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ABSTRACT
Using drones and augmented reality paradigm, new forms of interactive algorithms has been created and proposed.
We start with a first person view interaction where the drone mimics the movement of one person’s head wearing a
HMD so that movements of the head can be mapped to actions by the drones. We then provide two novel AR/VR
applications of drones to create something similar to third person view in 2D and 3D. To get started, our first
idea is to control a drone using head movements. The second application which we implemented is to provide an
implementation where tangible platforms are used by the drone to react to the movements of the character. Finally
our third implementaton if to create and AR world using real outdoor scenery and asking a drone to mimic a third
person view combining the real scenery with a synthetic actor so that based on the synthetic actor movement the
drone changes its behavior correctly in the real-word trying to provide a synchronized view of the real and synthetic
word. There are three novel ideas providing a new form of interactions which will improve with drones functionality
in future. Our implementation shows the feasibility of our idea as discussed in the paper.

Keywords
Augmented and Virtual Realty, New Paradigm using Drones.

1 INTRODUCTION
While present focus for drones is mostly for disasters,
product delivery and public safety [1-6,10-15], we think
there are other major applications that can be useful too.
For example, to provide new camera angles, 3D AR
games, web-contents generation, individual recreational
activities and computationally generated social interac-
tions, instead of drones just taking photos/videos and
racing.

A drone is a relatively new technology that could also be
used for video games as well. This paper proposes a new
paradigm between drones, AR and user interaction. The
drone camera could be used as the camera view of an
AR, 3D or 2D video game. This way, video games could
be based in real life environments that are visible to the
drone, not to the phone or the user. This newer paradigm
provides augmentation of a different kind, bringing the
immediately reality surrounding the drones to our AR
worlds. This idea is novel and we provide a successful
implementation of our idea with video-sequences of our
work. We focused on feasibility of controlling drones,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

and drones being able to play the game and show the user
how the game can be played, these are simple games,
still the feasibility of our proposal is shown specially that
using drones Augmented Reality applications provide
new experiences. In future, we are planning IRB studies
by extending our drone based ideas, including our other
works [7-9], to include drone generated scenes from far
away and project them for interaction on large screens
[7-9].
The environment would be a real park field seen from
the drone camera, as shown in Figure 1. The character,
Figure 2, would be superimposed to the real environment
and it will be controlled by the user. As an example,
imagine being a video game of this type as shown in
Figure 3. The user may be situated anywhere in the
surrounding environment, at his home, or at any place
of the world. Notice that in an interaction of this type
the user moves the character, not the camera view which
is drone’s view. Our work is different that all the drone
interactions and games released up until now where the
user controls the drone. To the best of our knowledge,
no implementation exist where a drone is controlled
automatically while the user controls an AR character,
and that is precisely our goal in this paper.
The main idea of our paper is new form of interactions
emerge where the view point is the drone’s camera and
the user controls an AR character that is graphically
imposed over the video feed. Then, the drone moves
automatically depending on how the user moves the
character.
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With this idea in mind, we now could create games
and interactions in the streets, in a park, in our garden
or inside our house. We could create them in 2D or
3D, online or offline, multiplayer or single player. We
could have games where the game’s behavior depends
on how the real world is behaving in that exact moment.
For example, if there is a physical car, even though not
implemented by us, we imagine that the game could
simulate an enemy behind it. If there is a tree, the enemy
could appear from behind a tree. In other words, we
are providing a new way of designing AR 2D/3D games
based on what the interests of the game creator. Only a
proof of concept is provided in this paper. A feasibility
study of this new way of engaging AR-Drone Games is
presented.

2 FPV WITH HEAD TRACKING CON-
TROL INTERACTION

We started by controlling drone movements with the
head mounted display (?). The user wears VR goggles
and sees what the drone sees through its’ camera. Also
called First Person View, or FPV. This implementation
included a smartphone inside the VR goggles which
using an own Android app will send orders to the drone
via WiFi. For this idea, we used the DJI Spark drone.
As seen in Figure 7-11 any movement of the users head,
is executed by the drone.

2.1 Mimicking Drone Algorithm Imple-
mentation

In order to have roll, pitch and yaw of the android phone
mimicked, two sensors are needed: accelerometer and
magnetic field. A rotation matrix is created from the
readings of these sensors and is then expressed as three
orientation angles in degrees: roll, pitch and yaw. In
another thread, these variables are retrieved and are sent
to the drone every short period of time together with
the throttle value. We send the change in degrees of the
phone to the drone. In order to do this we first get the
orientation of the drone and after that we sum the change
difference of the phone yaw. Roll and pitch are treated
a little bit differently as they are received in degrees
and then converted to be sent as velocities. We have
them first normalized from -1 to 1, and then finally we
multiply by a pre-set maximum speed, see Algorithm 1.

2.2 VR Goggles feedback
Previous section explained how to control the drone
using head movements. But the user also needs to see
the live video feed of the drone to actually move the
drone to where he wants to go. And he needs to see it
in the VR goggles. Since we are using one live stream
from the drone, the same image is displayed in both eyes.
Therefore, depth of field can not be perceived still that
will be something which is feasible in future as that will

Algorithm 1 Pseudocode for Mimicking drone control
1: roll, pitch, yaw, last pyaw 0.0,0.0,0.0,0.0
2: loop
3: pacce get phone accelerometer reading
4: pmagn get phone magnetometer reading
5: proll, ppitch, pyaw calculate rotation matrix

using pacce and pmagn readings and express it
as three orientation angles: roll, pitch and yaw

6: if yaw is 0.0 then
7: yaw  get drone compass orientation (be-

tween -180 Âº and 180)
8: else
9: yaw yaw� (last pyaw� pyaw)
10: end if
11: last pyaw pyaw
12: yaw ((yaw+180)%360)�180
13: nroll, npitch normalize roll and pitch to fall

between -1 and 1
14: sroll, spitch nroll ⇤maximumspeed, npitch⇤

maximumspeed
15: move drone according to yaw, sroll and spitch
16: end loop

require two coordinated drones to keep same distance
from each other equal to the inter-eye distance. See
Algorithm 2.

Algorithm 2 Pseudocode for user feedback
1: screenx get mobile phone screen size height
2: screeny get mobile phone screen size width
3: loop
4: f rame get actual frame from drone
5: f rameeye center fill crop f rame with height

screenx and width screeny/2
6: Update the UI by placing f rameeye both in the

right and the left of the screen
7: end loop

2.3 Results: Mimiking Drones
The experience was a high-fidelity implementation, and
to us, it felt like that we are actually the drone. This inter-
action could be fully utilized as FPV (First-Person-View)
games like shooters. We also have some drawbacks as
follows:

• Noticeable delay. Around 1 second between user turn
and user sees the turn.

• Camera field of view of the DJI Spark is too narrow.

There are following improvements which could provide
better interaction in future:

• Have a wide camera field of view. The one used
in the DJI Spark is too narrow and it was difficult
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to see what the drone has around it. With a wider
field of view the experience would be more real and
attractive.

• Make the drone have two cameras separated 2.3
inches simulating two eyes. Then put the live video
feed of each camera to the right and the left of the
phone screen. This way, the user will be able to
perceive in 3D.

• Having real time information of the drone like the
IMU in order to be able to add AR to the real time
video feed.

3 IMPLEMENTING PLATFORM IN-
TERACTION USING DRONE

In a platform game, the controlled character must jump
and climb between suspended platforms while avoiding
obstacles. In order to make this type of game to adapt
to new AR and drones paradigm we thought that the
platforms could be drawn physically in the real world.
The virtual character would jump between those real
platforms based on the drone’s camera, while drone will
try to have the character always in the center of the
screen. For implementation, we used the DJI Tello and
DJI Tello EDU drones, while simulating the output and
controls from the computer.

3.1 Drone detecting the platforms
Our algorithm detects the tangible (drawn) physical plat-
forms using the live camera video sequence of a drone.
Platforms are drawn in black in a big white paper as
seen in Figure 13-18, we have used black tape to indi-
cate platforms.

We implemented a simple algorithm to detect the plat-
forms in real-time so that we can determine if the char-
acter is in a platform or not at every frame. For every
frame, we check if the foot of the character is over black
or white pixels. If the foot is falling on black pixels this
means that the character is over a platform. Also, if it
is falling over white pixels this means that it is not on a
platform. Pixels in black and white have a value from 0
to 255. 0 is the complete black while 255 is the complete
white. In order to differentiate if a pixel is over blacks
or whites we used a T HRESHOLD of 50. Meaning that
any pixel with a value lower than 50 will be considered
black. And therefore that pixel will be understood as
a platform. The pseudocode for this can be found in
Algorithm 3.

3.2 Moving the character on Platforms
Once we know if the character is on a platform, we
want the character to start moving and jumping. For
that, we use inputs from the user indicating move left or
move right and jump key-strokes. Move left and right

Algorithm 3 Pseudocode for detecting if character is in
a platform
1: x0 get horizontal center position of the character
2: x1 get horizontal left position of the character
3: x2 get horizontal right position of the character
4: y get vertical bottom position of the character
5: if (x0,y), (x1,y), (x2,y) fall inside the frame and

the pixel color in black and white is lower than
THRESHOLD then

6: return True
7: else
8: return False
9: end if

will be always directly applied to the character. The
jump input will only by applied if the character is on top
of a platform. Finally, a gravity effect will be applied
when the character is not on top of a platform. Also, the
character stops to fall once it hits a platform. At that
moment, its vertical velocity will be set up to 0. The
pseudocode for this can be found in Algorithm 4.

Algorithm 4 Pseudocode for moving the character
1: movey 0
2: loop
3: f rame get actual frame from drone
4: if user is pressing right then
5: movex ST EPS
6: else if user is pressing left then
7: movex �ST EPS
8: else
9: movex 0
10: end if
11: isinplat f orm check if character is in platform
12: if user pressed jump and isinplat f orm then
13: movey  �ST EPS ⇥

JUMPACCELERAT ION
14: else if movey greater or equal than 0 and

isinplat f orm then
15: movey 0
16: else
17: movey movey+gravity
18: end if
19: move character movex vertically and movey hori-

zontally
20: end loop

3.3 Applying AR to a simple character
Right now the character is just on the screen, and its
movement is 100% relative to the computer screen.
When the drone moves, the camera and the background
will also move; the character will stay at the same place
relatively to the screen. The expected behavior would
be that the character should be pinned relatively to the
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game map. And the game map is the live video feed of
the drone’s camera. We have simulated this behavior as
follows:

1. Track key-points and descriptors of every frame us-
ing an ORB detector (explained below).

2. Find the same key-points from the past and actual
frame using a BF matching algorithm (explained be-
low).

3. For each match get their movement in the x and y
directions from the past frame to the actual one.

4. Order the matches in order of relevance so that very
match has a distance that tells objectively how accu-
rate it is.

5. Find outlier matches and remove them (how to find
outliers is explained below).

6. Calculate the weighted average x and y movement
of the resulting matches. The weights give more
importance to the first matches and less to the last
ones.

7. Move the character the same amount in x and y as
the average calculated in the step before.

With this strategy, the character stays in the same game
map place no matter how the drone moves. The pseu-
docode for this can be found in "Algorithm 5".

3.3.1 ORB detector
We used the FAST (Features from Accelerated Segment
Test) [1] detection test for a corner detection method,
which is used to extract feature points and to track and
map objects in many computer vision tasks. BRIEF
(Binary Robust Independent Elementary Features) use
binary strings as an efficient feature point descriptor. It
is very fast both to build and to match. ORB (Oriented
FAST and Rotated BRIEF) [1] is a fusion of FAST key-
point detector and BRIEF descriptor with many modifi-
cations which enhances the performance.

3.3.2 Brute Force (BF) matcher and Outliers
BF matcher finds the closest descriptor in the second set
by trying all possible combinations. An outlier is a data
point that significantly differs from the other data points.

3.4 Moving the drone
In our algorithm, as the character moves through all the
platforms, the drone follows the character so that the
character is always at the center of the screen. Natu-
rally the camera of the drone will not include all the
game map, instead, just a part of it. Results of the drone
hovering over the map with platforms and keeping the

Algorithm 5 Pseudocode for applying AR to the char-
acter
1: Initialize newkeypoints as newdescriptors as None
2: loop
3: f rame get actual frame from drone
4: previouskeypoints newkeypoints
5: previousdescriptors newdescriptors
6: newkeypoints, newdescriptors run ORB de-

tector on f rame
7: if previousdescriptors is not None then
8: matches  run BF matcher with

newdescriptors and previousdescriptors
9: matches sort matches in the order of their

distance
10: Initialize movementsx and movementsy as

emtpy lists
11: for match in first 20 matches do
12: listmovx.insert(using match,

previouskeypoints and newkeypoints
calculate the vertical movement of that
match)

13: listmovy.insert(using match,
previouskeypoints and newkeypoints
calculate the horizontal movement of that
match)

14: end for
15: Remove outliers of listmovx and listmovy
16: Move character the weighted average of

movementsx vertically and movementsy hori-
zontally.

17: end if
18: end loop

character at the center is provided as successful imple-
mentation of our algorithm. In order to achieve this, we
check where the character is at every frame and depend-
ing on that the drone is moved up, down, left or/and
right. For instance, if the character is in the left side,
the drone is moved to the left. If the character is in the
right-up corner, the drone is moved up and right. The
drone is moved until the character falls in the center of
the screen again. The pseudocode for this can be found
in Algorithm 5-6.

3.5 Discussion
With this approach, we have proved that this new
paradigm is possible and feasible. See the video-
sequences submitted with this paper. The user is able
to control an AR character through the real time video
feed of the drone. And the drone is moving through the
real world in order to maintain the AR character in the
center of the video feed all the time. We can see this
in 13-16. The accuracy of the method is high. When
the AR character goes too much towards the borders,
the drone automatically moves in order to maintain it
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Algorithm 6 Pseudocode for moving the drone
1: loop
2: le f trightvelocity 0
3: updownvelocity 0
4: characterx get character horizontal center po-

sition
5: charactery get character vertical center posi-

tion
6: hhss half of the horizontal screen size
7: hvss half of the vertical screen size
8: if characterx is less than hhss �

CENT EROFFSET then
9: le f trightvelocity �DRONEV ELOCITY
10: else if characterx is bigger than hhss +

CENT EROFFSET then
11: le f trightvelocity DRONEV ELOCITY
12: end if
13: if charactery is less than hvss �

CENT EROFFSET then
14: updownvelocity DRONEV ELOCITY
15: else if charactery is bigger than hvss +

CENT EROFFSET then
16: updownvelocity �DRONEV ELOCITY
17: end if
18: move drone according to le f trightvelocity and

updownvelocity
19: end loop

inside the screen. We can see this in 17-18. Hardly ever
the character goes off the screen, even intentionally. So,
our algorithm has been successful in that sense. For this
algorithm we set up the velocities so that the drone is
faster than the character. Even so, if that is the case and
the character moves really fast and gets out of the screen,
the drone will keep trying to move till the character falls
inside the center of the screen. But while the character
is outside the screen, it will not be able to stop on a
platform because the platform to stop will be inside the
field of view of the camera.

