model using Convolutional neu-
ronal networks (CNNs) to classify parking lot images,
and build different object detection models to identify
free and occupied parking spots. Those models have
been exported to the back-end module of our platform
so it can control the drone and record the computed in-
formation to its database. In addition, we have imple-
mented an iOS application that requests and displays
the parking lot status and its empty spots.

We have been able to prove that this prototype is fea-
sible, functional, and opens a path towards future im-
provements and refinements. The flight control and the
data classification algorithms have been shown to work
using the machine learning models. In summary, we
found a clear and and concise way to display useful in-
formation in real time to our users.

Keywords
Drones, AR, Parking Lot, Navigation, Deep Learning

1 INTRODUCTION
It is really a universal experience that we have all faced
parking lots frustrations, such as spending time look-
ing for an available free spot, or even realizing that
there are no spaces after visiting all of the parking spot.
There are several related papers: [1, 2, 3, 4]. In most of
these cases, static cameras pointing to the parking lot
are used, resulting into non-variant images. Then build
manually a mask to segment each parking space into

the parking lot and then, after segmenting the original
image, individual parking lot space images are used as
input to a classifier, using mainly Convolutional Neu-
ronal Networks [5] to determine if those are free or
occupied. Traditionally, in robotics, sensor informa-
tion such as LIDAR [9], sonar and other technologies
that give proximity information could be used as well.
Yet, our drones are the cheapest available in the mar-
ket and these drones do not provide this kind of sen-
sors. Other approaches are depth maps computed from
drone images. One of the most well known models
is the Faster Regional Convolution Neuronal Network
(Faster-RCNN) [6]. The difference between Faster R-
CNN and the other R-CNN techniques is that instead
of using Selective Search it uses Region Proposal Net-
works (RPN) [7]. Other object detection approach very
different from Faster-RCNN are the You Only Look
Once (YOLO) models [8]. The research found in [9]
concluded that they could autonomously guide a drone
through indoor corridors only using the front camera
and without any GPS or other sensor information. To
detect and classify parking spaces given dynamic im-
ages we will use object detection models to localize and
identify two classes, the free parking lots and the occu-
pied parking lots. To achieve good results, we will train
different object detection models defined in the Tensor-
flow Object Detection API such as Faster R-CNN or
SSD. We would evaluate the goodness of fit for each
model and its speed to choose the final models we will
export to use in our back-end system. Figure 1 shows
the working of our overall algorithm. The central server
will be developed with Python and Django framework.
This way, our algorithm integrates the Tensorflow mod-
els. The server will be responsible for controlling the
drone and receive images from it. Furthermore, serve
will also use the trained object detection and flight pre-
diction models to process all the data and store useful
information and compute accurate flight instructions for
the drone. We have also designed and built a simple iOS
application developed with Swift that interacts and re-
trieves information from the server’s database and dis-
plays it to the user so we can have a complete prototype
of the desired system.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

115 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Figure 1: Overall system structure diagram.

2 DATA SETS
All of the machine learning models we wanted to de-
velop receive an input of a parking lot image. That is
why we started by collecting them. We created a Python
program that could control the drone manually from the
computer and display its video stream in the screen.
Using different keyboard keys we could fly the drone
around parking lot 228, 7 and the different sections of
the lot 224. The available instructions to the drone are
listed in the Table 2. After 50 takes, we achieved 1129
RGB 960 by 720 images.

Graphics Top In-between Bottom
Tables End Last First
Figures Good Similar Very well

Table 1: Table captions should be placed below the ta-
ble

Figure 2: Examples of captured images.

