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ABSTRACT
In this paper we propose a novel approach for reduction of JPEG artifacts using advanced techniques of stochastic
calculus. In order to solve this problem we use backward stochastic differential equations (in short BSDEs) and
the non local means method. In our algorithm we consider two processes. One of them has values in the image
domain and determines pixels that will be involved in the reconstruction, the second one has values in the image
codomain and gives weight to values of pixels. To calculate the weights, we use the idea of the patches similarity
used in the non local means. Our experiments show that the new approach gives very good results and compares
favourably with other methods.

Keywords
Image reconstruction, JPEG artifacts, Stochastic differential equations, Non local means

1 INTRODUCTION
Lossy compression algorithms discard data that is least
important to the recipient’s visual sense, leaving the
data of greater importance. The human eye is not sensi-
tive to high frequency information, which is why most
lossy image compression methods are implemented by
quantization or approximation in the frequency domain.
JPEG is a representative standard for lossy compres-
sion and is used worldwide. The JPEG compression
standard splits the image, performs a discrete cosine
transformation and then transformation coefficients are
quantized and coded. The amount of data rejected is
determined by the quality of compression.

There are many different techniques for the recon-
struction of JPEG images. Early preliminary works
[Ree84, Lis03, Lee04, Bre12, Wan13, Pou14, Gay15,
Pan15] perform filtering to reduce only blocking
artifacts. Many interesting works are done by low-pass
filtering and frequency domain techniques [Cho98,
Lee98, Lia02, Tri03, Abb06, Sin07, Sin11, Gol14].
Another popular method uses the concept of projection

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

onto convex sets [Wee02, Gan03]. Several proposals
have been made that make use of wavelet transforms
[Hsu98, Cho00]. An important role in reducing of
artifacts play the traditional noise reduction algorithms
[Dab07, Foi07]. A different approach is based on
multiple dictonary and machine learning methods
[Cha13, Che15, Li16]. Dong et al. [Don14] first
introduced a deep neural network to solve the problem
of reduction of artifacts. The concept of deep neural
networks has gained wide recognition and its later
versions are successfully used to JPEG restoration
[Don15, Svo16, Cav17, Zha17, Zha18, Ehr20, Kim20,
Wan20].

In this paper we present a new method of artifacts re-
duction in the case of RGB images. We combine the
idea of image denoising based on backward stochastic
differential equations from [Bor17] and the concept of
applying the non local means method to Feynman-Kac
formula from the paper [Bor14].

The contribution of this work is twofold. We give a
new noise reduction approach based on BSDE and non
local means method. Moreover, we apply the obtained
algorithm for JPEG reconstruction.

The rest of the paper is constructed as follows. In
Section 2 we recall the method of denoising in terms
of backward stochastic differential equations from
[Bor17]. Section 3 provides a new method of restora-
tion of the noisy image. Section 4 contains information
about using an algorithm in order to remove JPEG
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artifacts. Finally, in Section 5 experimental results and
comparison to other methods are presented.

2 IMAGE RECONSTRUCTION BASED
ON BSDES

2.1 Continuous model
Let D be a bounded, convex domain in R2, u : D→
R3 be an original RGB image and u0 : D→ R3 be the
observed image of the form u0 = u+η , where η stands
for a white Gaussian noise (independently added to all
coordinates). The BSDE model to restoration of the
image u(x) is the following

Xt = x+
∫ t

0
σ(s,Xs)dWs +KD

t , t ∈ [0,T ],

Yt = u0(XS)+
∫ T

t
c(s)(Ys−u0(Xs))ds−∫ T

t
Zs dWs, t ∈ [0,T ],

where S < T , {Xt}t∈[0,T ] is a stochastic diffusion pro-
cess, {Wt}t∈[0,T ] is two-dimensional Wiener process,
the term {KD

t }t∈[0,T ] is the minimal push needed to keep
process X in D, {Yt}t∈[0,T ] is the first component of the
solution to the BSDE, {Zt}t∈[0,T ] is the second compo-
nent of the solution to the BSDE and determines the
measurability of the process Y ,

σ(s,x) =[ (
1− c(s)

c

)
θ−(Gγ ∗u0,x),

c(s)
c θ+(Gγ ∗u0,x)

]
c(t) =

{
0 if t < S or N(Gγ ∗u0,x)< d,
c if t ≥ S and N(Gγ ∗u0,x)≥ d,

θ+(u,x) ∈ R2, θ−(u,x) ∈ R2 and N(u,x) ∈ R is
Di Zenzo [Diz86, Der02] geometry of the RGB image
u((x1,x2)) = (R((x1,x2)),G((x1,x2)),B((x1,x2)) at
point x

θ±(u,x) =
ν±(u,x)
|ν±(u,x)|

,

N(u,x) =
√

λ (u,x),

λ (u,x) =

√
χ(u,x)+ ∂R

∂x1
(x)

2
+ ∂G

∂x1
(x)

2
+ ∂B

∂x1
(x)

2

2 +

∂R
∂x2

(x)
2
+ ∂G

∂x2
(x)

2
+ ∂B

∂x2
(x)

2

2

ν±(u,x) =



2
(

∂R
∂x1

(x) ∂R
∂x2

(x)+ ∂G
∂x1

(x) ∂G
∂x2

(x)

+ ∂B
∂x1

(x) ∂B
∂x2

(x)
)

∂R
∂x2

(x)
2
+ ∂G

∂x2
(x)

2
+ ∂B

∂x2
(x)

2− ∂R
∂x1

(x)
2

− ∂G
∂x1

(x)
2− ∂B

∂x1
(x)

2±
√

χ(u,x)



χ(u,x) =
∂R
∂x1

(x)
2

+
∂G
∂x1

(x)
2

+
∂B
∂x1

(x)
2

− ∂R
∂x2

(x)
2

− ∂G
∂x2

(x)
2

− ∂B
∂x2

(x)
2

++4
(

∂R
∂x1

(x)
∂R
∂x2

(x)

+
∂G
∂x1

(x)
∂G
∂x2

(x)+
∂B
∂x1

(x)
∂B
∂x2

(x)
)2

Gγ is a 3× 3 Gaussian kernel and S ∈ R+ < T ∈ R+,
d ∈ R+, c ∈ R+ are parameters of the method.

For a fixed pixel x we consider a certain BSDE equa-
tion. The values of the process X determines pixels
from domain of the image D which we will use in pro-
cess reconstruction. We can say that this process de-
termines neighbourhood of the pixel x (with irregular
shape). The reconstructed value u(x) is the sum of pix-
els from its neighbourhood multiplied by some weights.
The weight values are determined by the process Y . Ap-
propriate definition of the function c(t) allows as to give
weight values (also negative) which depend on direc-
tion and distance from reconstructed pixel.

Parameter T defines the size of the neighbourhood used
in the reconstruction procedure. We deblur from time
T to S and smooth out from S to 0. The parameter
d determines which pixels will be reconstructed with
using smoothing model and which with using enhanc-
ing model. The parameter c is responsible for effect of
edge sharpening. The values of all parameters depend
on standard noise deviation ρ .

2.2 Algorithm
Consider a time discretization 0 = t0 < t1 < .. . < t j ≤
S < t j+1 < .. . < tm = T ,ti− ti−1 = T

m . In the first step
we generate a trajectory of the stochastic process X for
k = 0,1, . . . ,m−1 using the Euler formula [Slo01]

X0 = x, (1)
Xtk = ΠD[Xtk−1 +σ(tk−1,Xtk−1)(Wtk −Wtk−1)],

where ΠD(x) denotes a projection of x on the set D
and W is a Wiener process. The difference Wtk −
Wtk−1 we approximate using random number genera-
tor. Since Wt is 2 – dimensional, the value of the dif-
ference Wtk −Wtk−1 is equal to two independent values
(vector) obtained with a generator of the normal distri-
bution N (0, tk− tk−1).

Example of the sequence X given by formula (1) is
shown on Figure 1 (a). The image has two areas: gray
and white. The process X starts from the reconstructed
pixel x located on the edge. Next, the process X has val-
ues along the edge until time t j, then after time t j moves
towards the vector θ+ (gradient vector).

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

2 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.1



Now, we can define the process Y . From a definition of
BSDE [Bor17] it starts from

Ytm = u0(Xt j)

and then we backwardly count values Ytm−1 ,Ytm−2 , . . . ,Y0

(a)

(b)

(c)

Figure 1: Trajectory of the process X .

Ytk = E
[
Ytk+1 |Ftk

]
+

T
m

c(tk)
(
E
[
Ytk+1 |Ftk

]
−u0(Xtk)

)
,

k = m− 1,m− 2, . . . ,0, where by E we denote the ex-
pected value and by Ft the filtration generated by the
discretization of the Wiener process [Ma02].

For k = m−1 we have

Ytm−1 = E
[
Ytm |Ftm−1

]
+

T
m

c(tm−1)
(
E
[
Ytm |Ftm−1

]
−u0(Xtm−1)

)
.

Note that Ytm is Ftm−1 measurable. Therefore

Ytm−1 = Y a
tm−1

= u0(Xt j)+
T
m

c(tm−1)
(
u0(Xt j)−u0(a)

)
.

Next, for k = m−2

Ytm−2 = E
[
Ytm−1 |Ftm−2

]

+
T
m

c(tm−2)
(
E
[
Ytm−1 |Ftm−2

]
−u0(Xtm−2)

)
.

Since Ytm−1 is not Ftm−2 measurable, we need to count
E
[
Ytm−1 |Ftm−2

]
by using Monte Carlo method with M

iterations. We start M-times from point Xtm−2 . Example
for M = 3 is shown on Figure 1 (b) (in practise we need
to use about 10 iterations). As before we count Y b

tm−1
and Y c

tm−1
and then

E
[
Ytm−1 |Ftm−2

]
≈

Y a
tm−1

+Y b
tm−1

+Y c
tm−1

3
,

Ytm−2 ≈ Y a,b,c
tm−2

=
Y a

tm−1
+Y b

tm−1
+Y c

tm−1

3
+

T
m

c(tm−2)

(
Y a

tm−1
+Y b

tm−1
+Y c

tm−1

3
−u0(Xtm−2)

)
.

Next, value for tm−3 is equal to

Ytm−3 = E
[
Ytm−2 |Ftm−3

]
+

T
m

c(tm−3)
(
E
[
Ytm−2 |Ftm−3

]
−u0(Xtm−3)

)
and again, similarly to Ytm−2 we need to count it by using
Monte Carlo method. For M = 3 (see Figure 1 (c)) we
have the formula

Ytm−3 ≈ Y a,b,c,d,e, f ,g,h,i
tm−3

=
Y a,b,c

tm−2
+Y d,e, f

tm−2
+Y g,h,i

tm−2

3
+

+
T
m

c(tm−3)

(
Y a,b,c

tm−2
+Y d,e, f

tm−2
+Y g,h,i

tm−2

3
−u0(Xtm−3)

)
.

The above reasoning is repeated until we determine Y0
which is a reconstructed value i.e. u(x).

3 MODIFICATION BASED ON
FEYNMAN-KAC FORMULA AND
NON LOCAL MEANS

Note, that for times 0 < t0 < t1 < .. . < t j and from defi-
nition of the function c(t) (c(t) = 0, for t < S) the algo-
rithm described in the previous section works as follows

Yt j−1 = E
[
Yt j |Ft j−1

]
≈ 1

M

M

∑
i=1

Y ωi
t j =

M

∑
i=1

1
M

Y ωi
t j ,

Yt j−2 ≈
M

∑
i=1

1
M

Y ωi
t j−1

,

...

Yt0 ≈
M

∑
i=1

1
M

Y ωi
t1

The above approximation is based on Feynman-Kac
formula, which means that each value of pixel Y ωi

tk ,
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k = 1,2, . . . , j is weighted with the same value 1
M . But

since pixels have different colours we may consider
them with different weights depending on their neigh-
bourhood. We follow the non local means algorithm
[Bua05] and propose to think of weights that depend on
patches similarity i.e.

Yt j−1 ≈
M

∑
i=1

w(Bx,r,BXt j ,r
)Y ωi

t j ,

Yt j−2 ≈
M

∑
i=1

w(Bx,r,BXt j−1 ,r
)Y ωi

t j−1
,

...

Yt0 ≈
M

∑
i=1

w(Bx,r,BXt1 ,r
)Y ωi

t1 ,

where by Bx,r we denote (2r+1)×(2r+1) RGB pixels
centered at point x and by w(·, ·) we denote a weight
function defined in [Bua11].
For times S < t j+1 < .. . < tm = T the function c(t) is
greater than zero which means that we have negative
weights (to obtain the enhancement effect) and the al-
gorithm remains unchanged.

4 REDUCTION OF JPEG ARTIFACTS
Note, that if we apply values of parameters as de-
fault values recommended by the authors of papers
[Bua11, Bor14, Bor17] then algorithm still has one pa-
rameter: ρ . In this case algorithm can be used success-
fully to reconstruction of Gaussian noisy images with
given standard deviation of the noise.
In the case of reduction of JPEG artifacts we have to
combine the ρ parameter with the compression qual-
ity q. In JPEG standards the compression quality q is
always known and is expressed as a percentage. An
image at 100% quality has no loss. We propose the fol-
lowing formula to count the ρ parameter:

ρ = max{−0.3q+20,0}, (2)

where q is a JPEG compression quality of the image.
Choosing this function, we followed the principle of
maximizing the Peak Signal to Noise Ratio (in short
PSNR) :

PSNR(u, û) = 10log10

(
2552

MSE(u, û)

)
,

where u, û denote the original and the restored
RGB image and MSE(u, û) is a mean square error
between u and û. To determine formula (2) we
used several standard test images. For each, fixed
q ∈ {5,10,20,30,40,50} and for each test image we
calculated ρ at which we have the maximum PSNR.
These values were averaged – for each q we obtained
a mean value of ρ . Finally, for these data we used the
linear regression model to count the linear function
−0.3q+20.

Figure 2: Test RGB images: Toysflash 912× 684,
Lighthouse 480×640, Gantry 400×264, Onion 198×
135.

5 EXPERIMENTAL RESULTS
In this section we present experimental results il-
lustrating the difference between our algorithm and
other methods of removing artifacts: SADCT [Foi07],
CBM3D [Dab07], ARCNN [Don15], DNCNN [Zha17]
and BSDE [Bor17] as the parent method for our ap-
proach. We use the MATLAB implementation of
compared methods: SADCT [Foi20b], CBM3D
[Foi20a], ARCNN [Yuk20], DNCNN [Jpe20]. Param-
eters of these approaches were set to the default values
as recommended by the authors. Some results for our
evaluation experiments are presented in Fig. 3, Fig.
4, Fig. 5, Fig. 6, Fig. 7. The results refer to RGB
colour images Toysflash, Lighthouse, Gantry, Onion
corrupted with the JPEG compression algorithm with
different values of quality. The maximum values of
Peak Signal to Noise Ratio and Structural SIMilarity
(in short SSIM) index [Wan04] obtained using tested
methods are given in tables: Table 2, Table 3. The
reconstruction time of our method on Intel Core i7 is
shown in the Table 1.

Table 1: Time of the reconstruction (in seconds) of pro-
posed method. It has been tested for 2× CPU 1,7 GHz.

Image\ JPEG Quality 10 20 30 40

Lighthouse 480×640 4.07 4.53 4.45 5.86

Toysflash 912×684 7.65 8.02 8.46 9.50

Onion 198×135 1.30 1.40 1.33 1.51

Gantry 400×264 2.23 2.40 2.32 2.50

The analysis of the measures of image quality from the
Table 2 shows that the new method performs better, es-
pecially in the case of low value of JPEG quality. In
particular, our modification of the algorithm by adding
weights improves results of the parent method [Bor17].
Interesting examples are Fig. 3 and Fig. 4 in which
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one should look at artifacts marked with black arrows.
In the Fig. 3 we can see ringing artifacts. These arti-
facts are mainly due to the coarse quantization of the
high-frequency DCT coefficients, making the decom-
pressed image to exhibit noisy patterns known as ring-
ing or mosquito noise near the edge. In the Fig. 4
we can see blocking artifacts, which are mainly due to
the coarse quantization of low-frequency DCT coeffi-
cients yielding decompressed image look like a mosaic
at smooth regions [Ozt07]. Our method removed arti-
facts very well in both cases.

It can be noticed from tables that the proposed method
and SADCT give similar results. However looking at
the pictures Fig. 5, Fig. 6, Fig. 7 we see the vi-
sual difference between these two methods. After using
SADCT, artifacts at the edges are still visible but after
using the proposed method these artifacts are smoothed
out.

6 CONCLUSION
In this paper we present a new method for reducing of
JPEG artifacts based on backward stochastic differen-
tial equations. The main purpose of this work is to
present a new mathematical tool to restore digital im-
ages that are qualitatively indistinguishable from other
approaches. It seems that further exploration of this tool
will also improve the time complexity of this stochastic
algorithm.
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Table 2: PSNR
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Onion 20 28.25 29.10 29.00 28.70 28.57 28.56 29.17

198×135 30 29.46 30.30 30.23 29.89 29.80 29.70 30.36

40 30.10 30.87 30.76 30.48 30.41 30.28 30.87

10 23.15 24.06 24.01 23.80 23.53 23.56 24.10

Gantry 20 25.05 25.87 25.85 25.67 25.48 25.47 25.92

400×264 30 25.99 26.77 26.71 26.59 26.35 26.38 26.61

40 26.68 27.51 27.42 27.16 27.01 27.08 27.13

Table 3: SSIM

Test Image JPEG JPEG SADCT CBM3D ARCNN DNCNN BSDE proposed

Quality [Foi07] [Dab07] [Don15] [Zha17] [Bor17] method

10 0.9100 0.9273 0.9258 0.9163 0.9139 0.9186 0.9288
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(a) Original (b) JPEG (quality=20) (c) SADCT

(d) CBM3D (e) ARCNN (f) proposed method

(g) Original (h) JPEG (quality=20) (i) SADCT

(j) CBM3D (k) ARCNN (l) proposed method

Figure 3: Restoration of the Toysflash image.
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(a) Original (b) JPEG (quality=10) (c) SADCT

(d) CBM3D (e) DNCNN (f) proposed method

(g) Original (h) JPEG (quality=10) (i) SADCT

(j) CBM3D (k) DNCNN (l) proposed method

Figure 4: Restoration of the Lighthouse image.
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(a) Original (b) JPEG (quality=20) (c) SADCT (d) proposed method

Figure 5: Restoration of the Gantry image for quality=20.

(a) JPEG (quality=30) (b) SADCT (c) proposed method

Figure 6: Restoration of the Gantry image for quality=30.

(a) JPEG (quality=40) (b) SADCT (c) proposed method

Figure 7: Restoration of the Gantry image for quality=40.
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ABSTRACT
For the purpose of analyzing a building according to its accessibility or structural resilience, printed 2D floor
plans are not sufficient because of the missing link to semantic information. This paper tackles this issue and
introduces a concept for clustering classified lines of a floor plan and for creating semantically enriched contour
elements based on different image processing, computer vision and machine learning algorithms. Based on a
general line clustering approach, we introduce type specific methods for walls, windows, doors and stairs. The
resulting clusters are in turn used for a contour creation, which uses minimal rotated rectangles. Those rectangles
are transformed to polygons that are refined using post processing steps. The approach is evaluated via positive
testing using a pixel-based comparison of the process’s result. For this, automatically generated as well as real
world building plans are used. The final evaluation shows, that the concept reaches a confidence of >90% for door,
stair and windows and only around 10% for stairs with the run-time linearly scaling with the size of the input.

Keywords
Clustering, Contour Extraction, Building Plan, Image Processing, Machine Learning

1 INTRODUCTION

In architecture, floor plans are a well-established con-
cept to get a basic understanding about a building struc-
ture. This allows to quickly get an overview of size
ratios, rooms and the general layout of a building. De-
spite this, there are a few scenarios where a 2D floor
plan is not sufficient. Consequently, it is necessary to
transform the plan into a 3D representation to be able
to e.g. place furniture in a room or to take a virtual
tour through the entire building using a head-mounted
display. This paper does not address such digital, se-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

mantically rich floor plans, but printed versions, which
no longer include that much meta-information.
We have developed a transformation process that uses
an image as input, extracts all lines contained in it
and classifies those into the types door, wall, win-
dow or stair using a neural network. These classified
lines get clustered as contour elements, that are in turn
used to create a 3D model. The final model is used
for additional analysis e.g escape routes, or the build-
ing’s accessibility. This paper focuses on one part in
this pipeline; the transformation process that consists
of the classified line clustering and the contour cre-
ation. This is targeted by our research question: How
can classified lines be transformed to contour elements
using clustering approaches? The research question
leads to the paper’s contributions:

• Introducing a concept for clustering classified build-
ing plan lines and

• Creating contour elements of the clusters repre-
sented as polygons
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The remainder of this work outlines an overview of re-
lated work on automatic transformation of 2D building
plans into 3D models in section 2. In section 3 the back-
ground of this work in terms of the used algorithms is
presented. Section 4 describes our novel approach of
combining different algorithms from the field of image
processing, computer vision and machine learning for
the transformation of a set of classified lines to contour
elements. This transformation process is evaluated in
section 5 based on a case study, that utilizes an auto-
matic building plan generation process for creating test
data. The results of our experiment are presented in sec-
tion 6 and are finally concluded in section 7 with some
final remarks and possible future work.

2 RELATED WORK
Liu et al. [Liu2017] present a concept on how to trans-
form a rasterized floor plan into a vector-graphics repre-
sentation which can further be converted to a popup 3D
building plan. Consequently, they use predefined shape
models, to detect different corner points. In contrast to
their work, we do not have any default plan structure,
and provide a generalized concept, that works on every
building plan within the required visual appearance of
the elements.

Zhiliang et al. [Zeng2019] show a deep-learning based
system to recognize floor plans. They use a multitask
neuronal network with two stages. In the first one, they
predict room-boundary elements like doors, windows
and walls and in the second task they predict the type
of the room. Their work differs from our work w.r.t.
the input data, utilizing classified lines and furthermore
focusing on the clustering of those. In contrast, their
approach combines both steps into one, but on building
plans with simple wall types, where each wall is repre-
sented by a single line, instead of blocks with multiple
filling patterns inside.

Lewis and Séquin [Lewis1998] describe a system for
automatically converting 2D floor plans into 3D repre-
sentations. The presented Building Model Generator
(BMG) system takes common CAD formats and trans-
forms them into an internal model, which can be used
for adaptions of the plan and analysis. This system is
required since the 3D generation of professional CAD
tools does not fix faults in the plan. For this reason,
the transformation process of BMG also applies correc-
tions to the internal model in terms of geometrical in-
consistencies, e.g. not perfectly matching wall corners
to improve the results of analysis tasks. The derived
model is extruded to a user defined height and elements
as doors and windows are adapted to a default height
and z-position. The approach of Lewis and Séquin dif-
fers to our work in the way that we don’t rely on digital
CAD data but offer a possibility to create a 3D model
from scanned plans.

Stojanovic et al. [Stojanovic2019] are using 3D point
clouds to generated 2D floor plans as well as 3D
meshes. Their approach is similar to our in the way,
that they use clustering techniques to find the relevant
contours, but differs by the fact, that they are only
focusing on wall elements, whereas our approach deals
with windows, doors and stairs as well.

Gerstweiler et al. [Gerstweiler2018] present an ap-
proach to create 3D building plans out of 2D floor plans.
In contrast to our work they rely on models and heuris-
tics to extract the structural elements, whereas our work
uses clustering and contour extraction methods.

Yin et al. [Yin2009] compare different approaches on
how to transform floor plans into 3D models. They
do not only compare fully automated concepts, but
also take a look at semi-automated processes. So et
al. [So1998] present a semi-automated way for re-
constructing 3D virtual buildings from 2D architecture
floor plans. In contrast to our work, they focus on
the general concepts and provide mathematical con-
cepts on how to extract poly-lines from walls. Lu et al.
[Lu2007] focus on the automatic analysis and integra-
tion of architectural drawings. They present concepts
for recognizing typical structural objects and architec-
tural symbols and reconstruct the original 3D model
out of it. In contrast to our concept, they use prede-
fined shapes for extracting wall lines followed by ex-
tracting other elements based on the detected wall lines.
Further studies in this field are done by: Dosch et al.
[Dosch2000], Ah-Soon and Tombre [AhSoon2001] and
Or et al. [Or2008].

3 BACKGROUND
To achieve clustering of linear structures, several algo-
rithmic concepts have been available in the image pro-
cessing, machine learning and computer graphics do-
main since decades that are utilized and re-combined in
this paper.

While the detection of linear structures can be achieved
by edge detection, e.g. applying a Sobel high-pass filter,
followed by line analysis in Hough space [Duda1972],
perfectly applicable to detecting an ID card in images
for scale determination [Pointner2018]. Nevertheless,
thereby the continuous line definition has to be locally
restricted which is then generally hard to achieve in 2D
building construction plans with generally short lines
at small construction elements. To detect or prolongate
smaller line segments, local hysteresis concepts known
from Canny edge detection [Canny1986] or the Bre-
senham line algorithm [Bresenham1965] known from
rasterization in the computer graphics domain is ap-
plicable. Utilizing the Bresenham algorithm, a set of
2D pixels is transformed into a continuous line seg-
ment at linear run-time complexity without need for
time-consuming PCA (principal component analysis)
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and SVP (singular value decomposition) [Lee2006]. In
the work of Von Gioi et al. [VonGioi2012] a sophis-
ticated line detector is introduced, analyzing the local
gradients and level-line fields for sub-pixel accuracy de-
tection of continuous lines on a discrete pixel raster.

To chain up smaller line segments in an iterative man-
ner, the orientation, location and extent of the particu-
lar line can be derived by the Minimal Rotated Rect-
angle algorithm [Eberly2015]. Initial bounding areas
are thereby implicitly calculated utilizing the rotating
calipers [Preparata1985] algorithm.

For structural analysis of lines in terms of graph analy-
sis, only the mid course at thickness of 1px is required.
While for input image gradients detected by Sobel fil-
tering this is achievable by Canny line detection Canny
edge detection [Canny1986], for existing binarized line
segments generally showing a width > 1px, a common
thinning approach is applicable, e.g. Zhang-Suen thin-
ning [Zhang1984] constructing the line course from the
derived skeleton then or by utilizing stochastic random-
ized erosion as thinning [Zwettler2010] for speed-up on
large images and volumes.

For assembling pre-processed geometric structures
such as lines the common vector-based classification
algorithm k-Means clustering is applicable, too.
Thereby, the clusters are refined in several iterations,
where the clusters’ centroids are updated and utilized
for re-associating the data tuples. This process is
repeated until the result converges and there is no
re-association of any data tuples anymore or the
maximal number of iterations is reached. Due to the
randomly selected seed points it is not ensured that the
algorithm finds the best solution [Macqueen1967]. To
overcome this known limitation of k-Means clustering,
the k-means++ algorithm [Arthur2006k] is applicable.

4 APPROACH
We present our clustering approach together with meth-
ods to transform door, wall, window and stair lines.
Additionally, we present the case study, which is used
for the actual evaluation of the transformation process.
We are using a comma separated values (CSV) repre-
sentation as input of our approach. The given data is
defined for every line by five columns including the x-
and y-coordinates of the startpoint, as well as the coor-
dinates of the endpoint. In addition to that, the type of
the line is also specified as door, stair, wall, window or
unknown. The approach results in a set of typed con-
tours that are represented by polygons.

4.1 Transformation Approach
The transformation process starts with general input
steps that are used for a type-based pre-clustering of all
given lines. These general steps consist of reading the

Scan

Line Classification

Line Extraction
Type Based 

Line Grouping

Clustering

Contour Creation

Post-Processing

Type specific
TransformationPreprocessing

Figure 1: The base process with the preprocessing on
the left side and the concept of a type specific process-
ing on the right one.

CSV input, removing all lines typed as unknown and
collecting all type equal lines. After that, (1) the actual
type specific clustering, (2) the conversion into a 2D
contour representation and (3) post-processing steps for
removing overlapping wall and window lines are per-
formed. This process is shown in figure 1. For those
three steps, there are also some default approaches that
are used on the type-pure line collections (created with
algorithm 1), before the type specific steps are exe-
cuted.

Algorithm 1: getInput(): Reads lines from
CSV (csvFile) and clustering the lines by its type
based on a given distance ratio.
Data: csvFile, ratio
Result: typed pure line collections

1 minDistance← sizeOfPlan(lines) * ratio
2 lines← readCsv(csvFile)
3 linesPerType← map(type, lineList)
4 forall line in lines do
5 if line.type 6= Unknown then
6 add(linesPerType[line.type], line)
7 end
8 end

For step (1), the line clustering, the method initially
performs the Bresenham algorithm [Bresenham1965].
The resulting points are used to determine the distance
between two lines of the given collection. If any two
points of different lines are within a given distance
threshold, the lines are grouped into a cluster. This pro-
cess is shown in algorithm 2 and is repeated recursively
until all input lines are associated to a line cluster.

Step (2), the default conversion method between a line
cluster and a contour, is achieved by creating a mini-
mal rotated rectangle of the clusters’ point cloud, that
consists of all start- and endpoints of the grouped lines.
This is shown in algorithm 3.

