
Deep Rendering Graphics Pipeline

Mark Wesley Harris
University of Colorado,

Colorado Springs
1420 Austin Bluffs Pkwy
80918 Colorado Springs,

Colorado
wharris2@uccs.edu

Sudhanshu Semwal
University of Colorado,

Colorado Springs
1420 Austin Bluffs Pkwy
80918 Colorado Springs,

Colorado
ssemwal@uccs.edu

ABSTRACT
The graphics rendering pipeline is key to generating realistic images, and is a vital process of computational design,
modeling, games, and animation. Perhaps the largest limiting factor of rendering is time; the processing required
for each pixel inevitably slows down rendering and produces a bottleneck which limits the speed and potential of
the rendering pipeline. We applied deep generative networks to the complex problem of rendering an animated 3D
scene. Novel datasets of annotated image blocks were used to train an existing attentional generative adversarial
network to output renders of a 3D environment. The annotated Caltech-UCSD Birds-200-2011 dataset served as
a baseline for comparison of loss and image quality. While our work does not yet generate production quality
renders, we show how our method of using existing machine learning architectures and novel text and image
processing has the potential to produce a functioning deep rendering framework.

Keywords
Graphics pipeline, rendering technologies, machine learning, image processing, generative adversarial networks,
text-to-image, semantic data processing

1 INTRODUCTION
Rendering a 3D environment often requires excessive
amounts of time and computational resources. The cost
of high quality rendering is multiplied by variable cir-
cumstances during production, such as changes to the
scene, cast, or script. A determining factor in the speed
of rendering is undoubtedly the amount of processing
which occurs in the rendering pipeline. We propose
the application of text-to-image deep learning networks
to the rendering of a 3D environment, to help sub-
vert the costs of traditional rendering processes. We
trained the Attentional Generative Adversarial Network
[Xu01a] using textual descriptions for small sections
of pre-rendered frames. We then generated renders of
the environment for a given frame by stitching together
outputs generated from the frame’s corresponding at-
tributes.
We show how current research may be used in new
ways to inject more relevance into generated images,
and ultimately produce reasonable renderings of un-
known scene data. Although our method does not yet
produce images of high enough quality to replace cur-
rent rendering technologies, we provide a proof of con-
cept to support future advancements for deep learning
approaches to the graphics pipeline.

2 BACKGROUND
Deep text-to-image synthesis was made possible
through advancements in computer vision and machine

learning. Although neural networks have been applied
to animation and frame prediction, none so far have
attempted to circumvent the rendering process as a
whole [Sem01a]. We propose the application of deep
generative networks to the rendering of a 3D scene
using textual data alone. Two models we found crucial
to solving this problem were generative adversarial
learning, and attention mechanisms. We utilized an
architecture combining both of these concepts, the
Attentional Generative Adversarial Network developed
by Microsoft Research [Xu01a], in the creation of a
deep rendering framework capable of rendering images
given textual descriptors of a 3D scene.

2.1 Generative Adversarial Networks
The Generative Adversarial Network (GAN) was first
proposed as a method of producing realistic images
from random noise [Goo01a]. The GAN is made up
of two sub-architectures which are trained in tandem: a
generator, G, and a discriminator, D. The generator is

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

101 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



trained to progressively synthesize images that closely
resemble a target, while the discriminator is trained to
determine if a given image is real or fake.

A non-conditional GAN model functions as a random
image generator, where generated outputs share global
and local qualities of images from the training dataset.
The advent of the conditional GAN opened new av-
enues for research in adversarial learning, and has since
led to applications in image-to-image and text-to-image
translation.

2.2 Attention Mechanisms
Another deep learning concept applicable to text-to-
image generation is called Attention. Attention is a type
of sequence-to-sequence learning which uses attention
functions to reference past data during each iteration
of training. An attention function is a mapping of a
query and a set of key-value pairs to an output. At-
tention may be accomplished using an encoder-decoder
structure, where the encoder is trained to map feature
space (x1, . . . ,xn) to a continuous representation z =
(z1, . . . ,zn), and the decoder is trained to transform z
into an output sequence (y1, . . . ,ym) [Vas01a]. Applied
to text-to-image generation, feature space would consist
of all input words and the output sequence would con-
sist of 3-channel pixel data. The self-referential nature
of attention enables the learning of complex relation-
ships in long data sequences.