This is a binary image classification problem where the
positive class is the image that contains a parking lot
and the negative are the images that don’t. Since it is

Key Action
Up arrow Move forward
Down arrow Move backwards
Left arrow Move left
Right arrow Move right
W Move up
S Move down
A Rotate counter clockwise
D Rotate clockwise
T Take-off
L Land
C Start/Stop capturing images

Table 2: Manual drone flight instructions.

a supervised machine learning scenario, we manually
label the drone images we collected so we can trans-
fer the human experience into observations and trans-
fer knowledge into our classification algorithm. To
make things easy, we developed a simple Python script
that goes through each captured images placed in the
"Takes" directory mentioned earlier, displays each im-
age one by one and asks if that current image is a park-
ing lot or not through the terminal console. After going
through the original 1129 drone images, we classified
1096 as valid observations. 737 observations are set
as positive parking lot (67,3%) and 358 were found as
negative parking lot (32,7%).

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

116 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



In order to retrieve more visual information to guide the
drone automatically, and obtain parking spot informa-
tion from images we implement different parking spot
object detection models. And to train them, we need
a labelled parking spot object detection data-set. The
"PKLot" data set [11] contains nearly 13.000 images of
different angle and conditions of the parking lots of the
Federal Univeristy of Parana and the Pontical Catholic
University of Parana. From the previous mentioned im-
ages, nearly 700.000 segmented images of the parking
spaces are obtained too. For each parking lot image
there is an XML file that contains the position of each
bounding box of the parking spaces and the occupancy
status.
The bounding boxes have a rhomboid shape as shown
in Figure 1. The majority of object detectors work with
rectangular boxes aligned with the image axis. That
is why we converted each bounding box found on the
XML files into a aligned-rectangular shape before be-
ing recorded into the CSV file. This method basically
chooses min and max points to create a rectangle.

3 CREATING MODELS
In order to guide a drone over a parking lot automati-
cally we will require image information. We decided
that one of those key pieces would be a binary im-
age classification machine learning algorithm devel-
oped with a Convolutional Neuronal Network. Due to
the specifications of our own parking lot classification
data-set, the network is required to have as input ten-
sor of 128 by 128 grayscale image. Furthermore it has
to be able to be used by our back-end service imple-
mented with Python and Django. The resulting network
needs to present acceptable prediction results since it
will have a primary relevance in the navigation system
of the drone. That means that we are aiming for an ac-
curacy of 90% and above.
There are many different models to choose and per-
form fine-tuning in the Tensorflow Object Detection
API. We will test two different families of algorithms.
The Faster-RCNN family, known for their speed over
the previous RCNN models and its accuracy, and the
Single Shot Detector family, known for their speed and
real time applications. The difference between Faster
R-CNN and the other R-CNN techniques is that in-
stead of using Selective Search it uses Region Pro-
posal Networks (RPN) [7]. This change improves the
speed of the network. The first model we have cho-
sen is the faster-rcnn-resnet50-coco pre-trained model
since it has a good balance between speed and accu-
racy between all other Faster-RCNN models found in
the library. This model in particular is been pre-trained
with the Common Objects in Context (COCO) data-
set and uses Residual Networks (ResNets) in its imple-
mentation [13]. The second model is the faster-rcnn-
inception-coco pre-trained model. This model uses the

Inception architecture [14]. The main idea behind the
Inception architecture is that in a same layer of convolu-
tion, different filter sizes are being used and then com-
bined to get the output tensor. The GoogLeNet CNN
developed by Google(TM), found also in [14] uses 1
by 1 filters, 3 by 3 filters and 5 by 5 filters working to-
gether in the same layer. This model is also pre-trained
over the COCO data-set. Single Shot Detector (SSD)
model takes a different approach to the object detec-
tion problem [15]. Previous state-of-the-art object de-
tection models were composed by two steps. For each
location, K default boxes, called anchors, with multi-
ple shapes and aspect rations are considered. For each
anchor, the network will predict the probability of each
class for the object that may fall into the box and also
four offsets for the anchor to get an accurate bounding
box for the object. The first SSD model we have chosen
is the ssd-mobilenet-v2-coco pre-trained model. It is a
balanced model among all the pre-trained SSD mod-
els. This model is also pre-trained over the COCO
data-set and as a feature extraction architecture uses the
one proposed by MobileNetV2 CNN architecture [17],
a fast classification CNN developed by Google, found
in many portable and real time systems. The second
SSD model we will test is the ssd-inception-coco pre-
trained model. It combines the SSD detection architec-
ture with the Inception feature extraction architecture
mentioned above.