Finally, the post-processing steps (3), shown in algo-
rithm 4, for realigning overlapping windows or walls
are applied.
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Algorithm 2: defaultClustering(): Clus-
tering of lines by the distance between the two clos-
est points of two lines using a list of all lines, a list
of already used lines, the current line and the clus-
ter, as well as the building plan size.
Data: allLines, usedLines, currLine, cluster, size
Result: current processed cluster is initialized

1 if contains(usedLines, currLine) then
2 return
3 end
4 add(usedLines, currLine)
5 add(cluster, currLine)
6 threshold← sqrt(size.width * size.height) / 30
7 currPoints← bresenham(currLine)
8 forall line in allLines do
9 if notContained(usedLines, line) then

10 linePoints← bresenham(line)
11 if smallestDistance(currPoints, linePoints)

< threshold then
12 defaultClustering(allLines, usedLines,

line, cluster, size)
13 end
14 end
15 end

Algorithm 3: defaultContourCreation():
Creating contours of elements by using a Minimal
Rotated Rectangle around the lines of the given
clusters.
Data: clusters
Result: creates map of polygonal contour elements

1 contourElements← list()
2 forall cluster in clusters do
3 points← list()
4 forall line in cluster do
5 add(points, line.start)
6 add(points, line.end)
7 end
8 contour← minimalRotatedRectangle(points)
9 contour.type← cluster.type

10 add(contourElements, contour)
11 end

The method starts by checking if a window/wall con-
tour is intersecting with any other window/wall contour.
When the condition applies, the algorithm checks if the
orientation of both contours is similar, too. As all con-
tours are defined by rotated rectangles the orientation
of them is available, too. This second check is used to
avoid information loss by manipulating L- or T-formed
elements as e.g. corner windows. For similarly ori-
entated typed contours, the algorithm adapts both ele-
ments to the same height and aligns those on the virtual
center line defined by the elements’ center points.

Algorithm 4: defaultPostProcessing():
Window/Wall contour post-processing that aligns
two neighboring elements by adjusting their height
and rotation based on two lists of contours, one for
the windows and the other for the walls.
Data: windows, walls
Result: realigned window/wall contours

1 contours← combine(windows, walls)
2 forall contour1 in contours do
3 forall contour2 in contours do
4 if contour1.intersects(contour2) and

areSimilar(orientation(contour1),
orientation(contour2)) then

5 height← average(contour2, contour1)
6 scaleTo(contour2, height)
7 scaleTo(contour1, height)
8 centerline← line(center(contour2),

center(contour1))
9 orientation← orientation(line)

10 rotateTo(contour2, orientation)
11 rotateTo(contour1, orientation)
12 end
13 end
14 end

In addition to the realignment of the contours, there is
also a post-processing step for separating overlapping
window and wall elements, that is shown in algorithm
5. This process checks every window for containment
in a wall. In that case, the shorter sides of the window
are extended until they are intersecting with two sides
of the enclosing wall element. This process is shown
in figure 2. The intersection points are used to split the
wall elements into three parts, where part A is defined
by the original top-left rectangle corner, the top-left in-
tersection point, the bottom-left intersection point and
the bottom-left original rectangle corner. The second
part B is defined by the four intersection points and the
third part C consists of the top-right intersection point,
the top-right rectangle corner, the bottom-right rectan-
gle corner and the bottom-right intersection point. The
two outer parts A and C are used as new wall elements
and the intersection area B is removed from the result.

4.1.1 Door specific approach
Since doors are represented as arcs in building plans, it
is necessary to convert this representation to a rectangu-
lar form. In addition, doors are always surrounded by
walls or windows. With this precondition, the transfor-
mation approach for door lines is based on the default
clustering process and reuses its result to fit doors be-
tween surrounding wall or window clusters.
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Figure 2: Process of separating a window’s contour, that is contained in a wall’s contour, by extending the window’s
shorter sides and using the intersections for cutting the wall element into three parts A (light-grey left side), B (dark-
grey middle) and C (light-grey right side), where B is removed from the result.

Algorithm 5: windowWallSeparation():
Separation of overlapping window and wall ele-
ments, by removing the intersection area, based on
two lists of contours, one for the windows and the
other for the walls.
Data: windows, walls
Result: final wall contours

1 finalWalls← list()
2 forall wall in walls do
3 forall window in windows do
4 if isContainedIn(window, wall) then
5 sides← window.shorterSides
6 intersectionPoints← intersection(sides,

wall)
7 while size(intersectionpoints) < 4 do
8 extend(sides)
9 intersectionPoints←

intersection(sides, wall)
10 end
11 toRemove←

polygon(intersectionPoints)
12 wallParts← cut(wall, toRemove)
13 add(finalWalls, wallParts[0])
14 add(finalWalls, wallParts[2])
15 else
16 add(finalWalls, wall);
17 end
18 end
19 end

This is done by finding the two nearest lines from two
different clusters. The lines’ mid points are used as an-
chor points for the recreated door elements, which is
done by fitting in a minimal rotated rectangle between
those points. Since the algorithm may take incorrect
lines for defining the anchor points a check verifies if
the created door is overlapping any other contour. In
such a case, the door is considered invalid and is re-
moved from the result. The door specific approach is
shown in algorithm 6.

Algorithm 6: doorClustering(): Door spe-
cific clustering approach, that uses the two clos-
est non door clusters (walls, windows) to find an-
chor points for the position of the pre-clustered door
clusters using the default approach.
Data: doors, walls, windows
Result: door clusters

1 result← list()
2 wclusters← combine(walls, windows)
3 forall door in doors do
4 nearestClusters←

getTwoNearestClusters(door, wclusters)
5 nearestLine1← getNearestLine(door,

nearestCluster[0])
6 nearestLine2← getNearestLine(door,

nearestCluster[1])
7 doorCluster← minimalRotatedRectan-

gle(nearestLine1.center, nearestLine2.center)

8 notOverlapping← true
9 forall cluster in wclusters do

10 if overlapping(doorCluster, cluster) then
11 notOverlapping← false;
12 end
13 end
14 if notOverlapping then
15 add(result, doorCluster)
16 end
17 end

4.1.2 Stair specific approach

Due to the fact that all lines of a stair are somehow
connected but different stairs are separated by distance,
the characteristics of stairs on building plans are quite
unique. For this reason the default clustering and con-
tour conversion approach are sufficient and it was not
required to implement a stair specific approach.
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4.1.3 Wall specific approach

The default clustering approach is not working for walls
because nearly all wall lines are connected and it would
result in a few, large clusters. Consequently, the default
clustering algorithm is not applicable. Instead, the wall
clustering (shown in algorithm 7) uses different image
processing approaches. This process starts by creating a
distance map (shown in figure 3 (a)) using all wall lines.
On the resulting distance image a threshold filtering is
applied (shown in figure 3 (b)), with a threshold factor
based on the building plan’s size. The thresholded re-
sult is further manipulated using the Zhang-Suen thin-
ning algorithm [Zhang1984] (shown in figure 4). On
the resulting skeleton image, a line segment detector
is applied. These skeleton lines are then used as seed
points for the clustering process. We create bounding
boxes around the extracted skeleton lines and all con-
tained input lines are added to that cluster. The size of
the created bounding boxes is in turn normalized based
on the size of the building plan. This process is repeated
until all input lines are associated with a cluster. Finally,
all clusters are checked for intersection. In the case that
a cluster is completely contained in another one, these
two clusters are merged.

(a) (b)

Figure 3: (a) The calculated distance map and (b) the
distance map with an applied threshold.

In addition to the adapted clustering process, the wall
specific approach also contains additional contour post-
processing steps. Those steps are used to remove clus-
ters which an area smaller than a given threshold that is
determined by the overall size of the building plan, and
merging cluster that are overlapping with at least 40%.
The first of the two steps uses the area of the rotated
rectangles and checks if it is greater than a threshold,
which is a ratio based on the total building plan size. If
the area is below the specified threshold, the contour is
removed from the result. For the merging step, the size
of the intersection of two overlapping clusters is utilized
to determine whether the clusters are merged or not. If
the intersection concerns > 40% of one the clusters, the
two clusters are merged. This wall post-processing is
shown in algorithm 8.

4.1.4 Window specific approach

The approach for clustering window lines (shown in
algorithm 9) is based on the default implementation
and uses its result as input. The window specific

Algorithm 7: wallClustering(): The wall
specific clustering approach that uses Distance
Map, Zhang-suen thinning and Line Segment De-
tection to cluster wall lines.
Data: walls
Result: all clusters

1 image← drawlines(walls)
2 distanceMap← distanceMap(image)
3 thresholdedMap← threshold(distanceMap)
4 thinned← thinning(thresholdedMap)
5 lines← lineSegmentDetection(thinned)
6 clusters← list()
7 forall line in lines do
8 cluster← list()
9 boundingbox← boundingBox(line)

10 forall wall in walls do
11 if containedIn(wall, boundingbox) then
12 add(cluster, wall)
13 remove(walls, wall)
14 end
15 end
16 if notEmpty(cluster) then
17 add(clusters, cluster)
18 end
19 end

20 forall cluster1 in clusters do
21 forall cluster2 in clusters do
22 if contains(cluster1, cluster2) or

contains(cluster2, cluster1) then
23 cluster1← merge(cluster1, cluster2)
24 remove(clusters, cluster2)
25 end
26 end
27 end

method uses the pre-clustered elements and applies the
k-means clustering algorithm [Macqueen1967] based
on the lines’ orientation to create four line clusters with
lines around 0°, 45°, 90° and 135°. This is done due
to the assumption that windows that are close to each
other have the characteristics that their lines differ in

Figure 4: The line skeleton after applying the Zhang-
Suen thinning algorithm on the threshold distance map
image.
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Algorithm 8: wallPostProcessing(): Wall
specific contour post-processing, that removes
small walls and merged overlapping walls into a
single bigger wall using the size of the building plan
to calculate the threshold for the merging area.
Data: walls, buildingPlanSize
Result: postprocessed wall contours

1 threshold← getThreshold(buildingPlanSize)
2 forall wall in walls do
3 rotatedRectangle← rotatedRectangle(wall)
4 if area(rotatedRectangle) < threshold then
5 remove(walls, wall)
6 end
7 end
8 forall wall1 in walls do
9 forall wall2 in walls do

10 if intersectionRatio(wall1, wall2) > 0.4
then

11 merged← merge(wall1, wall2);
remove(walls, wall1)

12 remove(walls, wall2)
13 add(walls, merged)
14 end
15 end
16 end

rotation with a certain threshold. Those clusters are
checked on similarity using the average line rotation
per cluster. If at least two clusters are too similar
(difference < 30°), the k-means clustering is repeated
with a smaller number of clusters until all clusters are
unique. Afterwards, outliers are removed from the
clusters. This is done by two different approaches.
One approach removes positional outliers and the other
removes length outliers. The first outlier group is
identified using the average point position of all lines’
start- and endpoints of a cluster as weighted center
and the median distance from the start- and endpoints
to this center. A line is considered an outlier if the
distance of its midpoint to the cluster’s weighted center
is in the upper quantile of all line distances. In addition
to that, lines are removed if their length is at least twice
as long as the average line length in the cluster. The
resulting and filtered clusters are used as input for the
default contour conversion.

4.2 Case Study
In order to evaluate the floor plan transformation, a case
study is designed. In this case study we use a CSV
representation of a real world 2D floor plan, which is
shown in figure 6(c), as well as 100 generated, i.e. syn-
thesized, building plans described in section 4.3, that
consists of classified lines, which are then transformed
into contour elements. The real world floor plan was

Algorithm 9: windowClustering(): Window
specific clustering with line outlier removal
Data: windows
Result: window clusters

1 forall window in windows do
2 k← 4
3 do
4 clusters← kMeans(window.line, k)
5 k← k - 1
6 while clustersAreSimilar(clusters)
7 remove(windows, window)
8 addAll(windows, clusters)
9 end

10 forall cluster in windows do
11 weightedCenter←

averagePointPosition(cluster.lines)
12 averageLength← averageLength(cluster.lines)
13 medianDistance←

medianDistance(weightedCenter,
cluster.lines)

14 upperQuantil← medianDistance * 1.5
15 forall line in cluster.lines do
16 if distance(center(line), weightedCenter) >

medianDistance then
17 remove(cluster.lines, line);
18 end
19 if length(line) >= averageLength * 2 then
20 remove(cluster.lines, line);
21 end
22 end
23 end

scanned and provided with a resolution of 1358× 988
pixels. Since the input image is classified before it is
used in our clustering approach, it is also pre-processed
and a threshold is applied to remove levels of gray and
noise.

4.3 Random Building Plan Generator
The random building plan generator allows us to gener-
ate lines that form a plausible building plan. Within the
developed image to 3D building plan pipeline, this ap-
proach was initially used to train the classification mod-
ule to overcome the limitation of having to train and
test with the same data source. In addition to that we
use the synthesized building plans to test our clustering
approach. The architecture of the random building plan
generator is split into two parts. At first, we implement
a simple random room generator and secondly the room
borders are used to place textured windows, walls and
doors on them. Additionally, stairs are placed inside
these boundaries.

The generation process starts by placing random rect-
angles inside an image. These rectangles are extended
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in width and height as long as they are not touching
any other rectangles. Once they hit another rectangle
on a specific side, the growing on this side stops and
the process is continued with the non-touching sides.
The method is applied until the growing of all rectan-
gles has finished. This process can lead to small holes
where multiple rooms connect. Nevertheless, this is not
an issue as such holes also occur in regular plans for
chimneys or air shafts.

After the rooms are created, we start using the lines of
the rectangles for further processing. In a first step we
determine possible window and wall spots. We eval-
uate for every line if it is an inside or outside line by
checking if it overlaps with a line of any other room.
In this case, the overlapping area of one of the lines is
removed and both lines are marked as inside lines. The
region of the line is then contained in two rectangles
and is marked as possible place for a door. On outside
lines the entire line is marked as possible position for a
window. In the next step the determined positions are
used to place randomized doors and windows, as well
as one entrance door that is generated at a window po-
sition. After that, we have a set of lines for doors and
window. All remaining lines are marked as wall lines.
For generating the stairs, we randomly add rectangles
inside room areas.

In the final step of the building plan generator we apply
a texture to all these lines and add a spacing wherever
necessary, so that there are no overlapping areas. In
the end this results in an automatically generated build-
ing plan as shown in figure 5 (a). In this image black
lines represent walls, red line are stairs, green lines are
windows and blue lines are doors. The final result may
contain some unrealistic rooms, that have an odd aspect
ratio. Nevertheless, this is sufficient for the purpose
of evaluating the clustering process of classified lines.
These building plans are then exported as CSV-file con-
taining all the lines and their corresponding type. In
addition to the CSV output, we also generate the corre-
sponding contour elements show in figure 5 (b) that are
used as a ground truth for the evaluation.

(a) (b)
Figure 5: (a) Sample of an auto generated building plan
using Random Building Plan Generator and (b) the cor-
responding filled contour image, used as ground truth
result.

5 EVALUATION
The presented approach is expected to be feasible for
clustering single lines. In order to evaluate the cor-
rectness of these clusters, they are represented as filled
polygons and are compared to our predefined ground
truth. Such a comparison is shown in figure 6. Where
(a) shows the ground truth that was manually created
using an image manipulation program and is compared
to (b) the automatically generated result. The evalu-
ation is performed pixel-wise. This means, that we
compare the color of each pixel from the automated ap-
proach with the ground-truth’s counterpart.

(a) (b)

(c)

Figure 6: (a) The manually created ground truth, (b)
the transformation result of the real world show in (c).
Black segments represent walls, red segments are stairs,
blue segments are doors and green segments represent
windows.

The described transformation is executed on the clas-
sified floor plan shown in figure 6(c) and results in the
clustered plan shown in figure 6(b). Together with the
manually transformed plan as ground truth (shown in
figure 6(a)), the transformation is evaluated. In addition
to this real world model, we use the random building
plan generator to additionally create 100 equally sized
building plans together with their corresponding ground
truth contour representation.

Using the ground truth plans and the results of the trans-
formation process the differences are calculated, which
is shown for the real world example in figure 7 with fig-
ure 6(a) and (b) as input. Table 1 shows the confusion
matrix for the various types between the ground truths
and our process results for all transformations. It shows,
that the transformation works for most types with an
accuracy of > 90%. Nevertheless, the transformation
fails on doors and cannot transform them. As the ta-
ble shows, some door lines result in background pixels.
The reason for that is, that if the specific transformation
step cannot extract the door with a high confidence no
door at the desired position is generated, as described
in section 4.1.1.
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Figure 7: Difference image of the manually trans-
formed plan shown in figure 6 (a) and the automatically
transformed plan shown in figure 6 (b). Black pixels
representing differences between the compared images
and white pixels are equal in the images

Automatic Transformation
Wall Stair Window Door Background

G
ro

un
d

Tr
ut

h Wall 92.22% 0.00% 0.63% 0.09% 7.06%
Stair 0.04% 98.50% 0.00% 0.00% 1.46%
Window 0.25% 0.00% 99.75% 0.00% 0.00%
Door 0.79% 0.00% 0.00% 7.90% 91.31%
Background 1.43% 0.00% 0.10% 0.04% 98.43%

Table 1: Confusion matrix for the evaluation of the
transformation with normalized values for each type.

6 RESULTS
6.1 Accuracy
The accuracy of the single classes can be seen in the
normalized confusion matrix in table 1. Beside the
background, which has a very high accuracy due to the
total amount of background pixels, the stairs and win-
dows perform even better. Those are followed by walls,
which do have a slightly worse accuracy. With only
an accuracy of 7.9% doors are the least correctly trans-
formed category. As described in section 5, this hap-
pens due to the fact that the transformation does not cre-
ate a door if the confidence is too low. Overall we can
state that the transformation accuracy is with > 90% for
walls, stair and windows sufficient, only for door with
around 8% it is not sophisticated for the tested example.

6.2 Performance
In contrast to the accuracy evaluation that is done on
equally sized plans, the performance evaluation uses
different sized building plans. For this purpose plans
with diverse numbers of lines as well as variant widths
and heights are generated using the random building
plan generator.

Results of the performance measurements are shown in
table 2. The experiments are executed with 10 warmup
tests followed by additional 10 measured tests, each.
The results in the table are averaged values. The results
show that the performance scales with the size of the
plan in a nearly linear manner. This means, that if the
plan size is doubled, the run-time is around twice the
time. This is also proven by the strong Pearson correla-
tion between area and run-time of around .996, as well
as in the run-time chart which can be seen in figure 8.

Plansize (in pixel)
Rooms Lines width height area run-time [ms]

5 686 603 603 363609 725
6 852 603 603 363609 740
7 1011 603 603 363609 1019
8 1248 803 803 644809 1315
9 1375 803 803 644809 1393

10 1741 1029 1003 1032087 2522
12 2428 1303 1303 1697809 3847
14 2581 1529 1503 2298087 4459
16 3600 1703 1703 2900209 7809
18 2960 2003 2003 4012009 10519
20 3776 2503 2503 6265009 15743

Table 2: Performance of the transformation in ms com-
pared to the number of lines, number of rooms and size
of the building plan.

It is also affected by the number of lines in the plan. If
the number of lines is increased but the size is kept con-
stant, the run-time also increases. This does not have a
big impact on the run-time, which can be seen in the
slightly lower correlation of around .896.
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Performance Measurement Results

Figure 8: The run-time of the transformation grows lin-
ear with the area size of the plan.

7 CONCLUSION
In section 4.1 we answered our research question:
How can classified lines be transformed to contour
elements using clustering approaches?, and presented
an approach on how to automatically cluster lines
in the context of a 2D building plan. This concept
uses algorithms from the field of computer vision and
machine learning.

We evaluated that concept in section 5 using a case
study consisting of a single real world floor plan and
100 synthetic building plans.

For this case study, the accuracy was evaluated in sec-
tion 6.1, which showed an accuracy of > 90% for win-
dow, walls and stairs and around 8% for doors. In ad-
dition to that, a performance test was done in section
6.2. The test showed that the average run-time scales
linearly with the area of the building plan.
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In the future we want to extend the evaluation with a
higher amount of real data as well as a higher variety of
building plans. Moreover, we aim to improve the trans-
formation accuracy for door elements. This can e.g. be
achieved by changing the classification to have sepa-
rated classes for normal and overlapping doors, which
would then give the possibility to address these two
tasks differently in the transformation. In addition to
that we want to do an evaluation on scaled building
plans. As we have seen a near linear scale in run-time
compared to the size of the plan this should lead to a
increase in performance.
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ABSTRACT

Based on depth perception of individual stereo cameras, spatial structures can be derived as point clouds. The
quality of such three-dimensional data is technically restricted by sensor limitations, latency of recording, and
insufficient object reconstructions caused by surface illustration. Additionally external physical effects like
lighting conditions, material properties, and reflections can lead to deviations between real and virtual object
perception. Such physical influences can be seen in rendered point clouds as geometrical imaging errors on
surfaces and edges. We propose the simultaneous use of multiple and dynamically arranged cameras. The
increased information density leads to more details in surrounding detection and object illustration. During a
pre-processing phase the collected data are merged and prepared. Subsequently, a logical analysis part examines
and allocates the captured images to three-dimensional space. For this purpose, it is necessary to create a new
metadata set consisting of image and localisation data. The post-processing reworks and matches the locally
assigned images. As a result, the dynamic moving images become comparable so that a more accurate point cloud
can be generated. For evaluation and better comparability we decided to use synthetically generated data sets. Our
approach builds the foundation for dynamic and real-time based generation of digital twins with the aid of real
sensor data.

Keywords
Multi-Sensor, Dynamic Matching, Stereoscopy, Point Cloud, Real-Time, Data Acquisition, Computer Vision

1 INTRODUCTION
From the fields of autonomous driving [Tow19] and
robotics [Liv12] to many other applications, a large
amount of sensor data is needed to ensure the accurate
and valid sensing of environmental space. Stereo
cameras record distances through the synchronous
recording of stereoscopic images, which allows
to compute 3D points that form of a point cloud.
Sensors like light detection and ranging (LiDAR)
or stereoscopic systems record and process valid
digital representations near real time through visual
simultaneous localisation and mapping (SLAM), visual
detection and tracking, as well as visual classification
and recognition [You13]. The quality of such digitisa-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

tions is severely restricted by sensor limitations such as
range, depth resolution and image accuracy as well as
different sampling rates of each sensor [Kad14]. These
constraints lead to measurement fluctuations, outliers,
asynchronous sensor adjustment and consequently
imaging errors, which are particularly noticeable on
inhomogeneous surfaces and edges. Figure 1 shows
the result of a stereoscopic room acquisition by using
ZED2 from Stereolabs [Ste20]. The manufacturer’s
software of the ZED2 already displays a real-time
based point cloud as shown in the illustration. The
flat walls and ceilings of digitised space seem uneven
and distorted so that the entire point cloud appears
inhomogeneous. In the frame on the left and right side
of figure 1, the irregular arrangement of the coloured
grey 3D points is clearly visible. The pattern of the
orange line in the middle of the illustration shows how
many measurement cycles and sequences are usually
necessary to digitise a room in this form. In addition,
the movement of the stereoscopic sensor leads to
temporal latency and higher data processing as well
as error rates so that localisation errors consequently
occur [Sid03]. Regardless whether the sensor or
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object is moving, the real-time based visualisation of
environmental space is severely affected by movement,
especially because further physical effects like lighting
conditions, material properties and reflections have an
influence.

Figure 1: Point cloud visualisation captured by ZED2
stereo camera from Stereolabs [Ste20].

During the real-time acquisition of the environment,
each captured frame is rendered individually. There
the point cloud shows a rather high fluctuation of the
3D points due to aforementioned effects. Especially
small and complex surfaces as well as moving objects
can only be reproduced to a limited extent. The use
of multiple stereoscopic sensors increases the density
of surrounding spatial informations so that errors can
be reduced by data matching. Often several statically
arranged cameras are used to capture the environment
[Tow19].
Our research employs the simultaneous and dynamic
use of multiple camera systems. In addition to dynamic
sensor implementation, we propose the real-time based
generation of digital twins in three-dimensional space.
We investigate the characteristics of such dynamic
sensor systems and whether inhomogeneous errors can
be reduced by this approach.
The paper is organised according to a fixed structure
consisting of related work, fundamental concept of dy-
namic multiple sensors, methodology and experimental
setup as well as finally results and discussion.

2 RELATED WORK
In this section we discuss the stereoscopic foundations
and continue with details about the related works and

our resulting motivation.

Due to the practical features and the number of inte-
grated sensors, stereo cameras are usually used for dig-
ital environmental sensing [Ste20]. Figure 2 describes
the composition of such a stereo camera. This consists
of two static cameras CL and CR whose image orien-
tation ~ν is parallel to each other (for simplification of
figure 2, the cameras are not drawn parallel). With
the knowledge of defined distance D between the static
fixed cameras CR and CL, it is possible to create syn-
chronised image captures. The distance itself is a con-
stant value that usually corresponds to the human inter-
pupillary distance of approximately 6.5 cm [Ste20]. To
avoid asynchronous sampling rates, the same settings
and properties like image resolution, fps and sensitivity
apply to all cameras.

Figure 2: Schematic representation of stereoscopic
depth perception. There are different pixels (G,N,P)
on the optical beam Z. The three-dimensional point P
and the focal points P′ and P′′, which can be determined
by the focal length f , span the epipolar plane [Zha16].
The distance D between right camera CR and left cam-
era CL is a static value.

In three-dimensional space the movement of a stereo
camera is defined by translation and intrinsic rotation.
A basic distinction is made between the intrinsic sensor
and image rotation. While sensor rotations refer to the
position of the inertial measurement unit (IMU), the
image rotations relate to the orientation of the camera
picture. For figure 2, only the image orientation is
relevant. The intrinsic rotation matrix is defined as
R ∈ R3x3 where the product of individual rotations is
called Yaw(Rψ ), Roll(Rφ ) and Pitch(Rθ ). The rotations
correspond to the orientation around their respective
axes [Ayk18]:

Rotation around x-axis Rφ :

Rφ =

 1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 (1)
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Rotation around y-axis Rψ :

Rψ =

 cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ

 (2)

Rotation around z-axis Rθ :

Rθ =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (3)

The camera position is expressed by T ∈T3x3 where the
translation directions are defined as TX,TY,TZ [Ike14],
[Ska20]:

T =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

 (4)

To create a spatial image, depth perception D is re-
quired by using disparity d in three-dimensional space
X ∈ X3x3. Since the pixel series of the camera pictures
are identical, the distance between object P′ and cam-
era |P′−P′′| can be determined by using the epipolar
geometry [Zha16].

d : |P′−P′′|= D · f
Z

(5)

The direction vector~ν of the optical axis, which is per-
pendicular to the camera image, depends on rotation
Rφ , Rψ and focal length f .

~ν = Rφ ·Rψ ·

 0
0
f

 (6)

In order to reproduce objects, the individual camera im-
ages must be matched. Since alignment and distance
between the two cameras are static and defined, the
individual rows of pixels can be compared with each
other. The spherical structure of the front view of a
camera creates an inhomogeneous and distorted grid.
This geometric unevenness is illustrated in figure 3.

Image curvature is particularly noticeable at the edges.
By using special computer vision algorithms, such
as semi-global matching (SGM) [Hir11, Rob20], the
pixels can be matched despite curved image edges.
SGM estimates the density of the disparity map from
the rectified stereo image pair. For this purpose, the
maximum allowed disparity shift (C(p,DP)) and the
regularisation cost PT [|DP −D| ≥ 1] are migrated by

Figure 3: Front view of the camera image surface and
the borders of the image content [Ayk18].

summation.

E(D) = ∑(C(p,DP))+∑(PT [|DP−D| ≥ 1]) (7)

Depth mapping allows us to visualise the disparity
as a point cloud in which the individual pixels are in
temporal relation to the stereo camera. The resulting
point cloud is considered as one object. There is no
delimitation or allocation that would directly help to
identify objects and to perceive the occluded back side
of the object. In addition, only a part of the object front
is visible, which allows a spatial contour. Another
aspect is the quality of such point clouds.

With O’Riordan’s study of colour analysis for reflective
surface recognition, challenges such as image match-
ing, false boundary as well as problems due to surface
texture and obstacle detection were named [Ori18].
Marton et al. also recognised these problems and
worked on a rapid surface reconstruction methodology
[Mar09]. They analysed large and noisy point cloud
data sets. Although they achieved good results, they
also saw a need for further optimisation with regard to
the high level of noise.

Chang et al. named the sparse stereo correspondences
as well as their disparity limitations and have presented
an efficient warping-based method for stereoscopic
image retargeting [Cha11]. They have formulated
these constraints as an energy minimisation problem
for obtaining optimal warping fields for the images
and have extended interactive stereoscopic image
processing with their approach.

Another approach is provided by Zienkiewicz et al.
with the method for incremental surface reconstruction
from a moving camera [Zie16]. They use the concept
of dynamic level where they adaptively select the best
resolution of the model and fuse measurements in an
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efficient multi-scale mesh representation. As a result,
they declared obvious limitations in the use of height
map. By optimising the three-dimensional settings and
developing a more flexible multi-scale fusion method,
they saw the possibility to reduce the limitations.

Due to the limited field of view afforded by a single
stereo camera, synchronous and real-time 360 degrees
sensing are difficult to implement. Therefore, multiple
sensors like LiDAR or stereocopic systems are usually
used to perceive 360 degrees.

With an autonomous vehicle plattform, Siddharth et
al. worked on temporally synchronised perception
and navigation data [Sid03]. The stereo cameras and
LiDAR systems were statically mounted on the vehicle.
From the sensor data, the environment was captured
into a 3D point cloud, ground reflection map and
ground truth pose of the hosted vehicle. The data sets
recorded by using SLAM algorithms were also the first
dynamically recorded multi data. Siddharth showed
that synchronous 360 degree sensing is promising but
the sensors are highly dependent on weather and light
conditions.