3 RELATED WORK
While they perform excellently as random generative
models, GANs tend to be unstable, and their outputs
often do not fully reflect the diversity in the training
set. Over-training of a GAN network may result in
preference of a small set of images rather than learn-
ing more detailed representations from the dataset. Re-
searchers also found it difficult to train GANs to learn
global structures; semantic meaning such as pose, com-
position, and color are impossible to control without
modifying the GAN model. Higher quality images with
more stability and semantic relevance were obtained by
seeding the model with non-random data – such as a
low-quality image or textual description – to generate
from [Par01a]. Others found that variation inference
and other types of embedding increased the quality of
generated images [Luc01a]. These discoveries led to
the creation of many variant GAN architectures, such
as the Deep Convolutional GAN (DCGAN) [Rad01a].

The DCGAN was first proposed as a way to bridge the
capabilities of unsupervised and supervised learning
through adversarial training. The model architecture
has a similar structure to the original GAN model,
but uses convolutional and convolutional-transpose
layers in the discriminator and generator, respec-
tively [Rad01a]. The addition of convolutional layers

increases abstraction and allows the DCGAN to recog-
nize more complex relationships. The text-conditional
convolutional GAN architecture was built off of the
successes from the DCGAN, and was one of the first
GAN architectures to produce results in adversarial
text-to-image synthesis [Ree01a].

Text-to-image generation was notably improved by Mi-
crosoft Research with the advent of their Attentional
GAN (AttnGAN) model [Xu01a]. The AttnGAN ar-
chitecture combines inherent inference obtained by the
generator and discriminator within the GAN framework
with the improvements in dependency correlation and
stability from attention mechanisms. Instead of encod-
ing the entire caption as a single input vector, each word
in the sequence is allowed an opportunity to claim re-
gional importance for the output image. This ability
provides better recognition of conditional sub-regions,
which improves overall semantic relevance and coher-
ence of the output image. AttnGAN was partially based
on the work of the StackGAN++ architecture, which
found a multi-stage approach was necessary for stabi-
lizing sensitivities in training GAN models [Zha01a].

Preceding adversarial training, the AttnGAN architec-
ture loads all textual attributes in the text dataset, and
creates a one-hot encoding representation of the data.
A one-hot encoding assigns each symbol a bit value of
a binary string of size n, where n is the size of the lan-
guage of all attributes. This creates an easy way for
the network to recognize words and ensures a minimal
amount of resources are allocated to tracking them. The
AttnGAN requires training two models: pre-training
for the text and image encoders, and generative train-
ing for image synthesis [Xu01a]. Pre-training is con-
tained in the Deep Attentional Multimodal Similarity
Model (DAMSM), which initializes the text and image
encoders preceding any adversarial training. This step
is essential to providing the stability necessary for con-
ditional image generation. Xu et al. used an LSTM
model for their text encoder, and Google’s Inception-
v3 CNN as the image encoder. After pre-training is
finished, the encoder paths are used for adversarially
training text-to-image generation.

Another architecture was created from the advance-
ments of AttnGAN, called LEarn, Imagine and CreAte
GAN (LeicaGAN) [Qia01a]. Similar to other attention-
based GANs, the LeicaGAN architecture is comprised
of a text-embedding phase followed by coarse-to-
fine image generation. The main improvement of
LeicaGAN is a result of their use of textual-visual
co-embedding (TVE) and multiple priors aggregation
(MPA) to further extract semantic meaning from input
images.