The delay is pretty immediate although there is some, but
it is almost exactly the same delay as the delay between
sending commands to the drone and see the results in
the real time video feed. Which is around 0.5s. Our is
interactive as we can see the drone reacting to the scene
and moving accordingly, thus the implementation shows
feasibility of our proposed AR paradigm. In our opinion,
set-up time for this novel interaction is time consuming.
Set-up time include: having to charge the drone, set up
the drone, connecting to it’s wifi and taking off. There
are other parts like creating the map with papers and
black tape, and the actual playing that were comfortable
and fun. Playing the game felt like something novel and
creative. We draw the platforms. We knew that we could
change them, we could add/remove/change platforms

while we were playing which provides customizability
to our taste as to where we will have platforms. In some
sense, we could design a new level of the game at our
pleasure by simply moving the platform-tapes and have
slightly different interaction very quickly. This is a novel
AR paradigm for Games in our opinion.

This implementation is just the beginning of a very broad
topic in VR-Drones and Augmented Computer Games
area. There are so many different directions for research
to further develop. One drawback of our implementation
was that when the character goes out of the screen and
lands on a platform, it wont stop at it because the game
would not know that there is a platform there. A more
sophisticated platform recognition algorithm would be
needed instead of the one we use to show the feasibility.

4 THIRD PERSON VIEW INTERAC-
TION USING DRONES AND AR

The third novel idea which we implemented tries to sim-
ulate a 3D third person view interaction. Third-person
is a perspective view where the player can see the body
of the controlled character. In this novel interaction, the
users sees a 3D character on top of the real ground and
controls it. Then, the drone moves according to how the
character is moved. For implementing this idea, we used
the DJI Tello and DJI Tello EDU drones and the output
and controls are from the computer.

The input for this type of interaction is how the user
moves the character (forward, backward, right, left, turn-
ing right or left, or any combination) and the output is
how the drone should move in terms of yaw, pitch and
roll velocities, i.e. how the selection of moving buttons
change the drone view which in turn will change the
camera views which the user sees and interactively ef-
fect the choices by the user. This is shown in our third
demo submitted with this paper for review.

As seen in Figure 19 if the user moves the character
forward, the drone moves forward, and the same for
moving backwards. As seen in Figure 20 if the user
moves the character to the left, the drone moves to the
left, and the same for moving to the right. But the things
get a little bit more tricky when rotating the character,
because the drone has to now rotate about that character
correctly. In that case, as seen in Figure 21 if the user
rotates the character to the left, the drone has to orbit
around the character. The drone has to rotate slight to
the left (negative yaw) and at the same time move fast to
the right (positive roll). So, both yaw and roll are applied
at the same time. The workflow of this algorithm can be
seen in Algorithm 7.

The implementation is an open-loop which means that
no feedback is created. The character is pinned to the
screen. Key-points and descriptors are not used. The
reason why this idea has been implemented this way is
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5 CONCLUSION
In this paper, we have explored the drone interactive
applications within the field of Augmented Reality. Fur-
thermore, new forms of interactive algorithms has been
created and proposed, mainly focused in first and third
view interactions. We have been successful in imple-
menting three different basic introductory types of in-
teractions. Our contributions is in the area of novel
interactions paradigm for future drone applications in
AR world/games. The first type of interaction was the
drone VR FPV with head tracking control, which demon-
strated how easy is to make the user feel as if they were
the drone. The second one was the platforms interac-
tion, which demonstrated that AR games where the user
controls the AR character are possible, feasible, curious
and fun. Finally, the third idea which we implemented
was the third person view interaction, where we argue
that this interaction can be used for many AR games in
future. We are planning future IRB studies and detailed
evaluation of our work in future research. Detailed eval-
uations strategies are being planned with several drones
collaborating together to bring video-scenes to far-away
audiences, and allowing interaction. Finally, we believe
that much more would be done in this new and exciting
novel area of AR with drones as the drones improve in
future.
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ABSTRACT
New methods for hypersurface (that is, 3-dimensional manifold) curvature determination in volumetric data are
introduced. One method is convolution-based. Another method is spline-based. Method accuracy is also analyzed,
with that analysis involving comparison of the methods with each other as well as against two existing convolution-
based methods. The accuracy analysis utilizes a novel framework that enables curvature determination method
accuracy analysis via dynamically generated synthetic test datasets formed from continuous trivariate functions.
Such functions enable accuracy analysis versus ground truth. The framework is also described here.

Keywords
Curvature, Volumetric Data, 3D Manifold, Hypersurface, Imaging

1 INTRODUCTION
Curvature, a translation- and rotation-invariant descrip-
tor, describes the shape of the underlying data (e.g., a
continuous function or discrete dataset) at a given point
within the data. It is commonly used for many tasks in
areas including quality control, healthcare, visualization,
computer graphics, etc. Because curvature is a shape
descriptor, uses in such areas often exploit curvature for
model analysis [Hul12], object recognition, and general
shape-based analysis tasks or tasks that benefit from
its translation- and rotation-invariant shape descriptive
capabilities, e.g., [Wan16, Lef18, Bib16, Bes86, Bel12,
Sou16]. Curvature’s use also extends to less obvious
shape-based tasks, such as in initializing streamlines in
vector field visualization [Wei02] and image denoising
[Myl15], as well as in improving the accuracy of neu-
ral networks used for object detection [Wan16], surface
reconstruction [Lef17], biometrics [Sya17], etc.

While it is possible to compute and utilize curvature
within 3-dimensional (3D) manifolds, many tasks, in-
cluding the ones just described, instead compute cur-
vature within surfaces (2-dimensional manifolds), even
when the underlying data from which curvature is mea-
sured is 3D (e.g., volumetric data). Methods to find cur-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

vatures on surface intersection curves also exist, with
new methods recently reported for intersection curves of
surfaces of high dimension [Özc21]. Other recent work
considering curvature of 3D manifolds (also known as
hypersurfaces [Mon92]) has shown promise for shape-
descriptive tasks within volumetric data, especially in
healthcare [Suz18, Hir18] and seismological applica-
tions [Ald14].
Varied measures of surface and hypersurface curvatures
exist. The principal curvatures are among the most com-
monly used, including in aforementioned tasks. In the
case of surfaces, there are two principal curvatures (de-
noted κ1 and κ2), and, for each point on the surface,
these curvatures represent the minimum and maximum
curvature at the point (ordered such that κ1 > κ2). In
contrast, for hypersurfaces, there are three principal cur-
vatures (denoted κ1, κ2, and κ3) for each point on the
hypersurface (ordered such that κ1 > κ2 > κ3).
While many curvature tasks utilize the principal curva-
tures, these curvatures may not be computed exactly,
because the data on which curvature is to be computed
is real, sensed data (such as from a medical scanner). As
a second derivative quantity, exact computation of the
principal curvatures requires knowledge of the underly-
ing continuous form of the surface or hypersurface to
compute the necessary derivatives. In the case of real,
sensed data, the continuous form is typically unknown
and only discrete data is available; the principal curva-
tures must then be determined by other means (e.g., by
estimating the necessary derivative quantities from the
discrete data). Determination of curvature from discrete
data is often inexact. Different determination methods
may produce differing levels of accuracy on a given data
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set, as recently noted in two studies of surface curvature
determination methods [Hau20, Kro19].
Our focus in this work is to determine hypersurface
principal curvatures from discrete volumetric datasets
(henceforth simply volumes). We describe two new meth-
ods for determination of such principal curvatures. We
also describe a framework that can be used to dynam-
ically generate volumes, along with ground truth cur-
vature values, to evaluate and compare the accuracy of
each method’s curvature determination. Furthermore, we
use this framework to evaluate the accuracy of our two
new methods for principal curvature determination (as
well as two existing methods).
In the paper, Section 2 provides background on the math-
ematics of hypersurface curvature and related methods
for determining hypersurface and surface curvature in
volumes. Section 3 discusses our new methods for de-
termining hypersurface curvature in volumes. Section 4
describes our testing and evaluation framework. Sec-
tion 5 describes the volumes we generated using the
framework. Section 6 details results obtained from these
volumes. Section 7 concludes the work.

2 BACKGROUND / PREVIOUS WORK
First, we provide a brief overview of the mathematics
for determining curvature of hypersurfaces within con-
tinuous volumetric data. The presentation here closely
follows the formulations in both [Mon92] and [Ham94].
Next, we briefly describe the two existing methods for
determining hypersurface curvature in volumes consid-
ered in our studies presented later as well as an existing
study of the two methods. Finally, we present some de-
tails on methods for determining conventional surface
curvature in volumes, as our two new hypersurface curva-
ture determination methods, presented later, are inspired
by these methods.
The mathematics notation we use is as follows. A grid
(or sample) point within the volume is denoted as (x,y,z),
where 0≤x<Nx, 0≤y<Ny, 0≤z<Nz for a volume of
size Nx×Ny×Nz. The value at point (x,y,z) is denoted
f (x,y,z); f represents the underlying continuous func-
tion that generates the discrete volume. fx represents the
partial derivative of f in the x direction.

2.1 Hypersurface Curvature Mathemat-
ics

When the continuous form of the function f that gener-
ates the volume is known, the three principal curvatures
of the hypersurface can be computed at each point within
the volume fairly easily. They are simply, at each point
in the volume, the eigenvalues of the matrix:

1
l

 fxx fxy fxz
fxy fyy fyz
fxz fyz fzz

1+ f 2
x fx fy fx fz

fx fy 1+ f 2
y fy fz

fx fz fy fz 1+ f 2
z

−1

,

(1)

where

l =
√

1+ f 2
x + f 2

y + f 2
z . (2)

We denote these eigenvalues λ1, λ2, and λ3. As men-
tioned previously, computation of κ1, κ2, and κ3 at any
point requires knowledge of the first and second deriva-
tives of f at the point, and, for many curvature-based
tasks, the continuous form of f is unknown because the
data is not continuous. Consequently, the first and second
derivatives often must be estimated to determine κ1, κ2,
and κ3. All of the hypersurface curvature determination
methods discussed in this work operate by estimating
the necessary derivatives using varying approaches and
then using those estimated derivatives to evaluate Eq. (1)
(i.e., compute λ1, λ2, and λ3).

2.2 Existing Hypersurface Curvature
Methods and Comparative Studies

In our studies we compare our new methods with two
existing methods for determining hypersurface curva-
ture in volumes. First, we describe these two existing
methods. The first, denoted TEF, uses convolution with
kernels based on the Taylor Expansion in order to es-
timate derivatives (from which curvature is then com-
puted). The second, denoted as OPF, uses convolution
with a set of orthogonal polynomials in order to estimate
derivatives.

2.2.1 TEF
The TEF method uses convolution filters derived from
the Taylor Expansion. It determines hypersurface cur-
vatures by first estimating all derivatives necessary for
computing hypersurface curvature. These estimates are
made through doing a series of convolutions along each
axis of the volume. Once these convolutions are com-
pleted, the three principal curvatures are computed as
λ1, λ2, and λ3 using the estimated derivatives.

The convolution filters used by TEF were developed us-
ing a framework described by Möller et al. [Möl98]. The
same framework was also previously used in a surface
curvature method for volumes [Kin03].

For the TEF method, convolution filters are sampled
from the Taylor Expansion using specified accuracy and
continuity parameters. Previous studies of both hypersur-
face curvature and surface curvature methods that utilize
the Möller et al. framework have used filters with C3

continuity and fourth order accuracy [Hau19, Hau20],
and we follow that usage in our own studies. When no
noise or other errors are present, such filters allow for
exact reconstruction of functions of degree 3 or lower.

When configured as described, the TEF first derivative
filter is:

{− 1
12

,
2
3
,0,−2

3
,

1
12
}, (3)
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and the second derivative filter is:

{− 1
24

,
1
6
,

17
24

,−5
3
,

17
24

,
1
6
,− 1

24
}. (4)

2.2.2 OPF
The OPF method uses convolution filters derived from
orthogonal polynomials to estimate all the necessary
derivatives for determination of hypersurface curvature.
Convolution with such filters is equivalent to a least
squares fitting, and it thus gives identical results to that
of a linear regression-based approach. Like the TEF
approach, the OPF approach uses these derivative esti-
mates to compute the three principal curvatures at each
point in the volume as λ1, λ2, and λ3 of Eq. (1).

OPF uses convolution filters of size N, where N is an
odd number. The filters are generated by sampling or-
thogonal polynomials, denoted b0, b1, b2, at N sample
locations. b0, b1, and b2 are given by:

b0(θ) =
1
N

, (5)

b1(θ) =
3

M(M+1)(2M+1)
θ , (6)

b2(θ) =
1

P(M)
(θ 2− M(M+1)

3
), (7)

where M = N−1
2 and P(M) is given by:

P(M) =
8
45

M5 +
4
9

M4 +
2
9

M3− 1
9

M2− 1
15

M. (8)

θ denotes the locations at which each polynomial is
sampled, where θ ∈ {−N−1

2 , ...,−1,0,1, ..., N−1
2 }. The

b0 filter smooths; b1 estimates the first derivative; and
b2 estimates the second derivative.

Previous works have recommended N = 7 [Hau20], but,
in our studies, we test varying values of N including
N = 3, N = 5, N = 7, and N = 9. When considering OPF
at a specific N value, we will use the notation OPFN,
where N is one of 3, 5, 7, or 9.

2.2.3 Comparative Studies
We are aware of only one existing study that compara-
tively evaluated methods for determination of hypersur-
face curvature in volumes. In that study [Hau19], two
hypersurface curvature methods were compared. That
study compared performance of the TEF and OPF meth-
ods and concluded that (1) TEF exhibits relatively low
error (i.e., high accuracy) in curvature when no noise
is present in the data, and (2) OPF generally is more
accurate in the presence of noise.

2.3 Related Methods for Surface Curva-
ture in Volumes

The two new methods for determining hypersurface cur-
vature later described in this paper are analogous to two

existing methods for determining surface curvature in
volumes. Here, we describe those two existing surface
curvature methods. Both of these methods determine
surface curvature by first estimating derivatives at every
point in the volume and then computing the curvature at
every point in the volume using the estimated derivatives.
The first described existing method uses B-Spline fitting
to estimate surface curvatures. The second described
method uses convolution with Deriche filters.

2.3.1 B-Spline
Soldea et al. [Sol06] described a method for determin-
ing surface curvature in volumes using B-Spline fitting.
The approach used by Soldea et al. directly uses the
volume data as the coefficients for a trivariate B-Spline.
Since the trivariate B-Spline formed from the data is a
continuous function that approximates the volume, the
necessary derivatives of the B-Spline can be computed
at each point, and these derivatives are used to compute
curvature.

