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ABSTRACT
360◦ photogrammetry captures the surrounding light from a central point. To process and transmit these types of
images over the network to the end user, the most common approach is to project them onto a 2D image using
the equirectangular projection to generate a 360◦ image. However, this projection introduces redundancy into the
image, increasing storage and transmission requirements. To address this problem, the standard approach is to
use compression algorithms, such as JPEG or PNG, but they do not take full advantage of the visual redundancy
produced by the equirectangular projection. In this study of the 360SP dataset (a collection of Google Street
View images), we analyze the redundancy in equirectangular images and show how it is structured across the
image. Outcomes from our study will support the developing of spherical compression algorithms, improving
the immersive experience of Virtual Reality users by reducing loading times and increasing the perceptual image
quality.
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1 INTRODUCTION

Virtual Reality (VR) provides real-world scenarios fo-
cusing on maximizing the immersive sensation. Im-
ages and videos shown in VR devices are known as
panoramic, 360◦ or omnidirectional images. Gaming,
art, photography and social media takes advantage of
the immersive properties VR provides and has been
used in many applications [Gooed, Faced].

360◦ photogrammetry captures the surrounding light
from a central point. To process and transmit this type
of image over the network to the end user, the most
common approach is to project them onto a 2D im-
age using the equirectangular projection to generate a
360◦ image. This permits easy image storage and visu-
alization but introduces a major problem. Because the
projection reduces the dimensionality from 3D to 2D,
it generates topological visual alterations related to the
projection stretching samples over multiple pixels and
introducing redundant data.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

To the best of our knowledge, there is no study about
how the redundancy is structured in equirectangular im-
ages, nor how much each pixel contribute to the overall
image quality. In order to provide a good immersive ex-
perience by reducing image loading times and improve
the streaming quality, it is important to determine how
the redundant data is structured in equirectangular im-
ages. With the current trend of resolution increase in vi-
sualization devices, images can be adapted accordingly.
If we increase the image resolution, the number of re-
dundant pixels will also increase and image file size will
be needlessly increased. Redundant pixels do not con-
tribute to the image quality as much as unique pixels,
and their impact on the user’s immersive experience is
often minimal.

In this paper, we present the results of a study we con-
ducted on how perceptual redundancy is structured in
equirectangular images. The redundancy is created by
how the equirectangular projection stretches the cap-
tured samples from the 360◦ field of view. We deter-
mine what is the contribution of each of the projected
image pixels to the image’s overall perceptual quality.
Because of the nature of equirectangular projection the
portions of the image at angles farther from the hori-
zon (top and bottom rows respectively) contribute less
to the overall image quality than the portions nearest
the image horizon. Since equirectangular images cap-
ture a 360◦ field of view, some areas of the image are
stretched because the scene is projected creating low
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gradient textures (top and bottom rows) while other ar-
eas remain unstretched (middle rows). The contribution
of this paper is an analysis, using different metrics (row
and region based), of how the redundancy is structured
in equirectangular images and how each portion in the
image contributes differently to the overall image qual-
ity.

2 RELATED WORK
360◦ photogrammetry captures the surrounding light
using a camera located at the central point in a scene.
There are multiple ways to capture these type of photos,
including multi-shot camera rigs, single camera shot
and single camera shot with catadioptric lenses. By ap-
plying warping and/or stitching techniques to the cap-
tures, we can build a 360◦ photo in which each pixel
represents a small portion of the full scene [Sze10].
Conceptually, the photo is a colored spherical point
cloud in a 3D space. The density of this point cloud
determines the resolution of the capture and therefore
the overall quality of the photo. Using higher resolu-
tion sensors in cameras results in a direct visual quality
increase. However, the memory requirement for 360◦

photos that provide a good visual quality is high.

For efficient storage and transmission of 360◦ photos,
the photo sphere must be projected from 3D space to
2D to generate a 360◦ image. This process produces
visual alterations in the projected image yielding re-
dundant data. The most common projections are cylin-
drical, equirectangular and cube-map projections. As
Azevedo et al. [Aze19] stated, the capturing, process-
ing and delivery of 360◦ content, introduces visual al-
terations which do not fully keep perspective projection
properties. The study reviewed the most common types
of visual alterations, such as geometrical and data alter-
ations, and identified their main causes.

Visual alterations generate redundant data that can be
compressed to reduce the storage and transmission re-
quirements because they do not add any improvement
to image quality. Despite the good performance of stan-
dard codecs for regular images, using them to compress
360◦ images does not take full advantage of the 360◦

image’s spherical properties. Sun et al. [Sun18] con-
ducted a subjective image quality assessment study on
how common image codecs influence the 360◦ image
quality. And it has been shown that codecs for 2D im-
ages can be adapted to the 360◦ images by exploiting
projection properties [DS16].