Finally, we review work from the related field of frame
prediction. Mathieu et al. were of the first to apply
adversarial learning to predict images in a seqence of

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

102 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



frames. They developed a recursive, multi-scale GAN
framework to predict small portions of an input video
sequence. Their mult-scale approach provided them the
benefits of convolutional layers without lowering the
quality of their output images [Mat01a]. The Spatial
Transformer Predictor [Fin01a] and Geometry-Based
Next Frame Prediction [Mah01a] models deployed a se-
ries of convolutional Long Short-Term Memory units to
generate the next frame in a video sequence. The for-
mer predicted a series of transformations which were
masked and then applied to source frames, while the
latter predicted a depth map which was then converted
into a final image. Liu et al. trained a convolutional
encoder-decoder network to predict images between
two frames. Their architecture, which they called Deep
Voxel Flow [Liu01a], was trained to generate an in-
between frame by using voxels borrowed from the two
frames adjacent to it. Their approach notably did not
require pre-processing, as was used in the prediction
methods discussed previously.

4 APPROACH
We propose the creation of a machine learning frame-
work to render frames of a 3D environment given se-
mantic data input as text, a concept we refer to herein
as a deep rendering graphics pipeline. We chose to use
the AttnGAN as the generative architecture, to provide
a well-defined baseline for current and future work. In-
puts of the architecture were any number of textual at-
tributes containing contextual meaning for the objects
which were to be rendered. Once trained, the rendering
system was then used to preview new views of the scene
without re-rendering using the animation software or
re-training the AttnGAN architecture.

The deep rendering graphics pipeline, as we define it,
requires non-image seed data as input to produce a ren-
dered output image. We note that frame prediction and
deep rendering overlap in expectations for final outputs,
however given the divergence between text-to-image
and image-to-image networks, we classify the two as
separate deep learning problem spaces. Although we
require both text and image data during training, our fi-
nal outputs were constructed from text attributes alone.
This serves as a function of rendering directly from ex-
tracted scene data and does not involve the manipula-
tion or processing of image inputs to generate the final
frame, as is done in frame prediction.

4.1 Process
To measure the capabilities of our method, we created
a 3D scene with many moving parts and complex light-
ing interactions. We applied RenderMan [Chr01a] ma-
terials with varying properties, including blue glass,
soap bubble, gold, obsidian, thick glass, thin glass, beer
glass, and murky water. Lighting was applied via a

spherical HDRI image of a bright outdoor scene. We
animated 4 axes of rotation and 1 telescopic projection
over the course of 120 frames, and rendered the anima-
tion using RenderMan. These frames were then pro-
cessed further to create sets of images to be used as
training data.

Our datasets of training images were generated by ex-
tracting small portions of each frame, which we re-
fer to as “frameblocks”. It was clear that including
insignificant or redundant information could result in
over-training, so we ensured during extraction that el-
ements of the dataset contained minimal similarity to
one another. To generate frameblocks for frame Fi, we
compared the visual changes between the two adjacent
frames, Fi−1 and Fi+1, using a bit-wise XOR and vec-
tor sum capped at 255. The result was a grey-scale
image which highlighted changed components between
frames Fi−1 and Fi+1. While processing each frame-
block in the frame, we compared the total amount of
change in the block to the sum of all changes in the
frame. If the value surpassed the 1.0 percentile of to-
tal change, it was included in the dataset, otherwise it
was stored in a cache to be compounded in future cal-
culations for the same frameblock. Thus, even small
changes over many frames were represented in the im-
age dataset over the course of image pre-processing.

We then extracted corresponding text attributes describ-
ing the objects present in each frameblock of the im-
age dataset. Types of attributes we experimented with
included screen distance, frame and block index, and
vertex, edge, normal, and orientation information. In
experimenting with what attributes produced the best
outputs, we discovered the AttnGAN model found dif-
ficulty in recognizing relationships inherent to numer-
ical data. We concluded that, due to the use of one-
hot enocding, the AttnGAN network more easily rec-
ognized unique identifiers over numerical values. This
is also supported by similar studies of other learning
models [Zha02a].