Piatkowska et al. worked on the problem of asyn-
chronous stereo vision for dynamic image sensors
[Pia13]. They extended existing methods for event-
based processing through the cooperative approach,
which enables spatio-temporal and asynchronous
three-dimensional reconstruction. They proved that dy-
namic, asynchronous and cooperative implementation
is possible using a specific algorithm.

We question how the named challenges of faulty
surface textures, physical influences such as light
conditions, reflection, surface textures and also weather
conditions can be improved. We come to the conclu-
sion that multiple sensors can not only provide sensing
but also the possibility of different perspective views.
Therefore, we propose the hypothesis that synchronous
dynamic multi-sensors can be used to improve real-
time based point cloud visualisation. With perspective
change only the relevant images would be used for
evaluation. In this way, influences such as direct
sunlight or limitations of depth perception could be
reduced as far as possible.

3 FUNDAMENTAL CONCEPT OF DY-
NAMIC MULTIPLE SENSORS

This section introduces the underlying concept of
multiple cameras, which are able to move dynamically
through three-dimensional space and perceive the
environment in the process.

Complex multi-sensor systems like IMU [Spa17]
allow motion profiles of cameras to be recorded
and used as a direct reference for determining po-
sition. Through detection of the sensor orientation

and spatial position, images can be aligned accordingly.

Figure 4: Schematic representation of the spatial coor-
dinates of the stereoscopic sensors (C1,C2) in relation
to an arbitrary reference point R: Translation directions
(X ,Y,Z) and intrinsic rotation (Rψ , Rφ , Rθ )

In contrast to a single stereo camera, multisensor sys-
tems require an additional reference. Figure 4 illus-
trates the dynamic relation of the cameras to the ref-
erence, which are moving in a time-dependent vector
field~r1(t1),~r2(t2). The velocity υ1, υ2 and acceleration
a1, a2 of the respective position vectors can be used to
determine the position at which the individual images
were taken in space [Chr16].

υt =
∂ rt

dt
= (

∂Xt

∂ t
,

∂Yt

∂ t
,

∂Zt

∂ t
) (8)

at =
∂υ(t)

∂ t
= (

∂ 2Xt

∂ t2 ,
∂ 2Yt

∂ t2 ,
∂ 2Zt

∂ t2 ) (9)

Figure 5 shows the schematic reference related move-
ment of a stereo camera that corresponds to the posi-
tion recording of an IMU. In addition to the progression
line (dotted line) on which the stereo camera moves, the
vectorial viewing direction (arrows) can also be seen.

4 METHODOLOGY AND EXPERI-
MENTAL SETUP

The methodological approach consists of data initial-
isation and object recognition in three-dimensional
space, generation and allocation of metadata records,
point cloud matching, as well as rendering.

To ensure that the collected image data is correctly
mapped in the point cloud, the references and stereo
cameras must be initialised. Reference R is usually
an object that forms the origin of the coordinate sys-
tem with the parameters TRef(0,0,0), RRef(0,0,0). The
parameters can change as soon as the object is fixed
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Figure 5: Dynamic movement of a vector field r(t)
based camera C1. The direction vector ~ν shows the
orientation based on camera C1. The arrows show the
time-dependent snapshots of the gaze alignment. The
darker the arrows, the closer is the alignment to the
present view. While the lighter arrows on the left side
of the illustration belong to the past, the lighter arrows
on the right side represent the future.

to a human being, for example, who is also moving.
The generated points of the cloud are static if no ad-
justment is necessary. The offset positon of the coor-
dinate system corresponds to the distance between the
rendered 3D point cloud position of a single frame and
the current position of the capturing stereo camera. If
the relations between the reference and cameras are not
initialised, the newly created point cloud of individual
stereo cameras will find itself at a different location.
This shifts the already recorded point clouds of the in-
dividual stereo cameras by the delta contribution of the
position coordinates ∆1,∆2.

∆1 = TRef(X,Y,Z)−C1(X,Y,Z) (10)

∆2 = TRef(X,Y,Z)−C2(X,Y,Z) (11)

To ensure that there is no shift in sensor position, the
stereo cameras have to initialise themselves on known
geometries. Initialisation always takes place as soon as
a recognised geometry is recognised. To avoid this, a
continuous position initialisation is necessary. One pos-
sible approach is to initialise geometries with an Artifi-
cal Intelligence (AI) based object recognition. A pre-
viously trained AI contains a three-dimensional geo-
metric understanding of objects. If the AI recognises
a known object, markers are set and stored in a map.
These markings comprise localisation information of
the own position and other marked geometries. A cor-
rection factor can be determined by comparing the po-
sition data of the map and the stereo cameras.

Figure 6 illustrates a possible geometric shape for ini-
tialisation. For this purpose, an identifiable geometry
is provided with significant points by using computer
vision algorithms. The retrievable spatial coordinates
of the marker can be captured by both stereo cameras.
The experimental set-up takes place in a games engine
(Unreal Engine 4 [Ue21]). This has the advantage

Figure 6: Initialisation of the coordinate systems of C1
(figure left) and C2 (figrue right) by using geometrically
arranged points on an object.

that a realistic environment can be created where all
parameters and physical settings are traceable. In
addition, static and dynamic objects can be used. The
movement sequences of the stereo cameras can also
be specified in the form of avatars. The user himself
serves as a reference. Since the captured images of
the cameras are position and time-dependent, a new
metadata record must be created. Table 1 shows the
relevant content of such metadata to reproduce the
temporally related informations. Thus, the connected
data are momentary images that help to reconstruct
the point cloud depending on its position. In addition
to sensor parameters, the already detected geometric
inital points in the point cloud are also collected. The
time stamp enables the synchronous and asynchronous
use of the cameras. In the metadata set, a further
distinction is made between the rotational orientation
of the image and the rotation as well as translation of
the entire stereo camera.

Image data Sensor IMU Point cloud
Timestamp Timestamp Timestamp
Resolution Translation Initial Points
Rotation Rotation 3D Coordinates

- Delta Geometric Type
Table 1: Reference-dependent metadata set. Such a
metadata record is created for each sensor and captured
data. In addition to image and localisation data, it also
contains information about the initialisation of the co-
ordinates.

The images of the stereo camera itself are already
aligned due to their static arrangement and therefore
do not need to be taken into account. For images with
dynamic spacing, the perspective of the image acquisi-
tion changes. As a result, the pixel rows are no longer
comparable using the SGM algorithm. Therefore, a
methodology must be considered for comparing the
individual images.
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Description CPU(i5-7300HQ@2.5GHz) GPU 0(31,9GB) GPU 1(35,9GB) RAM(64GB)
No-load Operation 4 % - 1.64 GHz 0 % 0 % 10 %
Simulation - Mean 44% - 2.86 GHz 1 % 38 % 12 %

Simulation - Maximum 75% - 2.86 GHz 11 % 41 % 13 %
Simulation - Minimum 9 % - 1.39 GHz 0 % 11 % 12 %

Real - Mean 54% - 3.14 GHz 0 % 12 % 13 %
Real - Maximum 78% - 3.09 GHz 7 % 12 % 13 %
Real - Minimum 54% - 3.14 GHz 0 % 12 % 13 %

Table 2: Performance comparison between real and simulated multisensor data during real time operation. The
no-load operation of computer is shown as a reference.

Figure 7 illustrates the dynamic distance relationship
between sensor C1, C2 and reference R. It shows that
depth perception can also be captured from stereo
cameras where the field of view appears larger. Since
the correct coordinates of the stereo cameras are known
through the initialisation, the dynamic distance C12
between C1 and C2 can be calculated. If the image
orientation of the vector field ~ν is corrected, the SGM
algorithm can be applied again and a depth image can
be generated. Using the generated position-fixed depth
images, a point cloud can be reconstructed that has
a wider field of view. By superimposing the depth
images, the localisation errors are also superimposed.

Figure 7: Two-dimensional representation of dynami-
cally arranged stereo cameras C1,C2 in relation to refer-
ence R. While camera C2 can only perceive object O1,
camera C1 captures both objects O1,O2 from its per-
spective. In contrast to a single stereo camera, the dis-
tance r1,r2 between reference R and cameras C1,C2, re-
spectively, are now non-static. The sensors move time-
dependently through the environment. By matching C1
and C2, the objects can be spatially captured in a larger
area.

5 RESULTS AND DISCUSSION
For the evaluation, we delineate an area on which two
avatars moved randomly. The periodic vibrations dur-
ing walking and randomly looking around in the envi-
ronment are also simulated. Both avatars are equipped
with a virtual stereo camera, which made video record-
ings during the entire measurement.

During this time the user acts as the reference and could
move freely around the terrain. Figure 8 shows the
marked movement area. It can also be seen that various
objects have been installed at different locations around
the simulation.

Figure 8: Marked green movement area of the avatars

Care was taken to use different sizes, different tex-
tures and reflective, transparent and rough surfaces.
For the simulation we used an Intel Core i5 proces-
sor (@2.5GHz), 64GB RAM, external GPU1 Nvidia
GeForce GTX 1050 Ti and the onboard GPU0 of Intel
HD Graphics 630. Since real sensor data differs from
synthetic data in its performance, we characterised the
acquisition of real-time and dynamic based sensor data
and arrived the measurement result in table 2. For mea-
suring the real data we used two stereo cameras of the
type ZED2 from Stereolabs and the manufacturer soft-
ware of ZED2. For the simulation, we recorded test
images of both stereo cameras, which contained posi-
tion data and image data. During the process, the depth
images and 3D points were calculated. In comparison
to the simulation, we recorded the image and position
data for the both ZED2 and also calculated the depth
perception and 3D points. On average, the performance
between real and synthetic data was not far apart. While
the simulated data required a higher GPU (38%), the
CPU load for real sensor data was somewhat higher
(54%). It was noticeable that real multisensors have
a higher sensitivity. In the static state, there is only a
slight fluctuation in power. As soon as the stereo cam-
eras were moved or rapid object movement occurred,
the CPU load increased up to 78%.
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Figure 9: Display of the disparity by increasing the distance between the cameras.

Simulating the motion sequences of synthetic data has
shown that the jerky rotations and oscillations caused
by the up and down movement influence depth percep-
tion.

Figure 10: Movement sequence of the stereo camera
C1.

This showed a speed-dependent change in perfor-
mance. In contrast, the performance of the synthetic
data was not influenced by movement sequences, but
there was a strong fluctuation in performance due to
several processes running simultaneously.
Basically, the technology works in soft real time. The
more visualisations are based on real time, the further
one moves away from real time. However, there are
ways to achieve real-time processing. During the
measurements, noticed that the real-time processing of
dynamic sensor data depends on a number of factors.
The speed of processing depends on the platform.
A scientific platform like Python is significantly
slower than a low level based platform like C/C++.
Furthermore, a better result can be achieved by using
other hardware resources. When using embedded
systems, this means that a master-slave system could
be essential. In the case of a computer, a GPU would
be a good choice. Software technical adaptations, such
as parallelising work processes as well as compressing
and timing algorithms, produce better results in real
time processing. In future Work, we want use the
methodologies to reach hard real time.

Figure 10 shows a random movement pattern of
the stereo cameras where a pointed inlet of the
movement line is visible.

We found that the simulated movements were too jerky.
It leads to distorted images and consequently to reduced
depth perception. Fast movements and natural vibration
are also present in real stereo cameras, but the images
are already stabilised by firmware. Thus, for the sim-
ulation we need to stabilise the cameras or dampen the
movements. Due to the random movements, the cam-
eras were only a few moments in right position for the
matching.

Figure 11: Movement sequence of the stereo cameras
(C1 - Blue) and (C2 - Green) in dependency of reference
(R - Red).

In addition, we analysed the disparity when the distance
between the cameras was increased. Figure 9 shows
the results of the changed baseline between the cam-
eras. For better illustration we show the disparity in
grey (upper row) as well as in colour (bottom row). We
increased the distance from 6.5 cm to 300 cm. To en-
sure comparability, the cameras were arranged paral-
lel to each other. The figure shows that the increase
in distance leads to a higher dispersion. From a base-
line of 50 cm, a scattering in the near range becomes
visible. With the further increase in distance, the dis-
persion increases from near to far range. Since we kept
the parameters constant, it is unclear whether parameter
adjustment would lead to a better result.
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It can also be seen that the far range in the disparity
becomes more visible with increasing distance. There
is a proportionality between the baseline and depth
visibility of the 3D points.

We conclude that the position matching worked well
where no incorrect positions were transmitted. The
result of the movement pattern of the both stereo
cameras and the reference is shown in figure 11. The
illustration shows that the stereo cameras are only
initially close to each other. Since there is no equally
identifiable geometry with increasing distance, we
come to the following consideration:

The synchronous implementation of a dynamic multi-
sensor systems is only possible for a limited distance.
As soon as the sensors are too far apart, we lose the
connection to the object. An expanding approach is
to implement the asynchronous matching of dynamic
multi-systems. For this implementation it is necessary
to store relevant images with the timestamp and
position in a map. By using an AI, the best positioned
images could be retrieved and matched with the images
from the stereo camera.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented the concept of the syn-
chronous and dynamic use of multiple stereo cameras.
Our motivation was to improve challenges such as
faulty surfaces and textures, physical influences such
as light conditions, reflection, surface textures and
also weather conditions with the help of the expansion
of sensors. For this purpose, we use a simulation
environment that contained both static and dynamic
geometries as well as different textures and physical
properties. We used stereo cameras as test sensors,
each fixed to avatars from the simulation environment.

Dynamic matching of sensors is a promising technique
that can be use to optimise point clouds. We have
discovered that the synchronous implementation can
only be realised for limited distances because the
objects are no longer visible as the distance increases.
Since we consider the approach of asynchronous dy-
namic sensor matching, we will continue our research
work in this direction. It had already been shown that
there is a working range in which the distances can
be varied without getting a worse result. However,
the working range can be adjusted by modifying the
parameters of point cloud processing. In our future
work we will build on this knowledge and carry out
the parameter modification. For this purpose, we will
use an AI that recognises geometries for initialisation
as well as stored images of different postions. We will
further optimise the simulation and make adjustments
in the area of data storage and data processing. In

addition to AI, we will use an intelligent database to
map images and geometries. We want to identify the
minimum and maximum dynamic distance for sensory
perception of objects. Our measurement has already
shown that objects become smaller or no longer visible
as the distance increases. From this conclusion, we
want to research the dynamic systems behave with
overproportionally large objects.
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ABSTRACT
In augmented reality applications, consistent illumination between virtual and real objects is important for creating
an immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of the
virtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed a
method to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using a
modified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. To
avoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introduced
stereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the light
source direction, our approach does not require depth information and thus does not rely on special red-green-blue-
depth (RGB-D) images as input.

Keywords
Light, source, direction, estimation, reconstruction, RGB, deep learning.

1 INTRODUCTION
In the past decade, augmented reality (AR)-capable
hardware and virtual reality (VR) devices have become
increasingly available. Successful AR applications
should create an immersive user experience, as immer-
sion in AR is important to prevent a barrier between
the virtual world and real world that can impede
user’s acceptance of AR. To minimise this barrier,
it is important to avoid mismatches between virtual
and real objects, such as illumination deviations. To
achieve consistent illumination between virtual and
real objects, virtual illumination in an AR application
must adapt to the real illumination conditions.

Depending on the illumination model used to render
virtual objects, virtual illumination may consist of an
emissive and reflective light term, known as the ren-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dering equation (Kajiya, 1986). The reflective term is
an integral over the entire positive hemisphere above a
given point, containing the bidirectional reflectance dis-
tribution function (BRDF) and incident light. To begin
with a simple scenario, we restrict our approach to situ-
ations in which only one infinite point light source illu-
minates the scene. Thus, we neglect the emissive light
term of the rendering equation, more complex lighting
situations (e.g. extended, textured and multiple light
sources) and indirect illumination from other surfaces.
However, with an infinite point light source, we can ob-
tain illumination conditions that contain the most im-
portant elements for three-dimensional spatial percep-
tion. In our study it is thus sufficient to focus on the
light direction to be reconstructed to achieve virtual il-
lumination while providing consistency for an immer-
sive AR experience. We further disregard the intensity
of the light, as it does not affect the illumination unless
it exceeds a certain range, which constitutes a special
case to be addressed in future work.

Illuminated scenes, as perceived by humans, are the re-
sult of the interaction of several parameters present in
a scene. By observing the shading and light reflection
of an object’s surface, the human brain can estimate the
characteristics and shape of the surface. The human
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brain can further estimate the origin of the main light
source illuminating a scene, which is usually the sun.
Deep neural networks (DNNs) can also learn to esti-
mate a light’s origin from visual input (Section 2) and
can even reformat this information to be used as a pa-
rameter in virtual illumination models. Immersive and
responsive AR applications may require updated illu-
mination parameters for each frame; as a result, ap-
proaches with less complex network architectures are
preferable. In addition, classification approaches re-
quire a large number of classes to reconstruct a light’s
origin with satisfactory resolution; therefore, creating
suitable training datasets is a cumbersome task. In
contrast, regression approaches yield continuous output
values and therefore only require as many output neu-
rons as the number of parameters to be reconstructed.

Considering the aforementioned requirements, we pro-
pose a deep-learning-based regression approach to re-
construct the light direction in a scene given as azimuth
and elevation angles (φ ,θ) from RGB input images us-
ing a modified VGG-16 convolutional neural network
(CNN). In addition, we introduce stereographic coordi-
nates (sx,sy) instead of angular coordinates (φ ,θ) to re-
duce inaccuracies due to the coordinate uncertainty oc-
curring at steep elevation angles. Our approach shows
that it is plausible to reconstruct the light direction in a
scene from a single RGB image of the illuminated scene
using a CNN. Our approach does not require additional
depth information and thus can be used on devices with-
out special depth sensors.

The main contributions of our proposed approach can
be summarised as follows:

• Reconstruction of the dominant light source direc-
tion is possible using only RGB input images, and
does not require special RGB-D information.

• A stereographic coordinate representation signifi-
cantly improves the estimation results.

Our approach exceeds existing learning-based ap-
proaches for inferring light direction from images (Kán
and Kaufmann, 2019) in that it enables reconstruction
from RGB images. This is achieved by increasing the
amount of training data and using pre-trained model
weights, which has been successfully applied to a
similar problem (Marques et al., 2018), and infer-
ring the light direction in a stereographic coordinate
representation.

2 STATE OF THE ART
Classical image processing approaches reconstruct
the location of a visible light source within an image
(Laskowski, 2007) or determine the light direction
with additional user input (Lopez-Moreno et al.,

2009). However, this is impractical for immersive AR
applications.

More recent approaches utilise DNNs to reconstruct
light source parameters, such as the direction, loca-
tion or intensity of the light. Using the association be-
tween an object and its shadow, it is possible to de-
termine the screen space light direction (Wang et al.,
2020), which can be converted into world space coor-
dinates with additional camera parameters. In addition,
generative adversarial networks are useful tools to di-
rectly create artificial content. They also can add miss-
ing shadows to marked virtual shadowless objects in
real scene images (Liu et al., 2020) and output a com-
plete AR scene image. AR content can also be cre-
ated with image-based lighting (IBL) renderers, which
utilise environment textures containing the illumination
details of a scene. Real scene environment textures
can be derived from RGB input images using regres-
sion (Gardner et al., 2017) and continuously loaded into
video memory to match illumination changes in the real
scene. LeGendre et al. (2019) extended this concept by
deriving more detailed textures for IBL renderers from
RGB images using an encoder-decoder network. Garon
et al. (2019) introduced a DNN that uses an RGB image
and an image location to estimate a fifth order spherical
harmonic representation of the lighting, which can be
used to illuminate virtual objects placed at this location.
A more straightforward approach to create AR content,
is to simply place a virtual light source in the virtual
scene that is combined with the real scene. To deter-
mine where to place the virtual light source to match
the real illumination conditions, either the location or
direction of the light source is required. The light di-
rection can be reconstructed by classifying real-scene
RGB images into directional classes using a neural net-
work (Pemasiri et al., 2015).

Marques et al. (2018) used a similar concept in their
approach to overlay a VR scene with an image of a
user’s hand pose. Because the real illumination con-
ditions were embedded in the hand pose image, it was
more practical to simply adjust the virtual illumina-
tion to match the real conditions. To achieve this, the
authors trained a residual CNN (ResNet) starting with
initial model weights pre-trained on the ImageNet and
COCO datasets to classify the point light source in the
VR scene that was most suitable for producing simi-
lar illumination. With 100 possible point light sources
available in the virtual scene, their network achieved a
top 1 accuracy of approximately 82% in classifying the
correct point light source.

Kán and Kaufmann (2019) proposed a regression model
to reconstruct continuous azimuth and elevation angle
values indicating the dominant light direction in real
scenes using RGB-D input images for their ResNet.
They also conducted experiments using the RGB com-
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ponents of their RGB-D dataset; however, their network
failed when it relied solely on these three colour chan-
nels. They integrated their network into an AR appli-
cation and achieved a mean angular error of approxi-
mately 28 ◦and an inference time of approximately 380
ms while running on a central processing unit.

Both approaches used ResNet to avoid exploding or
vanishing gradients and both trained their networks
with synthetic training data. In contrast, Marques et al.
(2018) generated images of hand poses that were illu-
minated from different angles with the Unreal Engine,
Kán and Kaufmann (2019) rendered five different ob-
jects illuminated from different angles using a Monte
Carlo path tracing renderer. Kán and Kaufmann (2019)
further attempted to include real training images; how-
ever, their network performed best when trained purely
with synthetic data. Apart from the additional image
channel and generation process, the main difference be-
tween the training data used in these approaches was the
dataset size. Kán and Kaufmann (2019) used a small
synthetic training set of 23,111 images. In addition,
they had 5,650 real images available that were omit-
ted for training. Marques et al. (2018) had a synthetic
dataset of 83,799 images, from which they used 54,471
images as training data for their pre-trained ResNet.

The rendering equation (Section 1) suggests all re-
quired information to be present in an RGB image to
reconstruct the illumination origin in a scene, how-
ever, given the unsuccessful experiment of Kán and
Kaufmann (2019) using only RGB information, we
begin with a simple scenario to investigate if RGB
images provide enough information to reconstruct the
dominant light direction. Considering the different
dataset sizes and training strategies of Kán and Kauf-
mann (2019) and Marques et al. (2018), a DNN with
model weights pre-trained on a large dataset as initial
values for training and a large number of training ex-
amples appears to be a reasonable basis for a regression
approach that aims to reconstruct the dominant light di-
rection from RGB images.

3 LIGHT DIRECTION INFERENCE
In our proposed approach, we aim to reconstruct the az-
imuth and elevation angles (φ ,θ) of the dominant light
direction from RGB input images. This is similar to
the approach of Kán and Kaufmann (2019); however,
our approach focuses on light direction reconstruction
using only RGB information and explicitly omits the
depth information. We assume that the network is ca-
pable of reconstructing the light direction without ad-
ditional depth information. For this, we use an Ima-
geNet (Russakovsky et al., 2015) pre-trained VGG-16-
like CNN (Simonyan and Zisserman, 2014) as a re-
gression model, and train it with a dataset consisting
of synthetic and real images (Fig. 1). Considering the

real-time requirements for immersive and responsive
AR applications, we decided to use a VGG-16-like net-
work, as this architecture achieved the best performance
relative to its complexity in the ImageNet competition
(Russakovsky et al., 2015). By greatly increasing the
dataset size, we were able to improve the reconstruc-
tion performance of the network for (φ ,θ) using RGB
input images.
We start with a network to predict continuous values
(φ ,θ) for azimuth and elevation in the range (0◦,0◦)
to (360◦,90◦). The influence of the azimuth angle φ

on the prediction error of the network decreases as the
elevation angle θ gradually reaches θ = 90◦, and φ

loses any influence on the prediction error, as θ = 90◦

denotes the pole of the hemisphere. Thus, φ cannot
be properly estimated by the network, leading to an
increased angular error at steep values of θ , as illus-
trated in Fig. 7b. To compensate for this, we convert
(φ ,θ) into stereographic coordinates (sx,sy) ranging
from (−1,−1) to (1,1), and train a second network pre-
dicting the light direction in stereographic coordinates,
as they do not suffer from coordinate uncertainty.

3.1 Stereographic Coordinates
A stereographic representation (sx,sy) of the angular
coordinates (φ ,θ) is introduced to avoid coordinate un-
certainty at θ = 90◦. The coordinate uncertainty refers
to an undefined value of φ at θ = 90◦, as any value of
φ denotes the pole of the sphere, leading to φ not able
to be properly estimated by the network, as φ no longer
has any meaningful influence on the prediction error.
A stereographic projection (Fig. 2) projects spherical
coordinates onto a circular projection plane Ep. The
southern pole S of the spherical coordinate system is the
projection centre, and as such, undefined in the stereo-
graphic domain. However, this is not a problem, as any
light source located in the southern hemisphere would
shade the entire scene, not providing any useful infor-
mation for estimating its direction. From S, a given
point A is projected onto Ep resulting in A′. The dis-
tance m from the origin O′ of Ep to A′ computes (sx,sy)
by scaling cos(φ) or sin(φ), respectively. The spherical
coordinate space can be expressed by its origin O and
radius r. By assuming that the domain region is half of
a unit sphere, one can assume r = 0.5, as it simplifies
the computation of (sx,sy) in

m(θ) = 2 · r · tan
(

90◦−θ

2

)
(1)

= tan
(

90◦−θ

2

)
(2)

sx(φ ,θ) = m(θ) · cos(φ) (3)
sy(φ ,θ) = m(θ) · sin(φ) (4)

To compare the results of Netsx,sy using stereographic
coordinates to the results of Netφ ,θ , the predicted stere-

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

33 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.4



When training:

Training datasets

At run time:

Unknown input image

o1
o2

Used network architecture

V
G

G
16

co
nv

o-
lu

tio
na

l
bl

oc
ks

C
us

to
m

fu
lly

co
n-

ne
ct

ed
la

ye
r

bl
oc

k

C
us

to
m

ou
tp

ut
la

ye
r

w
ith

2
ne

ur
on

s

When training:

minimise 1
n

n
∑(predicted− true)2

At run time:

Light direction in the image as (φ ,θ) or
(sx ,sy)

Figure 1: Diagram of network architecture and training and test procedures. The architecture utilises the standard
VGG-16 convolutional blocks and a custom fully connected block and output layer with two neurons. Here the
light direction is inferred from red-green-blue (RGB) input images as (φ ,θ) or (sx,sy), respectively.

ographic coordinate values (sx,sy) can be transformed
back into angular values (φ ,θ) using

m(sx,sy) = l(sx,sy) =
√

s2
x + s2

y ∀ m 6= 0 (5)

θ(sx,sy) = 90−2 · arctan(l(sx,sy)) (6)

φ(sx,sy) = arcsin
(

sy

l(sx,sy)

)
(7)

φ θ

Ep
sx

sy

O

S

O′

A

A′m

r

θA
φA

Figure 2: Depiction of stereographic projection us-
ing example A = (φA,θA) with φA = 0◦,θA = 37◦, re-
sulting in stereographic coordinates A′ = (sxA,syA) =
(0.4986,0).

4 NETWORK ARCHITECTURE AND
TRAINING

We start with a pre-trained VGG-16 CNN in Keras and
modify the fully connected (FC) layers of the network
architecture to meet our requirements. For each of the
two light direction representations, one dedicated net-
work is trained and optimised: the first network Netφ ,θ
is predicting the light direction in angular values of
(φ ,θ) and the second network Netsx,sy is predicting
stereographic coordinates (sx,sy).

Prior to training, well-performing hyperparameter com-
binations are identified. To achieve this, the FC lay-
ers and the soft-max output layer are removed from the
standard VGG-16 architecture, and only the five convo-
lutional blocks are retained. The train flag is disabled
on these five convolutional blocks during training; thus,
all pre-trained weights are kept. After the convolu-
tional blocks, a dynamically generated FC subnetwork
is added, which consists of a FC input layer, a variable
number of hidden layers and a FC output layer contain-
ing two neurons. The dynamically generated subnet-
work is created just before training using parameters
from a range of hyperparameters. Optimisation is per-
formed using Talos1. Talos runs a grid search across the
entire specified set of hyperparameter values, return-
ing a list of hyperparameter combinations and trained
model weights for each FC subnetwork. Each result-
ing subnetwork is trained for a single epoch with a uni-
form learning rate that is automatically adjusted to the
used optimiser on a reduced synthetic training dataset
of 20,000 images. The reduced dataset is split into a
training and validation set with a ratio of 80:20. After
the optimisation process, the two hyperparameter com-
binations and subnetworks with the best estimation per-
formance are selected for further refinement.

To refine the two most accurate networks and determine
the most suitable network architectures, the fifth convo-
lutional block is unlocked to be trained, simultaneously
reducing the learning rate to 1/1,000 of the optimised
rate. Thus, the fifth convolutional block is able to adapt
to the new task while maintaining and improving what
was previously learned by the dynamic FC layers. To
make the network more robust to input images of vary-
ing brightness and representing objects of varying sizes

1 Autonomio Talos [Computer software]. (2019). Retrieved
from http://github.com/autonomio/talos.
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Hyperparameter Netφ ,θ Netsx,sy

optimiser Adam Adam
batch size 32 32

uniform learning rate 2 1
hidden layers 0 0

FC input neurons 4,096 4,096
activation leaky ReLU ReLU

dropout 0.25 0.25
Table 1: Hyperparameters of the resulting networks.

and locations, the training data are augmented before
use in the training process by shifting the images verti-
cally and horizontally, zooming in and out and varying
the brightness. The refinement training is performed
for up to 400 epochs, reducing the learning rate by a
10th if the validation mean absolute error (MAE) did
not decrease over 13 epochs. If the validation MAE
did not decrease over a total of 20 epochs, the train-
ing is stopped. All networks use a mean squared error
loss function. Each network is trained with three differ-
ent datasets: one purely synthetic, one purely real and
one mixed dataset. The synthetic training dataset con-
tains 100,000 images from the synthetic image dataset,
while the real training dataset contains 800 images from
the real image dataset2. The mixed training dataset is a
combination of the real and synthetic image datasets,
containing 800 real and 99,200 synthetic images.