Before testing the resulting object detection models, we
can observe that the Faster-RCNN ones tend to con-
verge at a lower loss levels than the SSD ones.

Comparing them with other reported loss metrics of
other fine tuned models, we can see that are quite low
values. It is a sign that our model is being able to fit cor-
rectly to the test data. Yet, we can see that the Faster-
RCNN models presents less loss than the SSD models.
In particular, the Resnet50 version is achieving remark-
able results. Besides, among the SSD models, the Mo-
bilenetV2 seem to present better results in terms of loss
than the Inception one.

4 BACK-END
The central functional piece of our system is the back-
end, it handles multiple responsibilities. In the first
place in here we define the information models of our
system as SQL tables. Furthermore it establishes end-
points so that HTTP clients, such as our iOS applica-
tion, can retrieve data and send actions to the server
and trigger actions. Those two responsibilities are part
of the RESTful API block of our back-end. In the other
hand, our server is responsible of flying the drone au-
tomatically and intelligently by integrating and using
the previously exported image-based machine learning
models. Besides, given the drone images and the model
predictions, it has to be able to process and retrieve

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

117 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



the required information to create and update the re-
quired database models so we can serialize them and
send them over HTTP requests and provide the clients
with the needed information. We have used Python as
the programming language since it has many resources
and frameworks to support an incredible number of pos-
sibilities. In particular, we are using the popular Django
framework to easily design the REST API and the struc-
ture of the program. In addition, we are using the Ten-
sorflow graph framework to load the exported machine
learning models and use them for the drone flight con-
trol and the data retrieving from images.

5 INFORMATION MODELS
When creating the database models of information, we
need to do a design effort and figure out the basic
blocks of information that better represent the problem
we want to represent and resolve and how they interact.
Django provides a smooth way to define those models.
It allows us to define those models as Python classes by
sub-classing the Model class found in the framework.
That subclass will generate the particular SQL table for
us. Then, each attribute of that class will map to its ta-
ble’s columns. When creating instances of that class,
filling the attributes and calling its save method, we are
recording a new row in the table. Each model inherits
the id property that represents the primary key of the
table’s row.

5.0.1 Lot model

The lot model represents any parking lot we want to
monitorize in our system. It consists of metadata infor-
mation and useful data regarding the state of it. The
first attribute, or database field is the name given to
it as a char field. For example, one of our analyzed
lots is names lot 224 . The created and updated at-
tributes are Date fields representing when the lot has
been created and when it has been modified. The image
attribute is an image field representing the path where
a descriptive image of the parking lot is found on the
static files directory of the server. The occupancy is a
Float value representing the percentage of occupancy of
the lot recomputed every time new spots are recorded.
In a similar way, the tendency is a discrete attribute
of five possible string values that represent how the oc-
cupancy is changing over time, if the lot’s occupancy
is decreasing, increasing or maintaining given different
predictions over time.

5.0.2 Spot model

The spot model represents a single parking spot found
in a specific parking lot that we are analysing. This en-
tity also has a created date field that represents when
the model is created, that is, when it has been detected.
Since we want to provide a descriptive image for each

spot, we include a image field too. A Boolean field
named is_free is used to determine if the spot is oc-
cupied or free. In addition, the Integer field lot_id is
a foreign key that matches each spot with its relative
parking lot where it belongs.

5.0.3 FlightState model

The FlightState model represents a more abstract en-
tity in our system. In this structure, we represent the
state of the flight algorithm. It is used as a central
piece of communication between the HTTP client and
the flight algorithm through the REST API. The state
field represent each possible state the flight algorithm
can be. It consists into LANDED, STARTING, SCAN-
NING, STOPPING and ERROR. The lot_id also is the
foreign key to the parking lot we are analysing. The
enabled Boolean flag is manually set if the flight is en-
abled. And finally the created date field is specified
too.