2.3.2 Deriche Filters
Monga et al. [Mon92] described a method for determin-
ing surface curvature in volumes using convolution with
3D Deriche filters. Such filters are of special interest
because they are formulated such that they can be imple-
mented as infinite impulse response (IIR) filters, making
them conducive to implementation on some hardware
[Der90]. The Monga et al. strategy uses three filters.
One filter is used to smooth, one filter is used to estimate
the first derivative, and one filter is used to to estimate
the second derivative. From these estimated derivatives,
curvature is determined.

3 NOVEL METHODS FOR HYPER-
SURFACE CURVATURE DETERMI-
NATION

Here, we describe the two new methods we introduce
here for determining hypersurface curvature in volumes.

3.1 B-Splines (BS)
Our first new method for determining hypersurface cur-
vature in volumes, denoted BS, forms a B-Spline that
provides a continuous form approximation of the input
volume f . It is analogous to the approach used by Soldea
et al. [Sol06] for determining surface curvature in vol-
umes. The method determines curvature by first forming
a continuous trivariate B-Spline, denoted f̂ , from the
discrete volume. f̂ is then used to compute derivatives
from which curvature is calculated, and f̂ uses a volume
of form:

f̂ (x,y,z) = (9)
Nx

∑
i=0

Ny

∑
j=0

Nz

∑
k=0

f (i, j,k)Bi,sx,τx(x)B j,sy,τy(y)Bk,sz,τz(z),
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where each Bl,s,τ term denotes the l-th B-Spline blending
function of degree s over a knot sequence τ . Since f̂
is continuous, its first and second derivatives can be
calculated at each point, and they are used to determine
curvature (as λ1, λ2, and λ3) at each point.

In our experiments on the BS method, reported later, τ

is a uniformly spaced knot vector, and we test several
values of s, including s = 2, s = 3, s = 4, and s = 5. To
our knowledge, these experiments are the first reports
on the use of splines of higher than cubic degree in any
variety of curvature determination. When considering
BS at a specific s value, we will use the notation BSs,
where s is one of 2, 3, 4, or 5.

3.2 Deriche Filters (DF)
Our second new method for determining hypersurface
curvature in volumes, denoted DF, uses convolution with
the Deriche filters. It is analogous to the approach used
by Monga et al. [Mon92] for determining surface cur-
vature in volumes. The method determines curvature
by first convolving with the three Deriche filters to esti-
mate derivatives from which curvature is calculated. We
denote the three filters as f̂0, f̂1, and f̂2. The filters are
defined as continuous functions, and they are sampled
to produce the parameters for the convolution with the
volume. Convolution with the sampling of f̂0 provides
smoothing, with the sampling of f̂1 provides estimates
for the first derivative, and with the sampling of f̂2 pro-
vides estimates for the second derivative. Convolution is
always applied along all three axes at each point, with
the directional derivatives estimated using the relevant
derivative estimation filters along any axis on which
derivatives are to be estimated. In this convolution, the
smoothing filter is applied along all other axes (i.e., other
than the axis for the directional derivative). f̂0, f̂1, and
f̂2 are defined as [Mon92]:

f̂0(t) =c0(1+α|t|)e−α|t|, (10)

f̂1(t) =− c1tα2e−α|t|, (11)

f̂2(t) =c2(1− c3α|t|)e−α|t|, (12)

where c0, c1, c2, and c3 are defined by

c0 =
(1− e−α)2

1+2e−α α− e−2α
, (13)

c1 =
−(1− e−α 3

)

2α2e−α(1+ e−α)
, (14)

c2 =
−2(1− e−α 4

)

1+2e−α −2e−3α − e−4α
, and (15)

c3 =
(1− e−2α)

2αe−α
. (16)

The α term controls the level of smoothing when esti-
mating derivatives, with smaller values providing more

smoothing. The optimal value for it depends on a num-
ber of factors, including the amount and type of noise
in the volume. In our experiments on the DF method,
reported later, we test a variety of α values, including
α = 1.0, α = 3.0, α = 5.0, and α = 10.0. When consid-
ering DF at a specific α value, we will use the notation
DFα , where α is one of 1.0, 3.0, 5.0, or 10.0.

4 VOLUME GENERATION AND EVAL-
UATION FRAMEWORK

This section describes our framework for generating vol-
umes and evaluating curvature determination method
accuracy. This framework is used to generate volumes
(including application of rotations, shifts, and scalings)
from continuous form trivariate expressions, compute
the ground truth curvatures in such volumes, and eval-
uate the accuracy of the hypersurface curvatures deter-
mined by each determination method on the generated
volumes.

4.1 Overview
Our testing and evaluation framework enables rapid eval-
uation of hypersurface curvature determination method
accuracy. It is capable of dynamically generating vol-
umes of a user-specified number of samples directly
from continuous form trivariate expressions. These vol-
umes can be generated at arbitrary, user specified rota-
tions, shifts, and scales. Because these volumes are dy-
namically generated at run-time, the framework allows
for rapid testing of accuracy on many volumes. This
characteristic makes the framework particularly useful
for generation of many closely related volumes, such as
generation of many different rotations of volumes from
the same continuous expression, e.g., in order to evaluate
the sensitivity of hypersurface curvature determination
methods to changes in rotation. Because all volumes, re-
gardless of rotation, shift, or scale, are generated directly
from the continuous form expression, ground truth val-
ues are always available to use for accuracy evaluation
of all determination methods.

The framework maintains a list of all curvature deter-
mination methods for which accuracy is to be evalu-
ated, including any relevant parameter settings for each
method. Each combination of determination method and
parameters defines a determination method set. Because
a single determination method can be included on this
list at differing parameter settings (i.e., in different deter-
mination method sets), the framework makes it possible
to rapidly test curvature determination methods at a va-
riety of possible parameter settings.

Upon generation of a volume, the framework runs each
hypersurface curvature determination method set in the
list on the volume, collects the determined curvatures
from each method, and computes the absolute and rela-
tive error for each point of interest within the volume.
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The framework thus enables rapid generation of volumes
and rapid testing of curvature determination methods.

4.2 Generation of Test Volumes
To generate a volume used for testing a list of determina-
tion method sets via our testing framework, a number of
characteristics that describe the volume to be generated
must be specified (i.e., input). We describe here those
characteristics and how the volume is generated.

The number of samples in each of the x, y, and z direc-
tions for the generated volume, Nx, Ny, and Nz, must be
specified. For our experiments, described later, we have
set Nx = Ny = Nz = 32.

The scale and shift parameters must be specified for each
axis. At a shift of 0.0 and scale of 1.0 on each axis, the
volume will be generated by sampling the continuous
form expression f at unit spacing along each axis, re-
sulting in samples at locations ranging from 0 to Nx−1
along the x-axis, from 0 to Ny−1 along the y-axis, and
from 0 to Nz−1 along the z-axis. That is, the sample at
location (xs,ys,zs) within the discrete volume will con-
tain the value f (xs,ys,zs). In contrast, using the same
shift but a scaling of 0.5 on each axis, the volume will be
generated by sampling the continuous form expression
at a spacing of 0.5 along each axis starting from 0. That
is, the sample at location (xs,ys,zs) within the discrete
volume will contain the value f (0.5xs,0.5ys,0.5zs). If
a shift of −1 is also applied on each axis, the volume
will be generated by sampling the continuous form start-
ing at −1 on each axis. That is, the sample at location
(xs,ys,zs) within the discrete volume will contain the
value f (0.5xs−1.0,0.5ys−1.0,0.5zs−1.0). Thus, the
scaling parameter selects the spacing used for sampling,
and the shift parameter selects the region where the sam-
pling takes place.

The continuous form expression f must be specified.
It is specified using a standard C-style mathematical
notation understood by the libmatheval library [Fre14],
but with placeholder variables XFIX, YFIX, and ZFIX
used in place of the x, y, and z variables in the ex-
pression. These placeholder variables are replaced by
the framework with appropriately scaled versions of
the x, y, and z variables using a string find-and-replace
within the expression. For example, if all scales along
each axis are set at 0.5, the continuous form expression
specified as XFIX + YFIX + ZFIX would be replaced
with (0.5∗x) + (0.5∗y) + (0.5∗z). In general, XFIX is
replaced with (ρx∗x), where ρx is the scaling along the
x-axis. YFIX and ZFIX are replaced analogously.

The rotation parameters must also be specified. By de-
fault, no rotation is applied, and sampling of the con-
tinuous expression is done exactly along the x-, y-, and
z-axis as described in the prior two paragraphs. However,
the framework allows for arbitrary rotation through the
origin by specifying the angle of rotation and the axis

of rotation. When a rotation is specified, the framework
generates a rotation matrix describing the requested ro-
tation, and the rotation is applied by multiplying each
sample point’s coordinates by the rotation matrix prior
to sampling the continuous expression. For example,
if a rotation angle of 90 degrees and a rotation axis of
(0,0,1) is specified, the continuous expression’s x-axis
will be mapped to the resulting volume’s y-axis (e.g.,
location (0,1,0) in the volume will contain the value
sampled via f (1,0,0)). When generating the volume,
rotation is applied prior to shifting or scaling.

Additionally, the level of Gaussian noise must be con-
figured. It is specified by standard deviation, and the
standard deviation value is used to generate Gaussian
noise of mean zero and specified standard deviation.

Finally, the volume is generated by sampling the re-
placed expression, resulting in a volume generated from
the continuous expression at the appropriate scale and
shift. Because the continuous form expression is known
for the underlying volume, the framework is able to
compute the ground truth curvature at each point in the
volume (utilizing libmatheval’s symbolic derivative ca-
pabilities [Fre14]).

4.3 Evaluation of Accuracy of Test Vol-
umes

For evaluation of accuracy, a list of points of interest
(POI) within each test volume is also specified for the
framework. These POIs specify which sample locations
within the volume that the framework will include when
calculating the accuracy of each determination method
set. The use of POIs, as opposed to calculating accuracy
using every sample point in the volume, allows for finer
control over the accuracy evaluation process. For exam-
ple, determined curvatures are often very inaccurate at
volume edges due to insufficient support for convolution
kernels. But, POIs can be selected such that the edges
of the volume are not considered in accuracy evaluation.
Each POI may optionally be used as the center of rota-
tion when a rotation is applied. This results in the rotated
volumes and POIs being equal in number, where each
volume is rotated about a different POI. These volumes
can then be used to evaluate the sensitivity of a method
set to rotation, because, for each rotation, the value of
curvature at the POI about which the volume is rotated
should be unchanged. If the determined curvature value,
or the error in determined curvature value, changes at the
POI about which the volume is rotated, then the method
set is sensitive to rotation.

Once the POIs are specified, the framework computes
the absolute difference between the expected and actual
curvature results at each POI. Using the results from
each POI within the volume, the framework produces a
number of aggregate results across all POIs in the vol-
ume for each determination method set. These aggregate
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Figure 1: A rendering of a (2-D) isosurface of Genus3.

results include the arithmetic average of both the abso-
lute errors and relative errors in each of κ1, κ2, and κ3
for each determination method set on the volume.

5 GENERATED VOLUMES
Here, we describe the volumes generated by the frame-
work and considered in our accuracy experiments. For
all volumes, the framework is configured to generate
volume datasets of size 32×32×32, and the POIs se-
lected are all the points within a 3×3×3 neighborhood
centered at the sample location (15,15,15). This set of
POIs ensures that none of the points used in accuracy
evaluation are near the edge of the dataset.
The first volume is one generated from the quadratic
polynomial expression:

x2 + y2 + z2. (17)

This expression has been used previously to generate vol-
umes in other curvature studies (e.g., [Hau19, Hau20]).
Because the 2D surfaces contained within the volume
are spherical in shape, we will denote this expression
(and the volumes it generates) Spheres. For volumes
generated from this expression, we use a scaling of 1.0
and a shift of 0.0 on each axis. We consider the Spheres
volumes at a variety of rotations (from -45 degrees to
+45 degrees through the axis (0,0,1)), and both with and
without noise. For each of these rotations, one rotated
volume per POI is generated as described in Section 4.3.

The second volume is one generated from a higher de-
gree polynomial expression:

(1− (
x
6
)2− (

y
3.5

)2)((x−3.9)2 + y2−1.44)

(x2 + y2−1.44)[(x+3.9)2 + y2−1.44]−256z2. (18)

Because this expression exhibits a genus three 2D sur-
face [Woo10], we will denote this expression (and the
volumes it generates) Genus3. A rendering of a 2-D
isosurface of Genus3 is shown in Fig. 1. For volumes
generated from this expression, we use a scaling of 1

64
and a shift of 0.0 on each axis. We consider the Genus3
volumes at a variety of rotations (from -45 degrees to
+45 degrees through the axis (0,0,1)) and both with and
without noise. For each of these rotations, one rotated
volume per POI is generated as described in Section 4.3.

6 EXPERIMENTS AND RESULTS
In this section, we describe our experiments and results
comparing the accuracy of our new BS and DF methods
as well as the existing TEF and OPS methods. These
results were all obtained using the framework described
in Section 4, and the volumes generated for testing are
as described in Section 5. We start with experiments on
noise-free volumes.

6.1 Noise-Free Accuracy Results
First, we present an evaluation of how each method per-
forms on the volumes when no noise is present. For
these, the volumes were considered at 91 rotations (an-
gles) (as described in Section 5), allowing simultaneous
evaluation of the relative performance of each method
on noise-free data and evaluation of how sensitive each
method is to rotation (which should not change the cur-
vature values or amount of error).

6.1.1 Spheres
For the relatively simple Spheres volumes, most meth-
ods exhibit little error in determined curvatures. Fig. 2(a)
shows the average absolute error in κ1 for the OPF
method at 91 rotations of Spheres volumes. While the
amount of error in the determined curvatures does vary
with the rotation, the amount of error at each rotation
is extremely small and likely attributable to the limita-
tions of floating point precision. Additionally, for these
volumes, the filter size does not seem to have any ap-
preciable impact on accuracy. This is likely because the
hypersurface shapes within the dataset do not exhibit
much variation over any of these filter sizes.

Fig. 2(b) shows the average absolute error in κ1 for BS
at the same 91 rotations. Here, BS3 exhibits much lower
error than the other degrees of BS. Like OPF, rotational
sensitivity is low enough that it can be attributed to float-
ing point precision.

Fig. 2(c) shows the average absolute error in κ1 for the
DF method at the same 91 rotations. Unlike OPF, here,
accuracy strongly depends on the parameter settings.
At lower α values, the error is much higher than at the
higher α values, with α = 10.0 exhibiting the smallest
error. Only at α = 10.0, where the errors are lowest, is it
possible to see any change in error with rotation. Like in
the OPF case, those changes are sufficiently small that
they are likely explained by limitations of floating point
precision.