Finally, all resulting fully trained network architectures
and hyperparameter sets are tested on synthetic and real
test sets and the best in each category is selected as the
final architecture and hyperparameter combination (Ta-
ble 1) for Netφ ,θ and Netsx,sy . The test sets consist of
images the networks had not seen before and contain
10,000 synthetic images and 61 real images, respec-
tively. Training and testing are performed on NVidia
RTX 2080 Ti and NVidia Titan XP graphics processing
units.

4.1 Datasets
Kán and Kaufmann (2019) used 23,111 synthetic im-
ages in their training but were unable to achieve a satis-
factory reconstruction using only the RGB components
of their training data. Marques et al. (2018) used a total
of 83,799 synthetic RGB images and achieved satisfac-
tory classification results. Hence, we use a large dataset
in our approach, assuming that approximately 150,000
real and synthetic images (one third to be designated as
test data and two thirds as training and evaluation data)
are sufficient. When creating the datasets, the data are
directly labelled using the angular values (φ ,θ) of the

2 Due to the great effort required to generate real data, we only
have 861 images available thus far, 800 for training and 61
for testing. However, we plan to increase our dataset in the
future.

configured camera and light settings. For the stereo-
graphic network, the angular labels Λφ ,θ are converted
into stereographic labels Λsx,sy (Section 3.1).

4.1.1 Synthetic Dataset
To create the synthetic image dataset, a simple scene is
created using the Unreal Engine that is composed of a
single object placed on a base surface illuminated by
a directional light source. Due to the wide variety of
possible light directions, identifying shadow bias values
that do not produce artefacts is cumbersome. Therefore,
the RTX shadow capabilities of the NVidia RTX 2080
Ti are used for rendering the shadows. Five models of
varying complexity are used as the centre object: a box,
a cone, the Stanford bunny, the Stanford Buddha and
a sphere (Fig. 3). Suitable physically based rendering
(PBR) surface materials (Karis and Epic Games, 2013)
are assigned to the base surface and the models to cap-
ture the material structure of their real-world counter-
parts.
A total number of 1,225 different light directions are
obtained by illuminating the scene with a directional
light source L from angles evenly distributed around
the centre object. The direction values of L (φL,θL)
range from (0◦,5◦) to (360◦,90◦) with a step size ∆L
of (5◦,5◦). Light directions from below are not con-
sidered. Duplicate images at light elevation angles of
θL = 90◦ are omitted. At elevation angles of θL = 90◦,
a single image using an azimuth value of φL = 0◦ is
generated. The camera C is placed in a similar fash-
ion as L at a fixed distance with spherical coordinates
(φC,θC), ranging from (0◦,1◦)3 to (360◦,90◦) with a
step size ∆C of (45◦,30◦), resulting in 32 different cam-
era positions. Using the same camera settings for point-
symmetric objects, such as the sphere, would result in
duplicate images. Therefore, redundant camera settings
are omitted, reducing 32 different camera positions to
four positions placed around the sphere. Though hav-
ing an axis-symmetric model structure, the cone object
appears different from every angle due to its wrinkled
paper surface material and is therefore rendered with
the entire set of camera positions.
Combining camera positions and light directions,
39,200 images of the box, cone, Stanford bunny and
the Stanford Buddha, and 4,900 images of the sphere
are obtained. Therefore, the entire synthetic dataset
contains 161,700 images that are directly captured in
the required resolution of 224×224 pixels. In addition
to capturing the images, we further export the angular
labels of the synthetic dataset Λs = (φL,θL).

4.1.2 Real Dataset
The images in the real dataset are photographed with a
Canon EOS 5D Mark II under controlled light condi-

3 1◦ instead of 0◦ on the first step for visibility reasons, the next
elevation step is 30◦
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Figure 3: Examples of three-dimensional models used.

tions. The laboratory is completely darkened so that no
light source other than the used halogen spotlight would
interfere. A box, a three-dimensional print of the Stan-
ford bunny and a ping-pong ball (Fig. 4) as real-world
representations of their virtual counterparts are placed
on a table with a surface material similar to the base
surface material in our synthetic image dataset.

Camera C is placed on a height-adjustable tripod fo-
cussing on the centre object O, which is photographed
from three different heights, representing elevation an-
gles in the range [30◦,65◦]. To adjust the view an-
gle of C, O is rotated in the centre of the table, and
photographs are taken from seven different angles. To
vary the light, the height-adjustable tripod with an at-
tached spotlight L is moved to five different locations4

around the table, and photographs of the scene illumi-
nated from four different heights are taken.

This way, by the end of the available time frame, a la-
belled real image dataset is obtained, containing a total
of 861 images (i.e. 403 images of the box, 402 images
of the Stanford bunny and 56 images of the sphere). To
label the images, the vertical and horizontal distances of
the scene are measured before taking the photographs,
and the angular labels Λreal(φ ,θ) are computed using
the measured distances. For the computation, the mea-
sured distances between the following measuring points
are required: O and the base of the camera tripod Cb, O
and C, C and Cb, a freely chosen reference point R and
Cb, O and the base of the light tripod Lb, O and L, L and
Lb, and R and Lb (Fig. 5).

With the measured distances, the spherical coordinates
of C = (ΦC,ΘC) and L = (ΦL,ΘL) can be computed
using the law of cosines as

f^(a,b,c) = arccos
(

a2 +b2− c2

2 ·a ·b

)
(8)

The camera and light azimuth angles ΦC and ΦL
are computed using ΦC = f^(OCb,OR,RCb) and
ΦL = f^(OLb,OR,RLb), respectively. The elevation
angle of the camera ΘC and of the light ΘL are
computed similarly with ΘC = f^(OCb,OC,CCb)

4 Due to space limitations it was not possible to illuminate the
scene from [0◦,360◦]; hence, the scene was illuminated from
directions in the range [≈ 40◦,≈ 270◦].

and ΘL = f^(OLb,OL,LLb). Both C = (ΦC,ΘC) and
L = (ΦL,ΘL) are then used to compute the angular
labels of the real images Λr = (φlbl ,θlbl) with

φlbl =

{
|ΦL−ΦC| if ΦL ≥ΦC

|360−|ΦL−ΦC|| else
(9)

θlbl = ΘC +ΘL (10)

The photographs are taken as RGB images in a resolu-
tion of 2,784×1,856 pixels, cropped to 1,856×1,856
pixels with the object centred to keep the aspect ratio
and then resized to 224× 224 pixels using the default
Keras ImageDateGenerator function before being used
for training.

5 RESULTS
Netφ ,θ and Netsx,sy were tested by estimating the light
direction on the synthetic and real test datasets. To com-
pare the results of the networks (Table 2), the mean an-
gular estimation error was computed as

E] =
1
n

n

∑
∣∣arccos

(
vp

T vt
)∣∣ (11)

over all test images between the predicted direction vp
and the ground truth direction vt . Both vp and vt were
given in spherical coordinates and therefore needed to
be converted to Cartesian coordinates.

Train – Test Netφ ,θ Netsx,sy

synth – synth 7.8◦ 3.7◦

synth – real 99.2◦ 25.5◦

real – real 12.4◦ 8.8◦

mixed – real 16.8◦ 7.1◦

Table 2: Average angular error E] on synthetic and real
test data.

Furthermore, each network was trained with three
different training datasets: a purely synthetic training
dataset (Section 4.1.1), an entirely real training dataset
(Section 4.1.2), and a mixed training dataset consisting
of images from both synthetic and real image datasets.

To determine whether it is theoretically possible to es-
timate the light direction from images given only RGB
information, the synthetically trained Netφ ,θ was tested
on synthetic test data images, as this test dataset does
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Figure 4: Examples of real image dataset displaying the real-world models – a box, a Stanford bunny and a sphere.
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Figure 5: Illustration of measured points in a real scene.
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Figure 6: Box-and-whisker diagram of the angular es-
timation error distribution of Netφ ,θ and Netsx,sy . The
median of the distribution is displayed as a green
dashed line, the mean as red line, and outliers as cir-
cular marks.

not suffer from noise interference, leading to distorted
results. In this test, Netφ ,θ achieved a mean angular
error of E]φ ,θ = 7.8◦. This result indicates that recon-
structing the light direction from only RGB images is
reasonable; however, it requires further refinement. The
synthetically trained Netsx,sy tested on the synthetic test
dataset had the best performance, achieving an error of
E]sx,sy = 3.7◦. Considering the angular error distribu-
tion of the synthetically trained networks on synthetic
test data (Fig. 6, blue graphs), introducing the improve-
ments of Netsx,sy not only reduced the estimation error,
but also decreased the range of the outlier deviation.

To evaluate the difficulties in predicting the light di-
rection in spherical coordinates (φ ,θ), the estimation
errors of the networks depending on the elevation an-
gle θ (Fig. 7) were investigated. While E] of Netsx,sy

remained fairly constant over all angles of θ , the er-

rors of Netφ ,θ did not reveal any clear trend (Fig. 7a).
Therefore, the mean error of the estimated azimuth
angle Eφ of Netφ ,θ (Fig. 7b) was investigated, reveal-
ing an increasing error on steep elevations θ , as ini-
tially expected. Considering the scale, the estimation of
the light direction in stereographic coordinates (sx,sy),
performed by Netsx,sy only revealed a minor deviation
(Fig. 7a, green bars). This observed behaviour supports
the initial concept of introducing a stereographic rep-
resentation, as the results indicate that a network using
(sx,sy) can avoid this inherent error. Because only a
small real test dataset could be provided that contained
no examples of steeply illuminated objects, this partic-
ular case was investigated using only the synthetic test
dataset to obtain statistically useful information.

The synthetically trained networks were tested on real
image data to investigate whether they would be ef-
fective for real data without any necessary adjustment.
However, the domain gap between the synthetic and
real datasets appears to be large, as Netφ ,θ failed com-
pletely with a mean angular error of E]φ ,θ = 99.2◦.
With an error of E]sx,sy = 25.5◦ (Fig. 6, orange graphs),
Netsx,sy achieved reasonable estimation performance.
To determine whether the small real image training
dataset would be sufficient to obtain reasonable esti-
mation performance, the networks, which were trained
with real image data, were tested on the real image
dataset. In this test run, Netφ ,θ improved its perfor-
mance with a mean angular error of E]φ ,θ = 12.4◦;
Netsx,sy outperformed the other network with E]sx,sy =
8.8◦ (Fig. 6, green graphs). Trained with mixed image
data, the networks were tested on real test data to inves-
tigate how the small fraction of real image data would
benefit from being augmented with the synthetic train-
ing set. With a fraction of 0.8% (i.e. a total of 800
real images), the networks achieved a mean angular er-
ror of E]φ ,θ = 16.8◦ and E]sx,sy = 7.1◦ (Fig. 6, purple
graphs). Unlike Netφ ,θ , Netsx,sy improved its prediction
results by being trained on a mixed dataset as opposed
to being trained on a purely real, but small dataset.
Augmenting the real dataset with synthetic images ap-
pears to worsen the performance in this case, since the
synthetically trained Netφ ,θ tested on real images per-
formed poorly whereas Netsx,sy performed reasonable.

As images of different models were used in the training
process, we investigated whether the networks learned
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Figure 7: Estimation errors of Netφ ,θ and Netsx,sy depending on elevation θ .

a model preference when estimating the light direc-
tion. Hence, the mean angular error E] for each model
(Fig. 8) was computed and examined for any signifi-
cant deviation. Despite having different error ampli-
tudes from each other, the synthetically trained and
tested networks only display minor deviations on the
model-dependent E] (Fig. 8a). Trained with mixed im-
age data and tested on the real dataset (Fig. 8b), Netφ ,θ
and Netsx,sy display a similar behaviour of the model-
dependent E]. Thus, the networks do not appear to
favour a certain centre model when estimating the light
direction.

6 DISCUSSION
Considering the performance of the synthetically
trained networks on synthetic test data, the results
demonstrate that it is possible to reconstruct the dom-
inant light direction (φ ,θ) in a scene from RGB input
images using a VGG-16-like CNN, without requiring
additional depth information or relying on special
RGB-D images. The light direction reconstruction
performance could be further improved by introducing
the estimation of stereographic coordinates (sx,sy) with
Netsx,sy .
On real test data, the lower prediction accuracy of
Netφ ,θ and Netsx,sy are likely to be caused by a domain
gap between the synthetic training dataset and the
real test dataset, as the prediction performance of
the synthetically trained networks on real test data
significantly improved by adding even a small fraction
of real image data to the training dataset. Considering
this domain gap, the prediction performance of Netsx,sy

on real test data is satisfying, even when synthetically
trained.
The small number of real images for testing the net-
works is a problem, because most of the real images

were required for training to improve the prediction
performance on real test data, leaving only 61 images
available for testing our CNNs, which is critical for ob-
tain statistically useful information. However, the real
dataset is sufficient to demonstrate the general feasi-
bility of our proposed approach. Generating the real
dataset was a cumbersome task, because to label the
images, it was necessary to measure all required dis-
tances for each photograph and then prepare the scene
for the next scene image, which was time-consuming.
Labelling the photos afterwards was not possible, as the
labels would have been mere estimates lacking the ac-
curacy necessary for training.

Because we were using a halogen spotlight, which is a
spotlight source with small extent in a finite distance
in terms of the rendering equation, to illuminate the
real scene when taking photographs, there was a struc-
tural illumination difference between the directional
light used in the synthetic dataset and the extended spot-
light in a finite distance in the real dataset. As a direc-
tional light source represents a light source, infinitely
far away, it is difficult to recreate such a light source
in real scenes, as the light source in the scene can not
be placed infinitely far away. With increasing distance
from an object, however, light from a real source grad-
ually becomes more parallel, transforming into an infi-
nite light source. Considering the distance of the spot-
light, which varied between 2 and 3 m, the size of the
real models and the input resolution of the CNNs, we
considered the difference between the synthetic direc-
tional light and the real light source to be negligible.
Furthermore, the directional light source in the syn-
thetic dataset did not have a spatial extent, resulting in
an umbra without a penumbra, which we attempted to
address in our real dataset by using a very small halo-
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Figure 8: Mean angular errors of E] of Netφ ,θ and Netsx,sy depending on the depicted model.

gen spotlight that was powerful enough to illuminate
the scene.
Summarising our contribution to advance the state of
the art decribed in Section 2, our findings demonstrate
that RGB images are sufficient to estimate the direction
of the dominant light source, and that RGB-D images
are not required, although they may improve results,
which we will investigate in future work. Furthermore,
we demonstrated that a stereographic representation of
the light direction avoids the coordinate uncertainty of
the azimuth angle φ at steep elevation angles θ , leading
to significantly improved estimation results.

7 FUTURE WORK
We plan to considerably extend our small real dataset to
achieve statistically stronger results on real test data. In
addition, this extended real dataset can be used to test
the proposed approach and additional approaches for
different real scene setups. To reduce the effort required
to extend the dataset, the generation and labelling pro-
cess can be automated by a robotic device.
As gathering real image datasets even with an auto-
mated device may still require significant effort, we
will also pursue the concept of using a semi-real im-
age dataset. We will create such image data by aug-
menting distinct real scene photographs with synthetic
billboards displaying green-screen extractions from im-
ages of real objects.
Our long-term goal is illumination reconstruction with
DNNs trained on synthetic image datasets that are aided
by as little real image data as possible to close the gap
between virtual and real scene illumination. Not re-
quiring many real image samples is crucial, as gather-
ing labelled real image data is cumbersome and some-
times not possible. Hence, in the future, we will focus

on gaining a better understanding of which details in
synthetic training images are important to improve the
results achieved by mixed training data. We will first
investigate the influence of specific illumination com-
ponents on the estimation performance, including the
surface shading, appearance and presence of a shadow,
and indirect lighting. Finally, we will investigate, which
DNN architecture and input data in addition to the RGB
information can further improve the estimation results.
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ABSTRACT
A two-step concept for 3D segmentation on 5 abdominal organs inside volumetric CT images is presented. First
each relevant organ’s volume of interest is extracted as bounding box. The extracted volume acts as input for a
second stage, wherein two compared U-Nets with different architectural dimensions re-construct an organ segmen-
tation as label mask. In this work, we focus on comparing 2D U-Nets vs. 3D U-Net counterparts. Our initial results
indicate Dice improvements of about 6% at maximum. In this study to our surprise, liver and kidneys for instance
were tackled significantly better using the faster and GPU-memory saving 2D U-Nets. For other abdominal key
organs, there were no significant differences, but we observe highly significant advantages for the 2D U-Net in
terms of GPU computational efforts for all organs under study.

Keywords
Organ bounds, U-Net, Architecture, Abdomen, Segmentation, 3D CT images

1 INTRODUCTION
Manual segmentation of liver, kidneys, spleen and the
low-contrast pancreas in axial CT slices is very time
consuming for radiologists. The automated just-in-time
(JIT) segmentation of 3D patient organ models contin-
ues to be an unsolved challenge. Automatic and JIT
reconstruction procedures of 3D models are highly rel-
evant for surgery planning and navigation. Another im-
portant aspect is the saving of computational power and
memory, which differ greatly among various Convolu-
tional Neural Network (CNN) architectures for image
segmentation. The 2D U-Net architecture[1] showed
promising results in 2015, outperforming conventional
models on 2D biomedical segmentation problems and
being effective on smaller images. Unlike previously
known CNN models, the U-Net concept uses down-
and up-sampling steps to resample the condensed fea-
ture map to the original size of the input image. By
incorporating higher resolution feature information in
each upsampling step, semantic segmentation of the in-
put images can be achieved very efficiently by skip con-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

nections. The resulting U-shaped architecture was ex-
tended to a 3D U-Net edition in 2016 by Cicek et al.[2]
by replacing 2D operations with their 3D equivalents.
The research focus of this paper targets the question, is
the 3D U-Net really better suited for 3D data?

In Big Data studies we expect, parallel segmentation of
thousands of 3D volumetric images requires high com-
putational time due to the limited amount of processing
nodes and sub-processes for parallel processing. We
suppose, 3D U-Nets demand even higher GPU compu-
tational and memory overhead for 3D image process-
ing. In this work, the focus lies on proposing solu-
tions with costs as low as possible while keeping or
even improving segmentation quality. In our concept,
we (1) detect and let U-Nets work in local sub-images
for each task (liver, kidneys, spleen, pancreas). We (2)
compare two U-Net architectures for quality and GPU-
performance carrying out semantic segmentations. (3)
Based on a detailed statistical analysis, we recommend
the more suitable architectural model to the interested
reader. Again, subject to our image data base of 80,
could the simpler 2D U-Net perform better than com-
plex and theoretically more powerful 3D U-Nets?

2 RECENT SOLUTIONS
3D segmentation is especially relevant for the emerging
field of intervention training and planning using Virtual
Reality (VR) techniques. Time-variant 4D VR simula-
tions with breathing simulation are readily available for

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

41 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.5



training and planning of liver interventions[3, 4, 5]. The
JIT and high quality reconstruction of all the necessary
3D models remains a main hindrance, i.e. especially ab-
dominal organs are rarely easy to segment. This is due
to varying imaging conditions such as contrast agent
administration, structure variations and noise.

To this aim in the literature, 3D U-Nets are very often
proposed as mightier[6, 7, 8, 9, 10]. However, there
are some studies indicating benefits of 2D U-nets in
3D segmentation tasks such as[11, 12, 13]. Nemoto et
al.[11] state that low computational burden 2D U-Nets
are effective and on par with 3D U-Nets for semantic
lung segmentation excluding the trachea and bronchi.

Chang et al.[14] suggested a hybrid approach of 3D and
2D inputs for the evaluation of hemorrhage on head CT
scans, which was later adapted by Ushinsky et al.[13]
for application to prostate segmentation in MRI images,
showing that 2D U-nets are very effective for 3D data.
Christ et al.[15] demonstrated a slice-wise application
of 2D U-Nets to liver segmentation in combination with
3D random fields. Similarly Meine et al.[12] proposed
liver segmentation methods with the assistance of 3D,
2D and three fused 2D U-Net sectional (axial, coro-
nal, sagittal) results in a 2.5D ensemble approach. They
find the 2.5D U-Net ensemble results statistically supe-
rior for liver segmentation, especially for images with
pathologies.

Other recent approaches aim to combine multiple
stacked 2D U-Nets[16] and further improve infor-
mation flow through semantic connections between
different components[17]. This concept has also
been used in application areas such as colon polyp
segmentation[18] and face recognition[19].

In our 2D U-Net setup for the abdominal organs liver,
spleen, kidneys and pancreas, we favor axial section
training inside of pre-detected organ-specific VOIs.
This is for significant radiation dosage savings by high
scan pitch. Yet image resolution in axial CT slices is
very high.

New aspects in this work are the organ-specific VOI ap-
proach for the organs under study such as liver, spleen,
kidneys and pancreas. Concluding, an organ-specific
architecture dimensionality recommendation for each
of the organs is given.

3 PROPOSED SOLUTIONS
Eighty CT-scans and related label data found in various
public sources1 were considered for training and tests
of our U-Nets. Their image information differs not only
in quality, noise and field of view. But also, the patient-
individual volume appearance varies in the amount of

1 http://visceral.eu,
http://sliver07.org,
http://competitions.codalab.org/competitions/17094

slices (64 to 861), pathological lesions, slice width (1
to 5 mm) and applied contrast agent.

The issue relative to data annotation was mainly the
lowly contrasted pancreas organ in the CTs, unavail-
able with some image sets consisting of congruent in-
tensity and label images from the public sources. We
coped with that by four eye reviewed manual segmen-
tation of this occasionally missing structure in the la-
bel maps. However, most organ reference segmentation
were readily available in the public data sources.

Preprocessing
The orientation of images was changed to Right-
Anterior-Inferior (RAI) and zero origin (0.0, 0.0, 0.0).
As CNNs are not able to interpret voxel spacings
natively, isotropic image resampling with 2.03 mm as
trade-off for varying image xyz-spacings (xy ≤ 2 mm,
z ≤ 5 mm) was performed.

Our concept is composed of two different machine
learning approaches, bounding box detection using ran-
dom regression forests (RRF) and U-Nets for semantic
segmentation. The RRFs can be used to detect organ
VOIs in CT data. The U-Nets use the detected VOIs
and segment the contained organs.

Volume of interest bounding box detection
The ground truth corresponding organ VOI bounding
box (BB) - needed in this work’s evaluation - of each of
the organs can be created by scanning the reference seg-
mentation maps for labeled voxel coordinate extremes.
To create a three-dimensional BB vector for each organ,
for each coordinate direction (x,y,z), we iterate in or-
thogonal slices through the organ’s label map and save
the extreme limits in a 6D BB vector to serve as ground
truth BBs.

Alternatively, VOI-based organ extraction[20, 21, 22]
is readily available for organ-specific VOI detection of
the organ ensemble (liver, still left kidney, right kidney,
spleen, pancreas). This step also solves the FoV prob-
lem in the scanner z-direction, as CT scans cover vari-
able body portions. Our currently investigated scheme
to learn bounding boxes of VOIs using RRFs is sum-
marized in the following.

In our concept, we use Random Regression Forests
(RRF) to determine the location and extent of abdomi-
nal organs[22]. As seen in Fig. 1, the RRF training step
expects scans and ground truth VOIs as input.

A three-dimensional VOI bc of an organ
c can be described by using a 6D vector
bc = (bLe f t

c ,bRight
c ,bAnterior

c ,bPosterior
c ,bHead

c ,bFoot
c )

with coordinates in mm[22]. We run over all voxels
p = (xp,yp,zp), which are within a specified radial dis-
tance (r = 5 cm) from the scan medial axis. The distance
d between such a voxel and each of the VOI walls,
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Figure 1: The inputs for the training process are CT
scans and ground truth VOIs of a targeted pancreas.
We create one feature vector and one mm offset vector
for each voxel that is part of a predefined medial cylin-
der subset in the scan[22]. The trained RRF is able to
predict the offset between a voxel and an organ’s VOI
walls.

can be calculated by using d(p) = (xp − xLe f t ,xp −
xRight ,yp−yAnterior,yp−yPosterior,zp− zHead ,zp− zFoot)
and is saved as the offset-vector to be learned. In
contrast to Criminisi et al.[22], we use only 50 feature
boxes, that are evenly distributed on three spheres (r
= 5 cm, 2.5 cm, 1.25 cm) to generate the input feature
vector. The feature boxes Fj are intended to capture the
spatial and intensity context of the current voxel. For
this purpose, the mean intensities of the feature boxes
are calculated and saved in the feature vector.

Within the first step of our application concept (Fig. 2,
left) for every single organ, the RRF locates the VOI for
a particular organ as BB.

A detected VOI’s information (intensities, labels) is fi-
nally resampled to 96x96(x96) as CNN input.

Training and application of 2D and 3D U-
Net architectures
Within the 2nd stage, as shown in the bird’s eye view
in Fig. 2, right, the obtained VOI is either passed to a
2D[1] or a 3D U-Net[2] for semantic labeling.

The training data for our U-Net consists of the expert
segmentations and ground truth bounding box contents,
as schematized in Figs. 2, 3. The VOIs are then used to
locally extract the intensity and label data from the CT
scans. As input, a U-Net receives a VOI from the in-
tensity data, while the corresponding label data is con-
nected to the output. We use lightly modified 2D and
3D U-Net architectures vs. Ronneberger et al.[1]. Our
architecture consists of four down- and up-scaling steps
connected by skip connections and max-pooling while
down-sampling. For the 3D U-Net, an additional layer

depth dimension is added while all other design ele-
ments are kept constant.
The U-Net uses the data contained inside a given VOI
bounding box to segment the corresponding organ. The
output is a segmentation map of the full target organ
in a probability range from 0 to 100%. The threshold
for all organs except pancreas was chosen as 50%. For
pancreas 30% was empirically found best.
The U-Nets were trained using batches of size 8 over
100 epochs. In addition, Adam optimization and a cross
entropy loss function were used. We train one U-Net for
each organ, using a ReLU activation function.

Evaluation, metrics and statistics
For fair comparison, in each cross-validation iteration,
we use the same 64 training images for both U-Nets,
and test with the same 16. This way, we prevent data
contamination by separate training and test sets. The
difference between the U-Net architectures is input,
output and filter kernel layer dimension only. For 2D
U-Nets, input and output size is 96x96 and 2D filter
kernels are used in the layers. Accordingly for 3D U-
Nets, we have 96x96x96 in- and outputs and use 3D
convolutions in the architecture layers.
A 5-fold randomized cross-validation using 4:1 splits
was used. Five iterations yield 80 quality measures for
each organ being used in our statistics (Fig. 1). This
means five new models for each organ are trained with
randomly selected training data and used in the eval-
uation. To purely concentrate on the influence asso-
ciated with U-Net dimensionality, the reference VOIs
were utilized in the evaluation of this study. The metric
used for analysis is the Dice similarity coefficient:

DSC =
2 · |U ∩G|
|U |+ |G|

, (1)

where U represents the voxel set from U-Net object
segmentation and G the ground truth voxels. A DSC
value of 1 indicates perfect segmentation, a value of
near 0 poor segmentation. From the DSC results, we
calculate means and standard deviations, medians and
Inter-Quartile-Ranges (IQR) as measures of accuracy
and precision. Statistical assessments using paired T-
tests and Wilcoxon-Signed-Rank(WSR)-test were per-
formed with GNU-R 4.0.3. We finally recommend the
dimensionality of the U-Net architecture based on ac-
curacy, i.e. greater mean or median, and precision, i.e.
smaller standard deviation or IQR and smaller number
of outliers. We also keep an eye on the ratio between
quality and GPU efforts in time and memory.

4 EXPERIMENTAL RESULTS
Qualitative liver results (Fig. 4) show the 2D U-Net
(top) superior with a more evenly distributed segmen-
tation surface coverage. The 3D U-Net (bottom) obvi-
ously suffers from under-segmentation as more brown
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Figure 2: Bird’s eye perspective on our current segmentation concept with RRF for VOI detection and subsequent
U-Net. Both training (green, red) and application (blue) concepts are shown. In this work, the right part with
regards to the U-Nets is focused in the evaluation

Figure 3: The inputs for the training process are ground
truth bounding boxes VOIs, CT scans and their cor-
responding segmentation maps. The box cuts out the
CT- and segmentation data to extract the relevant im-
age region. Inside the organ VOIs, the segmentation is
learned. The process results in organ-wise U-Nets

ground truth surface is visible in Fig. 4 (bottom). Refer-
ring to Tab. 1, precision is also better for the 2D U-Net
due to lower std. deviations and IQRs.