6 ENDPOINTS
The endpoints are defined URLs that allow the HTTP
clients to interact and request data with the back-end.
Each URL is linked with a particular action called View.
The View is responsible to perform its defined action
and return a HTTP response with the data body and sta-
tus of the request.

7 MACHINE LEARNING MODEL IN-
TEGRATION

As mentioned in previous chapters, we used Tensorflow
framework to build, test and export the image-based
machine learning models proposed by this project. Now
is time to deploy them and make them useful. We ex-
ported them in a standard way where in a single file
the network structure, operations and weights were de-
fined. This file is called frozen graph. To make use of
the frozen graphs of our lot classification model and the
different parking spot object detection models, the Ten-
sorflow framework must be present in our back-end too.
We will use it to recreate the models in memory reading
from the disk files. To make our code modular and in-
tuitive to use, we encapsulated the model business logic
into Python class definitions and build useful methods
so we define a simple interface to work with the image
predictions in our algorithms. All the files regarding the
model class definition and the actual frozen graphs are
placed in a sub-module inside our back-end.

7.1 Lot Classification Model
The first class containing all the classification model
logic is called IsLotCNN. In the initialization phase of
that class the Tensorflow graph is loaded into memory.
As a default parameter we pass the path to where the

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

118 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



frozen graph is placed. Once the graph is loaded into
memory, we define the input tensors to the network so
we can pass new image to predict. The first tensor is
the actual input, it consists of a tensor of size [None,
128, 128, 1]. That means that the network can handle
an undefined number of 128 by 128 grayscale images.
The second input tensor is the keep probability of the
dropout technique explained in [9]. This class defines a
method to predict the probability of an input image to
be a parking lot.

7.2 Spot Object Detection Models
When predicting the parking spots given a drone image,
we use the defined method called detect_drone_img.
This method runs the output tensors boxes, classes and
scores in the defined session with the drone image as
the input value from the input tensor of the network.
The output tensors return arrays of boxes (x,y mini-
mum and maximum) defining the bounding boxes of
each spot detection, the class of each detection and the
confidence score of each detection respectively. Yet,
to work easily with the predictions, we defined a class
called PKLotBox that keeps all the information of a sin-
gle detection so we can return a single array that each
element contains all the detection information instead
of a collection of arrays.

8 PARKING LOT DATA PROCESSING
Before handling the flight control algorithm, we de-
cided to prepare first the components that retrieve in-
formation from the images and predictions since it is
a smaller component that can be easily tested and pre-
pared before facing the main algorithm of the system.
The parking lot data processing module expects that we
already have an incoming image and we have already
computed the spot detection on that image. Those two
elements combined with the previous information in the
database regarding the state of the parking lot model
and the corresponding spots found in early iterations
are the inputs for this process. As for the output, we
expect to have registered the new classifications found
in the incoming image transformed into Spot database
models. Furthermore, once the new spots have been
recorded, we need to recompute the new occupancy and
tendency of the Lot model we are analyzing.
To compose the Spot models from spot predictions, we
are segmenting the original image and storing it into the
static files directory so we can access it over HTTP re-
quests, assign this image to the Spot model, retrieving
the class of the detection and save the model into the
database. Once we recorded all the new spots in the
database, retrieve all stored spots given the lot we are
analyzing. The new occupancy will be estimated given
the ratio of all occupied spots over the total spots. Then,
quantizing the difference between the old and new oc-
cupancy we obtain the new tendency category.

9 FLIGHT CONTROL – NOVEL AL-
GORITHM

The flight control algorithm is the core process of our
system. It is responsible of the drone guide and com-
munication, including the retribution of images over the
UDP video streaming that the drone provides. Further-
more it uses the imported image classification model
and multiple object detection models to perform deci-
sions and retrieve information using the defined classes
IsLotCNN and PKLotDetector. Besides it uses the
PKLotDataRetriever class to obtain information from
the spot predictions and update the database. In addi-
tion, the algorithm is responsible to update the Flight-
State database model so we can have its information
centralised. Also it will check the FlightState to know
if the HTTP client requested for the flight to stop.