To accommodate the loss in recognition, we attempted
to more precisely describe an object’s characteristics in
relation to its rendered pixels. Each frameblock was di-
vided into m×n regions, and each region was assigned
a bit position. We used these bit positions as flags for
marking the area a given 3D object was present inside
of. Figure 1 demonstrates this effect for finding the pre-
cision attribute of an object in the lower right corner of
the sample frameblock. Using the 3×3 grid shown, we
see the object resides inside of regions 0x020, 0x080,
and 0x100. The logical “OR” operator (⊕) was used
to combine these values and create the final precision
attribute. Thus, for our example, the precision value
was calculated from 0x020⊕0x080⊕0x100 = 0x416,
and resulted in the output attribute of “v416”. This pro-
cess was repeated for all objects present inside of each

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

103 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



frameblock. As we expected, the increase in precision
improved recognition and output quality. We experi-
mented with the resolution of precision, from 2×2 sub-
divisions to 8× 8. In general, results did not improve
visually past 4× 4, so we decided to generate our fi-
nal results with m = 4 and n = 4, for a total of 65,536
possible resolution cases.

Figure 1: Example of the precision attribute for an ob-
ject in the bottom right corner of the sample frame-
block.

While the precision attribute was able to mask the pres-
ence of an object for a given frameblock, it was not
able to provide information on what part of the object
was in view. We decided to again employ unique iden-
tifiers, this time for indexing groups of faces visible in
the frameblock. For each object, we assigned an index
to the group of face indices exactly containing visible
faces. A running list of all face groups was maintained,
so that if a given group of faces was seen again, the
same identifier was used. This strategy provided spatial
relevance while maintaining uniqueness, and was found
to be paramount to the visual quality of our output im-
ages.

We obtained the best results by prepending the mesh
name to each attribute. Recognition also improved with
the addition of identifying words; we used “and” to sep-
arate attributes connected to the same object, and “also”
to identify the end of one attribute group and the start of
the next. A sample from the 8×8 dimension dataset is
shown in Figure 2, outlining the location of extraction
from the source frame in white. The attributes we used
included distance to the screen (d), face group identi-
fier (i), precision value (v), and concatenated Euler ro-
tation (r). The text required for this 8×8 pixel sample
describing 4 objects was approximately 400 characters
in length, while simpler samples with only one object
were represented in as few as 30 characters in total.

4.2 Training
To begin training, we generated text attributes for all el-
ements of the corresponding image dataset, as well as
for any test frames used in evaluating our framework.
We performed two experiments, one using 2 frames of
known input, and another using 30 frames. For these
experiments, we selected every other frame to be used
as a test case. Once the AttnGAN architecture was
fully trained, the model was used to generate the first
four frames of animation, 2 of which were novel views.

Figure 2: Example of attributes for an extracted 8× 8
pixel frameblock of a known frame.

The final stages of our process involved frame gener-
ation and analysis. To create a final synthetic frame,
we fed in the semantic attributes for all frameblocks of
the frame, and combined the generated images in their
corresponding block locations.

We experimented with varying frameblock sizes, to
gain insight into the efficacy of our text attributes. We
generated and tested with frameblocks of dimensions
2k × 2k pixels, for k = 2,3, . . . ,6. We found that us-
ing large values of k resulted in smaller datasets which
took less time to train, but also generated more visual
anomalies and less coherence. Smaller block sizes re-
sulted in very slowly training architectures with higher
image quality. Table 1 shows a synopsis of statistics
for various frameblock sizes, and Table 2 shows our
generated dataset size compared to the total size if all
frameblocks were included.

64 32 16 8

PT (hrs) 0.364 1.216 8.477 17.726

GT (hrs) 1.109 2.727 17.617 34.874

RT (hrs) 0.050 0.167 0.605 2.289
Table 1: Training and evaluation times in hours per
dimension of frameblock. PT represents pre-training
time, GT represents generation training time, and RT
represents final render time for a single frame.

64 32 16 8

Dataset Size 4,389 17,862 73,741 296,526

Dataset Max 14,400 118,800 241,200 9,720,000
Table 2: Total number of image-text pairs for each
dataset compared to the same dataset generated with-
out our selective pre-processing.

In using our method of frameblock selection, we
reduced dataset size to 30% of the maximum on

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

104 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



average, and achieved an improvement of 112.8% for
SSIM and reduction of 143% in MSE. The model
trained on all frameblocks in the frame – in this
case a total of 241,200 images – over-trained on the
background attributes, which were more abundant
per frame than those of any other object in the scene.
Our pre-processing phase yielded a dataset of 73,741
unique images and attributes, which resulted in better
training and more visual cohesiveness, as seen by
the improvements between Figures 3a and 3b. This
shows the benefits of our novel use of frameblocks in
adversarial text-to-image synthesis.