For kidneys, the 2D U-Net is highly significantly better
in both T- and WSR-tests. The boxplots with a small
x for the mean in Figs. 5, 6 confirm visually: the 2D

U-Net is significantly better for liver and highly signif-
icantly better for kidneys (Figs. 5(a), 6(a), 5(b), 6(b)).
Spleen segmentation shows an advantage for the 2D U-
Net by trend as shown in Figs. 5(c), 6(c)) and Tab. 1.
The 3D U-Net possesses higher accuracy and precision
for the low-contrast pancreas. Higher precision is indi-
cated by smaller standard deviations and less outliers in
Tab. 1 and Figs. 5(d) and 6(d). With regards to accu-
racy measured by medians, the 3D U-Net has an edge
by trend of 0.02 over the 2D U-Net, while precision
measured by IQR is the same.
The GPU-Performance evaluation in Tab. 2 shows the
superiority of the 2D U-Net in this study’s scale with
an 80 images data base. The ratio of quality to GPU
resources is always better for the 2D U-Net. In Tab. 2
GPU memory saving is >6-fold in the training stage and
>5-fold in the model application, trivially a highly sig-
nificant result as there are no variations, i.e. no standard
deviation and IQR. With respect to GPU calculation
times measured in training, the 2D U-Net is precisely
40 seconds or 7% faster on average, again a highly sig-
nificant mean result. In the U-Net model application,
we can observe a weakly significant (p < 0.1) advan-
tage for the 2D U-Net of 37% to 75%.

5 CONCLUSION
Surprisingly in this study, 2D U-Nets are favorable re-
garding the ratio of quality vs. computing costs.
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DSCs: Mean±Std. Median∼IQR
Organ 2D U-Net 3D U-Net 2D U-Net 3D U-Net

Liver 0.94±0.03* 0.93±0.04 0.95∼0.02** 0.94∼0.03
R. kidney 0.91±0.05*** 0.89±0.05 0.92∼0.03*** 0.90∼0.05
L. kidney 0.92±0.05*** 0.86±0.14 0.93∼0.03*** 0.89∼0.08
Spleen 0.93±0.04 0.92±0.04 0.94∼0.03 0.93∼0.03
Pancreas 0.57±0.19 0.59±0.15 0.60∼0.21 0.61∼0.21

Table 1: Mean DSCs with standard deviations (Mean±Std.) and Median DSCs with Inter-Quartile-Range (IQR)
(Median∼IQR) of 2D and 3D U-Nets from 5-fold randomized cross-validation experiments using 4:1 splits of the
80 images into training and test data.
Legend: We use statistical standard notation for found significances: *; **; ***: p < 0.05; p < 0.01; p < 0.001
from T-tests (paired) and Wilcoxon-Signed-Rank-Tests on the right of the favorable U-Net result.

GPU-Performance: Memory Time
Training [MiB] Application [MiB] Training [min:sec] Application [sec]

Organ 2D U-Net 3D U-Net 2D U-Net 3D U-Net 2D U-Net 3D U-Net 2D U-Net 3D U-Net
Liver 1693 10957 1693 9117 9:26 10:07 1.47 3.18
R. kidney 1693 10957 1693 9117 9:28 10:07 0.40 0.55
L. kidney 1693 10957 1693 9117 9:26 10:07 0.40 0.55
Spleen 1693 10957 1693 9117 9:27 10:08 0.40 0.55
Pancreas 1693 10957 1693 9117 9:28 10:08 0.40 0.55

Mean±Std. 1693±0*** 10957±0 1693±0*** 9117±0 9:27±0:01*** 10:07±0:01 0.61±0.43 1.07±1.05
Median∼IQR 1693∼0*** 10957∼0 1693∼0*** 9117∼0 9:27∼0:01+ 10:07∼0:01 0.40∼0.003+ 0.55∼0.001
Mean Improvement 647.19% N/A 538.51% N/A 107.13% N/A 175.22% N/A
Median Improvement 647.19% N/A 538.51% N/A 107.07% N/A 137.10% N/A

Table 2: GPU-Performance table with memory consumption for training and application to the left and training
and application times to the right.
Legend: 1 MiB=1.048581024 MB=10242 bytes. We use statistical standard notation for found significances: +;
*; **; ***: p < 0.10; p < 0.05; p < 0.01; p < 0.001 from T-tests (paired) and Wilcoxon-Signed-Rank-Tests on
the right of the favorable U-Net result.

The liver and spleen hold the greatest volume in our
abdominal organ group. The liver and especially kid-
ney competition is significantly won by the 2D U-Net
(p<0.05). The liver is a difficult organ often with a vari-
ably filled stomach as a neighbor.

Kidneys can be regarded as easy organs lighted by con-
trast agent and inside fatty tissue with low CT intensity.

A better posed training for the 2D U-Net could be the
reason for the 2D U-Nets’ better results for liver and
kidney tasks. A higher relative number training ele-
ments is used, i.e. axial slice pixels, vs. the number
of net weights.

The spleen results are in favor of the 2D U-Net regard-
ing the mean and medians by trend. The 2D U-Net is
also favorable for a less number of outliers (Fig. 5(c)).

The difficult pancreas does not provide many axial
training slices useful for the 2D U-Net, as its elongation
is not prominent on the z-axis. We suppose this is the
reason, why the 3D U-Net wins here by mean trend in
terms of accuracy and precision, i.e. higher mean and
lower standard deviation and lower number of outliers
(Fig. 5(d)). This win is supported by higher accuracy
for the 3D U-Net in terms of medians. However, the
race is not decided by significant differences making
the 2D U-Net still very attractive for some users with
GPU performance and memory concerns.

Abdominal volumetric CT images and key organ seg-
mentation were analyzed. This new study shows inter-
esting results from competing U-Net architectures, es-
pecially focusing different dimensionalities of net filter
bank kernels and quality vs. GPU performance. The
interested reader can now select a particular U-Net ar-
chitecture, primarily whether to use a computational in-
expensive design. Finally in this study’s scope, a hum-
ble recommendation for the 3D U-Net could be given
for the pancreatic organ in terms of better accuracy by
trend and smaller standard deviation only. The IQRs as
an alternative measure of precision are on par, and re-
garding the median the 3D U-Net wins just by a small
trend. We co-conclude, because of the deeper layering
structure and thus more trainable weights, a 3D U-Net
needs significantly more training data vs. possible over-
fitting to outpace 2D U-Nets.

As training volumes are normalized to a square or cube
of 96 voxels, the GPU memory consumption in Tab. 2
is always constant. Therefore differences are trivially
highly significant, as no varying results occur. We ob-
serve consistently lower memory consumption for 2D
U-Nets. The memory effort in training is higher for
the 3D U-Net including more space for administrative
overhead data. Thus, 2D U-Nets can run on affordable
2-4 GB GPUs for 3D CT volume segmentation. 3D U-
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Figure 4: Two liver segmentations (anterior view) with 2D U-Net (top) and 3D U-Net (bottom). The coverage of
the 2D U-Net result (top) appears more equally distributed, i.e. more sensitive. Brown: Reference and purple:
U-Net CNN. N.B., for the 2D model result on top, the oscillation pattern between reference (brown) and 2D CNN
segmentation (purple) is much denser, thus showing out better mean local quality.
Legend: reference (brown) and U-Net segmentation (purple)

Nets definitely need currently totally overpriced 12 GB
GPUs.

The timing measures in Tab. 2 clearly speak out for the
2D U-Net. Training is highly significantly 40 seconds
or 7% faster on average using the 2D U-Net. However
regarding application, in the trained model prediction,
the differences are not so striking with a weak signif-
icance by median. 37% to 75% improvement can be

achieved, however in the range of one second, which is
practically unimportant.

As final and bold conclusion regarding our study design
and results, we can recommend using the 3D U-Net
subject to the amount of data we used here - for pan-
creas only. The conclusions are justified by statistically
significant or by trend quality and GPU-computation
performance results for all organs under study. We
suppose, 3D U-Nets may overcome in quality when
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(a) Liver (b) Left and right kidneys

(c) Spleen (d) Pancreas
Figure 5: Overview DSC boxplots: 3D (blue, green) and 2D U-Net (brown, purple) on the x-axis vs. DSCs on the
y-axis: 2D U-Nets in favor for (a) liver and (b) kidneys (left k. and 3D U-Net: blue, left k. and 2D U-Net: brown;
right k. and 3D U-Net: green, right k. and 2D U-Net: purple). (c) Spleen comes out with an edge for the 2D U-Net
by trend. (d) Mixed results: 2D U-Net wins the accuracy contest, but loses the precision contest in terms of lower
standard deviation (cf. Tab. 1) and regarding less outliers for pancreas.
Legend for (a), (c) and (d): blue boxplots: 3D U-Net; red boxplots: 2D U-Net.

using several hundreds of training images. However,
this comes approximately with an order of magnitude
higher additional computational burden.

For the first time, an original and significant compar-
ison of U-Net architecture dimension is provided to
the reader focusing the key abdominal organs of liver,
spleen, kidneys and pancreas. The reader can decide,
which approach is appropriate for his concrete target
organ, amount of training data and used GPU or clus-
ter nodes, parallel process design, e.g. for atlas-based
usage of U-Nets as encountered in multi-classifier fu-
sion[12].

Regarding the difficult pancreas with mixed DSC re-
sults in this study, we plan to train 2D U-Nets using a
elongation optimized algorithm[23, 24, 25] to provide

slices oriented axially along its main central curve, to
better reflect its orientation to generate more training
slices for 2D U-Nets. On the other hand, more training
images shall be used to explore the 3D U-Nets’ theo-
retical advantage under better conditions, as we have
discussed, for its training and application.

The scientific explanation of the U-Net methods is
given detailed in the original works of Ronneberger
and Cicek et al.[2, 1], and we lift these methods here
to compare them. The current limitations of this study
will manifest as improvements in the future. Develop-
ment will cover improved bounding box detection. At
this state of our research, our current RRF bounding
box detection would confound the core message of this
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(a) Liver (b) Left and right kidneys

(c) Spleen (d) Pancreas
Figure 6: Zoomed DSC boxplots: 3D (blue, green) and 2D U-Net (brown, purple) on the x-axis vs. DSCs on the
y-axis: 2D U-Nets in favor for (a) liver and (b) kidneys (left k. and 3D U-Net: blue, left k. and 2D U-Net: brown;
right k. and 3D U-Net: green, right k. and 2D U-Net: purple). (c) Spleen comes out with an edge for the 2D U-Net
by trend. (d) Mixed results: 2D U-Net wins the accuracy contest, but loses the precision contest in terms of lower
standard deviation (cf. Tab. 1) and regarding less outliers for pancreas.
Legend for (a), (c) and (d): blue boxplots: 3D U-Net; red boxplots: 2D U-Net.

paper, the aim of which was to focus purely on U-Net
performances.
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ABSTRACT
360◦ photogrammetry captures the surrounding light from a central point. To process and transmit these types of
images over the network to the end user, the most common approach is to project them onto a 2D image using
the equirectangular projection to generate a 360◦ image. However, this projection introduces redundancy into the
image, increasing storage and transmission requirements. To address this problem, the standard approach is to
use compression algorithms, such as JPEG or PNG, but they do not take full advantage of the visual redundancy
produced by the equirectangular projection. In this study of the 360SP dataset (a collection of Google Street
View images), we analyze the redundancy in equirectangular images and show how it is structured across the
image. Outcomes from our study will support the developing of spherical compression algorithms, improving
the immersive experience of Virtual Reality users by reducing loading times and increasing the perceptual image
quality.

Keywords
Image compression, Equirectangular projection, Virtual Reality,

1 INTRODUCTION

Virtual Reality (VR) provides real-world scenarios fo-
cusing on maximizing the immersive sensation. Im-
ages and videos shown in VR devices are known as
panoramic, 360◦ or omnidirectional images. Gaming,
art, photography and social media takes advantage of
the immersive properties VR provides and has been
used in many applications [Gooed, Faced].

360◦ photogrammetry captures the surrounding light
from a central point. To process and transmit this type
of image over the network to the end user, the most
common approach is to project them onto a 2D im-
age using the equirectangular projection to generate a
360◦ image. This permits easy image storage and visu-
alization but introduces a major problem. Because the
projection reduces the dimensionality from 3D to 2D,
it generates topological visual alterations related to the
projection stretching samples over multiple pixels and
introducing redundant data.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

To the best of our knowledge, there is no study about
how the redundancy is structured in equirectangular im-
ages, nor how much each pixel contribute to the overall
image quality. In order to provide a good immersive ex-
perience by reducing image loading times and improve
the streaming quality, it is important to determine how
the redundant data is structured in equirectangular im-
ages. With the current trend of resolution increase in vi-
sualization devices, images can be adapted accordingly.
If we increase the image resolution, the number of re-
dundant pixels will also increase and image file size will
be needlessly increased. Redundant pixels do not con-
tribute to the image quality as much as unique pixels,
and their impact on the user’s immersive experience is
often minimal.

In this paper, we present the results of a study we con-
ducted on how perceptual redundancy is structured in
equirectangular images. The redundancy is created by
how the equirectangular projection stretches the cap-
tured samples from the 360◦ field of view. We deter-
mine what is the contribution of each of the projected
image pixels to the image’s overall perceptual quality.
Because of the nature of equirectangular projection the
portions of the image at angles farther from the hori-
zon (top and bottom rows respectively) contribute less
to the overall image quality than the portions nearest
the image horizon. Since equirectangular images cap-
ture a 360◦ field of view, some areas of the image are
stretched because the scene is projected creating low
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gradient textures (top and bottom rows) while other ar-
eas remain unstretched (middle rows). The contribution
of this paper is an analysis, using different metrics (row
and region based), of how the redundancy is structured
in equirectangular images and how each portion in the
image contributes differently to the overall image qual-
ity.

2 RELATED WORK
360◦ photogrammetry captures the surrounding light
using a camera located at the central point in a scene.
There are multiple ways to capture these type of photos,
including multi-shot camera rigs, single camera shot
and single camera shot with catadioptric lenses. By ap-
plying warping and/or stitching techniques to the cap-
tures, we can build a 360◦ photo in which each pixel
represents a small portion of the full scene [Sze10].
Conceptually, the photo is a colored spherical point
cloud in a 3D space. The density of this point cloud
determines the resolution of the capture and therefore
the overall quality of the photo. Using higher resolu-
tion sensors in cameras results in a direct visual quality
increase. However, the memory requirement for 360◦

photos that provide a good visual quality is high.

For efficient storage and transmission of 360◦ photos,
the photo sphere must be projected from 3D space to
2D to generate a 360◦ image. This process produces
visual alterations in the projected image yielding re-
dundant data. The most common projections are cylin-
drical, equirectangular and cube-map projections. As
Azevedo et al. [Aze19] stated, the capturing, process-
ing and delivery of 360◦ content, introduces visual al-
terations which do not fully keep perspective projection
properties. The study reviewed the most common types
of visual alterations, such as geometrical and data alter-
ations, and identified their main causes.

Visual alterations generate redundant data that can be
compressed to reduce the storage and transmission re-
quirements because they do not add any improvement
to image quality. Despite the good performance of stan-
dard codecs for regular images, using them to compress
360◦ images does not take full advantage of the 360◦

image’s spherical properties. Sun et al. [Sun18] con-
ducted a subjective image quality assessment study on
how common image codecs influence the 360◦ image
quality. And it has been shown that codecs for 2D im-
ages can be adapted to the 360◦ images by exploiting
projection properties [DS16].

Downsampling specific regions in equirectangular im-
ages was proposed in some works. Since top and bot-
tom rows of the equirectangular mapping are stretched,
Budagavi et al. [Bud15] proposed a Gaussian smooth-
ing filtering over those regions. The key point in that
work was the exploiting of the characteristics of the

projection and give more importance to equatorial re-
gions. Using the same idea, Youvalari et al. [You16],
split the image in several strips and each one is down-
sampled differently based on the latitude they are lo-
cated. Lee et al. [Lee17] used a similar approach but
in a pixel level, where each image row is individually
downsampled and produces a rhomboid shape image.
This studies remove most of the redundant data pro-
duced by the equirectangular projection, however, they
do not fully consider the structure of visual alterations
produced in the projected images.

The compression efficiency of the 360◦ images differs
based on the used projection [Jam19, Yu15]. Some
studies considered compression approaches by just re-
projecting the images and discovered that compres-
sion performance is content dependent. Boyce et al.
[Boy17], detected regions where textures were highly
detailed and rotated the panoramas in the spherical do-
main to relocate those textures close to the equator. In
this manner, regions with low gradients will locate in
top and bottom rows where the stretching is higher and
benefits the compression with standard compression al-
gorithms. Sun et al. [Sun18], proposed the addition of
deep learning to the process and by designing a Convo-
lutional Neural Network measured the relation between
the visual content and compression rate for different ro-
tations.

The most common metrics to measure the effective-
ness of the proposed compression approaches are Peak
Signal to Noise Ratio (PSNR) and Structural Similar-
ity Metric (SSIM) [Wan04]. These two metrics were
designed to approximate the human perception of reg-
ular 2D images, however, they may not provide accu-
rate measurements for 360◦ images. Since the spherical
captures are projected onto a 2D plane, redundant pixels
emerge and therefore these metrics are biased by the re-
peated pixels. To address this problem, the WS-PSNR
[Yu15] and S-SSIM [Che18] were proposed, where the
results of PSNR and SSIM are weighted, giving more
weight to elements close to the horizon.

There exists multiple benchmarks for studying 360◦

images in different areas. Datasets, such as Abreu et
al. [DA17], Sitzman et al. [Sit18], Gutierrez et al.
[Gut18], were presented to study how the users visual-
ize 360◦ images by tracking their attention, head move-
ment and eye movement. For 360◦ image visual qual-
ity assessment, the most popular dataset are Huang et
al. [Hua18], CVIQD [Sun17], CVIQD2018 [Sun18]
and OIQA [Dua18]. SUN360 [oTed] and 3D60 [oITed]
(which is a mix of the SunCG [Soned] and SceneNet
[McCed] datasets) and 360SP [Cha18] are interesting
benchmarks too. 360SP contain outdoor images in-
tended to locate the sun position while 3D60 is a syn-
thetic dataset of indoor images with their respective
depth maps. Even though these benchmarks were not
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intended to analyze the visual alterations of 360◦ im-
ages, they are a good source for analyzing the redun-
dancy structure in equirectangular images.

3 METHODOLOGY
The main idea of this study is to assess how much in-
dividual pixels contribute to the overall image quality
based on their location in an equirectangular image.
Due to the projected visual alteration when projecting a
3D sphere onto a 2D image plane, some of the samples
are stretched across multiple pixels and redundant pix-
els emerge. Those redundant pixels do not contribute
as much to the image quality as non-redundant pix-
els and add extraneous data that is needlessly stored
and/or transmitted. Knowing how this data is structured
across equirectangular images is key to designing effi-
cient 360◦ image focused compression algorithms.

In this work, we first analyzed the quality impact of
each equirectangular image row. In each row, we re-
move multiple sets of contiguous pixels and interpo-
late gaps to demonstrate the ease of their reconstruction.
By computing the resulting row quality, this approach
shows the redundancy behavior and provides a visual
clue to the number of extra pixels in the image. Full
redundancy structure, however, is not revealed with a
row based approach and so we use region focused ap-
proaches for a better revelation of the underlying struc-
ture. Instead of computing quality metrics over entire
rows, for each pixel in the image, we focus on its neigh-
bouring region and compute its quality after the region
interpolation. In both cases, when we compute the qual-
ity metric, highly redundant regions yield high quality
measures even when pixels are removed while the qual-
ity drops in low redundancy regions when pixels are re-
moved.

With these approaches, the study shows some bias un-
der certain image conditions (such as smooth textures
being in the same region). To ensure a robust analy-
sis, we discuss this problem and possible solutions in
Section 4.

3.1 Row impact
In equirectangular images, portions of the image at an-
gles farther from the horizon have higher pixel redun-
dancy than at the horizon line due to the projection
properties. To test how this redundancy is structured
along the image rows, we remove sets of pixels in an in-
creasing number, interpolate them and compute a qual-
ity metric. This process reveals the behavior of redun-
dancy in equirectangular images.

We extracted each row in the image and processed them
individually to compute their contribution to the image
quality. As seen in Figure 1, from each row, we re-
moved multiple sets of contiguous pixels and kept some

Reference pixel.

Interpolated pixel.

Interpolated pixels: 1

Interpolated pixels: 2

Interpolated pixels: 3

Figure 1: Image row pixel removal and interpolation in
an increasing manner.

of the original image pixels as reference. We increase
the size of the removed sets in an iterative manner to de-
crease the number of reference pixels and increase the
image error. Then, we reconstruct the missing pixels
with the linear interpolation using the reference ones.
Since the linear interpolation is a basic interpolation
technique and leads to poor results for image recon-
struction, it shows how easy it is to reconstruct some
regions in equirectangular images. Our thesis is that if,
after reconstructing the row with a very basic technique,
the resulting row quality is high, the redundancy in that
row would be high and therefore most of the pixels in it
do not have a high impact on the image quality. Yet, if
the resulting quality is low, the redundancy in that row
is minimal and most of the pixels in that row would be
relevant to the overall equirectangular image quality.

When computing the quality metric, our focus is on
the metric behavior and not on its specific value. We
wanted to analyze the redundancy behavior in equirect-
angular images as we move from the top to the bottom
rows. Because we processed each row individually, the
rest of the image remains untouched.

Computing the row based quality metric over the en-
tire image is unnecessary because it will produce val-
ues close to 0 and, based on the image size, the arith-
metic precision was seen to affect the results. To ad-
dress this problem, we computed the row based quality
metric only over the modified row and not over the full
image. This approach does not have an impact on the
study because we are analyzing the error behavior and
not the error value. The behavior will be the same even
if we compute the row based quality metric of the entire
image or just a single row, the only difference will be
the resulting error values.

As a result of this process, Algorithm 1, we produce a
2D matrix containing the impact of each row with dif-
ferent removed pixel set sizes. The first dimension of
the matrix represents the rows while the second dimen-
sion represents the size of removed pixel sets.
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Algorithm 1: Row impact on image quality

Function Row_Impact(img) : matrix is
q = matrix[img.rows, MAX_SET_SIZE];
foreach row ∈ [0..img.rows] do

foreach ss ∈ [1..MAX_SET _SIZE] do
r = remove_pixels(img[row], ss);
r’ = interpolate_pixels(r, ss);
q[row, ss] = quality(img[row], r’);

end
end
return q

end

3.1.1 Metrics

The quality measurement of the reconstructed rows can
be computed using different metrics. In this work, for
standard image comparison, we use PSNR and SSIM
to compare the equirectangular images. However, these
metrics do not take into account the properties of 360◦

images and therefore, the visual from projecting the 3D
sphere onto a 2D plane may affect the results.

w(r) = cos

(
r+0.5− N

2

)
π

N
(1)

WMSE(r) =
∑

cols
i=0 (xi− yi)

2 ·w(r)
∑

rows
j=0 w( j)

(2)

WPSNR(r) = 10log
(

MAX2
I

WMSE(r)

)
(3)

where:

r = image row.
N = image height.
x = original image.
y = reconstructed image.
MAXI = maximum image intensity value.

In addition to the standard metrics, we use their
weighted versions: W-PSNR and S-SSIM. These two
metrics weigh the resulting quality using a row based
cosine weight, they lower values from top and bottom
rows while they rise values in the middle rows. We
slightly modified them to only compute the values from
single rows instead of over the full image ( Equation 3
for WPSNRrow and Equation 5 for S_SSIMrow).

SSIM(r) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(4)

where:

µ = image row mean.
σxy = x and y image row covariance.
σ2 = image row variance.
c1 = (0.01 ·MAXI)

2

c2 = (0.03 ·MAXI)
2

S_SSIM(r) =
∑

cols
i=0 SSIM(r) ·w(r)

∑
rows
j=0 w( j)

(5)

3.2 Pixel impact
Studying how the rows impact the equirectangular im-
age quality provides an overall idea about how pix-
els are relevant in the projected image. A limitation
to this approach is that it does not provide informa-
tion about pixel-wise impact or how the redundancy
is structured throughout equirectangular images. Be-
cause the equirectangular projection maps the meridi-
ans to straight lines the rows are stretched and redun-
dancy emerges perpendicular to the meridians. In order
to conduct a study about how each pixel impacts the
image quality, we use the ROAD [Gar05] metric and
localized SSIM.

In the pixel impact analysis, we do not use the PSNR
metric because it is resolution dependant. PSNR re-
quires the computation of the Mean Squared Error, and
in small regions, a small difference highly impacted the
resulting perceptual quality, therefore, the variance of
PSNR results over multiple image is too large to be use-
ful when averaging them.

3.2.1 ROAD metric
The ROAD metric is defined for each pixel (x,y) as
Equation 6, where r is the sorted difference of a pixel
respect it’s neighborhood ones in an ascending order,
and 2≤m≤ 7. This metric was presented as a measure-
ment to detect impulse errors when transmitting images
over the network. It is a metric that measures the gradi-
ent of a pixel respect to its most similar neighborhood
ones in a single image. Since the projection generates
visual effects in a similar manner on all equirectangular
images and stretches pixels across the rows, this met-
ric provides insights about regions with low gradients.
Therefore, we only computed the ROAD metric over
the original equirectangular image and not over the in-
terpolated image.

ROADm(x,y) =
m

∑
i=0

ri(x,y) (6)

There are two possible reasons for the low gradient re-
gions: smooth textures and projection’s visual alter-
ations. With the ROAD metric, it is not possible to
discern, within a single image, whether or not the low
gradient regions belong to smooth textures or to visual
alterations. However, by computing the ROAD metric
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over a number of images and averaging the results, we
introduce variability into the equation and therefore we
can eliminate smooth texture effects and only the pro-
jection’s visual alterations remain.

3.2.2 Localized SSIM
In the standard approach, when computing the SSIM
metric, the entire image is used to generate one sin-
gle value. This value represents the quality of a recon-
structed image with respect to the original one. Because
in our case we want to measure the impact of a pixel in
its local region after reconstructing the image, we cre-
ated a modified SSIM to only be computed in local re-
gions.
For each pixel in the image, we cropped the 3×3 neigh-
borhood from both images (original and reconstructed)
and treated them as full images to compute the SSIM.
This operation reveals how much that region impacts in
the overall image quality. When generating the results
over the entire image, we reveal the redundancy struc-
ture in the image, as explained in Section 5.

4 EVALUATION
One of the main problems we found for this work was
the configuration of the captured 360◦ photos. Usually,
for better visualization, the horizon line of the scene
is mapped to the equirectangular image’s middle rows.
This orientation provides a good overall idea about how
the image will look in a 360◦ viewer when the content
is projected onto a sphere. Because of that, the sky and
ground tend to be located in the top and bottom rows.
Those regions tend to be smooth textures with very little
change and therefore, the redundancy structure analysis
would be biased, resulting in highly redundant regions
when analyzing them. In order to address this, as stated
in Section 3.2, we introduce variability by vertically ro-
tating (pitch) the 360◦ images in the dataset using 22
degree intervals. To compute the vertical rotation, we
transform the equirectangular image to the 3D sphere,
rotate it in the x axis and project it back to the 2D im-
age using the equirectangular projection. This opera-
tion moves all regions in the original images to differ-
ent locations in the image, which ensures that smooth
regions will be processed at different locations, ensur-
ing a robust redundancy analysis.
In our analysis, variability is important and therefore,
we require a large non-synthetic 360◦ image dataset.
Synthetic datasets tend to contain large amounts of
smooth textures which will bias our results by not pro-
viding enough variability. The 360SP dataset is the
perfect fit for our needs. It is composed of ≈15000
outdoor images collected from Google Street view at
3328×1664 resolution. After our rotations, the number
of images we generated from the dataset was≈ 170000,
which makes a large enough dataset that provides the
needed variability to our analysis.

Figure 2: PSNR analysis results.

5 RESULTS
In this section, we show and discuss the results of com-
puting the metrics presented in Section 4. It is impor-
tant to keep in mind that our results were not intended
to compare any methods specifically for their effective-
ness. Our goal with this analysis was to study the metric
behavior and not the actual values. We ignored the re-
sults in terms of their value and focused on how each
metric behaved across the equirectangular image. By
studying how the metric changed for different pixel gap
sizes in each row and in each pixel’s neighboring re-
gion, we revealed the redundancy structure in equirect-
angular images.

In Figure 2, we can see that the perceptual impact is
minimal in top and bottom rows. It is interesting to
point out that PSNR does not seem to care that much
about the structure of the equirectangular image, it is
sensitive to noise in highly redundant regions. As it
is shown in Figure 2 at image rows [200,400], a small
change in a smooth region highly impacts the image’s
PSNR.

SSIM metric shows more robust results than PSNR for
highly redundant regions. In Figure 3, we can see what
is the impact in the images for the SSIM metric. It is
worth noticing that, for the top and bottom rows of the
equirectangular image, the number of pixels that can be
removed with minimal information loss is significant. It
is possible to remove very large gaps of pixels in those
regions and reconstruct them with minimal quality loss.

We colored both plots in Figure 2 and 3 to reveal how
the metrics transition from high redundancy to low re-
dundancy regions. To do so, we used the histogram
of each metric’s data (Figure 4a and 4b) to decide the
range of the transition data. In the PSNR case we se-
lected 65dB to be black color to differentiate the two
regions, but in the SSIM case, there is no clear bound-
ary and the transition is smoother.

The results from the WPSNR metric (Figure 5) shows a
similar behavior as the PSNR with a similar histogram
(Figure 7a). The S-SSIM, however, shows a completely
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Figure 3: SSIM results.

(a) (b)
Figure 4: (a) PSNR histogram and (b) SSIM histogram.