As we mentioned before, this process will be triggered
from the action related to the flight/lot/<int:pk>/start/
endpoint exposed by our REST API module. This
means this will be triggered by the client iOS appli-
cation once we detect that the user wants to know the
actual situation of a parking lot. Since the HTTP re-
sponses of our back-end have to respond quickly to the
client petition, we will need to execute this algorithm in
a background thread from our back-end Python process.

9.0.1 Algorithm Overview
Find in Figure 3 the main skeleton of the flight con-
trol algorithm. In the first step we initialise all the re-
sources that the algorithm needs, starting with retriev-
ing the needed database models, initialising the ma-
chine learning models and setting the drone connection,
video streaming and taking off.

9.0.2 Implementation
In Algorithm 1 can be seen the pseudo-code implemen-
tation of the start method, that is, the main body of
the algorithm. It maps the overview algorithm diagram
we described above. Yet it delegates important tasks to
other functions of the class as explained in the Flight-
Control class diagram to better structure the code. Be-
low we explain the most important methods used by the
main algorithm.

The algorithm 2 shows the pseudo-code for the
is_pointing_to_lot(image) method. It can be seen that
we use the lot classification model cnn to compute
the probability if the input image of being a parking
lot or not. Following with the description of internal
methods, the Algorithm 3 illustrates how we adjust
the initial pose of a scanning iteration when at that
point we are not properly pointing to a parking lot.
We will do that by performing small and random
movements. Afterwards, we will check again if we are
pointing to a lot or not. Eventually the drone may find
a good position and proceed with the scanning process.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

119 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Figure 3: Flight control algorithm diagram

Algorithm 1 Flight control main algorithm (start
method)
flight_state := get_flight_state();
lot := self.get_lot();
set_up_networks();
set_up_drone();
set_initial_position();
set_state_to(SCANNING);
While True
While not is_pointing_to_lot(image=stream.frame)
adjust_initial_pose();
retrieve_info_from(image=stream.frame);
for angle in [90, 180, 270] move_to_next_angle();
If is_pointing_to_lot(image=stream.frame) re-
trieve_info_from(image=stream.frame);
should_finish_flight() break
change_initial_position();
finish_flight()

First, we will determine the rotation direction, then
between 20 and 180 degrees we will find a random
rotation angle magnitude. The forward movement
magnitude will be found between 200 and 300 cm. The
Algorithm 4 shows how the algorithm uses the FRCNN
model to predict the spots found in a given image
and then pass the image and the spot detections to the
PKLotDataRetriever module explained above. Finally,

in the Algorithm 5 we can see the implementation of
how we change to the next initial scanning position
after a complete iteration. First, the forward distance is
set to 500cm. Then we rotate the drone with a random
angle until we are certain that the drone is pointing
correctly to the parking lot. This way we make sure
that the drone is moving forward in a direction where
more probably the parking lot extends.

Algorithm 2 is_pointing_to_lot(image) method
image is_lot
lot_prob := cnn.predict_drone_img(image=image);
lots = ssd.detect_drone_img(
image,confidence=ssd_detect_conf);
lot_count := length(lots);
is_lot := (lot_prob >= is_lot_thr) AND (lot_count >=
ssd_count_thr);

Algorithm 3 adjust_initial_pose() method
rotation_direction := random(0, 1);
rotation_angle := random(20, 180);
forward_distance := random(200, 300);
rotation_direction drone.rotate_clockwise(rotation_angle);
drone.rotate_counter_clockwise(rotation_angle);

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

120 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Algorithm 4 retrieve_info_from(image) method
detections := frcnn.detect_drone_img(image,
confidence=frcnn_detect_conf)
info_retriever.retrieve_data_from(lot_image=image,
predictions=detections)