(a) The frame generated with all attributes present in the frame,
including redundant information.

(b) The frame generated using our method of pre-processing.

Figure 3: Visual improvement accomplished using our
method of frameblock pre-processing for datasets gen-
erated with 16×16 pixel resolution frameblocks.

To serve as a baseline for comparison, we also trained
on images of the Caltech-UCSD Birds-200-2011
(CUBS) dataset. CUBS contained 200 categories of
bird types with a total of 11,788 images [Wah01a].
The attribute data was represented in multiple variable-
length captions for each image. An example caption
for an image in CUBS is, “this bird has a bright yellow
crown, a long straight bill, and white wingbars” –
these captions are much like the attributes used for
our datasets of frameblocks, however they are less
specific concerning the make up of the image, such as
in object placement, pose, and setting. Results from all
of our datasets outperformed those of CUBS, which
implies that our selection of attributes more accurately
represented images compared to the CUBS captions.

5 RESULTS
Since GANs do not optimize any kind of objective
function and operate instead on a learned latent space,
they can be difficult to analyze analytically [Ric01a].
To evaluate our results, we measured the closeness of
our generated images to their target frames via Mean
Squared Error (MSE), Structural Similarity Index
(SSIM), and Peak Signal-To-Noise Ratio (PSNR).
Training losses of all block sizes are produced in
Figure 4.

Figure 4: Final training losses for the AttnGAN model
trained on frame data.

5.1 Image Analysis
The final generated frames for our 2-frame and 30-
frame experiments are shown in Figures 5 and 6, re-
spectively. In both cases, we trained and tested with
4 datasets of block sizes 64, 32, 16, and 8 pixels. We
found that the smaller the resolution, the better quality
of image was generated. The decreased size in image
space improved the ability for the model to learn re-
lationships between pixel value and textual attributes.
The larger frameblock sizes of 64 and 32 did not have
enough context to produce cohesive outputs. For the 2-
frame experiment in particular, these sizes did not con-
tribute enough data to produce arguably good results.

While the model trained on 8 pixel dimension frame-
blocks produced the best renders of those we gener-
ated, it did not generate enough detail or coherence be-
tween blocks to constitute a visually accurate rendering.
The very center portion, which should display a rotat-
ing wooden texture, rendered very little texture in all of
our outputs. We note this quality is true for most por-
tions of the image with extremely fine textural details,
such as the subsurface scattering on the clear dome and
dark glass objects, and the reflection on the floor. This
is likely due to the lack of texture and lighting informa-
tion in the text attributes. Although we theorized that
decreasing the block size would improve textural gen-
eration, frameblock dimension did not affect the level of

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

105 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



detail generated aside from improving object structure.
Further experiments would be necessary before we may
determine how to improve the accuracy for rendering
textures and lighting using our method of data genera-
tion.

Our analysis of output images is produced in Table
3. The values of any given category were mostly uni-
form across dimensions, which does not trend with
the dramatic change in visual quality between outputs.
Our further analysis in Table 4, which compares re-
sults on a block-by-block basis, reflects greater dif-
ferences between dimensions. This shows that gener-
ated frameblocks were more accurate individually, but
scored lower when combined for the final frame. This
premise is also supported by the significant improve-
ment in loss over the CUBS baseline. Notably, the most
accurate images generated from our datasets were close
to or completely correct, while the most accurate im-
ages of CUBS exhibited larger amounts of error.

Frames 2 and 4, which were not included in the train-
ing or test datasets, still held high correspondence to
their targets; the AttnGAN model was able to extract
enough semantic meaning from our attributes to create
plausible renderings of unknown views, and thus func-
tion as a true rendering system. Further, the high sim-
ilarity between our 2-frame and 30-frame experiments
demonstrates the abstraction power of our method. The
64 dimension case of the 2-frame experiment, however,
did not contain enough data for learning the seman-
tic descriptions, and thus we conclude our approach
is limited by dataset size and training time. Optimiz-
ing the number of epochs to data and frames processed
would create crisper images, however we found that
no amount of training could entirely overcome cross-
boundary incoherence or greatly improve the genera-
tion of textures. Taking the average of all frameblock
sizes, our dataset yielded 156% better MSE, and 130%
better SSIM over the CUBS dataset.