Downsampling specific regions in equirectangular im-
ages was proposed in some works. Since top and bot-
tom rows of the equirectangular mapping are stretched,
Budagavi et al. [Bud15] proposed a Gaussian smooth-
ing filtering over those regions. The key point in that
work was the exploiting of the characteristics of the

projection and give more importance to equatorial re-
gions. Using the same idea, Youvalari et al. [You16],
split the image in several strips and each one is down-
sampled differently based on the latitude they are lo-
cated. Lee et al. [Lee17] used a similar approach but
in a pixel level, where each image row is individually
downsampled and produces a rhomboid shape image.
This studies remove most of the redundant data pro-
duced by the equirectangular projection, however, they
do not fully consider the structure of visual alterations
produced in the projected images.

The compression efficiency of the 360◦ images differs
based on the used projection [Jam19, Yu15]. Some
studies considered compression approaches by just re-
projecting the images and discovered that compres-
sion performance is content dependent. Boyce et al.
[Boy17], detected regions where textures were highly
detailed and rotated the panoramas in the spherical do-
main to relocate those textures close to the equator. In
this manner, regions with low gradients will locate in
top and bottom rows where the stretching is higher and
benefits the compression with standard compression al-
gorithms. Sun et al. [Sun18], proposed the addition of
deep learning to the process and by designing a Convo-
lutional Neural Network measured the relation between
the visual content and compression rate for different ro-
tations.

The most common metrics to measure the effective-
ness of the proposed compression approaches are Peak
Signal to Noise Ratio (PSNR) and Structural Similar-
ity Metric (SSIM) [Wan04]. These two metrics were
designed to approximate the human perception of reg-
ular 2D images, however, they may not provide accu-
rate measurements for 360◦ images. Since the spherical
captures are projected onto a 2D plane, redundant pixels
emerge and therefore these metrics are biased by the re-
peated pixels. To address this problem, the WS-PSNR
[Yu15] and S-SSIM [Che18] were proposed, where the
results of PSNR and SSIM are weighted, giving more
weight to elements close to the horizon.

There exists multiple benchmarks for studying 360◦

images in different areas. Datasets, such as Abreu et
al. [DA17], Sitzman et al. [Sit18], Gutierrez et al.
[Gut18], were presented to study how the users visual-
ize 360◦ images by tracking their attention, head move-
ment and eye movement. For 360◦ image visual qual-
ity assessment, the most popular dataset are Huang et
al. [Hua18], CVIQD [Sun17], CVIQD2018 [Sun18]
and OIQA [Dua18]. SUN360 [oTed] and 3D60 [oITed]
(which is a mix of the SunCG [Soned] and SceneNet
[McCed] datasets) and 360SP [Cha18] are interesting
benchmarks too. 360SP contain outdoor images in-
tended to locate the sun position while 3D60 is a syn-
thetic dataset of indoor images with their respective
depth maps. Even though these benchmarks were not
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intended to analyze the visual alterations of 360◦ im-
ages, they are a good source for analyzing the redun-
dancy structure in equirectangular images.

3 METHODOLOGY
The main idea of this study is to assess how much in-
dividual pixels contribute to the overall image quality
based on their location in an equirectangular image.
Due to the projected visual alteration when projecting a
3D sphere onto a 2D image plane, some of the samples
are stretched across multiple pixels and redundant pix-
els emerge. Those redundant pixels do not contribute
as much to the image quality as non-redundant pix-
els and add extraneous data that is needlessly stored
and/or transmitted. Knowing how this data is structured
across equirectangular images is key to designing effi-
cient 360◦ image focused compression algorithms.

In this work, we first analyzed the quality impact of
each equirectangular image row. In each row, we re-
move multiple sets of contiguous pixels and interpo-
late gaps to demonstrate the ease of their reconstruction.
By computing the resulting row quality, this approach
shows the redundancy behavior and provides a visual
clue to the number of extra pixels in the image. Full
redundancy structure, however, is not revealed with a
row based approach and so we use region focused ap-
proaches for a better revelation of the underlying struc-
ture. Instead of computing quality metrics over entire
rows, for each pixel in the image, we focus on its neigh-
bouring region and compute its quality after the region
interpolation. In both cases, when we compute the qual-
ity metric, highly redundant regions yield high quality
measures even when pixels are removed while the qual-
ity drops in low redundancy regions when pixels are re-
moved.