Algorithm 5 change_initial_position() method
forward_distance := 500;
WhileTrue
rotation_direction := random(0, 1);
rotation_angle := random(20, 180);
Ifrotation_direction
drone.rotate_clockwise(rotation_angle);
drone.rotate_counter_clockwise(rotation_angle);
Ifis_pointing_to_lot(image=stream.frame) break;
drone.move_forward(forward_distance);

9.0.3 Testing the flight control

The Figures 4 through 7 show four real tests over dif-
ferent points of the University of Colorado at Colorado
Springs parking lot 224. In each test we tested a dif-
ferent combination of object detection models for the
tasks of guide the drone and the retribution of infor-
mation to see which one is performing better. In each
one of the tests a complete scanning loop iteration has
been recorded and analysed.In the 90 degree angle anal-
ysis the classification CNN detected that it may not be
a parking lot even though the SSD model was detecting
some spots yet some of them where wrong classifica-
tion. That image was a hard one to analyse due to the
occlusions so the CNN did a good job by skipping it.
In the rest of the images the drone was pointing to the
parking lot correctly and the CNN gave high probability
values for those, meaning that it is working. The SSD
MobilenetV2 model is doing a good job by analysing
fast the drone images for possible spots. Regarding to
the third test found int Figure 6, we are using the FR-
CNN Inception model for both information and guide
tasks. It is performing a bit slower than the first test
since the SSD models compute faster. Yet the timings
are acceptable for our task. In this test can be seen that
our detection models struggle most with the detection
of empty parking spots. Again, the CNN is working as
expected by giving a high probability to the lot images
and a low one for the images not pointing to it. Finally,
the last test found in Figure 7 we are using the FR-
CNN Resnet50 model for the data computing task and
the FRCNN Inception for the fast spot analysis. Again,
using the Resnet50 model is resulting into a non accept-
able timing in the scanning iterations. Yet in this test,
we are able to detect a good amount of spots, including
the empty ones.

10 CLIENT APLICATION
At this point, we have already put all the pieces together
to obtain parking lot state information and detecting
their spots by controlling the drone automatically, pro-
cessing its images with our own built machine learning
models and recording it to the database. Yet we are
missing the piece that would allow to make this system
useful by displaying the information we are processing.
In our case, this piece is the iOS application. It serves
as a client of our back-end and requests data through
the defined endpoints to display parking lot informa-
tion in an intuitive way. To implement it we have used
Apple’s native tools. We used Swift 5 as the program-
ming language and XCode as integrated development
environment.

11 SUMMARY OF RESULTS AND FU-
TURE RESEARCH

In total, we tried four different model architectures so
we could evaluate their performance and have multiple
options at the time of the flight control algorithm im-
plementation. Those models were: two Faster-RCNN
family models, one using Residual Networks and the
second one using the Inception technique as a feature
extractor. The other two models were from the Single-
Shot-Detector family, one using MobileNetV2 as fea-
ture extractor and the other using also the Inception
technique. As a result we achieved really precise mod-
els with a higher time complexity, which can only im-
prove with better infrastructure such as faster networks
and computers in future. We implemented methods
which were usr selected and could be more precise yet
are capable of working on real time. So we feel that
we have provided good balance in our research. As
mentioned earlier, it is not only necessary to build al-
gorithms to retrieve information from parking lots. The
resulting model could classify with a 90% of accuracy
over the test images and it predicts with an speed of half
a second. After deploying that model in the flight con-
trol algorithm, the parking lot classification model was
able to provide confident predictions, resulting into nice
drone navigation results with 90% accuracy on limited
training.

12 ACKNOWLEDGEMENTS
We want to thank WSCG anonymous reviewers for pro-
viding us feedback so that our paper has improved. In
addition, first author can be contacted for code for our
applications as our research has benefitted from open
source data sets and deep learning algorithms.