Figure 5: WPSNR results.

different data from the standard SSIM. Highly redun-
dant regions in SSIM vanish in S-SSIM due to the co-
sine factor of the weighting (Equation 1). However, it is
possible to notice in Figure 6 a linear perceptual quality
decrease towards the middle rows as long as the size of
the interpolated pixel gap increases.

As expected from the equirectangular projection, these
results show how the visual alterations of these type
of images have a consine behavior of relevant pixels.
However, these results do not show how the relevant
pixels are structured across the image.

The pixel impact analysis produced interesting results
on how the redundancy is scattered across equirectan-
gular images. The computation of the localized SSIM
metric shows, in Figure 9, the redundancy structure
when projecting a 360◦ photo using the equirectangu-
lar projection. In this resulting image, dark pixels rep-

Figure 6: S-SSIM results.

(a) (b)
Figure 7: (a) WPSNR histogram and (b) S-SSIM his-
togram.

Figure 8: ROAD results, the values are scaled for better
visualization.

resent highly redundant regions and light pixel regions
where the redundancy is minimum. The results reveal
two circular regions centered in the longitudes −π

2 and
π

2 of the sphere that contain low redundancy and fade
as we move further from their centers.

It is important to notice the existence of vertical dark
lines; they represent the pixels used as reference for
the interpolation and therefore they have no error when
computing the metric values. The behaviour of these
lines at the top and bottom rows of the image is inter-
esting too. They get thicker as long as they get closer
to the boundaries of the image due to the massive pixel
stretching of the equirectangular projection in those re-
gions.

The results from the ROAD metric (Figure 8) share a
similar behavior as the SSIM. The difference of these
two metrics is that the ROAD metric, as stated in Sec-
tion 3.2.1, measures the gradients of a 3×3 region with-
out any interpolation. This reveals the same circular
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Figure 9: SSIM region results for 25 pixel gap size. Notice that the vertical black lines show the reference pixels
from the interpolation where the error is non existent. Close to the top and bottom regions, the lines get thicker
due to the highly redundant regions. It is important to mention that the images contain watermarks and are visible
in the results.

low redundancy regions centered at longitudes −π

2 and
π

2 . This means that those regions are the less distorted
ones when we project the 3D sphere to the 2D plane
using the equirectangular projection.

6 CONCLUSIONS
In this paper, we presented an analysis of pixel redun-
dancy in equirectangular images. We analyzed the be-
havior of the visual quality assessment using standard
metrics for regular 2D images and equirectangular im-
ages (PSNR and SSIM). In addition to that, we used the
360◦ image focused versions to complete the analysis
and produce meaningful results. After removing sev-
eral sets of pixels from rows and reconstructing them,
we have shown how each metric behaves in a row-wise
manner. The results showed consistency with previ-
ous statements of diverse authors and provided a visual
demonstration of how the redundancy is increased at
angles farther from the horizon line in equirectangu-
lar images. We revealed the redundancy structure of
equirectangular images by using localized versions of
SSIM and ROAD metrics, showing how sample values
are stretched across pixels in images that use equirect-
angular projection. These results set a support for fu-
ture research work in 360◦ image compression by pro-
viding how each portion of the equirectangular image
contributes to the image quality. The knowledge of the
redundancy structure in equirectangular images is use-
ful to improve state of the art compression algorithms
and improve the visual quality and immersion sensation
in VR devices.
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Abstract: The goal of this research is to provide linguists with visualisations for analysing the results of their hate speech
annotation. These visualisations consist of a set of interactive graphs for analysing the global distribution of
annotated messages, finding relationships between features, and detecting inconsistencies in the annotation.
We used a corpus that includes 1,262 comments posted in response to different Spanish online new articles.
The comments were annotated with features such as sarcasm, mockery, insult, improper language, construc-
tivity and argumentation, as well as with level of toxicity (’not-toxic’, ’mildly toxic’, ’toxic’ or ’very toxic’).
We evaluated the selected visualisations with users to assess the graphs’ comprehensibility, interpretability
and attractiveness. One of the lessons learned from the study is the usefulness of mixed visualisations that in-
clude simple graphs (Bar, Heat map) - to facilitate the familiarisation with the results of the annotated corpus
together with more complex ones (Sankey, Spider or Chord) - to explore and identify relationships between
features and to find inconsistencies.

1 INTRODUCTION

Social media have become a powerful tool for
many people for self-expression as they can share
their voices and opinions freely even anonymously
if desired. These platforms let people to use their
freedom of speech very actively and effortlessly
from the comfort of their homes and at any time
(Paschalides et al., 2019). As the use of social media
has increased, the multimedia data available has also
increased, which provides researchers with greater
opportunities to examine these data. On a daily
basis, millions of messages are created and shared on
different online platforms (Chen et al., 2017). The
news comment section offered by some online news-
papers is one of the possible spaces in which readers
can express their opinions, although sometimes
these opinions can be conveyed in an aggressive,
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a
fee.

offensive or inappropriate manner, especially when
they are given anonymously or under a false name.
This offensive, abusive or toxic language can be
labelled as hate speech. It can be simply described as
a kind of speech that attacks a person or a group based
on characteristics such as race, religion, ethnic origin,
national origin, gender, disability, sexual orientation,
or gender identity (Gagliardone et al., 2015). In this
context, frameworks and tools for automatically clas-
sifying messages are becoming ever more essential
for detecting the trends and spreading patterns that
will help to identify anomalous behaviour and hate
speech (Florio et al., 2020).

In recent years, methods for the automatic
classification of hate speech messages have been
widely studied in different social networks and areas
(Paschalides et al., 2019), (Grosman et al., 2020). The
quality of these frameworks depends greatly on the
algorithms used in NLP (Natural Language Process-
ing), but also on having access to a sufficiently large
corpus of annotated messages in the training steps of
these algorithms (Frénay and Verleysen, 2013). This
training dataset usually consists of messages (includ-
ing tweets and comments), which are manually an-
notated by humans. Indeed, the quality of this man-
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ual annotation is a key point to ensure the success of
the whole process. Annotation involves processing
a large number of messages and tends to become a
difficult and time-consuming task plagued by errors
and inconsistencies. Linguists usually follow a well-
controlled methodology in which a single message is
annotated by several annotators (preferably experts).
Afterwards, agreement must reached for all the anno-
tations. Detecting errors, trends and inconsistencies
efficiently in the individual and the agreed-upon an-
notations can be helpful to speed up and to guarantee
the quality and reliability of the final annotation.

Considering the aforementioned aspects, which
make annotation a complex and challenging task, data
visualisation can be a helpful method that allows lin-
guists to analyse the results. Viewing data as mere
numbers conveys little meaning, whereas data visu-
alisation helps people to process information more
easily(Knaflic, 2015). Well-designed interactive data
visualisations can appeal to people effortlessly (Wu
et al., 2016). However, the design of the most suit-
able data visualisation in a particular context is not an
easy task.

The goal of this research is to provide annotators
with a set of visualisations for analysing the results of
their hate speech annotation. We use the NewsCom-
TOX corpus, which consists of comments posted in
response to different Spanish online news articles an-
notated with toxicity. Concretely, we contribute with:
(1) a set of interactive graphs to allow the annotators
to see the global distribution of comments, find re-
lationships between features and detect possible er-
rors and inconsistencies in the annotation, and (2) the
lessons learned from a preliminary user evaluation of
the proposed visualisations to detect the most useful
graphs for linguists.

2 RELATED WORK

In this section we first present research works
aimed at using data visualisation for the monitoring of
automatic annotation systems. We place the focus on
the visualisation techniques used by the authors. We
then consider works that are aimed at supporting lin-
guistic annotators through meaningful visualisations.

2.1 Visualisations for monitoring
automatic annotation systems

Visual analytics for automatic annotation systems
aims to identify valuable information in social data.
Concretely, the following research works analyse
anomalous user behaviour, anomalous information

spread and the use of toxic language. (Shi et al.,
2019) carried out a survey on the visual analytics of
anomalous user behaviours. The survey revealed four
types of user behaviours, including social interaction,
travel, network communication and transactions. For
each of the four types of user behaviours, the authors
analysed trends in common data types, anomaly de-
tection techniques, visualisation techniques and inter-
action methods. Our research is focused on the first
type of user behaviour, social interaction, i.e. the
communication of ideas and opinions between people
in online newspapers.

Fluxflow (Zhao et al., 2014) is an interactive data
visualisation system designed to display and evalu-
ate anomalous information spread (rumours and mis-
information) on Twitter. The novel visualisation de-
sign consisted of packed circles (retweets) arranged
along a timeline showing how an original message
spreads among people over time. The size of the cir-
cles symbolised the power of the influence of a user
and the colour represented an anomaly score. Simi-
larly to FluxFlow, Episogram (Cao et al., 2015) was
designed to analyse retweeting behaviours on Twit-
ter. It showed the activity of each person separately
and every message from each person separately in the
form of single lines on a timeline. Nevertheless, this
visualisation caused cluttering, making it hard to un-
derstand at first sight.

RumorLens (Resnick et al., 2014) was created to
help journalists to detect the diffusion of rumours on
online social media and, once again, Twitter was the
source of data for this research. The authors used a
Sankey diagram to effectively summarise the diffu-
sion of a rumour since it makes it very simple to fol-
low and see people’s decisions regarding posting or
not posting the rumour.

Mandola (Paschalides et al., 2019) was designed
with NLP and ML techniques to monitor, and detect
online-hate speech on online social media. The Man-
dola dashboard included the so called Hate-map and
Hotspot Map visualisations, both showing findings on
a world map. While Hate-Map displays hate data with
heat spots in certain countries, Hotspot Maps have a
colour scale representing six levels of hate speech.
There was also a Heat map that displays hate speech
in five topic areas, separated by years. Mandola is
close to our research because of its analysis of hate
speech. The difference resides in that our goal is to
use visualisations to support linguists in the annota-
tion process, whereas Mandola aimed to use visuali-
sations for the monitoring of an automatic annotation
system.

Overall, previous research focused on novel ap-
proaches for monitoring automatic annotation sys-

2
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tems using different visualisation techniques, such as
Sankey diagrams and Heat maps. In this paper, we
use these and other types of graphs to help linguists
to visualise the results of their annotations.

2.2 Visualisations for supporting
linguist annotators

Several tools and platforms (i.e. set of tools) are avail-
able to support the task of annotating a corpus. All of
them provide basic functionality for data annotation.
Nevertheless, some of them do not support more ad-
vanced functionalities, such as the management of the
inter-annotator agreement. The inter-annotator agree-
ment is a measure of how well two (or more) anno-
tators can make the same annotation decision for a
certain feature. This measure may impact the quality
and efficacy of the annotation process.

For instance, Brat (Stenetorp et al., 2012) is a
mainstream annotation tool that does not allow for
several annotators, with a consequent non-support
of inter-annotator agreement. Another tool is MAT,
which supports the annotation and the management
of multiple annotators through a web interface (MAT,
2020). IBM Watson Knowledge Studio, which is in-
tegrated in the well-known Watson platform, includes
an annotation tool, for creating a training corpus that
is well designed and documented (Watson, 2020).

The above-mentioned tools provide support to the
annotators but they do not use data visualisations.
In contrast, Eras (Grosman et al., 2020) and We-
bAnno (Yimam et al., 2013), use data visualisation
to show, for example, the results of annotators agree-
ment through a Heat map. The visualisations we
present in this paper are in line with these two frame-
works since we also aim to facilitate and improve an-
notators’ work by means of new, meaningful visuali-
sations.

3 USED DATA

In this section we describe the NewsCom-TOX
corpus, the dataset used for developing the visuali-
sations, and the annotation tagset used.

The NewsCom-TOX corpus consists of 1,262
comments posted in response to different articles ex-
tracted from Spanish online newspapers from August
2017 to May 2019 annotated with toxicity. The ar-
ticles selected cover four different topics -economy,
politics, religion and immigration- and the comments
were selected in the same order in which they appear
in the time thread in the web. Those comments that

were duplicated were removed. Table 1 shows the dis-
tribution of comments per topic and the correspond-
ing newspaper from which they were obtained.

Topic Comments Newspaper
Economy 309 La Información, El Paı́s
Politics 239 Huffpost, La Vanguardia
Religion 298 Xataca Ciencia
Inmigration 416 El Confidencial
Total 1262

Table 1: Distribution of comments per topic

In order to have a balanced representation of com-
ments per topic, two different news articles were
needed in the case of economy and immigration-
related topics. Articles were selected to potentially
lead to controversy with the aim of finding comments
with opposing opinions and examples of toxic lan-
guage. Toxicity is difficult to define, possibly because
it can be expressed at different levels and in different
ways (Ross et al., 2017), (Davidson et al., 2017), (For-
tuna and Nunes, 2018). In order to reflect this diver-
sity in the expression of toxicity, the proposal is to as-
sign different levels of toxicity, indicating whether the
comment is ’not toxic’, ’mildly toxic’, ’toxic’ or ’very
toxic’. With the aim of reducing the subjectivity in the
annotation and, therefore, also the disagreement be-
tween annotators, we propose first annotating differ-
ent linguistic features such as sarcasm, mockery, in-
sult, improper language, constructivity and argumen-
tation. These binary features allow us to discriminate
the level of toxicity of the comments. Furthermore,
some of these features can be correlated, for instance
argumentation and constructivity, insult and improper
language, and these correlations are also useful when
assigning the level of toxicity. Our hypothesis is that
the combination of these features helps to determine
the level of toxicity in a more objective way. The
tagset used for the annotation of comments with toxi-
city is the following:

• <argumentation>: indicates that the comment
gives arguments or reasoned explanations or
grounds opinions with evidences.

• <constructivity>: a comment is constructive
when it is respectful and polite (regardless of
whether it is in favour or against the content of the
article or of another comment)1, when it intends
to create an enriching and useful dialogue, when
it contributes with new knowledge, ideas and pro-

1We can find two types of comments, those that com-
ment on some specific or general aspect of the article, or
those that are responses to another comment.
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Figure 1: Visualisations of Global Data Distribution. Bar chart and Heat map.

posals and offers new perspectives and insights to
approach the subject.

• <sarcasm>: a comment is sarcastic when the
content is ironic -that is, when the writer uses
words that mean the opposite of what he really
wants to say- and when it is accompanied by a
harsh, sharp and negative criticism and made in
bad faith. Ironic comments without intention to
cause pain (without a negative load) are not con-
sidered toxic and are tagged as <sarcasm=no>.

• <mockery>: indicates that the comment
ridicules, mocks or humiliates a person or group.

• <insult>: indicates that the comment contains
one or more insults or slurs with the intention to
offend a person or group.

• <improper language>: indicates that the com-
ment contains language not consider to be proper
or that is vulgar and impolite and/or which in-
cludes rude words.

• <toxicity>: a comment is toxic when it attacks,
denigrates or disqualifies a person or group on the
basis of certain characteristics such as race, eth-
nicity, nationality, religion, gender and sexual ori-
entation, among others. This attack can be ex-
pressed in different ways -directly (through insult,
mockery and inappropriate humour) or indirectly
(for instance through sarcasm)- and at different
levels of intensity, that is at different levels of tox-
icity (the most aggressive being those comments
that incite hate or even physical violence).

It should be noted that all these tags have bi-
nary values (value= yes/no) except the toxicity tag,
which has four values (<1= non-toxic>; <2= mildly
toxic>; <3= toxic> and <4: very toxic>). The
level of toxicity is determined by the presence and
combination of the features presented above. In fact,
these features are different ways or mechanisms to
express the toxicity and, therefore, they also help to

define what is meant by toxicity. The more nega-
tive features appear in the comment, the higher the
level of toxicity. For instance, we tag as ’mildly
toxic’ comments in which only one feature appears,
the most frequent being <sarcasm>, <mockery>
and <improper language>, whereas in comments
tagged as <very toxic> the combination of features
is higher than two, an especially frequent combination
is <improper language>, <mockery> and <insult>.
This annotation allows us to establish fine grained cri-
teria for analysing and better defining what can be
considered a comment with toxic language or hate
speech.

4 GRAPHS TO VISUALISE TOXIC
MESSAGES

We have used multiple types of graphs and dia-
grams to visualise the annotated data, which allow to
analyse and measure these kind of data. We have used
Tableau2 (an interactive data visualisation software),
DisplayR3 (an online visualisation tool) and lastly
SankeyMatic4 (an online Sankey diagram builder) to
create data visualisations.

4.1 Visualisations of global
distributions.

All the visualisations are combined in a Tableau story,
which offers an individual page for each visualisation.
The first page of our Tableau project is an introduc-
tion including four icons representing the four topics
(economy, politics, immigration and religion), a brief
explanation that provides an overview of the dataset

2https://www.tableau.com
3https://www.displayr.com
4http://www.sankeymatic.com
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Figure 2: Visualisations of Global Data Distribution. Spider Chart and Sankey diagram.

(such as the origin of the messages and the questions
to be answered using the visualisations) and the text
visualisation of the seven features used in the annota-
tion of toxicity. Each feature is represented by size,
depending on the total number of ‘yes’ comments
they have. On the tooltips, there is an example com-
ment about the feature and the number of comments
annotated as ’yes’ for that feature. This text visuali-
sation is a summary of upcoming visualisations.

Created graphs are then separated into three
groups: (1) visualisations to analyse the global distri-
butions of messages by topics (2) visualisations of the
relationships between features, and (3) visualisations
by features.

Global data distribution visualisations aim to ex-
plore data in terms of topics and features of the mes-
sages (see Figures 1 and 2). The first graph in this
section is a simple Bar chart. The Bar chart has four
sections represented by icons for four topics. Features
are colour coded and displayed in each topic individu-
ally. The Bar chart displays features in terms of their
total numbers. There is a filter that allows users to
select values (’yes’ or ’no’). Please note that every
message has been annotated with tags ’yes or no’ for
every feature. For example, a comment tagged with
’yes’ in the argumentation, mockery and sarcasm fea-
tures, can be tagged as ’no’ in constructivity and in-
sult Secondly, a Heat map5 is created to show data as
a whole and in a simple way without other complex
design elements. The Heat map illustrates the fea-
tures for each topic including a filter to choose ’yes’
or ’no’.

The Spider6 graph is created to present the global
distribution of toxic messages for each topic. The Spi-

5A heat map displays data values with colour, usually by
intensity or hue.

6A spider graph displays multivariate data with three
or more quantitative variables represented on axes starting
from the same point.

der web has seven sides representing the seven fea-
tures that appear in the annotated messages. Top-
ics are represented by their assigned colours. On the
Spider chart, each topic has a unique shape made up
of points combined together with lines. Each point
shows the selected percentage value (’yes’ or ’no’)
percentage of a feature and lines are used to combine
the points to form the shape. In the page of the Spider
graph, there is a toxicity symbol which displays the
mean level of toxicity for each topic.

Another approach for examining the global distri-
bution of data is to create a Sankey diagram7. In this
case, features are presented on the left side, splitting
to form areas on the right side. The Sankey diagram
also allows users to choose ’yes’ or ’no’ values. Next
to the topics, there are keys that illustrates the percent-
age of each feature in terms of the selected value.

4.2 Visualisations of relationships
between features

Two visualisations have been created to observe re-
lationship between features (see Figure 3). These
two visualisations aim to show a comparison between
the features annotated in the comments, which will
mainly allow annotators/linguists to analyse their hy-
pothesis.One of them is a Scatter plot with icons for
topics, representing one feature on the x-axis and one
on the y-axis. Each axis shows the possible values of
the feature represented on that axis (yes-no). There is
a filter where users can choose the desired feature for
each axis to compare with each other. Thus, with this
graph, users can examine the number of occurrences
of each combination of values

(’no-no’, ’no-yes’, ’yes-no’, and ’yes-yes’) in se-
lected features. For example, the combination ’no-no’

7Sankey diagram is a type of flow diagram where the
width of the links are proportional to the size of the data.
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Figure 3: visualisations of relationships between features. Scatter plot and Chord diagram.

for constructivity and argumentation refers to mes-
sages tagged as ’no’ for the constructive feature and
’no’ for the argumentation feature.

The other visualisation is a Chord diagram8 (Reid,
2020). While a Scatter plot analyses data in topics and
features, a Chord diagram does not separate data into
topics but rather analyses the data as a whole in the
toxic comment features. The Chord diagram also has
value selection buttons for ’no-no’, ’no-yes’, ’yes-no’
and ’yes-yes’ comments in features. The Chord di-
agram lets users select a feature and then highlights
the arcs of that selected feature, which allows users to
examine features individually in relation to the other
features. The thickness of the arc that connects two
features represents the number of messages annotated
by those two features with the value selection. The
total number of comments in the selected feature and
others are also displayed on a separate Bar chart,
which displays the total amount of comments in each
feature.

4.3 Visualisations by features

One of the main objectives of this study is to measure
the level of toxicity. There are four levels of toxic-
ity, namely, non-toxic (1), mildly toxic (2), toxic (3)
and very toxic (4). The aim of these graphs include,
analysing annotated corpus, hypotheses and most im-
portantly to identify inconsistencies. Although the
mean of toxicity of each topic is illustrated on the Spi-
der, and the Sankey diagram, three additional graphs
are created to analyse the level of toxicity in features.
Firstly, in the left part of Figure 4 there is a Bar chart
in which each level of toxicity is represented with a
separate bar for each feature. In this graph, the ’yes’
and ’no’ values are displayed separately, and can be

8A chord diagram shows the connection between fea-
tures. Thickness of the links represents the data size.

selected from the list, while a tooltip displays the to-
tal number of messages at each level of toxicity.

A Sankey diagram is proposed to show the level
of toxicity for each feature (see the right hand side
of Figure 4). In this diagram, the data come from
the level of toxicity (non-toxic to very toxic) and go
into features with lines in which the thickness of the
lines represents the total number of comments in each
level and its connected feature. The same toxicity
icon is used to show the total number of messages on
the tooltip for each features at each level of toxicity.
Lastly, in Figure 4 there is a Treemap in which the
level of toxicity is represented for a selected feature.
The Treemap is more complex as it has many compo-
nents to explore and is highly interactive. There are
four different maps for each topic. All levels of toxi-
city (1 to 4) are divided into ’yes’ and ’no’ are repre-
sented by colours blue to red. The darkest blue repre-
sents the lowest toxicity and the darkest red shows the
highest toxicity. For example, if the chosen feature is
constructive, we can see the number of messages at
the level of toxicity 2 separately as ’yes’ or ’no’ in the
economy topic.

There is another small Treemap which represents
the total number of messages by topic and, when the
topic is chosen, the Treemap shows the total number
of messages at each level of toxicity without dividing
them into ’yes’ or ’no’. There is a filter to change
the range of levels. Treemap allows users to compare
the levels of toxicity in terms of features and also top-
ics. There is another Treemap that represents the total
number of messages in a topic and, when the topic is
chosen, the Treemap shows the total number of mes-
sages at each level without dividing them into ’yes’
or ’no’. There is a filter to change the range of levels.
In this graph ’yes’ or ’no’ values are displayed sepa-
rately and they can be selected from the list, while the
tooltip displays the total number of messages at each
level of toxicity.
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Figure 4: Visualisations by features. Left to right, Bar chart, Sankey diagram and Treemap.

5 EVALUATION

5.1 Methodology

The goal of the evaluation was to assess comprehen-
sibility (how well the graph communicates the infor-
mation to the user), interpretability (how well the user
can extract meaning from the visualisation), attrac-
tiveness (to what extent the visualisation is visually
appealing for the user), and to gather users’ opinions.

The evaluation was exploratory, aimed at obtain-
ing participants’ perceptions. It was unmoderated,
performed through an online questionnaire. A total
number of eight participants were recruited, includ-
ing five females and three males. The questionnaire
consisted of demographic questions followed by three
visualisation tasks lasting up to 30-35 minutes. De-
mographic questions included, gender, age, and two
questions related to the participants’ prior degree of
experience in message annotation and visual analyt-
ics. Most of the participants had prior experience in
data visualisation and more than half of the partici-
pants had expertise in message annotation.

The visualisation tasks intertwined links to our
Tableau visualisations and questions related to them:

• Task 1: Please, follow the tableau link of ”visu-
alisations of global distribution” (Bar Chart, Heat
map, Spider Chart, and Sankey Diagram).

– Q1-Comprehensibility: ”Score from 1 (the
most negative) to 5 (to most positive) how well
the graph communicates the global distribu-
tion.” Please, justify the best and the worse
scores.

– Q2-Interpretability: ”Score from 1 (very diffi-
cult) to 5 (very easy) how easy is to interpret
the graph.”

– Q3-Attractiveness: ”Score from 1 (very bad) to
5 (very good) the visual appeal of the graph.”

• Task 2: Please, follow the tableau link of ”visual-
isations of relationships between features” (Scat-
ter Chart and Chord Diagram).Same questions as
TASK1: Q1-Q3.

• Task 3: Please, follow the tableau link of ”visuali-
sations by features” (Bar Chart, Sankey Diagram,
and Treemap). Same questions as TASK1: Q1-
Q3.
The questions were chosen to explore the three

dimensions of visualisations including: the commu-
nication of information (how well the visualisations
communicate), the interpretation of graphs (how easy
or difficult it is to understand the graphs, and the at-
tractiveness (how appealing the visualisations). There
were nine closed-questions (i.e. score 1 to 5), three
of which were followed by three open-questions (i.e.
justify your answer) presented in the questionnaire.
Data were collected anonymously.

5.2 Results

For each task, we first analysed answers to questions
(Q1-Q3), then we presented the qualitative data aris-
ing from users’ comments.

Task 1 : visualisations of global distribution
According to the results in Figure 5, the Heat map

received the highest scores in Q1-Comprehensibility,
followed by the Bar chart. The Spider graph received
relatively good scores in this question, whereas the
Sankey diagram was the least favourite graph. The
results show that the Bar chart is the easiest to un-
derstand in Q2-Interpretability, with 75 percentage of
participants scoring it as very easy and the Sankey
diagram as the hardest to understand, with relatively
low scores. The Spider chart and the Sankey diagram
scored the highest in Q3-Attractiveness.

In the first task, the Bar chart was the most
favoured graph in the dimensions of comprehensibil-
ity and attractiveness. The Bar chart was the second
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favourite graph in the communication of information
dimension, scoring slightly lower than the Heat map.
The Bar chart was described by multiple participants

Figure 5: Stacked bar chart displaying the results in
Task 1. Q1-Comprehensibility, Q2-Interpretability and Q3-
Attractiveness.

as very easy to understand and use. A couple of
participants commented that they favoured the Bar
chart as they are used to analysing this type of graph.
Another positive comment was that the colours of the
bars were both appealing and made the visualisation
clearer. However, various participants commented
that the Bar chart should have included percentages
along with the actual total number of comments in the
features. The Heat map received the highest scores
for Q1-Comprehensibility. The results also show that
the Heat map was easy to understand and communi-
cates information well, however, visually it was not
as attractive as the other three visualisations.

The Spider graph received mixed reviews from
users. One participant stated that ”I think the Spi-
der gives a very clear idea of the distribution of at-
tributes by features, with its isolated and superim-
posed surfaces, it reflects very clearly what has been
annotated”. Another participant stated that ”The Spi-
der chart is also a good way of displaying the data
for a general comparison across topics. However, the
comparison among features within a specific topic is
less clear when only one axis contains the percentage
indicator.” Another participant agreed with this com-
ment by stating that comparisons between the features
were a little bit difficult when the values matched. The
results suggested that the Spider graph was visually
very appealing but slightly more difficult to under-
stand than the Bar chart and the Heat map.

The Sankey diagram was the least favoured of all
the graphs, even though it received high scores in the
visual appeal section. The majority of the participants
commented that the shape of the graph was confusing,
difficult to understand and that it was difficult to com-
pare features of messages and topics. One participant

stated that ”The Sankey diagram seems rather chaotic
compared to the other ones”. Some participants com-
mented that they needed to pay extra attention to the
Sankey diagram because of its complexity.

Multiple participants commented that to improve
communication, all of the graphs should have in-
cluded both percentage values and actual total num-
bers. The interactivity of the graphs was an impor-
tant element as results show that participants pre-
ferred the Bar chart since it was very interactive while
they did not like the fact that the Sankey diagram
was static. The comments suggest that participants
favoured graphs on which they could spend the least
possible time as they did not want to waste time trying
to understand the graphs.

Task 2: visualisations of relationships between
features

In the Q1-Comprehensibility, (see Figure 6), the
Scatter plot and the Chord diagram achieved simi-
lar scores. The Scatter plot is favoured slightly more
by the participants. The Scatter plot achieved higher
scores in the Q2-Interpretability than the chord di-
agram, with a total of seven high scores, while the
Chord diagram received only two high scores. For
the Q3-Attractiveness, the Chord diagram was con-
sidered visually more attractive than the Scatter plot
and it obtained significantly high scores.

Figure 6: Stacked bar chart displaying the results in
Task 2. Q1-Comprehensibility, Q2-Interpretability and Q3-
Attractiveness.

In the second task, most of the participants agreed
that the Scatter plot was easier to understand than
the Chord diagram, and the Chord diagram was vi-
sually more appealing than the Scatter plot. There
were mostly positive views about both graphs in terms
of their ability to communicate the information and
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the Scatter plot was described as more intuitive than
the Chord diagram. Participants commented that the
Scatter plot provided a clear view for comparing top-
ics and features, and that it was also very engaging
thanks to its interactivity. A participant commented
that “with the Scatter plot it is easier to understand
the correlation between the different features, an ex-
planatory legend appears that also includes an ex-
ample, the relationship is quickly associated with the
number of examples, it displays the relationships be-
tween features according to the topic. It is more in-
tuitive”. On the other hand, some participants have
found the Chord diagram, relatively easy to under-
stand and useful, especially in terms of the overall
view of the data. One participant stated that ”Chord
Diagram helps to understand the different relation-
ships between features very well and allows interac-
tion by focusing on various elements and their inter-
sections, providing very valuable information.”