Fig. 2(d) shows OPF3, BS3, DF10.00 (the most accu-
rate of each of OPF, BS, and DF) versus TEF. Here, the
BS3, OPF3, DF10.00, and TEF methods all perform
nearly identically and extremely accurately.

Due to space constraints, only plots of error in κ1 are
shown, but the results for κ2 and κ3 errors are very sim-
ilar to these in relative accuracy of the methods and

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.29, No-1-2, 2021

16DOI:10.24132/JWSCG.2021.29.2 



 1x10-14

 1x10-12

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

-40 -30 -20 -10  0  10  20  30  40

A
vg

. A
bs

. E
rr

or
 in

 K
1

Rotation Angle

OPF3
OPF5
OPF7
OPF9

(a) OPF

 1x10-14

 1x10-12

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

-40 -30 -20 -10  0  10  20  30  40

A
vg

. A
bs

. E
rr

or
 in

 K
1

Rotation Angle

BS2
BS3
BS4
BS5

(b) BS

 1x10-14

 1x10-12

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

-40 -30 -20 -10  0  10  20  30  40

A
vg

. A
bs

. E
rr

or
 in

 K
1

Rotation Angle

DF1.00
DF3.00
DF5.00

DF10.00

(c) DF

 1x10-14

 1x10-12

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

-40 -30 -20 -10  0  10  20  30  40

A
vg

. A
bs

. E
rr

or
 in

 K
1

Rotation Angle

DF10.00
BS3

OPF3
TEF

(d) OPF3, BS3, DF10.00, and TEF

Figure 2: Error levels in κ1 on 91 different rotations of noise-free Spheres volumes

rotational sensitivity. For κ2, the average absolute error
across all the rotations is about 4.6×10−13 for OPF at
all parameter settings, about 4.8×10−13 for DF10.00,
about 4.6×10−13 for BS3, and about 4.8×10−13 for
TEF. For κ3, the average absolute error across all the
rotations is nearly identical for OPF at all parameter set-
tings, DF10.00, BS3, and TEF, with all of them having
error of about 2.8×10−16.

6.1.2 Genus3

For Genus3 volumes, errors are notably higher than in
the simpler Spheres volume. Fig. 3(a) shows the average
absolute error in κ1 for OPF at 91 rotations. Compared
to Spheres, the change in error across rotation angles is
much more pronounced. Whereas, in the case of Spheres,
the changes in error with rotation were small enough that
they could be explained by floating point limitations, the
errors here are larger and likely indicate some amount
of rotational sensitivity within OPF. Also unlike the
Spheres, for these volumes, the filter size notably impacts
the results, with OPF3 exhibiting the least error.

Fig. 3(b) shows the average absolute error in κ1 for BS
at the same 91 rotations. Here, BS3 again exhibits the
lowest levels of error. BS3 exhibits similar accuracy to
OPF3, but it is more consistent in terms of exhibiting a
similar error level across all rotations.

Fig. 3(c) shows the average absolute error in κ1 for the
DF method at the same 91 rotations. Again, accuracy
strongly depends on the parameter settings for the DF
method. α = 10.0 again exhibits the smallest errors.
DF10.0 exhibits very small changes in error as rotation
changes, suggesting that the DF methods are not partic-
ularly sensitive to rotation.

Fig. 3(d) shows OPF3, BS3, DF10.00 (the most accu-
rate of each of OPF, BS, and DF) versus TEF. Here,
all methods exhibit low error, but TEF is much more
accurate than the others.

Due to space constraints, only plots of error in κ1 are
shown, but the results for κ2 and κ3 errors are very
similar to these in relative accuracy of the methods
and rotational sensitivity. For κ2, the average absolute
error across all the rotations is about 7.5×10−7 for
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Figure 3: Error levels in κ1 on 91 different rotations of noise-free Genus3 volumes

OPF3, about 5.5×10−7 for DF10.00, about 6.5×10−7

for BS3, and about 1.9×10−11 for TEF. For κ3, the
average absolute error across all the rotations is about
1.2×10−7 for OPF3, about 1.0×10−7 for DF10.00,
about 1.1×10−7 for BS3, and about 5.2×10−12 for
TEF.

6.2 Noise-Added Accuracy Results
Next, we present an evaluation of how each method
performs on the volumes when noise is added. For each
of these studies, the same level of random (Gaussian)
noise was added 30 times to both Spheres and Genus3,
resulting in 30 volumes (or trials) of each with the same
level of (different) random noise.

6.2.1 Spheres

Fig. 4(a) shows the average absolute error in κ1 for the
OPF method for 30 trials of noise with standard devi-
ation of 0.25. In the presence of noise, OPF benefits
from larger filter sizes, with OPF9 exhibiting the low-
est level of error in all trials, followed by OPF7 and

OPF5. The methods with the next lowest level of er-
ror are the B-Spline-based methods, with either BS4 or
BS5 most accurate in most trials. This is a change from
the noise-free cases, where BS3 was consistently the
most accurate, hinting that it may be beneficial to utilize
higher degree splines in the presence of noise. Fig. 4(b)
shows relative errors for the same volumes.

Again, due to space constraints, only results for κ1 are
shown, but relative performances are similar for κ2 and
κ3. Because κ3 is the smallest of the curvatures its rel-
ative error tends to be larger. For κ2, the average ab-
solute error across all the rotations is about 4.9×10−5

for OPF9, about 0.004 for DF3.00, about 0.003 for BS4,
and about 0.008 for TEF. For κ3, the average absolute er-
ror across all the rotations is about 1.3×10−8 for OPF9,
about 1.2×10−6 for DF3.00, about 1.4×10−6 for BS4,
and about 3.1×10−6 for TEF.

6.2.2 Genus3
Fig. 5(a) shows the average absolute error in κ1 for the
OPF method for 30 trials of noise with standard devia-
tion of 0.25. Here, the results are similar to the Spheres
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Figure 4: Error levels in κ1 on noise-added Spheres
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Figure 5: Error levels in κ1 on noise-added Genus3

case. OPF9 is best followed by OPF7 and OPF5. Again,
either BS4 or BS5 is next most accurate. Fig. 5(b) shows
relative errors for the same volumes.

Again, due to space constraints, only results for κ1 are
shown, but relative performances are similar for κ2 and
κ3. Due to the fact that κ3 is the smallest of the curva-
tures, though, its relative error tends to be larger. For
κ2, the average absolute error across all the rotations
is about 0.0002 for OPF9, about 0.1 for DF2.00, about
0.01 for BS5, and about 0.07 for TEF. For κ3, the aver-
age absolute error across all the rotations is about 0.0005
for OPF9, about 0.03 for DF2.00, about 0.02 for BS5,
and about 0.1 for TEF.

7 CONCLUSION
In this paper we have exhibited a framework for gener-
ating volumes and testing the accuracy of hypersurface
curvature determination methods. In addition, we have
introduced two new methods for determining such cur-
vature. We have also compared these methods against

two existing methods. One of these new methods, BS,
uses B-Splines to estimate derivatives and then these
estimated derivatives are used to determine the three
hypersurface curvatures. The other method, DF, uses
convolution with Deriche filters to estimate derivatives.
In summary, in our tests we found that TEF often ex-
hibits the lowest error levels when no noise is present.
When noise is present, OPF tends to exhibit much lower
error levels than TEF, especially at larger filter sizes
like OPF9. The new BS3 method exhibits competitive
accuracy on noise-free data.
In future works, we plan to introduce additional cur-
vature determination methods and perform evaluations
on a larger number of volumes and a larger number of
parameter settings.
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Abstract
The problem of video inter-frame interpolation is an essential task in the field of image processing. Correctly
increasing the number of frames in the recording while maintaining smooth movement allows to improve the
quality of played video sequence, enables more effective compression and creating a slow-motion recording. This
paper proposes the FastRIFE algorithm, which is some speed improvement of the RIFE (Real-Time Intermediate
Flow Estimation) model. The novel method was examined and compared with other recently published algorithms.
All source codes are available at:
https://gitlab.com/malwinq/interpolation-of-images-for-slow-motion-videos .
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Video Interpolation, Flow Estimation, Slow-Motion

1 INTRODUCTION

Video frame interpolation is one of the most impor-
tant issues in the field of image processing. Correctly
reproduced or multiplied inter-frame information al-
lows its use in a whole range of problems, from video
compression [Wu18], through improving the quality of
records, to generating slow-motion videos [Men20] or
even view synthesis [Fly16]. Mid-frame interpolation
performed in real-time on high-resolution images also
increases the image’s smoothness in video games or
live broadcasts. With fast and accurate algorithms, we
can reduce the costs associated with the construction of
high-speed video cameras or provide services to users
with limited hardware or transmission resources.

Algorithms of this class should deal with complex, non-
linear motion models, as well as with changing param-
eters of the real vision scene, such as shadows, chang-
ing the color temperature, or brightness. Conventional
approaches are based on motion prediction and com-
pensation [Haa93; Bao18], which are used in various
display devices [Wu15].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Motion estimation is used to determine motion vectors
in a block or pixel pattern between two frames. Block-
based methods [Haa93] assume that pixels in a block
have the same inter-frame shift and use search strategies
[Zhu00; Gao00], and selection criteria [Haa93; Wan10]
to obtain the optimal motion vector. Other methods of
movement estimation are optical flow algorithms that
estimate the motion vector for each pixel separately,
which makes them more computationally expensive. In
recent years there has been noticed significant progress
in this area. New algorithms have been developed based
on the optimization of variance [Bro04], searching for
the nearest neighbors [Che13], filtering the size of costs
[Xu17] and deep convolutional neural networks (CNN)
[Ran17; Dos15]. However, very often, the quality of the
obtained interpolations is burdened with an increase in
the required computing resources and often limits their
use in the case of users working on standard equipment
or mobile phones.

Flow-based video frame interpolation algorithms
achieve very good results [Jia18; Nik18; Bao19;
Xue19; Hua21]. These solutions include two steps:
warping the input frames according to approximated
optical flows and fusing and refining the warped frames
using CNN. Flow-based algorithms can be divided
into forward warping methods and more often used
back-warping methods. A common operation of these
methods is to calculate bidirectional optical flow to
generate an intermediate flow. These operations require
a large number of computing resources and are not
suitable for real-time scenarios.
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Figure 1: Architecture of the proposed video frame interpolation algorithm. We estimate the optical flow with
analytical methods and use fine-tuned neural network models from RIFE: ContextNet and FusionNet.

This work aims to create an efficient video frame inter-
polation model, which can be implemented on many
devices and run in real-time. Authors will compare
state-of-the-art techniques, best in image interpolation
field at the moment, and propose an improvement in
terms of execution time in one of them. Algorithms
which will be analyzed and compared are: MEMC-Net
[Bao21], SepConv [Nik17], Softmax Splatting [Nik20],
DAIN [Bao19] and RIFE [Hua21], all using different
approaches.

2 RELATED WORK
The topic of video frame interpolation has been widely
discussed in the research papers [Kim14; Dos15;
Nik17; Bao21; Jia18]. The first groundbreaking
method was proposed in [Lon16]. Long et al. were
the first to use the convolutional neural network, which
aimed to estimate the result frame directly. Next
generations of image interpolation algorithms brought
significantly better results, each using more extensive
neural network structures.

Some algorithms, like SepConv [Nik17], were built
and trained end-to-end using only one pass through the
encoder-decoder structure. However the majority of
methods use an additional sub-networks, of which the
most important is the optical flow estimation. Having
the information about pixels transition allows generat-
ing more accurate results and boost benchmark met-
rics. This approach was used e.g. in the MEMC-
Net method, which combines both motion estimation,
motion compensation and post-processing by four sub-
networks [Bao21].

Bao et al. composed an improvement of MEMC-Net
model called DAIN (Depth-Aware INterpolation)
[Bao19], where the information of pixels depth was
used, improving dealing with the problems related to
occlusion and large object motion by sampling closer
objects better. Depth estimation is one of the most
challenging tasks in the image processing field of study,
so the whole process takes a noticeable amount of
time. Authors used a fine-tuned model called hourglass
[Che16] network learned on the MegaDepth dataset

[Li18]. DAIN method estimates the bi-directional
optical flow using an off-the-shelf solution called
PWC-Net [Xue19].

Another excellent flow-based method is Softmax Splat-
ting [Nik20]. Niklaus and Liu proposed a solution of
forward warping operator, which works conversely to
backward warping and is used in most methods. Soft-
max Splatting uses an importance mask and weights
all pixels in the input frame. Authors used fine-tuned
PWC-Net for estimating optical flow, similarly to
DAIN.

One of the newest algorithm is RIFE - Real-Time In-
termediate Flow Estimation [Hua21], which is able
to achieve comparable results on standard benchmarks
when compared to previous methods but also works sig-
nificantly faster. More details about this solution are
presented in the next section.

3 PROPOSED SOLUTION
Most state-of-the-art algorithms generate intermediate
frames by combining bi-directional optical flows and
additional networks, e.g. estimating depth, which
makes these methods unable to real-time work. Huang
et al. proposed in RIFE [Hua21] a solution of simple
neural network for estimating optical flows called
IFNet and a network for generating interpolated frames
called FusionNet.

The IFNet comprises three IFBlocks, each built with
six ResNet modules and operating on increasing image
resolutions. The output flow is very good quality and
runs six times faster than the PWCNet and 20 times
faster than the LiteFlowNet [Hui18]. After estimating
the flow, coarse reconstructions are generated by back-
ward warping and then the fusion process is performed.
The process includes context extraction and the Fusion-
Net with an architecture similar to U-Net, both consist-
ing four ResNet blocks.

In this paper authors will analyze the RIFE model with
different module for estimating optical flow. Although
the IFNet gives excellent results and runs very fast, au-
thors wanted to test analytical methods and compare the
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by GF method

Optical flow
by LK method
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with GF method
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with LK method

Ground-truth
frame

Figure 2: Example of video frame interpolation results. Authors propose a simplified RIFE model with optical
flow estimated using analytical methods: Gunnar-Farnebäck and Lucas-Kanade.

results of such a simplified model in terms of runtime
and quality. This change can speed up the algorithm
even more, making the whole process capable of run-
ning real-time on many more devices.

Figure 3: Speed and accuracy trade-off measured on
RTX 2080 Ti GPU. Our models compared with previ-
ous frame interpolation methods: RIFE [Hua21], Soft-
max Splatting [Nik20], DAIN [Bao19], MEMC-Net
[Bao21], SuperSloMo [Jia18] and SepConv [Nik17].
Comparison done on Vimeo90K test dataset. Please
note the logarithmic runtime scale.

Authors replaced the IFNet part with analytical meth-
ods described below. Then, new FusionNet and Con-
textNet models were fine-tuned on the proposed solu-
tion. The full architecture is shown in Figure 1. Au-
thors decided to test two of the most widely used algo-
rithms, one generating dense flow and one which esti-
mates sparse results. The example of optical flows and
frame interpolation results are shown in Figure 2 and
the speed/accuracy trade-off is presented in Figure 3.