With these approaches, the study shows some bias un-
der certain image conditions (such as smooth textures
being in the same region). To ensure a robust analy-
sis, we discuss this problem and possible solutions in
Section 4.

3.1 Row impact
In equirectangular images, portions of the image at an-
gles farther from the horizon have higher pixel redun-
dancy than at the horizon line due to the projection
properties. To test how this redundancy is structured
along the image rows, we remove sets of pixels in an in-
creasing number, interpolate them and compute a qual-
ity metric. This process reveals the behavior of redun-
dancy in equirectangular images.

We extracted each row in the image and processed them
individually to compute their contribution to the image
quality. As seen in Figure 1, from each row, we re-
moved multiple sets of contiguous pixels and kept some

Reference pixel.

Interpolated pixel.

Interpolated pixels: 1

Interpolated pixels: 2

Interpolated pixels: 3

Figure 1: Image row pixel removal and interpolation in
an increasing manner.

of the original image pixels as reference. We increase
the size of the removed sets in an iterative manner to de-
crease the number of reference pixels and increase the
image error. Then, we reconstruct the missing pixels
with the linear interpolation using the reference ones.
Since the linear interpolation is a basic interpolation
technique and leads to poor results for image recon-
struction, it shows how easy it is to reconstruct some
regions in equirectangular images. Our thesis is that if,
after reconstructing the row with a very basic technique,
the resulting row quality is high, the redundancy in that
row would be high and therefore most of the pixels in it
do not have a high impact on the image quality. Yet, if
the resulting quality is low, the redundancy in that row
is minimal and most of the pixels in that row would be
relevant to the overall equirectangular image quality.

When computing the quality metric, our focus is on
the metric behavior and not on its specific value. We
wanted to analyze the redundancy behavior in equirect-
angular images as we move from the top to the bottom
rows. Because we processed each row individually, the
rest of the image remains untouched.

Computing the row based quality metric over the en-
tire image is unnecessary because it will produce val-
ues close to 0 and, based on the image size, the arith-
metic precision was seen to affect the results. To ad-
dress this problem, we computed the row based quality
metric only over the modified row and not over the full
image. This approach does not have an impact on the
study because we are analyzing the error behavior and
not the error value. The behavior will be the same even
if we compute the row based quality metric of the entire
image or just a single row, the only difference will be
the resulting error values.

As a result of this process, Algorithm 1, we produce a
2D matrix containing the impact of each row with dif-
ferent removed pixel set sizes. The first dimension of
the matrix represents the rows while the second dimen-
sion represents the size of removed pixel sets.
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Algorithm 1: Row impact on image quality

Function Row_Impact(img) : matrix is
q = matrix[img.rows, MAX_SET_SIZE];
foreach row ∈ [0..img.rows] do

foreach ss ∈ [1..MAX_SET _SIZE] do
r = remove_pixels(img[row], ss);
r’ = interpolate_pixels(r, ss);
q[row, ss] = quality(img[row], r’);

end
end
return q

end

3.1.1 Metrics

The quality measurement of the reconstructed rows can
be computed using different metrics. In this work, for
standard image comparison, we use PSNR and SSIM
to compare the equirectangular images. However, these
metrics do not take into account the properties of 360◦

images and therefore, the visual from projecting the 3D
sphere onto a 2D plane may affect the results.

w(r) = cos

(
r+0.5− N

2

)
π

N
(1)

WMSE(r) =
∑

cols
i=0 (xi− yi)

2 ·w(r)
∑

rows
j=0 w( j)

(2)

WPSNR(r) = 10log
(

MAX2
I

WMSE(r)

)
(3)

where:

r = image row.
N = image height.
x = original image.
y = reconstructed image.
MAXI = maximum image intensity value.

In addition to the standard metrics, we use their
weighted versions: W-PSNR and S-SSIM. These two
metrics weigh the resulting quality using a row based
cosine weight, they lower values from top and bottom
rows while they rise values in the middle rows. We
slightly modified them to only compute the values from
single rows instead of over the full image ( Equation 3
for WPSNRrow and Equation 5 for S_SSIMrow).

SSIM(r) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(4)

where:

µ = image row mean.
σxy = x and y image row covariance.
σ2 = image row variance.
c1 = (0.01 ·MAXI)

2

c2 = (0.03 ·MAXI)
2

S_SSIM(r) =
∑

cols
i=0 SSIM(r) ·w(r)

∑
rows
j=0 w( j)

(5)

3.2 Pixel impact
Studying how the rows impact the equirectangular im-
age quality provides an overall idea about how pix-
els are relevant in the projected image. A limitation
to this approach is that it does not provide informa-
tion about pixel-wise impact or how the redundancy
is structured throughout equirectangular images. Be-
cause the equirectangular projection maps the meridi-
ans to straight lines the rows are stretched and redun-
dancy emerges perpendicular to the meridians. In order
to conduct a study about how each pixel impacts the
image quality, we use the ROAD [Gar05] metric and
localized SSIM.