Task3: visualisations by features
The Bar chart received the highest scores in the

Q1-Comprehensibility, (see Figure 7). The Sankey
diagram and the Treemap obtained similar scores. In
the Q2-Interpretability, the Bar chart was considered
to be the easiest and the Treemap the hardest to un-
derstand. As in task 1, the Sankey diagram given
the highest scores in the Q3-Attractiveness, followed
by the Bar chart which received the second highest
scores in Task 3. The Treemap was the least preferred
graph in this task. In the Task 3 (see Figure 7), the

Figure 7: Stacked bar chart displaying the results in
Task 3. Q1-Comprehensibility, Q2-Interpretability and Q3-
Attractiveness.

most preferred graph was the Bar chart in the dimen-
sions of comprehensibility and interpretability. This
is in line with other comments since the Bar chart is

very commonly used, it is easier to interpret, and com-
paring the features with each other was therefore eas-
ier. Also analysing a Bar chart does not require prior
knowledge of the visual analytics, which was another
reason for the popularity of the Bar chart.

The Sankey diagram had the highest score in the
visual appeal section. There were mixed observa-
tions about the Sankey diagram as some participants
found it very clear while some did not. One partici-
pant stated that “The Sankey Diagram illustrates very
well the distribution of features according to the level
of toxicity and vice versa, it is very easy to understand
and provides a lot of information, it would be useful if
the information could be isolated interactively”. Var-
ious participants agreed with the statement and they
have described the Sankey diagram as being rather
difficult to understand at first but afterwards it was
clear as the information was globally displayed. Hav-
ing more interactive elements could solve the prob-
lems of interpretation as users can filter down to ex-
plore features separately. On the other hand, some
participants described it as chaotic and confusing.

Lastly, the results showed that the Treemap was
the least liked graph in this task. An interesting find-
ing was that participants described the Treemap as
difficult to follow and understand though it stored
more information than the Sankey diagram and the
Bar chart, such as comparisons in topics and compar-
isons of ’yes’ and ’no’ comments together. For ex-
ample, a participant commented that “The Treemap,
which at first glance seems more unpleasant, when
you look at it closely, it gives very interesting infor-
mation, which is when we find the same attribute la-
belled two different ways, helping then in the finding
of inconsistencies in the annotation. For example, in
the Economy topic, toxicity level 2 is represented by
annotated comments such as Toxic = Yes and Toxic =
No”. However, most of the participants commented
that they did not understand the Treemap.

Overall, results show that participants were at-
tracted by the graphs that were easier to understand.
The appeal of the graphs was also an important ele-
ment, though, not as important than the ease of use.
Many participants were not attracted to the graphs
they did not understand and did not want to spend
time on them, even though they liked their appear-
ance more. Another finding suggests that participants
would have benefited from greater guidance in the
complex visualisations with various elements, which
would have facilitated the comprehension, thereby
proving more attractive. An idea is to combine sim-
ple graphics with more complex ones to create simple
graphics like the Bar chart to guide graphs like the
Treemap.
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6 CONCLUSIONS AND FUTURE
WORK

This paper presents a study related to data visuali-
sation of hate speech (toxicity) annotations. To do so,
we proposed various data visualisations, that includes
different diagrams to assist annotators in the detec-
tion of inconsistent annotations, the analysis of the
global data distribution and the discovery of relation-
ships between features. We used a complex corpus
composed by comments posted in different Spanish
online new articles. All the comments were annotated
using a new tagset that combines several features to
determine the level of toxicity in a more objective
way. The challenge in the proposed data visualisa-
tions was providing annotators with a wide spectrum
of diagrams that highlight trends and relationships in
an easy and comprehensible way. We proposed a di-
versity of visualisations (from those that were well-
known to some others that could be new or unfamil-
iar for annotators). We conducted a preliminary eval-
uation of the proposed visualisations from collected
qualitative and quantitative data obtained from a small
but representative group of annotators. That is, they
have different degree of expertise on visual analytic
tools, and different knowledge in the annotation of
corpus. We evaluated several dimensions of the visu-
alisation experience (comprehensibility, interpretabil-
ity and attractiveness).

In the following, we share our lessons learned, in-
cluding design recommendations useful for future vi-
sualisation studies on corpus annotation. Regarding
the comprehension of visualisations, the first consid-
eration is that the participants mostly prefer the sim-
ple graphics (such as the Bar chart or Heat map),
probably because annotators already acquainted with
them on their daily annotation. However, the more ex-
pert participants in using visual analysis the more they
valued visualisations that show more complex details
(like the Sankey, the Spider or the Chord Diagram).
Moreover, we also observed that in some cases the
perception of the same diagram differed depending on
which task and when it was visualised. For example,
participants who rated the Sankey diagram as difficult
to understand in Task 1, they found it easier in Task 3.
Keeping this understanding in mind, the use of mixed
visualisations that include easiest graphs -to facilitate
”the landing” in the annotated corpus-, together with
the more complex ones - to explore more complex re-
lations - could help to enhance the visualisation effec-
tiveness. In relation to the interpretation of the visual-
isations, we found that participants appreciated hav-
ing redundant information in the graphs (for instance,
percentages and absolute values), and also they highly

valued the interaction offered by some graphs, partic-
ularly in the ones that were more complex to under-
stand (such as the Scatter Plot and the Tree Map). The
use of interactivity by prioritising the most important
attributes such as features, topics, Yes/No values, etc.
to select the data to be shown is also an important fact
to remind take into account in future visualisations.
Last but not least, participants gave rather positive
comments in open questions in those graphs which
they scored high in the attractiveness dimension (such
the Scatter Plot and the Spider Diagram). Making vi-
sualisations attractive and clear, using suitable colours
and icons, is engaging and, more importantly, instruc-
tive and enlightening.

In the future, the first step is to design novel visu-
alisations tailored according to linguists’ needs with
the findings of this paper and validate them by a larger
group of annotators. Moreover, we plan to integrate
the visualisations in earlier stages of the annotation
process. Visualisation will serve as a tool to lead the
annotation, letting users examine corpus as well as
finding and editing inconsistent data. Additionally,
we plan to introduce more valuable information re-
lated to the context in which the comments are ob-
tained. Collecting information such as, where the
message is post, who is the user, location and times-
tamps, could also help annotators to detect diffusion
of hate speech.
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ABSTRACT
Skin cancer is one of the most dangerous types of cancers that affect millions of people every year. The detection of
skin cancer in the early stages is an expensive and challenging process. In recent studies, machine learning-based
methods help dermatologists in classifying medical images. This paper proposes a deep learning-based model
to detect and classify skin cancer using the concept of deep Convolution Neural Network (CNN). Initially, we
collected a dataset that includes four skin cancer image data before applying them in augmentation techniques to
increase the accumulated dataset size. Then, we designed a deep CNN model to train our dataset. On the test data,
our model receives 95.98% accuracy that exceeds the two pre-train models, GoogleNet by 1.76% and MobileNet
by 1.12%, respectively. The proposed deep CNN model also beats other contemporaneous models while being
computationally comparable.

Keywords
Skin Cancer, Dataset, Data Augmentation, Deep CNN, Medical Image, Computer Vision.

1 INTRODUCTION

An uncontrollable growth of abnormal cells that ap-
pears on our skin is called skin cancer. It happens when
some unusual DNA damage activates mutations [1] that
helps skin cells to increase very fast, and this forms
malignant tumours. Some major skin cancer types are
basal cell carcinoma, squamous cell carcinoma, actinic
keratosis and malignant melanoma. Basal cell carci-
noma is a nonmelanoma type cancer that starts with dif-
ferent sized nodules [1]. The second type of skin can-
cer is squamous cell carcinoma that creates scaly red
marks, open inflammations, uneven clots or lumps in
the skin. In the U.S., more than 1 million cases of this
type are diagnosed each year [2]. A different kind of
skin cancer is actinic keratosis that is the initial stage
of squamous cell carcinoma [3]. The last one is a se-
rious one among others which is malignant melanoma.
It occurs when pigment cells grow without any control.
Without any indication, 90% of melanomas are diag-
nosed as primary tumours [4].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Ultraviolet radiation triggers these tumours to increase.
These cancer cells are seen mostly on sun-exposed ar-
eas like ear, lips, face, around the eye, scalp, neck, hand.
American Cancer Society [5] estimated the death rate
for melanoma skin cancer to be 6850, where new cases
of this estimation are 100,350 where 60,190 people are
male, and 40160 are female. They also estimated that
the death rate is higher in male than female. A spe-
cialist do visual analysis by analysing the pigmented
lesions by changing size, irregular shape and colour.
Then histopathologic diagnosis is another way to exam-
ine the cancer cell. Here experienced dermatopatholo-
gist help to determine the melanoma. The earlier can-
cer detection can be useful to save many lives. Vocaturo
et al. [6] have shown different machine learning tech-
niques for automatically detecting melanoma. These
techniques help to research more on skin cancers [7].
However, we need systems that can accurately predict
skin cancer or not and its type.

Non-pigmented lesions like basal cell carcinoma, squa-
mous cell carcinoma, actinic keratosis and pigmented
lesion like malignant melanoma have some clinical dif-
ferences: bleeding, pain, and itching. But the appear-
ance of these lesions on human body parts is very simi-
lar. So it is difficult to distinguish any of these skin can-
cers. Besides visual analysis, an automated system can
help a physician find skin cancer types faster and easier
and reduce patient life risk. Classification algorithms
such as K-nearest neighbour, decision tree, deep learn-
ing, [8] logistic regression, support vector machine etc.
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are used to describe how well these classifiers perform
on dermoscopic images. In [9], K-mean clustering is
used to segment skin cancer, and then features are ex-
tracted using grey level co-occurrence matrix. The sup-
port vector machine is used as a classifier. For faster and
better prediction, A classification technique can also
help the patient life that relies on the detection result
[11] [12] [13] [10]. It motivates us to implement a deep
learning approach to build a CNN model that can clas-
sify four different skin cancer types.

This paper proposes a deep convolutional neural
network model that automatically detects and classifies
actinic keratosis, basal cell carcinoma, malignant
melanoma, and squamous cell carcinoma. To test our
model, we collect a dataset and train it in our model
with other two pre-train models. Our model provides
satisfying accuracy compare to the state of the arts.
The summary of our contribution is four folded.

• We collect a skin cancer dataset, size 800 images
of four skin cancer classes that are, Actinic Ker-
atosis, Basal Cell Carcinoma, Malignant Melanoma
and Squamous Cell Carcinoma. We use data aug-
mentation techniques for increasing the dataset at
5600 images that were split into training and test set
for deep CNN models.

• A deep CNN model has been proposed that has con-
volution layers for extracting features and fully con-
nected layers for classifying the cancer type. Reg-
ularization techniques like batch-normalization and
dropout helped to reduce the overfitting.

• We present a comparative study of two pre-trained
models that shows how our model differs from ar-
chitecture and accuracy.

Rest of the paper is discussed as follows: Section 2
most related works, Section 3 our proposed deep CNN
model, Section 4 experimental results and discussion,
and we conclude our work with further research direc-
tion in Section 5.

2 RELATED WORKS
This section narrates some most related works on Skin
Cancer using different techniques for detecting and
classifying.

2.1 Learning based Approaches
Garg et al. [14] proposed a way to detect melanoma
skin cancer by using some image processing tech-
niques. They have implemented an ABCD rule called
Asymmetry, Border Irregularity, Color, and Diameter.
An illumination correction used before the skin lesion
segmentation. They received the accuracy up to

91.6%. Tammineni et al. [15] proposed a melanoma
segmentation technique for early detection of skin
cancer. A melanoma segmentation technique used
based on Gradient and Feature Adaptive Contour
(GFAC) model. They experimented on PH2 dataset
consisting of 200 images. The achieved accuracy for
the proposed segmentation techniques is 98.64%. The
acquired accuracy is well enough, but it is limited to a
low sized dataset.

2.2 CNN based Approaches
Pham et al. [16] classified skin lesions with Deep CNN
with Data Augmentation. They combined images from
different sources such as ISBI Challenge, ISIC Archive,
PH2 dataset to prepare the dataset. InceptionV4 was
used as the model architecture, and the outcomes com-
pared by using Support Vector Machine (SVM), Ran-
dom Forest (RF) and Neural Network (NN) as classi-
fiers. They achieved an overall accuracy of 89%. Even
though the model architecture was InceptionV4, the
gained accuracy was not satisfactory. Jordan et al. [17]
proposed a method to classify multimodal skin lesion
using deep learning. They have composed their dataset
with 2917 cases from five classes. They have used mod-
ified ResNet-50 as the model architecture. As a modi-
fication, they removed the softmax and fully connected
layer from the end. They used 2048-dimensional image
feature vector as the flattened output, which they re-
ferred to as an image feature extraction network. They
received 85.8% average accuracy in single image clas-
sification, and the highest multimodal network accu-
racy was 86.6%. The multimodal network fails to ac-
quire higher accuracy. Serban et al. [18] implemented
a convolutional neural network to facilitate automatic
diagnosis of skin cancer. The dataset consists of 1000
images collected from International Skin Imaging Col-
laboration and PH2 databases. There are two classes,
benign tumours and skin malignant lesions, each hav-
ing 500 images. Then the dataset was fed to the neural
network. The proposed solution acquired 80.52% accu-
racy on the dataset.The dataset has only two classes and
the accuracy can be improved.

Hosny et. al [19] classified three different types of skin
cancer that are melanoma, common nevus and atypical
nevus. They modified the AlexNet architecture. When
the model was trained with original images, they got
80% accuracy. The accuracy was 98.61% after using
augmented images. They used 200 images from ph2
dataset which became 11000 after applying augmen-
tation. However, there are 11000 images after aug-
mentation while the original dataset has three classes
with 200 images in total. Ensaf et al. [20] have used
transfer learning as a part of deep convolutional net-
works to classify enhanced skin lesions. They used
HAM10000 dataset. In the pre-processing step, the
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dataset was cleaned, downsampled, split and then aug-
mented. As model architecture, DenseNet-121 and Mo-
bileNet architecture was used. Both CNN models were
pre-trained. After evaluation, DenseNet-121 and Mo-
bileNet achieved 71.9% and 82.6% testing accuracy,
respectively on the unbalanced dataset. Whereas, they
reached 92.7% and 91.2% accuracy, respectively on the
balanced dataset. It was an impressive improvement.

Nahata et. al [21] proposed skin cancer detection
model using deep learning that can classify the types of
skin cancer. They used similar seven classes from ISIC
2018 and 2019 dataset. Transfer learning was used
to train the CNN. For this, InceptionV3, ResNet50,
VGG16, MobileNet and InceptionResnet was used.
Among all these models, InceptionResnet achieved
91% accuracy. The dataset had 35,348 images with
seven classes. Improvement in the model architecture
can give more accurate prediction result. Ulzii et
al. [22] proposed a way to classify skin cancer by
using ECOC SVM classifier with pre-trained AlexNet
architecture. They collected the dataset through
searching on different search engines available online.
The dataset consists of 3753 images with 4 classes
Actinic Keratoses (897), Melanoma (958), Squamous
cell carcinoma (977), Basal cell carcinoma (921). For
the model architecture, pre-trained AlexNet model was
used to extract the training features. The classifier was
Error-Correcting Output Codes (ECOC) SVM. After
evaluation, they were able to acquire 94.2% accuracy
on multiclass classification. Further improvement can
increase the accuracy of their model.

The earlier research was mostly focused on melanoma,
but research focusing on various skin cancer types is
scarce. Our focus is on improving the dataset and build-
ing a model that can classify different types of skin can-
cer.

3 METHODOLOGY
In this section, we have described the overall work-
flow of our proposed method. At first, we have col-
lected a dataset then we preprocessed the dataset with
the augmentation method. Finally, we proposed a deep
learning-based model to detect skin cancer, as shown in
Figure 2.

3.1 Dataset
Our data collection process was a challenging
task. We collect 21 images from the Department
of Dermatology, Dhaka Medical College (DMC),
Dhaka, Bangladesh. Other 779 images acquired
from www.dermnet.com, which is the largest
independent photo dermatology source dedicated to
online medical education. Our dataset contains four
different classes of Skin Cancer, including Actinic

Keratosis (AK), Basal Cell Carcinoma (BCC), Malig-
nant Melanoma (MM) and Squamous Cell Carcinoma
(SCC). Figure 1 shows a sample of our dataset on skin
cancer. After collecting the dataset, we resized our
dataset because all the images were not the same size.
So, the images were pre-processed by resizing them
into 224× 224 pixel as it gives a better result. For our
deep learning approach, the number of images was not
enough for the model’s learning.

Figure 1: A sample of our collected dataset.

Table 1: Image Augmentation Parameters.

Transformation
Types

Descriptions

Rotation Rotate an angle ranging from 0 to 360 de-
grees at random.

Flipping 0 (Without) or 1 (With) flipping
Re-scaling With a scale factor ranging from 0.3 to

0.8, at random
Shading From the middle to the edges, the image

brightness is reduced.
Translation Adding a given value to the x-axis and y-

axis shifts the image in coordinate space.
Shearing Shifting one portion of the image in the

manner of a parallelogram.

3.2 Pre-processing and Augmentation
We used different augmentation techniques to improve
the dataset size using rotation, flipping, shading, trans-
lation, shearing and scaling. We applied 0.2 as shifting,
shear and zoom range. Rotation transforms a source im-
age by rotating clockwise or counterclockwise by some
number of degrees randomly. Flipping means the rota-
tion of an image in horizontal or vertical axis. Shad-
ing is done by different hue values denoting the shade
of colors in the image. Translation means moving the
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Figure 2: The architecture of propose deep CNN Model for Skin Cancer detection and classification.

image along to either x-axis or y-axis. Shearing means
shifting one part of an image to any parallel side. Resiz-
ing an image to a given size is scaling. Table 1 contains
a summary of the augmentation parameters. After ap-
plying all the transformations, each image normalized.
After augmenting our dataset, we received in a total of
5600 images. Then we split it into training and test-
ing sets. In our training phase, 4480 images (80% of
the dataset) used for model learning means training and
validation. We kept 1120 images (20% of the dataset)
for testing and evaluating the model.

3.3 Proposed Model
Different types of deep learning architectures are com-
monly used for image and video classification, while
recent methods focusing on deep CNN models for iden-
tifying and classifying 2D and 3D images [23] [24] [25]
[26]. Due to memory limitations, it is computation-
ally expensive to learn many trainable parameters and
arithmetic operations [27]. It motives us to work on a
deep learning-based method to detect and classify skin
cancer. Our proposed model used an input layer cor-
responding to 224× 224 input image with three input
channels. In this architecture, we used the first convo-
lutional layer from the input image with two and used
ReLU activation function to activate every convolution
layer. We used batch normalization, which normal-
izes the feature extraction and reduces data variance.
It is used after ReLU (1) activation function and before
max-pooling. It reduces the spatial dimensionality of
the extracted feature maps. Then we used the output
filter size as 16 with 7×7 kernel size followed by 2×2
size max-pooling layer with stride 2. Then added three
convolutional blocks, stacked over the first block, each
having a 3× 3 kernel size with 32, 64, 128 and filters
sequentially with ReLU activation function with cor-
responding batch-normalization and 2×2 max-pooling
layers with stride 2. Table 2 shows the summary of the
proposed model with layers, configuration, parameters
and output shape.

RELU(x) = MAX(0,X) (1)

The outputs from these layers are flattened and con-
nected with three fully connected layers: dense layers
and dropout layers. We used 25% of first two dropout
layers and 50% used for last dropout layer and the first
two dense layers used in 256 and another dense layer
used in 128, followed by Softmax (2) output layer acti-
vation function with probability images for each of the
class.

So f tmax((xi)) =
exp(xi)

∑ j exp(x j)
(2)

It must be designed with the appropriate loss function
and optimizer before being used for training. Adam
was used as an optimizer because it has a lower com-
putational cost, uses less memory, and is unaffected by
gradient re-scaling. This addresses concerns like large
data sets, hyper-parameters, noisy data, insufficient gra-
dients, and non-stationary problems that involve fine-
tuning. We used categorical cross-entropy as a loss
function, which is defined as an n-dimensional vector.

3.4 Pre-train Models
GoogleNet [28], and MobileNet [29] are one of the
most popular pre-train approaches in Deep Learning
and Transfer Learning that is being used by researchers
broadly [31] [32]. We also used these two pre-train
models that consist of 48 layers and 28 layers, respec-
tively. These models are trained on large ImageNet
dataset with 1000 classes and perform well. GoogleNet
[28] has learned multi-level feature representation for a
wide range of images. We use it with pre-train weight,
and our images were 299×299. The last layer consists
of an GlobalAverage, a Pooling2D layer and two Dense
layers. SGD optimizer was applied and Binary Cross
Entropy was used as the loss function [30]. Another
image classification model is MobileNet [29]. We use
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Table 2: The summary of the proposed model with lay-
ers, configuration and output shape.

Layers Configuration Output Shape
Conv2D 224 × 224 × 16; ker-

nel size: 7× 7; stride:
2; activation function:
RELU

224×224×16

BatchNormalization - 224×224×16
Max-pooling2D Kernel size: 2 × 2;

stride: 2;
112×112×32

Conv2D 112 × 112 × 32; ker-
nel size: 3× 3; stride:
2; activation function:
RELU

112×112×32

BatchNormalization - 112×112×32
Max-pooling2D Kernel size: 2 × 2;

stride: 2;
56×56×64

Conv2D 56 × 56 × 64; kernel
size: 3 × 3; stride:
1; activation function:
RELU

56×56×64

BatchNormalization - 56×56×64
Max-pooling2D Kernel size: 2 × 2;

stride: 2;
28×28×128

Conv2D 28 × 28 × 128; kernel
size: 3 × 3; stride:
2; activation function:
RELU

28×28×128

BatchNormalization - 28×28×128
Max-pooling2D Kernel size: 2 × 2;

stride: 2;
14×14×256

Flatten - 4096
Dense - 256
Dropout 0.25 256
Dense - 128
Dropout 0.25 128
Dense - 64
Dropout 0.50 64
Dense activation: Softmax;

unit: 4
4

this with pre-train weight and 224× 224 input images.
Here, the last layer consists a Dense layer with softmax
activation function. SGD optimizer was applied and Bi-
nary Cross Entropy was used as the loss function. Af-
ter that, we use our augmented images to train and test
those pre-trained models. We used a Dense layer with
softmax activation function as the last layer. Adam op-
timizer was applied and Categorical Cross Entropy was
used as the loss function. These pre-trained models de-
creased the requirement of computational power and
saved time for training the model. Table 3 shows the
two pre-train model’s training details and our proposed
model.

3.5 Evaluation Metrics
For measuring our model’s performance, we evaluated
it to observe which model gives the highest accuracy by
predicting the sample data [33] [34]. We calculated ac-
curacy, precision, recall, Specificity, Negative Predic-
tive Rate and False Discovery Rate by using the True
Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN) values. We also observed the con-

Table 3: Training details of three deep learning models
(two pre-train models and our proposed model).

Training Details GoogleNet MobileNet Proposed
model

Data Augmenta-
tion

Yes Yes Yes

Transfer Learn-
ing

Yes Yes No

Last layer GlobalAverage-
Pooling2D
Dense (1024,
activation =
relu) Dense
(4, activation
= sigmoid)

Dense (4,
activation =
softmax)

Dense
(4, acti-
vation =
softmax)

Feature Extrac-
tion Enabled

Yes No Yes

Classification En-
abled

Yes Yes Yes

Optimizer SGD SGD ADAM
Loss Function Binary Cross-

Entropy
Binary
Cross-
Entropy

Categorical
Cross-
Entropy

Number of Pa-
rameters

23,909,160 2,259,265 14,050,501

Number of Train-
able Parameters

23,874,727 2,225,153 13,142,281

fusion matrix for predicting each class [35]. Following
equations, 3-8 were used for evaluating the results.

Accuracy =
(T P+T N)

(T P+T N +FP+FN)
(3)

Recall/Sensitivity =
(T P)

(FN +T P)
(4)

Precision =
(T P)

(T P+FP)
(5)

NegativePredictiveValue =
(T N)

(T N +FN)
(6)

FalseDiscoveryRate =
(FP)

FP+T P
(7)

Speci f icity =
(T N)

(FP+T N)
(8)

4 RESULTS AND DISCUSSION
4.1 Experimental Setup
To train our proposed model, we used Google Colab
GPU platform using python environment. For training,
We compiled our proposed model with ADAM opti-
mizer with a learning rate of 0.001, and the batch size
was 32. After that, we train our model for 50 epochs
with ’categorical cross-entropy’ as the loss function.
We measured the model train and validation graph by
observing the loss function. We used pre-trained mod-
els that were fine-tuned to adjust some parameters for
training.
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Figure 3: (a) Accuracy, and (b) Loss Graph of our proposed model.

4.2 Results
Table 4 represents the confusion matrix of our proposed
model. It shows a tabular way of the performance of
our model. Each entry in a confusion matrix denotes
the number of predictions made by the model where
it classified the classes correctly or incorrectly. Here
the rows and columns indicate actual labels and pre-
dicted labels respectively. Depending on the number
of classes, The size of our confusion matrix became
4× 4. Table 5 shows the performance evaluation that

Table 4: The Confusion Matrix (CM) of our proposed
model.

Classes AK BCC MM SCC
AK 258 5 9 8

BCC 3 269 3 5
MM 15 2 256 7
SCC 9 13 11 247

includes Precision, Recall, Accuracy, Negative Predic-
tive Value and False Discovery Rate for four different
skin cancer classes of our proposed model. Equation 3
to 7 was used for calculating these values. The differ-
ent evaluation metrics indicate the overall performance
of our model. We have got the highest accuracy 97.23%
in Basal Cell Carcinoma (BCC). Basal Cell Carcinoma
acquired the highest values in other metrics such as Pre-
cision, Recall and Negative Predictive Value.

Table 5: Performance Evaluation of our proposed
Model.

Types Precision Recall Accuracy NPV F-Rate
AK 0.92 0.90 95.63% 0.97 0.08

BCC 0.99 0.93 97.23% 0.98 0.04
MM 0.91 0.91 95.80% 0.97 0.09
SCC 0.88 0.92 95.27% 0.98 0.12

Figure 3 (a) describes the training and validation accu-
racy of our model. Also the training and validation loss

is shown graphically in Fig. 3 (b). Here, the blue line
represents the training performance, and the orange line
represents the validation performance. After training,
we noticed there was a slight overfitting pattern. This
happened due to the new dataset. The different classes
had very similar characteristics which led the training
to occur in an overfitting pattern.

Table 6: Different training options with performance of
proposed model.

Optimizers Loss Function Pre Rec Acc
SGD MSE 85.42% 81.65% 89.97%
SGD cross entrophy 85.74% 85.36% 90.68%

ADAM MSE 88.55% 87.81% 92.32%
ADAM cross entrophy 91.96% 91.97% 95.98%

To get the best among all, we used SGD and ADAM
optimizers with MSE and cross entropy loss functions.
When we chose ADAM as the optimizer with cross
entropy loss function, we got 95.98% accuracy with
91.96% precision and 91.97% recall. Table 6 depicts
the performance of proposed model with different opti-
mizers and loss functions.

4.3 K-Fold Cross Validation
K-fold cross validation is used to know how accurately
the model will predict if a new test set is used. Here k
is the number of folds where each fold will be used as a
test set. In this case, to evaluate the proposed model on
our dataset, we used 5-fold cross validation. The first
fold was used as the test set in the first iteration. Se-
quentially the next folds are used as test set in next four
iterations. As we have 5600 images, each fold consists
of 1120 images.

The confusion matrics for each fold is shown in figure
4. The confusion matrics for each fold is shown in fig-
ure 4. Here in each confusion matrix, each row is for
actual values and column is for the predicted values of
the model. True positive values refers to the predic-
tion of the existence of skin cancer when it is actually
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Figure 4: Confusion matrix of 5-fold cross validation process for each fold: (a) fold 1, (b) fold 2, (c) fold 3, (d)
fold 4, and (e) fold 5.

present. In the first fold, the true positive values are
242, 247, 240, 235 for Actinic Keratosis, Basal Cell
Carcinoma, Malignant Melanoma and Squamous Cell
Carcinoma respectively. Similarly, the true positive val-
ues for next four folds are (229, 237, 233, 224), (241,
244, 237, 224), (265, 257, 259, 264), (250, 245, 253,
246), respectively. So for each iteration, we can see the
model prediction is quite well.

We also measured precision and recall for each fold.
Folds were shuffled 5 times and the measures are given
in table 7. After observing these values for each fold,
we got an average of 87.08% and 87.16% precision and
recall values respectively. The average accuracy of 5
folds is 93.50%. From this measurements, we can say
that overfitting is present.

Table 7: Measurement of 5-fold cross validation of this
dataset.