3.1 Gunnar-Farnebäck algorithm
The Gunnar-Farnebäck method [Far03] gives dense re-
sults, which means that flow values are generated for
every pixel. The algorithm detects changes in pixel in-
tensity between two images using polynomial expan-
sions and highlights pixels with the most significant
changes.

The idea depends on an approximation of neighbour-
hood pixels in both frames by quadratic polynomials.
Pixels’ displacements are estimated from the differen-
tiation of transforms of polynomials under translations.
The algorithm is implemented by hierarchical convolu-
tions what makes the process very efficient.

After the tests authors set the parameters of the Gunnar-
Farnebäck (GF) method as follows:

• scale of image pyramids: 0.2,

• number of pyramid layers: 3,

• size of the pixel neighborhood: 5,

• size of averaging windows: 15×15.

The above sets give the best runtime to accuracy trade-
off.

3.2 Lucas-Kanade algorithm
Dense methods can give very accurate results. How-
ever, sometimes the speed to accurate ratio might be
more favorable for sparse methods. These algorithms
calculate optical flow only for some number for pixels,
extracted by the detector as feature points. To feed the
results to the FusionNet it was needed to change the
values from sparse to dense form.

Authors used Lucas-Kanade (LK) algorithm, which is
the most commonly used analytical method for gener-
ating optical flow. It takes a 3× 3 patch around the
point and assumes all nine pixels will have the same
flow. The solution is calculated with the least squares
method. It is proven that the Lucas-Kanade works bet-
ter with corner points, so for feature points detections
authors used the Shi-Tomasi algorithm. The function
calculates corner quality measure in each pixel’s region
using minimum eigenvalues and Harris Corner Detec-
tion.

Parameters which were used in the Lucas-Kanade algo-
rithm are:

• size of search window: 15×15,

• number of pyramids: 1 (single level),
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• termination criteria: epsilon and criteria count,

and for the Shi-Tomasi detector:

• maximum number of corners: 100,

• minimum accepted quality of corners: 0.1,

• minimum possible distance between the corners: 10,

• size of computing block: 7.

3.3 Runtime
Runtime comparison can be found in Table 1. IFNet
works much faster than any other state-of-the-art
method, but anyway optical flow can be obtained by
analytical methods in less time. One of the important
issues is that most of the standard flow methods have to
run the estimation process twice if a bi-directional flow
is desired. The results were measured again on RTX
2080 Ti GPU.

Method Runtime [ms]
PWCNet 125
LiteFlowNet 370
IFNet 34
Ours - GF 9
Ours - LK 7

Table 1: Runtime comparison of optical flow estimation
algorithms

4 EXPERIMENTS
This section will provide evaluation results, comparing
the last and best methods with our proposal. Compari-
son is made based on quantitative and visual results us-
ing common metrics and datasets as well as algorithms
runtime.

4.1 Learning strategy
Our solution was trained on Vimeo90K dataset with op-
tical flow labels generated by the LiteFlowNet [Hui18]
in PyTorch version [Nik19]. Authors used the AdamW
optimizer, the same as used in RIFE [Hua21].

4.1.1 Loss function
To address the problem of training the IFNet module,
Huang et al. proposed a solution of leakage distilla-
tion schema, which compares the network result with
the output of the pre-trained optical flow estimation
method. The training loss is a linear combination of
reconstruction loss Lrec, census loss Lcen and leakage
distillation loss Ldis. Our solution was trained using the
same loss function:

L = Lrec +Lcen +λLdis, (1)

with the weight of leakage distillation loss 10 times
smaller than the two others (λ = 0.1).

4.1.2 Training dataset
Vimeo90K is a video dataset containing 73,171 frame
triplets with 448×256 pixels image resolution [Xue19].
This dataset was used as a training set in all compared
methods.

4.1.3 Computational efficiency
All analyzed algorithms are implemented in PyTorch
[Pas17] using CUDA, cuDNN, and CuPy [Che14]. The
proposed solutions was implemented using OpenCV
functions, and RIFE model was fine-tuned on Nvidia
RTX 2080 Ti GPU with 11GB of RAM for 150 epochs
which took 15 days to converge.

4.2 Evaluation datasets
For evaluation, the following publicly available datasets
have been used:

4.2.1 Middlebury
Middlebury contains two subsets: Other with ground
truth interpolation results and Evaluation, which output
frames are not publicly available [Bak07]. It is the most
widely used dataset for testing image interpolation al-
gorithms. The resolution of frames is 640×480 pixels.

4.2.2 UCF101
UCF101 provides 379 frame triplets from action videos
with 101 categories [Soo12] [Liu17]. Images resolution
is 256×256 pixels.

4.2.3 Vimeo90K
Vimeo90K was used for training, but it contains also the
test subset - 3,782 triplets with 448×256 pixels image
resolution [Xue19].

4.3 Metrics
The following metrics have evaluated each algorithm.
PSNR (Peak Signal-to-Noise Ratio):

PSNR(i, j) = 10 · log10
2552

MSE(i, j)
. (2)

SSIM (Structural Similarity, l - luminance, c - contrast
and s - structure):

SSIM(i, j) = l(i, j) · c(i, j) · s(i, j). (3)

IE (Interpolation Error) is the arithmetic average of
a difference between the interpolated image and the
ground truth frame:

IE(i, j) = |i− j|, (4)

where i is interpolated frame and j is the ground truth
image [Wan04]. On UCF101 and Vimeo90K datasets
we used PSNR and SSIM (higher values mean better
results), on Middlebury Evaluation and Other we eval-
uated IE (lower values mean better results). This set of
benchmarks is used in the majority of frame interpola-
tion articles and datasets websites.
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Figure 4: Qualitative comparison on UCF101 dataset

Method Middlebury UCF101 Vimeo90K Parameters
IE PSNR SSIM PSNR SSIM (million)

SepConv 2.27 34.78 0.967 33.79 0.970 21.6
MEMC-Net 2.12 35.01 0.968 34.29 0.970 70.3
DAIN 2.04 34.99 0.968 34.71 0.976 24.0
SoftSplat 1.81 35.10 0.948 35.48 0.964 7.7
RIFE 1.96 35.25 0.969 35.51 0.978 9.8
Ours: FastRIFE - GF 2.89 34.84 0.968 34.18 0.968 4.1
Ours: FastRIFE - LK 2.91 34.26 0.967 33.97 0.967 4.1

Table 2: Quantitative comparison of described methods on Middlebury Other, UCF101 and Vimeo90K test

4.4 Quantitative comparison
Table 2 shows a comparison of the results obtained on
datasets: Middlebury Other, UCF101 and Vimeo90K,
red marks the best performance, blue marks second best
score. Results of evaluation on Middlebury benchmark
are not available yet.
The proposed model performs comparably to other
methods, scoring very similar results in both PSNR and
SSIM. The most significant gap is between the results
of Interpolation Error in Middlebury Other dataset.
FastRIFE generates better values than the SepConv
model in UCF101 and Vimeo90K benchmarks and
worse results than other algorithms, but a significant
reduction is shown on the parameters column.
Evaluation of both optical flow methods gives similar
results. However, the model which uses the Gunnar-
Farnebäck algorithm performs slightly better in every
benchmark, which means that the FusionNet behaves
better with dense flow estimation.

4.5 Visual Comparison
Figure 4 shows examples of frame estimation with com-
parison made on the DAIN and RIFE methods. These

Figure 5: Visual comparison on HD frames

images show dynamic scenes, which are more challeng-
ing to analyze for frames interpolation methods. The
resolution of images is small (256×256), but both GF
and LK methods generate acceptable results, similar to
DAIN. The worst smudging is shown on RIFE results,
which works better with high-resolution videos.
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Method Inference time on Time of learning
448×256 image [ms] one epoch [h]

SepConv 125 -
MEMC-Net 293 -
SoftSplat 329 -
DAIN 320 9
RIFE 39 4.5
Ours: FastRIFE - GF 29 2.4
Ours: FastRIFE - LK 26 2.4

Table 3: Runtime comparison of described methods tested on 448×256 image (device: RTX 2080 Ti GPU)

The results of high-resolution image interpolation are
shown in Figure 5. Both FastRIFE models generate
very blurry frames. It is probably caused by includ-
ing only small resolution videos in the training process
and setting constant parameters when calculating opti-
cal flow. The issue could be repaired as future work.
Other methods: DAIN and RIFE work well with HD
resolution frames.

The advantage of the proposed models is the size of
occupied memory. For most methods, analyzing HD
images results in an out-of-memory error on our GPU,
while RIFE allocates only 3 GB and FastRIFE only 1.5
GB of RAM.

FastRIFE - LK FastRIFE - GF

Figure 6: Sparse optical flow issue. Sometimes output
frames suffers from spots visible in zoom

One important issue related to using the sparse opti-
cal flow method (Lucas-Kanade) is overlapping fea-
ture points as visible spots, as shown in Figure 6. The
spots are noticeable after zooming small resolution im-
ages. Such a problem can be reported only for a model
with the LK method. FastRIFE which uses the Gunnar-
Farnebäck algorithm is this issue free.

4.6 Runtime Comparison
The usage of analytical methods and simplified RIFE
model caused that FastRIFE performs favourably faster
than any other state-of-the-art algorithm. Our models
have 4 million parameters, which is the smallest neu-
ral network structure from all video frame interpolation
methods. The runtime comparison is shown in Table 3.

Compared to any other model, except for RIFE, our so-
lution runs up to 10 times faster. FastRIFE has slightly

better benchmark results from SepConv, but runtime
has been compressed from 125 to less than 30 mil-
liseconds. The replacement of the optical flow module
in RIFE saved 25% of the time needed to interpolate
frames. As shown in Table 3, also the time of learning
one epoch was significantly reduced.

5 CONCLUSION
In this paper, we proposed a solution to RIFE model
simplification in terms of optical flow estimation. Fas-
tRIFE uses well-known analytical methods instead of
additional neural network modules, which results in ex-
cellent runtime improvement with an acceptable slight
drop in the quality of output frames.

Another advantage of model compression is the reduc-
tion of memory usage. Thanks to the small number of
parameters, FastRIFE is able to generate output frames
with the allocation of max 1.5 GB of RAM in the case
of HD videos. Low memory consumption with short
execution time makes the model possible to implement
on many devices, including mobile phones.

The FastRIFE algorithm was analyzed with two
method types for estimating optical flow: sparse
(Lucas-Kanade) and dense (Gunnar-Farnebäck).
Sparse flow performs faster, but better-quality results
were always generated with the GF method. FastRIFE
works appropriately in small resolution images but in-
troduces prominently blurry regions when interpolating
HD videos.

Future work that may be performed includes the im-
provement of the FastRIFE model in order to obtain
better results on high resolution videos. It can proba-
bly be achieved by including HD images in the training
dataset or by adjusting optical flow algorithm parame-
ters on the fly based on video resolution or other crite-
ria. Our proposed method can result in future research
on increasing the efficiency of video frame interpola-
tion algorithms.
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ABSTRACT
As the imaging technology and the understanding of neurological disease improve, a solid understanding of neu-
roanatomy has become increasingly relevant. Neuroanatomy teaching includes the practice of cadaveric dissection
and neuroanatomy atlases consisting of images of a brain with its labeled structures. However, the natural inter-
individual neuroanatomical variability cannot be taken into account. This work addresses the individual gross
neuroanatomy atlas that could enrich medical students’ experiences with various individual variations in anatomi-
cal landmarks and their spatial relationships. We propose to deform the CerebrA cortical atlas into the individual
anatomical magnetic resonance imaging data to increase students’ opportunity to contact normal neuroanatomical
variations in the early stages of studies. Besides, we include interactive queries on the labels/names of neu-
roanatomical structures from an individual neuroanatomical atlas in a 3D space. An implementation on top of
SimpleITK library and VMTK-Neuro software is presented. We generated a series of surface and internal neu-
roanatomy maps from 16 test volumes to attest to the potential of the proposed technique in brain labeling. For
the age group between 10 to 75, there is evidence that the superficial cortical labeling is accurate with the visual
assessment of the degree of concordance between the neuroanatomical and label boundaries.

Keywords
Neuroanatomical Atlas, CerebrA, Mindboggle 101 atlas, MNI-ICBM2009c template, Image-Registration, Brain
Labeling.

1 INTRODUCTION
Neuroanatomy is considered a problematic and un-
enviable topic by the medical community. In the
early 90s, Jozefowicz [11] observed a great disinterest
among the medical students and the development of
the "necrophobia syndrome" in approximately half
of them. Although most junior neurologists doubt
the usefulness of neuroanatomy, its relevance to
clinical practice increases as the understanding of
neurological diseases, the imaging technology, and the
patient-customized treatment improve [3].

Over the past years, teaching neuroanatomy has
changed substantially. Several educational technolo-
gies [31] have been developed to allow students to
experience clinical practices without resorting to tra-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ditional approaches, such as cadaveric dissection [17]
and atlas of neuroanatomy [3]. Despite providing
students with a detailed view of brain structure,
cadaveric dissection faces the logistics and regulation
related to cadaver purchase, storage, and transport [17].
The atlas with photographic images is still the most
common way to study brain anatomy at the student’s
own pace. However, they cannot fully convey the
structures’ spatial relationships, which is recognized as
fundamental to minimally invasive neurosurgery [30].
Besides, both techniques allow exploring only one or a
few single brains.

There are many normal variations in a reference land-
mark’s individual locations, either due to age [1] or due
to variation in the cortical folds [13]. Fig. 1 illustrates
the variations in the postcentral gyrus, highlighted in
blue, across the brain of 3 healthy subjects. The Mind-
boggle individually manually labeled 101 human brain
images were yet an attempt to establish normative mor-
phometric variations in a healthy population [13]. Re-
cently, Manera et al. introduced in [20] the Cerebrum
Atlas (CerebrA), which is based on an accurate non-
linear registration of cortical (the outer layer) and sub-
cortical (underneath the cerebral cortex) labeling from
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Mindboggle 101 to the symmetric MNI-ICBM2009c
template [8], followed by manual editing.

(a) 10-year-old male (b) 23-year-old male (c) 62-year-old male

Figure 1: Normal variations of a postcentral gyrus.

In this paper, we propose to evaluate the potential of
CerebrA in automatic brain labeling of a wide age
range for generating a variety of labeled brains of
normal variations. We implemented a labeling module
and integrated it into the VMTK-Neuro software.
VMTK-Neuro provides functions for 3D interactive
visualization of neuroanatomical data from the cortical
view. Thereby, it helps teachers assess neuroanatomical
boundaries in a cortical view and prepare instructional
material. Besides, students can explore from these
cortical views the normal variations across the available
brains.