In the pixel impact analysis, we do not use the PSNR
metric because it is resolution dependant. PSNR re-
quires the computation of the Mean Squared Error, and
in small regions, a small difference highly impacted the
resulting perceptual quality, therefore, the variance of
PSNR results over multiple image is too large to be use-
ful when averaging them.

3.2.1 ROAD metric
The ROAD metric is defined for each pixel (x,y) as
Equation 6, where r is the sorted difference of a pixel
respect it’s neighborhood ones in an ascending order,
and 2≤m≤ 7. This metric was presented as a measure-
ment to detect impulse errors when transmitting images
over the network. It is a metric that measures the gradi-
ent of a pixel respect to its most similar neighborhood
ones in a single image. Since the projection generates
visual effects in a similar manner on all equirectangular
images and stretches pixels across the rows, this met-
ric provides insights about regions with low gradients.
Therefore, we only computed the ROAD metric over
the original equirectangular image and not over the in-
terpolated image.

ROADm(x,y) =
m

∑
i=0

ri(x,y) (6)

There are two possible reasons for the low gradient re-
gions: smooth textures and projection’s visual alter-
ations. With the ROAD metric, it is not possible to
discern, within a single image, whether or not the low
gradient regions belong to smooth textures or to visual
alterations. However, by computing the ROAD metric
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over a number of images and averaging the results, we
introduce variability into the equation and therefore we
can eliminate smooth texture effects and only the pro-
jection’s visual alterations remain.

3.2.2 Localized SSIM
In the standard approach, when computing the SSIM
metric, the entire image is used to generate one sin-
gle value. This value represents the quality of a recon-
structed image with respect to the original one. Because
in our case we want to measure the impact of a pixel in
its local region after reconstructing the image, we cre-
ated a modified SSIM to only be computed in local re-
gions.
For each pixel in the image, we cropped the 3×3 neigh-
borhood from both images (original and reconstructed)
and treated them as full images to compute the SSIM.
This operation reveals how much that region impacts in
the overall image quality. When generating the results
over the entire image, we reveal the redundancy struc-
ture in the image, as explained in Section 5.

4 EVALUATION
One of the main problems we found for this work was
the configuration of the captured 360◦ photos. Usually,
for better visualization, the horizon line of the scene
is mapped to the equirectangular image’s middle rows.
This orientation provides a good overall idea about how
the image will look in a 360◦ viewer when the content
is projected onto a sphere. Because of that, the sky and
ground tend to be located in the top and bottom rows.
Those regions tend to be smooth textures with very little
change and therefore, the redundancy structure analysis
would be biased, resulting in highly redundant regions
when analyzing them. In order to address this, as stated
in Section 3.2, we introduce variability by vertically ro-
tating (pitch) the 360◦ images in the dataset using 22
degree intervals. To compute the vertical rotation, we
transform the equirectangular image to the 3D sphere,
rotate it in the x axis and project it back to the 2D im-
age using the equirectangular projection. This opera-
tion moves all regions in the original images to differ-
ent locations in the image, which ensures that smooth
regions will be processed at different locations, ensur-
ing a robust redundancy analysis.
In our analysis, variability is important and therefore,
we require a large non-synthetic 360◦ image dataset.
Synthetic datasets tend to contain large amounts of
smooth textures which will bias our results by not pro-
viding enough variability. The 360SP dataset is the
perfect fit for our needs. It is composed of ≈15000
outdoor images collected from Google Street view at
3328×1664 resolution. After our rotations, the number
of images we generated from the dataset was≈ 170000,
which makes a large enough dataset that provides the
needed variability to our analysis.

Figure 2: PSNR analysis results.

5 RESULTS
In this section, we show and discuss the results of com-
puting the metrics presented in Section 4. It is impor-
tant to keep in mind that our results were not intended
to compare any methods specifically for their effective-
ness. Our goal with this analysis was to study the metric
behavior and not the actual values. We ignored the re-
sults in terms of their value and focused on how each
metric behaved across the equirectangular image. By
studying how the metric changed for different pixel gap
sizes in each row and in each pixel’s neighboring re-
gion, we revealed the redundancy structure in equirect-
angular images.