13 REFERENCES
[1] Qi Wu, Chingchun Huang,Shih-yu Wang,Wei-

chen Chiu, Tsuhan Chen. ROBUST PARKING

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

121 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Figure 4: Flight test with FRCNN Inception and SSD MobilenetV2

Figure 5: Flight test with FRCNN Resnet50 and SSD Inception

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

122 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Figure 6: Flight test with double FRCNN Inception

Figure 7: Flight test with FRCNN Resnet50 and FRCNN Inception

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

123 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Figure 8: Sample of Lot list

Figure 9: Pull to refresh data

SPACE DETECTION CONSIDERING INTER-
SPACE CORRELATION, IEEE International
Conference on Multimedia and Expo (2007)

[2] MartinAhrnbom ,Kalle Amstron and Mikael Nils-
son. Car Parking Occupancy Detection Using
Smart Camera Networks and Deep Learning,
IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2016.

[3] Giuseppe Amato, Fabio Carrara, Fabrizio Falchi,
Claudio Gennaro and Claudio VairoCar Parking
Occupancy Detection Using Smart Camera Net-
works and Deep Learning. )2016 IEEE Sympo-
sium on Computers and Communication (ISCC),
2016

[4] Julien Nyambal, Richard Klein, Pattern Recog-
nition Association of South Africa and Robotics
and Mechatronics, Automated Parking Space De-
tection Using Convolutional Neural Networks,
2017.

[5] Yunchao Wei, Wei Xia, Min Lin, Junshi Huang,
Bingbing Ni, Jian Dong, Yao Zhao and Shuicheng
Yan, IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE,
HCP: A Flexible CNN Framework for Multi-
Label Image Classification, 2016

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and
Jian Sun, Microsoft Research, Faster R-CNN: To-
wards Real-Time Object Detection with Region
Proposal Networks, 2016.

[7] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin
Hu, The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), High Perfor-
mance Visual Tracking With Siamese Region

Proposal Network, 2018.
[8] Joseph Redmon, Santosh Divvala, Ross Girshick,

Ali Farhadi, IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), You Only
Look Once: Unified, Real-Time Object Detection,
2016

[9] Guilleum Budia Tirado, Automatic Parking Lot
Detection with Image-Based machne learning,
drones, and mobile platforms, MS thesis, Depart-
ment of Computer Science, University of Col-
orado Colorado Springs.CO, USA. Advisor: Sud-
hanshu Kumar Semwal, pp. 1-104, 2020.

[10] Punarjay Chakravarty, Klaas Kelchtermans, Tom
Roussel, Stijn Wellens, Tinne Tuytelaars and Luc
Van Eycken, IEEE International Conference on
Robotics and Automation (ICRA), CNN-based
Single Image Obstacle Avoidance on a Quadrotor,
2017.

[11] Widodo Budiharto , Alexander A S Gunawan ,
Jarot S. Suroso , Andry Chowanda , Aurello Pa-
trik and Gaudi Utama, International Conference
on Computer and Communication Systems, Fast
Object Detection for Quadcopter Drone using
Deep Learning, 2018.

[12] Paulo Almeida, Luiz S. Oliveira, Alceu S. Britto
Jr, Eunelson J. Silva Jr Alessandro Koerich,
PKLot - A Robust Dataset for Parking Lot Classi-
fication, 2015.

[13] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Pro-
ceedings of the IEEE, Gradient-based learning
applied to document recognition, 1998.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Deep Residual
Learning for Image Recognition, 2016.

[15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), Going deeper with con-
volutions, 2015.

[16] Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Google AI, SSD: Single Shot
MultiBox Detector, 2016.

[17] Jonathan Huang, Vivek Rathod, Chen Sun,
Speed/accuracy trade-offs for modern convolu-
tional object detectors, 2016.

[18] Mark Sandler Andrew Howard Menglong
Zhu Andrey Zhmoginov Liang-Chieh Chen,
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, MobileNetV2: Inverted
Residuals and Linear Bottlenecks, 2018.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

124 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13