Our paper is organized as follows. In Section 2, we
present an overview of some works that address the ex-
ploration and the labeling of neuroanatomical volumes.
Next, in Section 3, we provide a detailed explanation
of the proposed environment. Then, in Section 4, we
present specific information about the software tech-
nologies we used for the implementation. After that, in
Section 5, we show our results. Finally, in Section 6, we
make some concluding remarks. Note that the anatom-
ical slices throughout this paper are displayed in the ra-
diological convention, i.e., the patient’s left on the right
of the image.

Contributions

The contributions of this paper are twofold. First, it
presents an individual neuroanatomical labeling proce-
dure using the CerebrA atlas to generate labeled brains
that differ in normal neuroanatomical variations. Sec-
ond, we show how to integrate an interactive environ-
ment to let a teacher and a student explore the labeled
neuroanatomical structures from the cortical superficial
views.

2 RELATED WORK
The aging population has significantly impacted the in-
crease of neurodegenerative diseases, whose treatment
requires a solid understanding of neuroanatomy. As
already mentioned, several works have addressed neu-
roanatomy teaching approaches and tools to spark more
interest among preclinical students. This section fo-
cuses on the results related to interactive visualization

of neuroanatomical atlas and efforts towards brain la-
beling.
Johnson and Becker [10] led a group that developed a
visualization tool for encephalic structures through neu-
roimages. Thus, it is possible to visualize both labeled
structures of healthy and pathological brains. In turn,
John Sundsten [27] devised an atlas using the photos
of dissection and the drawings of labeled structures. A
disadvantage of using these types of the atlas is that the
images are limited to brain slices, requiring a spatial
cognitive effort to understand the spatial relationships
between the cortical surface structures.
Although Martin and Soliz [21] designed an atlas that
includes the cortical surface anatomy, the maps are ei-
ther brain photographs or drawings. Likewise is the
teaching website on Pathology, Neuropathology, and
Neuroimaging designed by Queiroz and Paes [5]. The
informative data comprises only the photographs of
brains and microscope slides.
Ding et al. [6] developed a visual exploration tool for a
neuroanatomical atlas. Differently from other works, it
addressed neuroanatomy at cellular resolution. The at-
las was built from anatomical and diffusion-weighted
magnetic resonance imaging. Thus, both the gross
anatomy and the anatomy of neural pathways can be
queried. However, as the previously mentioned works,
it is impossible to visualize the labeled structures in
three dimensions. Moreover, brain variability was not a
concern.
Christensen et al. [4] presented a flow deformation
model to transform a generic digital neuroanatomical
atlas into the individual brain’s shape. They claimed
that the annotations of structure names could facilitate
the interpretation and analysis of brain scans. In our
work, we particularized the case for the CerebrA atlas.
We also devised a way to create an annotated volume
based on the MNI-ICBM2009c template and visualize
the annotated regions in 3D.
The Talairach atlas was created by the neurosurgeons
Jean Talairach and Gabor Szikla [28] as a proposal to
standardize a grid for the surgery of epilepsy. The grid
was based on the conjecture that distances to lesions in
the brain are proportional to overall brain size. In 1988
Talairach and Tournoux [29] presented the second ver-
sion of the Talairach atlas based on post mortem dissec-
tion of a 60-year-old woman. Up to now, this atlas has
served as the ad hoc standard for reporting locations of
activation foci in functional brain mapping studies.
Lancaster et al. [18] further proposed an approach to
creating a volume representing a discretization of the
Talairach atlas. It allows the registration of an anatom-
ical volume onto the Talairach maps. Consequently, it
allows each anatomical volume voxel’s association to a
Talairach label that corresponds to the cerebral cortex
region (Brodmann area).
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Klein et al. [15] showed that the automatic and man-
ual labeling agreement could be significantly improved
when multiple atlases were used. In their experiments,
they used 20 manually labeled brain images as atlases.
Then, they applied the Mindboggle software to auto-
matically label each of the brain scans based on multi-
ple manually labeled scans. The drawback of a multi-
atlas approach was its high computational cost.
In parallel, the Montreal Neurological Institute (MNI)
average brains have been evolving [7]. The first tem-
plate was the MNI305, an average of 305 T1-weighted
magnetic resonance imaging (MRI) scans, linearly
transformed into Talairach space. The MNI152, an
improvement of the MNI305, was created from the
average of 152 T1-weighted MRI scans of a normative
young adult population with higher resolution and
contrast [7]. It was adopted to define standard anatomy
by the International Consortium of Brain Mapping
(ICBM).
The linear version of the MNI152 data was evolved to a
nonlinear one. A nonlinear MNI152 was built through
a series of iterations starting from the MNI152 linear
template [8]. Individual native MRIs are nonlinearly
fitted to the average template computed in the previ-
ous iteration at each iteration. In the most recent phase
of the MNI project, 6 versions of the MNI152 can be
found and they are divided according to its symmetry
and spatial resolution. Fig. 2 shows the axial, sagittal,
and coronal slices of the MNI152 (symmetric with 1
mm of spatial resolution) volume.

(a) Axial (b) Sagittal (c) Coronal

Figure 2: MNI152 volume: an average of 152 scans
non-linearly transformed to Talairach space.

Finally, in 2009, the MNI released an updated ver-
sion of nonlinearly registered 152 acquisitions. To
date, this template presents the best resolution and de-
tail. Recently, Manera et al. [20] nonlinearly regis-
tered the symmetric MNI-ICBM2009 template to the
Mindboggle-101 dataset [12], and, after manual edit-
ing, they created the Cerebrum Atlas (CerebrA).

3 OUR PROPOSAL
In this work, we propose to label a T1-weighted individ-
ual volume using CerebrA and allow a teacher to assess
the labeling accuracy interactively. We also suggest that
students use the same visual assessment environment
to explore normal variations in neuroanatomical struc-
tures.

Fig. 3 presents an overview of our interactive individual
neuroanatomy query tool’s architecture comprising two
significant modules: labeling and interactive visualiza-
tion. The labeling module is responsible for estimating
a non-linear transformation of the nonlinear symmetric
CerebrA [20] into an individual anatomical MRI vol-
ume. And the interactive visualization module supports
interactive queries of the names and visual feedback
of the neuroanatomical structures of an individual MRI
volume in both planar and curvilinear reformattings.
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Figure 3: Proposed architecture for an individual inter-
active neuroanatomy atlas.

3.1 Labeling Module
This module, outlined in blue in Fig. 3, is responsible
for building an individual neuroanatomy atlas. We pro-
posed to fit the CerebrA into the individual brain. For
supporting the voxelwise query of a brain, the CerebrA
is resampled in the resolution of an individual MRI
volume, as depicted in Fig. 3. We applied the nearest-
neighbor algorithm to interpolate the labels to ensure
the uniqueness of names for each voxel. Then, for the
sake of time performance, we performed the registra-
tion in two steps.

In the first step, the patient and the MNI152 volumes
are coarsely aligned by an affine transformation, as
sketched in Fig. 3. Then, the mutual information is
the metric applied to evaluate the similarity between
two images [22]. This metric is optimized using the
Stochastic Gradient Descent algorithm [15]. To im-
prove the algorithm convergence, we opted for a hier-
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archical multiresolution approach [25] with two levels,
a level where the images have a quarter of their origi-
nal size and another level where they have half of their
original size.

In the second step, the matching is improved using the
Deformable Hierarchical BSpline algorithm [25]. We
call it a BSpline transformation, as shown in Fig. 3 be-
cause the transformation is based on a grid of BSpline
control points that supports the local deformation. We
also used the hierarchical multiresolution approach [25]
but in this case, with three levels, doubling the number
of control points and the size of the images, starting
from one-quarter of their original size, from one level
to another. In this way, we could deal with coarse dif-
ferences in lower resolution while adjusting subtle dif-
ferences in higher resolution. The control points are
also calculated by maximizing the mutual information
metric [22] using the Stochastic Gradient Descent algo-
rithm.

Fig. 4 illustrates a non-linear registration of the
MNI152 symmetric volume (Fig. 4a) to a T1-weighted
MRI volume (Fig. 4b) of healthy control. The checker-
board pattern (Fig. 4c) allows assessing the continuity
of the neuroanatomical boundaries at the edges of
the squares in which the two volumes are shown
alternately.

(a) MNI152 (b) Control Volume (c) Checkerboard

Figure 4: Non-linear registration of (a) the MNI152 to
(b) a T1-weighted volume (c) in a checkerboard pattern.

There is a 1:1 correspondence between the individual
MRI voxels and the CerebrA voxels after registration.
The voxels in the anatomical MRI volume carry the tis-
sues’ response to the applied magnetic field gradient. In
contrast, each atlas voxel has one of the 102 label codes
available on the NIST website [19]. In short, from a
triple of coordinates (x,y,z), we could access two kinds
of data necessary for rendering: the image of a neu-
roanatomical structure and its label code.

3.2 Interactive Visualization Module
This module, highlighted with the green outline in
Fig. 3, is responsible for rendering the MRI volume
and the CerebrA atlas into a single image and show-
ing the region of interest’s label at interactive rates.
Because the registration and the sampling steps are
time-consuming but carried out only once for each

brain, we considered that they belong to the setup of
a session of visual assessment or label queries when
the interactions actually occur. For interactive label
queries, we should address three issues: the rendering
of a labeled anatomical volume at interactive rates, the
views of the labeled anatomical MRI volume, and the
effective fetch of the structure’s name from a point on
the cortical surface at which an input device points or
the voxels’ query from the input structure’s name.

3.2.1 Rendering
We mapped the structure labels of the CerebrA atlas
onto distinct colors according to the FreeSurferColor-
LUT [14]. We implemented this colormap with a 1D
texture lookup table, setting the visible voxel’s opac-
ity as 1 and of the other ones 0. Then, we applied
the GPU-based rendering algorithm, proposed by Wu et
al.[35], to generate a multimodal volume from the reg-
istered CerebrA atlas and a neuroanatomical MRI vol-
ume (Fig. 3). It consists of raycasting the anatomical
MRI volume. For each pixel in the image, a ray is cast
into the volume. The ray is resampled at equal intervals,
and the corresponding position in the registered Cere-
brA atlas is also resampled. The weighted contributions
of these two samples are accumulated to define the final
color of the pixel. Two interpolation schemes were used
in the resampling: the trilinear interpolation to the MRI
volume (Fig. 5.(a)) and the nearest-neighbor interpola-
tion to the MNI CerebrA labels (Fig. 5.(b)). Different
weighting factors lead to different images, as illustrated
in Figs. 5.(c) and (d). Interactive control of the weight-
ing factors facilitates visually checking the alignment
between neuroanatomical boundaries and the edges of
labeled regions.

3.2.2 Views
Besides the classical views of a volume in 3 anatom-
ical planes: axial, coronal, and sagittal (Fig. 6), we
devised a way to view the cortical surface at different
depths (Fig. 7). It can help one better understanding
the spatial relationship between cortical folds and la-
bel boundaries. We applied the curvilinear reformat-
ting algorithm presented by Wu et al. [34] to compute
curvilinear slices (Fig. 3). The computation consists
of four steps: (1) estimating the cortical surface of the
brain of interest; (2) computing a mesh of the estimated
cortical surface; (3) generating a series of meshes by
offsetting the cortical mesh at different depths; and (4)
applying the depthmaps of the meshes to control the
range of the voxels to be accumulated along the casting
ray. A curvilinearly reformatted view of a T1-weighted
MRI volume is shown in Fig. 1.

3.2.3 Interaction
For querying the label (or name) of any region (show
text in Fig. 3), the user interacts with the displayed im-
age through a cursor. Fig. 6 shows a 2D crosshair cursor
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(a) MRI volume (b) MNI template

(c) 0.25MRI+0.75MNI (d) 0.75MRI+0.25MNI

Figure 5: Blending of (a) an anatomical MRI volume
and (b) the registered CerebrA with (c) 25% and (d)
75% of MRI data.

and Fig. 7 a 3D cursor over the right cerebellum on the
displayed images as visual feedback of mouse motions.
A click with the mouse on a 3D view of the labeled
anatomical volume triggers the procedure that converts
the 2D position of the clicked pixel into the spatial po-
sition of the corresponding voxel [33] (process cur-
sor position in Fig. 3). The registered CerebrA la-
bel code is accessed from the coordinate (x,y,z) of the
picked MRI voxel. We used a balanced binary search
algorithm with the worst-case performance O(logn) to
access the CerebrA label code and get the structure’s
name.

The brain region’s query from a structure’s name is also
supported (process query in Fig. 3). We organized
the label codes and their corresponding structure names
[14] in a lookup table and applied a linear search to get
a label code from a structure name. Though its high
cost of O(n), it is affordable due to the small num-
ber of structure names. The size n is in the order of
magnitude of a hundred. The result could be either in
text format (show text in Fig. 3) or in colored regions
whose rendering is presented in Section 3.2.1. The two
query modes allow the user to explore intuitively and
smoothly the neuroanatomical structures individually.

4 IMPLEMENTATION
With maximum reuse in mind, we surveyed the appli-
cations that provide the functions that would enable
the implementation of our proposal. We decided on
the functions available in the SimpleITK library [2]
to implement the labeling module and the Qt-based

VMTK-Neuro [32] to program the interactive visual-
ization module. SimpleITK is a wrapper for the well-
known ITK [9] and VMTK-Neuro (Visual Manipula-
tion Toolkit for Neuroimages) is a multi-platform (Win-
dows, Mac, and Ubuntu) multi-modal exploratory visu-
alization software. Both are programmed in C++. In
addition, built-in functions provided by the algorithm
library in C++ standard template libraries (STL) [24]
were used to process the CerebrA label codes. With all
these tools, we were left with the challenge of integrat-
ing them into an application that supports interactive
queries of regions covered in the CerebrA atlas.

We distributed the functions between CPU and GPU as
depicted in Fig. 8. There is a time-consuming overhead
for processing on the CPU an individual CerebrA atlas,
which could be saved in a file, as shown in the pink box,
and reused in different query sessions. During a query
session, the user events are processed by the Qt-based
widgets (CPU), and, for the sake of performance, the
images are concurrently rendered on the GPU.

We used the functions of the classes IMAGEREG-
ISTRATIONMETHOD, AFFINETRANSFORM and
BSPLINETRANFORM, from the SimpleITK image
analysis library, to implement the Labeling Module
components (Section 3.1). The IMAGEREGISTRA-
TIONMETHOD provides a wide variety of functions
that help implement an image registration algorithm.
These functions include a series of optimization meth-
ods, objective functions, and interfaces to the available
classes of transformation models. More specifically, as
depicted in Fig. 8, we applied the AFFINETRANSFORM
and BSPLINETRANFORM models with, respectively,
the parameter values: Maximum number of iterations
per level (200,200); Number of hierarchical levels
(2,3); Sampling percentages (10%,10%); Learning rate
(0.1,0.1); Number of histogram bins (40,40); Initial
number of control points (–,2); Convergence value (1e-
6,1e-6); Initial variance of the Gaussian transformation
(4,4); Initial shrink factor (4,4); BSpline order (–,4);
Method for rescaling and optimization parameters:
(Jacobian, Physical Shift). These values were obtained
empirically by registering the 16 control volumes
individually.