6 CONCLUSION
Generative Adversarial Networks show promise for im-
age generation, but can be highly unstable and at times
generate undesirable results. Attention-based GAN net-
works are proven to synthesize higher-quality images
with more semantic relevance and improved composi-
tion. Using the Attentional GAN model created by Mi-
crosoft Research, we successfully implemented a proof
of concept for generating frames without a commercial
renderer. Our method of frameblock selection reduced
dataset size for long animated sequences, and yielded
156% improvement in MSE over the CUBS dataset.
While the model trained on the CUBS data generated
birds in the likeness of their input captions, fine con-
trol of the pose and background was not possible. Our
semantic text attributes improved this capability for all

Blockdim 64

Frame MSE SSIM PSNR

1 45.443 0.857 31.556

2 46.304 0.863 31.475

3 45.607 0.859 31.540

4 46.533 0.863 31.453

Blockdim 32

Frame MSE SSIM PSNR

1 46.341 0.862 31.471

2 47.772 0.859 31.339

3 47.272 0.857 31.385

4 48.513 0.857 31.272

Blockdim 16

Frame MSE SSIM PSNR

1 42.997 0.874 31.796

2 45.049 0.867 31.594

3 45.273 0.863 31.572

4 45.778 0.864 31.524

Blockdim 8

Frame MSE SSIM PSNR

1 39.723 0.867 32.140

2 41.894 0.855 31.909

3 40.865 0.857 32.017

4 42.083 0.854 31.890
Table 3: Results of MSE, SSIM, and PSNR for all di-
mensions and frames analyzed.

block sizes, as we were able to dictate form, material,
and structure. The smaller dimensions of 8 and 16
obtained the most accurate renderings, since attributes
were more focused for each image. The larger sizes
of 32 and 64 failed to provide enough textual detail to
generate accurate outputs.
Our results present plausible basis for future work in
this area. Replacing the rendering pipeline is a com-
putationally very difficult problem, and would not be
possible without the use of advanced deep neural net-
works. We assert that future advancements in a deep
rendering graphics pipeline could decrease rendering
costs for static and dynamic rendering systems, and ul-
timately provide an alternative to traditional rendering
processes.

7 REFERENCES
[Aug01a] Augusteijn, M., F., Motion generation with a

recurrent neural network, in Conf.proc. ICNN’94,

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

106 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



Averages Per Datatype

Datatype MSE SSIM PSNR

CUBS 105.495 0.392 27.925

Ours (64) 45.971 0.882 34.209

Ours (32) 47.475 0.887 33.310

Ours (16) 44.775 0.899 33.848

Ours (8) 41.141 0.900 34.989

Medians Per Datatype

Datatype MSE SSIM PSNR

CUBS 106.526 0.349 27.856

Ours (64) 27.068 0.993 33.807

Ours (32) 32.881 0.994 32.961

Ours (16) 26.673 0.996 33.871

Ours (8) 23.334 0.999 34.472

Best Output Per Datatype

Datatype MSE SSIM PSNR

CUBS 5.184 0.989 40.984

Ours (64) 0.948 0.998 48.366

Ours (32) 0.993 0.998 52.156

Ours (16) 0.245 0.999 54.243

Ours (8) 0 1 100
Table 4: Results per frameblock, with calculations for
average and median. The best value for each column of
every category is shown in bold.

Vol.5, pp. 2726-2731, 1994.
[Chi01a] Child, R., et al. Generating long se-

quences with sparse transformers, in CoRR
abs/1904.10509, 2019.

[Chr01a] Christensen, P., et al. RenderMan: An Ad-
vanced Path-Tracing Architecture for Movie Ren-
dering, in Conf.proc. ATG’37, Vol 3, No. 30,
2018.

[Fin01a] Finn, C., Goodfellow, I., and Levine, S.
Unsupervised Learning for Physical Interaction
through Video Prediction, in Conf.proc. NIPS’16,
Barcelona, Spain, Curran Associates Inc., pp. 64-
72, 2016.