In Figure 2, we can see that the perceptual impact is
minimal in top and bottom rows. It is interesting to
point out that PSNR does not seem to care that much
about the structure of the equirectangular image, it is
sensitive to noise in highly redundant regions. As it
is shown in Figure 2 at image rows [200,400], a small
change in a smooth region highly impacts the image’s
PSNR.

SSIM metric shows more robust results than PSNR for
highly redundant regions. In Figure 3, we can see what
is the impact in the images for the SSIM metric. It is
worth noticing that, for the top and bottom rows of the
equirectangular image, the number of pixels that can be
removed with minimal information loss is significant. It
is possible to remove very large gaps of pixels in those
regions and reconstruct them with minimal quality loss.

We colored both plots in Figure 2 and 3 to reveal how
the metrics transition from high redundancy to low re-
dundancy regions. To do so, we used the histogram
of each metric’s data (Figure 4a and 4b) to decide the
range of the transition data. In the PSNR case we se-
lected 65dB to be black color to differentiate the two
regions, but in the SSIM case, there is no clear bound-
ary and the transition is smoother.

The results from the WPSNR metric (Figure 5) shows a
similar behavior as the PSNR with a similar histogram
(Figure 7a). The S-SSIM, however, shows a completely
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Figure 3: SSIM results.

(a) (b)
Figure 4: (a) PSNR histogram and (b) SSIM histogram.

Figure 5: WPSNR results.

different data from the standard SSIM. Highly redun-
dant regions in SSIM vanish in S-SSIM due to the co-
sine factor of the weighting (Equation 1). However, it is
possible to notice in Figure 6 a linear perceptual quality
decrease towards the middle rows as long as the size of
the interpolated pixel gap increases.

As expected from the equirectangular projection, these
results show how the visual alterations of these type
of images have a consine behavior of relevant pixels.
However, these results do not show how the relevant
pixels are structured across the image.

The pixel impact analysis produced interesting results
on how the redundancy is scattered across equirectan-
gular images. The computation of the localized SSIM
metric shows, in Figure 9, the redundancy structure
when projecting a 360◦ photo using the equirectangu-
lar projection. In this resulting image, dark pixels rep-

Figure 6: S-SSIM results.

(a) (b)
Figure 7: (a) WPSNR histogram and (b) S-SSIM his-
togram.

Figure 8: ROAD results, the values are scaled for better
visualization.

resent highly redundant regions and light pixel regions
where the redundancy is minimum. The results reveal
two circular regions centered in the longitudes −π

2 and
π

2 of the sphere that contain low redundancy and fade
as we move further from their centers.

It is important to notice the existence of vertical dark
lines; they represent the pixels used as reference for
the interpolation and therefore they have no error when
computing the metric values. The behaviour of these
lines at the top and bottom rows of the image is inter-
esting too. They get thicker as long as they get closer
to the boundaries of the image due to the massive pixel
stretching of the equirectangular projection in those re-
gions.

The results from the ROAD metric (Figure 8) share a
similar behavior as the SSIM. The difference of these
two metrics is that the ROAD metric, as stated in Sec-
tion 3.2.1, measures the gradients of a 3×3 region with-
out any interpolation. This reveals the same circular
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Figure 9: SSIM region results for 25 pixel gap size. Notice that the vertical black lines show the reference pixels
from the interpolation where the error is non existent. Close to the top and bottom regions, the lines get thicker
due to the highly redundant regions. It is important to mention that the images contain watermarks and are visible
in the results.

low redundancy regions centered at longitudes −π

2 and
π

2 . This means that those regions are the less distorted
ones when we project the 3D sphere to the 2D plane
using the equirectangular projection.

6 CONCLUSIONS
In this paper, we presented an analysis of pixel redun-
dancy in equirectangular images. We analyzed the be-
havior of the visual quality assessment using standard
metrics for regular 2D images and equirectangular im-
ages (PSNR and SSIM). In addition to that, we used the
360◦ image focused versions to complete the analysis
and produce meaningful results. After removing sev-
eral sets of pixels from rows and reconstructing them,
we have shown how each metric behaves in a row-wise
manner. The results showed consistency with previ-
ous statements of diverse authors and provided a visual
demonstration of how the redundancy is increased at
angles farther from the horizon line in equirectangu-
lar images. We revealed the redundancy structure of
equirectangular images by using localized versions of
SSIM and ROAD metrics, showing how sample values
are stretched across pixels in images that use equirect-
angular projection. These results set a support for fu-
ture research work in 360◦ image compression by pro-
viding how each portion of the equirectangular image
contributes to the image quality. The knowledge of the
redundancy structure in equirectangular images is use-
ful to improve state of the art compression algorithms
and improve the visual quality and immersion sensation
in VR devices.
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