For benefiting from the interactive environment that the
VMTK-Neuro application offers, we have implemented
the Interactive Visualization Module on its top. The
registered CerebrA atlas and MRI volume should be
preloaded as filtered texture into the GPU at the setup
of a query session. Two exploration methods are sup-
ported: either through 2D anatomical views or through
a 3D view of curvilinearly reformatted volume.

A series of curvilinear slices is generated using the
functions available in the CURVILINEARREFORMAT-
TING module. The yellow box in Fig. 8 highlights it.
We also reused the blending function available in the
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(a) Axial (b) Coronal (c) Sagittal

Figure 6: Label querying with a red cursor of the internal structure of neuroanatomy (right cerebellum) from 2D
views of 62-year-old male subject.

(a) Right (b) Top (c) Back

Figure 7: Label querying with a green cursor of surface neuroanatomy (right cerebellum) from 3D views of a
62-year-old male subject.

MULTIMODALRENDERING module for weighting the
contributions of the anatomical MRI volume and the
registered CerebrA atlas to a single rendered image.
When not explicitly mentioned, the images presented in
this work result from the blending of the label code col-
ors into the grayscale anatomical MRI volume in 50%.

Fig. 6 shows the interface for label queries from the
classical anatomical 2D views. One can retrieve the la-
bel by pointing a cursor (a red crosshair) on the colored
internal structure in any of three planes (axial, sagittal,
and coronal). Fig. 7 illustrates the interface for queries
of the (cortical) surface anatomy from a 3D view of the
same subject. The user can retrieve any label by point-
ing a cursor (a green crosshair) on a colored cortical
region.

5 RESULTS
Fig. 9 presents the interface of the implemented proto-
type. It consists of 4 coordinated canvases: one canvas
on the left side displays the 3D view of the customized
neuroanatomy atlas, and three canvas on the right side
displaying axial, sagittal, and coronal slice planes. The
cursors in four views point coordinately at the same
spatial position. Note that when one clicks a mouse

on a point, the name query is automatically triggered.
As a result, the value associated with the point’s label
code is promptly displayed on the widget, outlined by
the orange line.

We designed three experiments to show how the pro-
posed environment can visually assess CerebrA-based
brain labeling’s quality concerning neuroanatomy
teaching at interactive rates. First, since accurate
registration results in proper labeling, we checked
the accuracy of CerebrA’s registration to an MRI
volume. Second, we visually assessed the concordance
between neuroanatomical and label boundaries in all
test volumes to rate how misregistration can impact
the labeling’s visual quality. Finally, in the third
experiment, we evaluated the proposed algorithm’s
time performance for its interactivity.

The experiments were performed on the desktop
provided with 8Gb of RAM Memory, an Intel Core i7
Processor 860 2.8GHz and an NVIDIA GeForce GT
630 GPU, and on the laptop provided with an Intel
Core(TM) i7-6700HQ 2.60 GHz with 8GB RAM and
an NVIDIA GeForce GTX 960 with 4GB VRAM.
We chose randomly from our university hospital’s
database 16 MRI volumes of healthy subjects (8 males)
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User CPU GPU

Cursor placement Cursor position processing

Voxel-to-label conversion

Visual feedback

Label display

Region of interest selection

Registration

Saving

Optional

Multimodal rendering

Depthmap

Visual feedback

Affine Transformation

BSpline Transformation

Cursor rendering

Voxel-to-value-conversion

Cursor position

Query session

Iterative Loop

Preprocessing

Save resampling

Multimodal rendering

Resampling

MRI volume and 
resampled CerebrA atlas

available in GPU

Curvilinear reformatting

Figure 8: Sequence diagram in two stages: (1) Label-
ing module: preprocessing of an individual CerebrA at-
las using SimpleITK, (2) Interactive Visualization mod-
ule: query of neuroanatomical structures in the VMTK-
Neuro environment.

ranged from 9 to 79 years. The T1-weighted spin-echo
sequences were acquired on a Philips Achieva 3D
Scanner using the acquisition parameters: voxel size
=1x1x1 mm, no gap, TR=7 ms, TE=3.2 ms, flip
angle=8, matrix=240x240, FOV=240x240, and resolu-
tion=180x240x240. All subjects enrolled in the present
study signed an informed consent form approved by
our university’s Ethics Committee.

5.1 Nonlinear Registration
For assessing the registration accuracy visually, we
used the SimpleITK features from Jupyter Note-
books [16]. We applied the HISTOGRAMMATCHING
image filter to the MRI scans before displaying them
on a checkerboard pattern, pairwise with the registered
MNI152, as shown in Fig. 4. Since the filter stan-
dardizes the grayscale values of a control volume by
matching the control volume histogram’s shape to the
MNI152 histogram, it ensures that similar intensities in
two volumes have similar tissue meaning [23].

We scrolled the slices in axial, coronal, and sagittal
views and checked the continuity of the neuroanatom-
ical boundaries at the squares’ edges in each slice. We
found that nonlinear registration using the parameters in
Section 4 failed for volumes under 30 and over 70 years.
Fig. 10a and Fig. 10b illustrate misregistration where
there are several mismatches of the neuroanatomical
contours along the squares’ edges in axial slices. In
Fig. 10c, the anatomical boundaries are better matched.

Our finding corroborates the results obtained by Allen
et al. [1]. They concluded that gray matter decreased
linearly with age, resulting in a decline of about 9,1–
9.8% between the ages of 30 and 70 and a decline of
11.3–12.3% by 80. On the other hand, white matter vol-
ume increased until the mid-50s; after then, it declined
rapidly. At 70 years, white matter volume was only
5.6–6.4% less than at 30 years, but by age 80, a cubic
regression model predicted that the decrease would be
21.6–25.0%.

5.2 Labeling
We carried out the second and the third experiments us-
ing the implemented interactive labeling system (Sec-
tion 4). The visual assessment is based on the agree-
ment of the neuroanatomical and label boundaries from
4 views: the 3D superficial cortical view, the coronal
and axial plane views at the level of septum pellucidum,
and the mid-sagittal plane view.

For the first view, we used as anatomical references the
frontal, parietal, occipital, and temporal gyri, the lateral
and central sulcus, and the longitudinal fissure (LF).
For the second view, we chose the LF, the cingulate
gyrus (CG), the lateral ventricles (LV), the third ven-
tricle (3V), the septum pellucidum (SP), the basal gan-
glia (BG), the amygdala, the insular cortex (I), and the
lateral sulcus. For the third view, the neuroanatomical
landmarks were the LF, LV, 3V, SP, I, and the corpus
callosum (CC). Finally, for the fourth view, the refer-
ences were the CG, LV, CC, cerebellum, the fourth ven-
tricle, the parieto-occipital sulcus, the calcarine sulcus,
the brainstem, and the occipital, parietal, and frontal
lobes.

As expected, the degree of concordance between the
neuroanatomical and label boundaries was low for mis-
registered pairs of volumes. Fig. 11 illustrates the la-
beled anatomical structures in the axial slice at the
height of the septum pellucidum of the volumes shown
in Fig. 10. From the landmarks pointed by the red ar-
rows, one can visually perceive the two boundaries’
discrepancies. Our experiment lets us infer that, from
the classical plane views, the less the MRI volume is
aligned to the CerebrA (Figs. 10a and 10b), the more
discrepant are the label boundaries to the anatomical
boundaries (Figs. 11a and 11b).
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Figure 9: Interface of our proposed individual neuroanatomy atlas. The interface displays the name of the brain-
stem pointed by the red cursor.

(a) 11 year-old (b) 78 year-old (c) 60 year-old

Figure 10: Visual assessment of registration accuracy
of a volume: (a) under 30; (b) over 70; and (c) between
30 and 70 years of age.

(a) 11 year-old (b) 78 year-old (c) 60 year-old

Figure 11: Visual assessment of labeling accuracy of a
volume from axial slices: (a) under 30; (b) over 70; and
(c) between 30 and 70 years of age.

However, to our surprise, such discrepancies were not
notable from 3D superficial cortical views as depicted
in Fig. 12. It looked that the anatomical and label

boundaries were perfectly matchable even when the
volumes were misregistered (Figs. 12a and 12b). Only
an attentive user would notice some minor flaws in the
labeled regions highlighted by the red arrows. Further
investigation led us to see that the multimodal rendering
procedure we applied accommodates the differences
between the superficial boundaries with some slack be-
cause it only retrieves the color codes of the control vol-
ume’s visible voxels. The labels that leaked out the con-
trol volume are automatically discarded (Section 3.2.1).
The perceived flaws are in the regions where the differ-
ence is greater than the cortical thickness, which is few
regions.

(a) 11 year-old (b) 78 year-old (c) 60 year-old

Figure 12: Visual assessment of labeling accuracy of a
volume from 3D superficial cortical view: (a) under 30;
(b) over 70; and (c) between 30 and 70 years of age.

5.3 Time Performance
We measured 3D rendering time and the label query’s
processing time to evaluate our label querying envi-
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ronment’s interactivity. Both measurements were per-
formed on an image of 900x900 pixels. The average
times were 42.92 ms for rendering and 2.67 ms for
query by the label code. Query by a structure’s name
has taken in average 0.0589 ms. All these times are be-
low the recommended response time limits, suggesting
that the environment is interactive. It is, however, worth
remarking that the generation of an individual CerebrA
atlas is too costly in time. It took less than 20 min in
total on the desktop computer, with around 19 min to
register and 7s to resample.

6 CONCLUSION
We presented an automatic individual CerebrA-based
neuroanatomical labeling system to support gross
neuroanatomy teaching. Because the CerebrA atlas
is based on the symmetric MNI-ICBM2009c tem-
plate, we conjectured that a nonlinear registration
could register CerebrA to most healthy MRI volumes
within a margin of tolerance that is acceptable for the
teaching purpose. We implemented a prototype on
top of available tools and libraries, namely the C++
Standard Template Library [24], SimpleITK [2], and
VMTK-Neuro [32].

Our experiments with 16 test control volumes ranged
from 9 to 79 years show that the proposed system pro-
vides interactive queries and visually accurate labeled
cortical surfaces even if the CerebrA atlas could not fit
perfectly into an MRI volume of interest. Because this
cortical superficial view helps in preoperative planning
of the entry points [26], we believe that the developed
individual neuroanatomy atlas tool could be useful as
complementary courseware to neuroanatomy. Further-
more, afforded curvilinear reformatting and interactive
querying by values help students gain familiarity with
spatial relationships of the cortical superficial structures
of diverse sizes and shapes.

There is still a lot of implementation work to be done.
In a short time, we plan to conclude the interface to
the querying by values, from which the user can change
the color codes and the level of brain hierarchy to be
displayed. In the medium term, we also like to inte-
grate the Talairach atlas, which is still widely applied
for functional brain mapping. Another point that de-
serves special attention is the fitting of CerebrA to the
age group’s volumes outside the range of 30 to 70 years.
We would like to know whether there is a procedure to
perform this registration in the long run. Finally, we in-
tend to conduct tests directly involving preclinical stu-
dents to assess the proposed atlas’s usability.
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ABSTRACT
This paper presents an approach towards word recognition based on embedded prototype subspace classification.
The purpose of this paper is three-fold. Firstly, a new dataset for word recognition is presented, which is extracted
from the Esposalles database consisting of the Barcelona cathedral marriage records. Secondly, different clustering
techniques are evaluated for Embedded Prototype Subspace Classifiers. The dataset, containing 30 different classes
of words is heavily imbalanced, and some word classes are very similar, which renders the classification task rather
challenging. For ease of use, no stratified sampling is done in advance, and the impact of different data splits is
evaluated for different clustering techniques. It will be demonstrated that the original clustering technique based on
scaling the bandwidth has to be adjusted for this new dataset. Thirdly, an algorithm is therefore proposed that finds
k clusters, striving to obtain a certain amount of feature points in each cluster, rather than finding some clusters
based on scaling the Silverman’s rule of thumb. Furthermore, Self Organising Maps are also evaluated as both a
clustering and embedding technique.

Keywords
Subspaces, Embedded Prototypes, Clustering, Deep Learning, Self Organising Maps, t-SNE, Data splits.

1 INTRODUCTION
Recently, Embedded Prototype Subspace Classification
(EPSC) [HLV19, HL20] has proven to be able to
classify datasets containing single digits, characters
and even objects, such as the MNIST dataset of hand-
written digits [LCB10], E-MNIST containing letters
[CATvS17], the Kuzushiji-MNIST dataset containing
Japanese handwritten characters [CBK∗18], and the
Fashion MNIST (F-MNIST) [XRV17] containing
small images of clothes and accessories.

The advantage of EPSC compared to deep learning
based methods [Sha18] for handwritten text recogni-
tion [KDJ18, DKMJ18, SF16] is that EPSC do not
require powerful GPU resources in the training pro-
cess and have no hidden layers, which makes it com-
pact and fast. In general, EPSC learns from the em-
bedding of feature vectors and creates a so-called sub-
spaces from each cluster [KLR∗77]. Even though EPSC
does not always outperform the state-of-the-art deep

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

learning approaches, it performs significantly as an al-
ternative, where the learning and classification pro-
cesses are both easy to interpret [Kri19, CPC19], ex-
plain [ADRS∗19, GSC∗19, CPC19], and visualise.

The main contributions of this paper are as follows.
First of all a new dataset based on the Esposalles dataset
[RFS∗13] is presented, where 30 different words were
extracted from the given training set. This new dataset
can be used for the purpose of evaluating word recogni-
tion methods, rather than performing character or digit
level recognition. This dataset is by intention heavily
imbalanced, which makes it more interesting for real-
world problems. Secondly, we present and compare
three different methods for computing clusters, aimed
at handling imbalanced datasets. Thirdly, an algorithm
that finds k seed points for K-means clustering [HW79]
is proposed .

2 BACKGROUND
Subspaces have been used for classification in pattern
recognition since it was first proposed by Watanabe
et al. [WP73] in 1967, and later further developed
by Kohonen and others [WLK∗67, KLR∗77, KO76,
KRMV76, OK88]. In general, by computing the norm
of the projected feature vector to be classified into each
subspace, the process can be regarded as a two layer
neural network [OK88, Laa07], where the weights are
mathematically defined through Principal Component
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Analysis (PCA) [Laa07]. Another important advantage
is that the learning process can easily be visualised,
which makes it easy to understand, interpret and ex-
plain, as compared to most of the state-of-the-art deep
learning approaches.