[Goo01a] Goodfellow, I., et al. Generative Adversarial
Nets, in Conf.proc. NIPS’14, Montreal, Canada,
MIT Press, pp. 2672-2680, 2014.

[Hua01a] Huang, H., Yu, P.S., and Wang, C. An Intro-
duction to Image Synthesis with Generative Ad-
versarial Nets, in CoRR abs/1803.04469, 2018.

[Liu01a] Z. Liu, et al. Video Frame Synthesis Using
Deep Voxel Flow, in Conf.proc. ICCV’2017, pp.

4473-4481, 2017.
[Luc01a] Lucic, M., et al. High-Fidelity Image Gener-

ation With Fewer Labels, in Conf.proc. PMLR’19,
Long Beach, California, USA, No. 97, pp. 4138-
4192, 2019, pp. 4183-4192.

[Mah01a] Mahjourian, R., Wicke, M., and Angelova,
A. Geometry-based next frame prediction from
monocular video, in Conf.proc. IV’17, IEEE, pp.
1700-1707, 2017.

[Mat01a] Mathieu, M., Couprie, C., and LeCun, Y.
Deep multi-scale video prediction beyond mean
square error, in CoRR abs/1511.05440, 2015.

[Par01a] Parmar, N., et al. Image Transformer, in
Conf.proc. PMLR’18, No. 80, pp. 4055-4064,
2018.

[Qia01a] Qiao, T., et al. Learn, Imagine and Create:
Text-to-Image Generation from Prior Knowledge,
in Conf.proc. NIPS’19, Curran Associates, Inc.,
No. 32, pp. 887-897, 2019.

[Rad01a] Radford, A., Metz, L., and Chintala, S. Un-
supervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,
in Conf.proc. ICLR’16, San Juan, Puerto Rico,
2016.

[Ree01a] Reed, S., et al. Generative Adversarial Text
to Image Synthesis, in Conf.proc. ICML’16, New
York, NY, USA, No. 48, pp. 1060-1069, 2016.
Adversarial Networks, in CoRR abs/1710.10916,
2017.

[Ric01a] Richardson, E., and Weiss, Y. On GANs
and GMMs, in Conf.proc. NIPS’18, Montreal,
Canada, Curran Associates Inc., No. 32, pp. 5852-
5863, 2018.

[Sem01a] Sudhanshu K., S., A Proposal for using
ANNs for CG Animation, in CC-AI: The Journal
for the Integrated Study of Artificial Intelligence,
Cognitive Science and Applied Epistemology,
Vol. 10, No. 1-2, pp. 93-106, 1993.

[Vas01a] Ashish Vaswani et al. Attention is All you
Need, in Conf.proc. NIPS’17, No. 30, Curran As-
sociates, Inc., pp. 5998-6008, 2017.

[Wah01a] Wah, C., et al. The Caltech-UCSD Birds-
200-2011 Dataset. Tech. rep. CNS-TR2011-001,
California Institute of Technology, 2011.

[Xu01a] Xu, T., et al. AttnGAN: Fine-Grained Text
to Image Generation with Attentional Gen-
erative Adversarial Networks, in Conf.proc.
IEEE/CVF’18, pp. 1316-1324, 2018.

[Zha01a] Zhang, H., et al. StackGAN++: Realistic
Image Synthesis with Stacked Generative Adver-
sarial Networks, in CoRR abs/1710.10916, 2017.

[Zha02a] Zhao, Y., et al. 3D Point Capsule Networks,
in CoRR abs/1812.10775, 2018.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

107 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11



Figure 5: Results of our framework for 64, 32, 16, and 8 dimension frameblocks, using 50 epochs and the first and
third frame of the 60 frame animation. The network did not have enough training data for the 64 and 32 dimension
cases, and thus more epochs would be necessary to produce rendering given only 2 frames as inputs.

Figure 6: Results of our framework for 64, 32, 16 and 8 dimension frameblocks, using 50 epochs and every other
frame of the source 60 frame animation. Frames 1 and 3 were included in the training set, while 2 and 4 were not.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

108 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.11