2.1 Subspace Classification
Herein, we have used the same kind of subspaces
that were presented in [HLV19, Laa07, OK88].
Hence, every image to be classified is represented
by a feature vector x with m real-valued elements
x j = {x1,z2...xm},∈ R, such that the operations take
place in a m-dimensional vector space Rm. Any set
of n linearly independent basis vectors {u1,u2, ...un},
where ui = {w1, j,w2, j...wm, j},wi, j ∈ R, which can
be combined into an m× n matrix U ∈ Rm×n, span a
subspace LU

LU = {x|x =
n

∑
i=1

ρiui,ρi ∈ R} (1)

where,

ρi = xT ui =
m

∑
j=1

x jwi, j (2)

Classification of a feature vector can be performed by
projecting x onto each and every subspace LUk . The
vector x̂ will in this way be a reconstruction of x, using
all vectors in the subspace through

x̂ =
n

∑
i=1

(xT ui)ui (3)

=
n

∑
i=1

ρiui (4)

=UT UxT (5)

By normalising all the vectors in U, the norm of the
projected vector can be simplified as

||x̂||2 =(UxT ) · (UxT ) (6)

=(UxT )2 (7)

=
n

∑
i=1

ρi
2 (8)

In this way, the feature vector x, which is most similar
to the feature vectors that were used to construct the
subspace in question LUk , will subsequently also have
the largest norm ||x̂||2.

2.2 Embedding and Clustering
In general, some group of prototypes are selected for
the construction of each subspace by searching for the k
nearest neighbors in the feature space, which is a rather
time consuming process. The idea of EPSC [HLV19] is

on the other hand to use t-distributed stochastic neigh-
bour embedding (t-SNE) [MH08], which is both a visu-
alisation technique as well as a machine learning tech-
nique, used to reduce the number of dimensions of high
dimensional data (e.g. 2 dimensions in this case). In
this process, clusters are formed since t-SNE strives to
move similar features (represented by their projected
points) closer to each other and dissimilar points further
away from each other. Nevertheless, any embedding
technique could be used for this purpose, such as Uni-
form Manifold Approximation and Projection (UMAP)
[MH18].

Hast et al. [HLV19] used kernel density estimation
(KDE) [CHTT96] and watershed transform on the in-
verse image to find clusters in a two-dimensional image
space. Alternatively, Mean-Shift [CM02, FH75] could
be used that also finds the number of clusters depending
on the size of the Gaussian Kernel chosen. However, as
will be investigated further herein, other algorithms that
require specifying the exact number of clusters, such
as K-means [HW79] could also be used. Nevertheless,
depending upon the problem at hand, other similar al-
gorithms such as DBSCAN [EKSX96] can also be em-
ployed.

It is also studied that the clustering techniques that work
well for balanced dataset, such as MNIST [LCB10],
does not perform well for imbalanced data, where there
is an imbalance in the frequency of occurrence of labels
in the dataset. Therefore, this work does not rely on au-
tomatic cluster selection based on Silverman’s rule of
thumb for computing the bandwidth h of the clustering

h =

(
4σ5

3n

)1/5

(9)

where σ is the standard deviation of n samples.

3 THE PROPOSED APPROACH
Instead of using the bandwidth for clustering, better
performance was achieved by computing k clusters,
striving for these clusters to contain a certain predefined
number of features n f . An intuitive choice is there-
fore to use K-means clustering approach. Experimen-
tally, it was found that n f = 40 was by large an opti-
mal choice for the number of clusters. However, typi-
cally this value depends on the data, and can therefore
be evaluated in the learning process with respect to the
type of recognition task at hand.

A drawback of K-means clustering is that it finds k clus-
ters by initialising k random seed points, and is not con-
fident if the same clusters will be found when the algo-
rithm is executed multiple times. Since repeatability
is important, a deterministic approach was devised that
makes use of Kernel Density Estimation (KDE). In gen-
eral, a certain value of σ is used to splat Gaussians on a
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Figure 1: Distribution of words in the "imbalanced" dataset.

small image. The cluster centres are estimated by non-
maximum suppression. Depending on the number of
maximum (clusters) found, the σ is adjusted, and the
process is repeated until k cluster centers are at hand.
These are subsequently used to initialise the seed points
for K-means, in order to make the algorithm find clus-
ters centered around those maximum points.

The same adaptive procedure can also be used for the
original idea of KDE and watershed to obtain k clus-
ters, and are therefore referred to as "adaptive" in our
experiments. The original approach was used in the ex-
periments so that the improvement by the adaptive ap-
proaches could also be evaluated.

Furthermore, a self-organizing map (SOM) [Koh82]
can be used, which is a dimensionality reduction tech-
nique based on unsupervised competitive learning of an
artificial neural network (ANN). It generates a 2D map
representation of an input space of the training samples,
where the features are placed in buckets. They also
demonstrate well for finding k clusters, with an advan-
tage of having the embedding itself as part of the clus-
tering process. However, the disadvantage is that SOM
cannot be used to produce elegant scatter plots like t-
SNE, as the points end up in the buckets. Nonethe-
less, an improved version of SOM can be used to visu-
alise the scatter plots, called as EmbeddSOM [KKV19],
which is based on FlowSOM [VGCVH∗15].

SOM was configured in a way that it would strive to
use a n×m map, where n×m = k. However, since it is
rather slow and impractical to be used for large classes,

Figure 2: The placement of each word in the 90× 160
rectangular bounding box. The background is removed
but the word is not binarised.

an upper limit of n = m = 6 was set. Similarly, an upper
limit for K-means was set to a maximum of k = 40.
All of these limits were set ad-hoc and can be changed
depending on the dataset at hand. Nonetheless, all the
three approaches are therefore referred to as "Adaptive"
since they adaptively set the number of wanted clusters
depending on the size of each class.

4 INTRODUCING THE NEW
DATASET

To the best of authors knowledge and taking inspiration
from the MNIST dataset, this is the first attempt at cre-
ating a dataset for handwritten word recognition for a
public research domain, which is based on the Espos-
alles database [RFS∗13]. In order to render the dataset
more significant and challenging, 30 words were cho-
sen, producing a total of 16354 word images, where
some words are very similar in nature, and Figure 1
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Figure 3: The 51 occurrences of the word "ferrer", with highlights on different handwriting styles. It can be noted
how the character "f" is written in different styles.

Figure 4: Heatmaps of all the words in the dataset, clustered by the respective class. The number of images per
class are shown above each heatmap. Figure best viewed in color.

presents the distribution of words in the dataset. As
can be seen, the dataset is heavily imbalanced, and the
Shannon equitability index is only 0.7444, as compared
to the balanced MNIST dataset with a Shannon equi-
tability index of 0.9994.

Each word has been extracted using the bounding box
coordinates provided as part of the Esposalles database.
However, the input image is processed as follows. To
begin with, background removal using [VHS17] is per-
formed on each page, and the word is extracted.
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There exist some noise in the form of small blobs due to
bleed through which is removed automatically, and the
rectangular bounding boxes are adjusted so they per-
fectly encapsulate the word region [VH17]. Finally, the
word is centered (or normalised), and placed to the left
in a 90× 160 rectangular box to accommodate words
with larger length (e.g. as long as 9 characters), as
shown in Figure 2. This also means that the word will
be placed a little bit differently, with respect to its core,
depending on whether the word has ascenders and/or
descenders.

The variability within a certain class can be quite large
depending on the number of writers, and whether there
exists more noise in the image. The variation can be
visualised as heatmaps of each class, as presented in
Figure 4. These are created by adding all words be-
longing to a class into one single image, and the result-
ing values are colour coded. It can be noted that some
words demonstrate a larger variation than others, as the
heatmap is visually more blurry.

For ease of use, no stratified sampling is done in ad-
vance, or in other words, the word images are not split
into predefined training and testing sets. Such splits are
commonly provided for MNIST and many other popu-
lar datasets, where some also provide a validation set.
However, this work allows the researchers with the flex-
ibility to split the data in their preferred way and eval-
uate different properties of the dataset as well as the
machine learning algorithm.

The dataset can be visualised using t-SNE or any other
embedding technique, such as UMAP [MH18]. In Fig-
ure 5, t-SNE was used on the following: 5a: the word
images, 5b: Histogram of Gradients (HOG) feature
vectors [DT05], and 5c: mFFT, which are Fast Fourier
Transform (FFT) based features with combinations of
some of the most significant elements of the magnitude
of the FFT.

In Figure 5a, a big magenta coloured cluster can be ob-
served where each point representing the word "de" is
split into smaller clusters depending on its characteris-
tic look in both Figure 5b and Figure 5c. Moreover,
the cluster to the middle right containing the two simi-
lar words, "viudo" and "viuda", is mixed in Figure 5a,
while in Figure 5b and Figure 5c it is automatically split
into two distinct clusters. This suggests using efficient
feature vectors instead of using simply the word im-
ages. For simplicity, hand crafted features are used, but
depending upon the problem at hand and the availabil-
ity of the resources, CNN based features can also be
used.

5 RESULTS
Since the dataset is heavily imbalanced, the so-called
Macro Average Arithmetic (MAA) [AAVPS13] is com-
puted instead of the overall accuracy. The latter can be

(a) Word images used as features.

(b) HOG features.

(c) mFFT features.

Figure 5: Visualisation of how effectively different fea-
tures can separate different classes. Figure best viewed
in color.

rather misleading for imbalanced datasets, when for in-
stance a few classes with many occurrences and high
accuracy can skew the overall accuracy. Figure 6 high-
lights that most classes particularly those with many oc-
currences perform well, while some with just a few oc-
currences yield a low accuracy. Hence, it is a better
approach to compute the accuracy of each class indi-
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Figure 6: Accuracy computed for each class individually. Classes with many occurrences generally have higher
accuracy than classes with fewer occurrences.

Figure 7: Macro Average Arithmetic (MAA) for different methods and different data splits.

vidually, and then compute the average. The accuracy
of each class is

ACC j =
CC j

N j
(10)

where CC j are the number of correctly classified words
in class j and N j is the number of samples (i.e. words)
in the same class.

The MAA is defined as the arithmetic average of the
partial accuracies of each class

MAA =
∑

J
i=1 ACCi

J
(11)

where J is the number of classes.

Figure 7 presents a comparison with the original
method, referred to as "bandwidth KDE", since it is
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Figure 8: Macro Average Arithmetic (MAA) for different methods and different feature vectors and data splits.

based on scaling the Silverman’s rule of thumb and
generating clusters based on the distribution of points
in 2D space. This will yield clusters with rather varying
number of points. The other three approaches (SOM,
K-Means and KDE) are based on the aforementioned
idea of obtaining the clusters that have a similar
number of points in them. As can be seen, using this
idea on SOM, K-Means or KDE, all behave quite
similar, and perform better than bandwidth KDE. For
the proposed dataset and the setting of parameters, it is
hard to choose a winner. However, it should be noted
that the whole parameter space was not spanned to find
the best settings, since it also depends on the dataset at
hand. Hence, this is proposed for future research. All
experiments were repeated 40 times for each data split
and the average result is reported in the plots. This
also highlights that the learning set and the testing set
in each run contained different permutations of words.
The same random seed was used for each group of
experiments depicted by one curve, so that the curves
could be compared individually on the same basis.

In Figure 7, the mFFT was used as feature vectors,
which has a length of 1116, which is only 7.8% of the
original size of the word images (90×160 = 14400). It
is interesting to see how the EPSC performs with differ-
ent feature vectors e.g. the HOG, which is 6940 long,
i.e. 47.5% of the original images. The results are pre-
sented in Figure 8, and it can be noted that the X-axis
is different here in order to better observe the differ-
ence between the plots. Nonetheless, HOG seems to
perform well after around a 50% split, while mFFT is
more effective for less learning data, which is encour-
aging since they are much shorter.

6 DISCUSSION

It is observed that the EPSC handles imbalanced
datasets very well, since high accuracy is obtained for
most of the classes with just a few occurrences. Of
course, just one dataset is not enough to provide an
absolute answer. However, the proposed dataset is
indeed useful and challenging, with some words classes
very similar in nature. EPSC handles the imbalance in
the following way. When there are several occurrences
in one class, it creates subspaces that capture the
variation within that class. Hence, it correctly clas-
sifies that class, and the images not belonging to the
class will instead be correctly classified by subspaces
belonging to other classes. That is, if it has enough
learning examples to create the subspaces for those
classes. Hence, having several occurrences for one
class does not seem to pose big problem. Having too
few, on the other hand, becomes challenging since the
subspaces created do not capture the variation very
well. For instance only one subspace is created for the
word "ferrer" when 5% is used for learning, and that
subspace is created from only 3 occurrences. Typically,
the word classes that are very similar will suffer more
from having a very small variation of word examples
to create the subspaces from.

When dealing with imbalanced datasets, one can
choose different strategies, such as to over-sample
the minority class, under-sample the majority class
or generate synthetic samples. When transcribing a
document, one can use any of these strategies to make
a learning model using the words already transcribed,
and perform automatic transcription for the rest. How-
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ever, in this paper the main focus was to investigate
how well EPSC can handle imbalanced sets and
which clustering approaches can be used efficiently.
If under-sampling and over-sampling are not suitable
strategies for EPSC (since it is desirable to keep as
much variation as possible), then data augmentation
of the minority classes can potentially be a solution to
improve the performance. This is proposed for future
research.
The MAA for all clustering techniques and feature vec-
tors, reach about 98% for a data split of 30% used for
training, which can be regarded as a good result for such
a challenging dataset. Even for the human eye, it is
at times difficult to differ handwritten words like "vi-
udo" from "viuda". It is observed that 17 of the classes
have an accuracy over 99.0% for the same data split,
14 lies over 99.5% and 7 are over 99.7%, when using
K-means and mFFT. The Confusion matrices for 5%,
30%m and 60% learning data are shown in Figure 9. It
can be noted that the word "Mataro" is often misclas-
sified as "Maria", while the words "viudo" and "viuda"
are interestingly much less confused.

7 CONCLUSION
The original approach for clustering for EPSC works
very well for balanced datasets. However, imbalanced
datasets are generally harder to handle and three differ-
ent clustering approaches for obtaining subspaces were
presented and analysed in this work. Experimental re-
sults validate the performance, and all the three ap-
proaches performed significantly regardless of the fea-
ture vector being used. It did not make a big difference
whether t-SNE or SOM were used as embeddings. Nei-
ther did, using the proposed adaptive versions of the
original idea of clustering (using the watershed trans-
form or K-means), add a significant difference. Hence,
all three methods are good candidates for future exper-
iments. However, SOM has the drawback of not being
a visualisation technique by its own. All parameters in
the EPSC were not systematically investigated for the
new heavily imbalanced dataset in the current experi-
ments. Nevertheless, a baseline was given for future
experimenting using EPSC. Furthermore, handcrafted
features were used as they are fast and simple, render-
ing the whole pipeline with EPSC fast and simple too.
As future work, CNN based features would be evalu-
ated for the given dataset. However, full pipelines of
deep learning approaches also need to handle the im-
balance in specific ways. Therefore, it will be an in-
teresting area of research for further investigations on
using the dataset for different data splits and machine
learning algorithms.
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