Fold Precision (%) Recall (%) Accuracy (%)
Fold-1 86.03 86.25 93.04
Fold-2 82.53 82.47 91.21
Fold-3 84.59 84.75 92.23
Fold-4 93.48 93.25 96.65
Fold-5 88.76 89.09 94.37

Average 87.08 87.16 93.50

4.4 Comparison

The performance comparison among the Deep Learn-
ing models was made using Sensitivity, Specificity, Pre-
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Table 8: Comparison between Deep Learning Models

Dataset type Models Sensitivity Specificity Precision Accuracy

Without Augmentation
GoogleNet [28] 79.81% 84.23% 79.57% 84.66%
MobileNet [29] 81.09% 84.97% 81.55% 85.48%

Proposed Model 83.18% 88.93% 84.72% 87.36%

With Augmentation
GoogleNet [28] 90.75% 94.91% 88.38% 94.21%
MobileNet [29] 90.23% 95.66% 90.73% 94.85%

Proposed Model 91.97% 97.33% 91.96% 95.98%

Table 9: Comparison our result with the state of the arts.

Approaches Methods Dataset Size Classes Accuracy
Moussa et al. [39] k-NN 15 2 89%
Dubal et al. [36] NN 463 6 76.90%

Alquran et al. [37] SVM 11 1 92.1%
Victor et al. [38] KNN 1000 2 93.70%
Milton et al. [40] DNN 2000 7 76%
Ulzii et al. [22] CNN 3753 4 94.2%

Proposed model Deep CNN 5600 4 95.98%

cision and Accuracy. It shows that our proposed model
performs better than pre-train models, GoogleNet and
MobileNet. Table 8 demonstrates the results. At first,
the pre-trained models and our proposed models are
trained with images that are not augmented. Here we
can see that our model performed better than other two
models with an accuracy of 87.36%. To improve the
accuracy, in the next approach, we trained the model
with augmented images. This time the accuracy of our
proposed model is 95.98%.

Table 9 shows the comparison of our model with pre-
vious works. After applying augmentation, our used
dataset was the most enriched of all the previous works
done before. Also, our proposed model outperformed
all the previous researches in classifying different types
of Skin Cancer. Various Neural Networks, SVM, KNN,
and Convolutional Neural Networks have been used
among the earlier works. The size and the feature of the
dataset also had varieties. Milton et al. [40] had worked
with the most established dataset with 2000 images in
2 classes. The work focused on multiple pre-train net-
works and was able to secure at best 76% accuracy. On
the other hand, Victor et al. [38] used 1000 images with
binary classes and used classical machine learning algo-
rithm KNN and SVM. They were able to secure 93.70%
on their work. Our work surpassed previous results by
both the dataset and accuracy.

5 CONCLUSIONS
In this paper, we have collected a dataset of four types
of skin cancer and used augmentation techniques to in-
crease our dataset. We proposed a deep learning-based

method to classify skin cancer. We used some regular-
ization methods like batch normalization to avoid over-
fitting and used convolution, max pooling, dropout, and
fully connected layers. Our proposed model achieved
96.98% accuracy for four types of skin cancer that is
the state of arts. This accuracy is higher than two other
pre-train models, GoogleNet and MobileNet. Five-fold
cross-validation is used to verify the proposed model
with this dataset. In summation, our proposed model
provided better comparable performance to the existing
state-of-the-art methods in terms of accuracy, precision,
recall, sensitivity, and specificity. It is also simple and
lightweight architecture than other models. In future, a
light architecture can be designed without compromis-
ing the accuracy to detect skin cancer by minimizing
computational complexity.
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ABSTRACT
In this study, we showcase a mobile augmented reality application where a user places various 3D models in a
tabletop scene. The scene is captured and then rendered as Claude Monet’s impressionistic art style. One possible
use case for this application is to demonstrate the behavior of the impressionistic art style of Claude Monet, by
applying this to tabletop scenes, which can be useful especially for art students. This allows the user to create their
own "still life" composition and study how the scene is painted. Our proposed framework is composed of three
steps. The system first identifies the context of the tabletop scene, through GIST descriptors, which are used as
features to identify the color palette to be used for painting. Our application supports three different color palettes,
representing different eras of Monet’s work. The second step performs color mixing of two different colors in the
chosen palette. The last step involves applying a three-stage brush stroke algorithm where the image is rendered
with a customized brush stroke pattern applied in each stage. While deep learning techniques are already capable
of performing style transfer from paintings to real-world images, such as the success of CycleGAN, results show
that our proposed framework achieves comparable performance to deep learning style transfer methods on tabletop
scenes.

Keywords
augmented reality, mobile devices, image filter, image stylization, style transfer, painterly rendering

1 INTRODUCTION
Augmented reality is an interactive experience wherein
digital objects are placed on the physical environment
[BCL15]. This study proposes a mobile augmented re-
ality application that allows the user to capture a scene
with virtual 3D models and then applies a rendering
technique that "paints" the scene using Claude Monet’s
impressionistic art style (Figure 1). A specific use case
for this application is to demonstrate the visuals of
Claude Monet’s impressionistic art style, which can be
useful to art students who are learning the fundamentals
of painting. Using the mobile AR application, the user
can place virtual 3D models on top of other tabletop ob-
jects which allows the user to compose a still life scene

Corresponding author email: neil.delgallego@dlsu.edu.ph.
The source code is available at Github: https://github.
com/NeilDG/AR-Impress-Me-Version-2

containing virtual models that are not readily available
(e.g. A virtual dragon model placed with other table-
top objects, such as drinking glass and basket of fruits).
These 3D models can coexist within the same scene in
real-time.

Recently, deep learning methods are used to generate
images painted with a certain art style [GEB16]. Image-
to-image translation using generative adversarial net-
works was proposed, such as the release of Pix2Pix
[IZZE17]. Then the release of CycleGAN introduced
a new class of image-to-image translation methods that
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or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Figure 1: The proposed application. The user assembles a tabletop scene and then places one or more virtual 3D
models. The scene is then captured and processed, which produces an art style similar to Claude Monet’s paintings,
using a pre-defined color palette and brushstroke settings consistent with an impressionistic art style.

Figure 2: Example of virtual models that can be placed
in a tabletop scene. Standard 3D models commonly
used for computer graphics applications are shown.
From left to right: Lucy, Stanford Bunny, Stanford Ar-
madillo, Utah Teapot. Our application can also load
other custom-made 3D models.

do not need paired data [ZPIE17]. CycleGAN has been
used for style transfer approaches and shows that it is
comparable to other style transfer methods such as the
method proposed by Gatys et.al (2016) [GEB16].

Early work showed a style of processing images and
video with an impressionistic effect that looks like it
was hand-painted [Lit97]. An optical flow field tech-
nique was applied that determines the brushstroke pat-
tern frame by frame. Randomness is applied to the
brush stroke attributes, such as length, color, and ori-
entation, to enhance the hand-touched look. Simi-
larly, a method proposed by Hertzmann (1998) paints
an image with a series of spline brush strokes [Her98].
We observed that this method is effective in simulat-
ing impressionistic brush strokes and applied the same
concept in the application. Other early brush stroke
techniques were observed in literature [Hae90, HE04,
KS04, KS06, CS07].

While deep learning methods are becoming the trend
for artistic painting and non-photorealistic rendering,
we observe that these methods are not tailored for im-
ages that consist of augmented 3D models, such as the
case of using an AR application for painting a scene.

We later show in our results that existing style transfer
methods generate impressionistic images where the 3D
models stand out unnaturally and do not blend prop-
erly with the overall image composition. Furthermore,
our proposed framework is grounded on an analytical
study of Monet’s artworks, unlike other deep learning
approaches that completely rely on individual paintings
as training samples.

We organized this paper as follows: related work, con-
cepts on impressionism, architectural framework, then
lastly, discussion of results and conclusion.

2 RELATED WORK
2.1 Image Stylization
Image stylization is the process of taking an image as
input, and producing a stylized version of it [RAGS01].
The contents of the image should remain the same.
To achieve an artistic stylized image: computer vision
techniques and machine learning are mostly used to
transform the target images and their pixels [KCWI12].
We further discuss different image stylization methods
under two categories, algorithmic and learning-based
image stylization.

Algorithmic approaches in image stylization are those
that rely on apriori information and typically render
images in a deterministic or sometimes stochastic
manner. Region-based techniques, which are typically
applied to cartoon shading styles [CRH05, WXSC04],
simulating stained glass [Mou03], simulating cubist
painting [CH03], involve image segmentation as a
pre-processing step [KCWI12]. Image stylization
techniques that are applied to fine details of an image
[SLKD16, KD08, KKD09b, STD+16] typically involve
edge-preserving smoothing approaches, local image
statistics, and approaches based on morphological
filtering [KCWI12].
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Learning-based approaches or machine learning
approaches in image stylization rely on painting
examples as training input. Notable examples in
recent years are deep learning style transfer techniques
[GEB16, MOT15]. Network architectures that deal
with image-to-image translation, paired [IZZE17] or
unpaired [ZPIE17], are shown to work on different
applications, including style transfer. Other loss terms
aside from L1 or L2 norms are employed to further
improve the performance of previous style transfer
approaches. For example, the perceptual loss function
is applied during training, wherein the difference
of feature maps, between the input image and the
reference image are minimized [JAL16]. Feature maps
are typically extracted from the convolutional layers of
a pre-trained VGG-19 network [SZ14]. Another loss
term was proposed in the works of Ulyanov, Vedaldi,
and Lempitsky (2017)[UVL17], that improves the
diversity of image stylization through the use of Julesz
ensemble [Jul81], which is based on a concept that
textures are treated as a family of visual patterns that
share local statistical regularities.

2.2 Stroke-Based Rendering
Vanderhaeghe and Collomose (2013) defined stroke-
based rendering (SBR) as a process of synthesizing
artwork by combining rendering marks (such as lines,
brush strokes, or even larger primitives such as tiles)
to a digital canvas [VC13]. The work of Litwinow-
icz (1997) [Lit97] is among the earliest methods for
stroke-based rendering where impressionistic paintings
are simulated on video input. Using multiple frames,
the brush stroke and intensity are determined based on
the movement of pixels identified using optical flow
[TZ99]. The video abstraction method proposed by
Kyprianidis, Kang, and Döllner (2009) [KKD09a] were
inspired from the Kuwahara filter [KHEK76], which is
a non-linear smoothing filter typically used for image
processing that applies a blurring effect while preserv-
ing the edges. The modified filter generates a painting-
like effect while preserving shape boundaries which
is observed to work well in cartoon illustrations and
oil paintings. More recently, deep learning genera-
tive models were utilized for SBR, such as a neural
model capable of simulating learned hand strokes (Neu-
ralPainter) [Nak19], and a neural painting environment
where a position and a brush encoder are trained for
learning different brush strokes for simulating drawings
(StrokeNet) [ZJH18].

2.3 Augmented Reality Art
AR commonly applied in art galleries, exhibits, or cul-
tural heritage, provides features for augmenting arti-
ficial objects that can be used to enhance various art
forms [Mar18, Ger18]. Sketch-based and virtual sculpt-
ing applications were also observed to use AR [BC20].

Similarly, interactive modeling applications make use
of AR, such as MagicToon, which is an interactive mod-
eling tool for mobile AR that allows a user to augment
3D cartoon scenes based on hand-drawn sketches on pa-
per [FYX17].

3 MONET’S IMPRESSIONISTIC ART
STYLE: OVERVIEW

Impressionism is an art movement that started in the
late 19th century where paintings are characterized as
sketch-like, while others praised it for its depiction of
modern life [Sam04]. Notable impressionist painters
were Claude Monet, Edgar Degas, Camille Pissarro,
and Pierre-Auguste Renoir [Bre74]. An impressionis-
tic painting captures the effects of sunlight, gray and
dark tones produced as a product of mixing comple-
mentary colors. Pure impressionism is often charac-
terized by the lack of black paint. Rather than neutral
white, grays, and blacks, painters typically draw shad-
ows and tones in color. Outdoor paintings are described
as fresh, due to the use of bright and light brush colors
[Sam04, FMSGA18]. In this study, we primarily fo-
cused on the works of Claude Monet, where his works
accurately depict the descriptions described earlier.

To the best of our knowledge, there are limited stud-
ies that describe Claude Monet’s work. A book was
written by Forge (1995) [For95], and another book was
written by Wildenstein (1978) [MW78] that described
the life of Monet and his works in chronological order.
Concepts discussed in the succeeding sections are sup-
ported by the book of Forge (1995) and serves as the
main reference for designing our framework.

3.1 Color Palettes

Figure 3: Three color palettes identified in the works
of Monet, and corresponding paintings that contain a
specified color palette. A: Pre-1886 (Port of Le Havre).
B: Post-1886 (Rouen Cathedral: The Portal). C: Final
years (Water Lily Pond, Evening).

Claude Monet used three color palettes in his paintings.
The first color palette was used in his pre-1886 works,
which consists of lead white, chrome yellow, cadmium
yellow, viridian green, emerald green, french ultrama-
rine, cobalt blue, alizarin crimson, vermilion, and ivory
black. After the year 1886, Claude Monet refrained
from using ivory black. Few years before his death,
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Claude Monet used another color palette, that consists
of the following colors: silver, white, cadmium yellow
light, cadmium yellow dark, and lemon yellow, emer-
ald green, ultramarine extra-fine, cobalt violet light, and
vermilion. We classify these as follows: pre-1886, post-
1886 and final years (FY), which refers to the last color
palette a few years before Monet’s death. We illustrate
these color palettes and sample paintings in Figure 3.

3.2 Brush Stroke Techniques
Claude Monet uses fast brush strokes to portray light,
a technique honed throughout his career in painting
[For95]. A primary example depicting this behavior
can be observed in his "Sunrise" painting (Figure 4).
Monet uses his signature short, choppy strokes which
coaxes the viewer to "optically blend" the strokes and
values when painting distant objects close to the hori-
zon [Dun76]. Lastly, fast and broken brush strokes with
little to no smoothing are also applied, where viewers
see the traces of the brush strokes that sometimes give
the painting an unfinished appearance. Impressionist
painters like Monet typically paint in one sitting, giving
their work a spontaneous feel.
Claude Monet’s approach to lighting depends on the
brushstroke technique. For example, Monet uses
brushstrokes that are soft and diffused while using
impasto,for soft, light, and outdoor scenes, which
is evident in the "Water Lilies" painting (Figure 4).
Impasto is a painting technique where thick layers of
paint are laid on an area. The thick layers create a
visual effect wherein the brush or painting knife strokes
are very visible.

Figure 4: Sample paintings of Monet showing his
brushstroke techniques. A: In the Sunrise painting,
the details of the water were created using rapid brush
strokes where rough patches can be observed through-
out. B: The Water Lilies painting illustrates soft and
diffused brush strokes. It has an ample amount of in-
digo underneath each lily in addition to using the im-
pasto technique.

4 ARCHITECTURAL FRAMEWORK
The system accepts an image captured from the mobile
AR application after the user places virtual 3D models,
which can be moved, rotated, and scaled accordingly to
fit a given tabletop scene. The captured image under-
goes three steps namely, color palette selection, color
mixing, then brushstroke rendering. Figure 5 shows the
architectural framework.

4.1 Color Palette Selection
The paintings of Monet were gathered and grouped ac-
cordingly to the year it was painted. There are 471
paintings in the pre-1886, 238 in the post-1886, and 149
in the final years. Given an input image captured from a
given tabletop scene, the goal is to find the most suitable
color palette identified by year. One method to do this
is to find the nearest color composition from the clus-
ter of paintings. Finding the nearest color composition
among Monet’s paintings and comparing it against the
input image, by using RGB information, is not appro-
priate because real-world colors do not necessarily map
to Monet’s limited color palette. Using image edges,
extracted using Sobel operator [KVB88] are sensitive
to gradient properties of the image. Furthermore, dif-
ferent brush strokes are used across all paintings which
may affect edge detection methods.

We find that using GIST descriptors [OT01] produces
the most accurate classification results when selecting a
color palette as it appears to be robust against changes
in camera view and lighting which may vary in a table-
top scene, especially when captured indoors. GIST
descriptors are extracted from the input image which
is then compared to the GIST descriptors of Monet’s
paintings. Since GIST descriptors contain gradient in-
formation from varying scales and orientations which
are used to recognize various scenes, scenes in Monet’s
paintings that are similar in composition with the in-
put image will most likely be selected. To perform the
color palette selection, using the norm values of GIST
descriptors, a k-nearest neighbor algorithm is applied to
determine the closest set of paintings for the input im-
age using Euclidean distance (k = 10). The class (pre-
1886, post-1886, final years) is identified by majority
voting and the color palette from the class identified
will be selected.

4.2 Color Mixing
With the selected palette, each image pixel’s color is
changed. Using hue values, the two closest colors in the
palette, in terms of Euclidean distance are selected. We
observe that performing blending of these two colors
produces the best results.

4.3 Brush Stroke Rendering
For rendering brush strokes, a stroke rendering mod-
ule is implemented where a modified implementation
of Capeto’s Painter software is utilized [Cap18]. The
base implementation of Capeto (2018) [Cap18] was in-
spired from the painterly algorithm proposed by Hertz-
mann (1998) [Her98], combined with the brush stroke
algorithm devised by Shiraishi and Yamaguchi (2000)
[SY00]. To simulate Monet’s brush stroke styles, three
brush stroke patterns are used by default. The color-
changed image from the color mixing step undergoes
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Figure 5: The architectural framework for simulating Claude Monet’s impressionistic art style using images cap-
tured from a mobile device.

three passes in our stroke rendering module, selecting
the corresponding brush stroke pattern. For each pass,
a balanced alpha blending is performed as a method for
combining the new and previously rendered image.

Curved brush strokes are sometimes not present in the
paintings of Monet [For95]. As a refinement step, af-
ter the third pass, we perturb the brushstroke pattern by
occasionally making the brush strokes straight, using
the brush stroke algorithm proposed by Shiraishi and
Yamaguchi (2000) [SY00]. Based on our initial experi-
ments, setting a 50% probability of using straight brush
strokes produce the best results.

No further major changes were created in the brush
stroke implementations mentioned. We recommend
the reader to refer to the papers of Hertzmann (1998),
Shiraishi and Yamaguchi (2000), and the software de-
signed by Capeto (2018) [Her98, SY00, Cap18].

4.4 AR Application Walkthrough

Figure 6: General walkthrough of the AR application.
The user assembles their tabletop scene. Multiple 3D
models can be placed, rotated, and scaled according to
their preference. The image is captured and sent over
to a server for processing via ZeroMQ. The rendered
image using Monet’s art style is sent back to the mobile
device for viewing.

Figure 7: Configurable parameters in our AR applica-
tion. A: The user can decide whether to use a certain
palette or allow the system to dynamically choose a
palette based on scene context. B: Additional brush
stroke patterns can be imported as a texture file, as
well as modify the various parameters for brush strokes,
such as opacity, size, and radius.

Figure 6 illustrates a walkthrough of the AR applica-
tion. The user assembles their tabletop scene where
multiple 3D models are placed by tapping on-screen
their desired location in the virtual space. The models
can then be rotated and scaled through a drag-and-drop
interface. The composited scene is captured, and the
image is sent to a server for processing via ZeroMQ,
using the framework shown in Figure 5. ZeroMQ is a
networking library that can transport messages and files
between systems through inter-process communication
[Hin13]. Offloading the rendering pipeline to a server
is preferable as this saves computation time on the mo-
bile device. Based on our initial system designs, we
found that it takes approximately 4 to 5 minutes pro-
cessing time for a 1024× 768 image if the rendering
step is performed on a mobile device. Further increas-
ing the image resolution causes out-of-memory issues
on low-end devices. Offloading the rendering takes ap-
proximately 2 minutes for the output image (1024×768
size) to be displayed on a mobile device, subject to net-
work latency.
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4.5 Other Technical Details
The AR application is implemented using Unity Engine
and Vuforia [LB17]. Image results reported in this pa-
per were retrieved from the actual AR application run-
ning on a 4GB mobile device. 3D models are preloaded
in the application. Public 3D models such as Stan-
ford Bunny, Dragon, Armadillo, and others are avail-
able by default. Our proposed framework is fairly al-
gorithmic and contains numerous hyperparameters (e.g.
brush stroke size, orientation, frequency, color values,
etc) that directly affect the results, in terms of the im-
ages produced. Furthermore, the visual perception and
evaluation of the final rendered image are very much
subjective to the viewer. Basing on this rationale, we
give full control to the user to configure the hyperpa-
rameters in real-time (Figure 7). Additionally, the user
can import their brushstroke pattern as a texture file to
replace one of the rendering passes.

5 RESULTS AND DISCUSSION
We performed a quantitative evaluation of images pro-
duced by our framework. Due to the very subjec-
tive nature of evaluating images that follow a certain
art style, and since there is no universal methodology
agreed upon, we solely relied on classical image met-
rics such as Peak-Signal-to-Noise ratio (PSNR) and
Structural Image Similarity (SSIM). The evaluation is
performed as follows: Since PSNR and SSIM require
paired data, each test image rendered by our system is
compared to every painting by Monet, and the corre-
sponding PSNR and SSIM are measured. Hence, mean
values are provided for each test image in our discus-
sions and compared with other existing approaches. We
refer to these measurements as MPSNR and MSSIM to
denote the mean PSNR and mean SSIM respectively. A
total of 859 artworks, combining paintings from pre-
1886, post-1886, and final years from Monet, were
used for this approach. To speed up the measurement
time, we resized the test images and Monet paintings to
256×256.
We compared our method to CycleGAN [ZPIE17], as it
is one of the state-of-the-art methods in image-to-image
translation and style transfer, and to the style-aware
network model developed by Sanakoyeu et. al (2018)
[SKLO18] which is trained to cover different art styles.
We refer to their model as AdaptiveStyleNet. Both
works provide pre-trained models for converting im-
ages to Monet paintings. To validate the effectiveness
of our color palette selection scheme and brushstroke
rendering, we devised an alternative framework that
uses only the pre-1886 color palette that we compare
against. The brushstroke rendering is replaced with
an Anisotropic Kuhawara filter by Kyprianidis, Kang,
and Dollner (2009) using default parameters specified
in their paper [KKD09b]. We refer to this alternative
framework as the baseline.

5.1 Analysis of Results: Tabletop Scenes
A total of 9 test images, consisting of indoor tabletop
scenes with varying object compositions, were gath-
ered. To maintain consistency and possibly minimize
variance in the results, we limited our 3D models placed
in the scene to only Stanford Bunny, Lucy, and Stanford
Dragon. The best results are shown in Figure 8. Table
1 summarizes the results.
In terms of MPSNR, the difference among the methods
are negligible. In terms of MSSIM, we see bigger dif-
ferences with our method as compared to CycleGAN,
AdaptiveStyleNet, and the baseline. Judging the images
visually, our proposed method generates images where
the brush strokes can be seen better as compared to Cy-
cleGAN and the baseline which positively affected the
results in terms of image metrics. In AdaptiveStyleNet,
the brush strokes are denser and the strokes drastically
changed the edges and fine details of the image. An-
other interesting observation is that virtual 3D models
harmoniously blend with the other foreground objects
in the final rendered image, which is not evident in both
the baseline and CycleGAN, where the virtual 3D mod-
els from these methods stand out in the images. To
some extent, we observe that AdaptiveStyleNet exhibits
this same property.

5.2 Analysis of Results: Still Life and
Outdoor Sceneries

To further validate the performance of our method in
terms of closeness to Monet’s impressionistic art style,
we gathered 11 different images available on the web,
most of which are still life compositions and outdoor
scenes with vibrant colors. Since most of Monet’s
paintings were typically still life and outdoor sceneries,
we wanted to observe if our proposed method is com-
parable if we use these compositions as well. The best
results are shown in Figure 9. Table 2 summarizes the
results.
Based on the MPSNR and MSSIM, our method
achieved slightly higher scores than CycleGAN. We
speculate that since CycleGAN was trained on diverse
real-world image samples, the model can transfer
Monet’s art style properly on both still life and outdoor
scenes. Our method substantially performed better as
compared to the baseline and AdaptiveStyleNet, which
further proves that the color palette selection scheme
and three-pass brushstroke rendering are necessary.
In summary, our method works well when the input im-
ages contain one or more virtual 3D models that are
placed using AR. However, further study is needed on
why our method produces favorable results when vir-
tual 3D models are present.

5.3 Mean Perception Error
Aside from analyzing the performance of our method
through MPSNR and MSSIM, we explored how fea-
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Table 1: Results of tabletop images in terms of MPSNR and MSSIM. Best values in bold.

MPSNR MSSIM

Image Number:
Tabletop Scenes

Baseline CycleGAN AdaptiveStyleNet Ours Baseline CycleGAN AdaptiveStyleNet Ours

1 8.9262 9.4079 8.5507 10.1829 0.2131 0.2737 0.1943 0.2268
2 9.0150 10.6156 9.8140 9.6599 0.3253 0.3167 0.2120 0.3466
3 8.0774 9.4321 8.8698 9.2774 0.3026 0.2749 0.2145 0.3401
4 10.0533 8.9228 8.2585 9.0555 0.1689 0.2604 0.2123 0.2872
5 9.0216 8.6646 7.7644 8.7234 0.2384 0.2786 0.2120 0.3191
6 9.0979 9.9304 9.6984 9.8368 0.3501 0.3448 0.2207 0.3685
7 9.0687 10.9157 9.9291 9.4783 0.3150 0.3234 0.2161 0.3332
8 10.4475 10.9830 11.3076 12.1283 0.2243 0.2381 0.1956 0.2978
9 9.1286 8.6589 8.5850 11.0010 0.2641 0.2767 0.2247 0.3247

Average 9.2040 9.7257 9.1975 9.9271 0.2669 0.2875 0.2114 0.3160

Figure 8: Comparison of images produced by different methods. A: Input. B: Baseline. C: CycleGAN [ZPIE17].
D. AdaptiveStyleNet [SKLO18]. E: Ours.

ture representations in a convolutional neural network
(CNN) behave when we use our rendered images as
input. Specifically, we utilized the perceptual loss
function, which is a measurement between image
feature representations extracted from pre-trained CNN
[JAL16]. The methodology for measuring MPSNR
and MSSIM is similar wherein this time, the difference
between feature representations of our images and
feature representations of paintings by Monet is mea-
sured. If the value is close to zero, it implies that two
images have almost identical feature representations.
We used VGG-16 as our pre-trained network [SZ14]
for extracting the feature maps for this metric, which
we refer to as the mean perception error. Table 3 shows
the results.

For tabletop scenes, our method consistently achieved
the lowest mean perception errors on 7 out of 9 im-
ages, which plausibly means that our rendered images
have close representations with Monet’s paintings. For
still life and outdoor images, our method only outper-
formed the other methods on four images, which further

proves that our method generally works best for table-
top scenes with one or more 3D virtual models.

6 CONCLUSION
In this paper, we present an augmented reality applica-
tion that simulates Claude Monet’s Impressionistic art
style, by using a multi-color palette selection scheme
and brushstroke rendering with three passes. The user
can place one or more virtual 3D models on an ex-
isting tabletop scene and render the final image. Re-
sults show that our method performs generally well on
tabletop scenes and comparable to CycleGAN’s perfor-
mance while outperforming AdaptiveStyleNet. Future
studies involve studying the user interaction aspect of
our AR application and how it’s effective in terms of
showcasing an impressionistic art style. Other effec-
tive methods for clustering Monet’s paintings can be
explored, such as grouping the paintings by sceneries
or color composition and further improving the multi-
color palette selection scheme. One possible approach
for further improving the performance is to explore how
3D models can be directly altered. Instead of using an
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Table 2: MPSNR and MSSIM results of images with still life compositions or outdoor scenes. Best values in bold.

MPSNR MSSIM

Baseline CycleGAN AdaptiveStyleNet Ours Baseline CycleGAN AdaptiveStyleNet Ours

Still Life Images
Sunflowers 8.5312 9.6476 7.9276 8.5401 0.1586 0.2073 0.1673 0.1850
Violet flowers 7.0356 10.2705 8.5782 8.1070 0.3118 0.2888 0.2858 0.3205
Skull and lemonade 9.6906 10.1778 10.8628 9.7463 0.3450 0.3454 0.2542 0.3586
Flowers in metal vase,
bags and kiwis

9.9569 9.7311 10.1624 10.3814 0.3579 0.3599 0.2889 0.3522

White flowers with a
pples

10.3292 10.2516 10.9174 11.4034 0.3321 0.3413 0.2477 0.3505

Sunflowers with fruits 8.2634 8.4575 9.7994 11.6888 0.2368 0.2419 0.1718 0.2536
Dining table with fruits 10.1051 10.2556 10.7580 10.4910 0.3093 0.3054 0.2495 0.3345
Garden entrance 11.3064 9.4702 9.2243 10.1062 0.1887 0.2521 0.1741 0.2202
Women in the garden 10.9794 10.8531 10.4545 11.6861 0.1685 0.2334 0.1949 0.2557
Woman in kimono 1 8.6409 11.1019 8.3935 9.0217 0.2995 0.2838 0.2382 0.3122
Woman in kimono 2 8.1085 9.8298 8.6941 8.9167 0.2164 0.2351 0.1774 0.2522

Average 9.3588 10.0042 9.6156 10.0081 0.2659 0.2813 0.2227 0.2905

Figure 9: Comparison of images produced by different methods. The input images are still life compositions
and outdoor scenes with vibrant colors. A: Input. B: Baseline. C: CycleGAN [ZPIE17]. D. AdaptiveStyleNet
[SKLO18]. E: Ours.

image that captures the whole tabletop scene, using pro-
grammable shaders or manipulating materials to make
them look impressionistic are worth pursuing.
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ABSTRACT
This paper reports on a graph-based approach to enable real-time update of 3D shared elements over the network
between multiple artists working simultaneously on the same 3D scene. It presents an experimental framework for
exploring real-time collaboration in Digital Content Creation such as animation. The framework combines a push-
pull network architecture and data translation protocol with hybrid command/data replication mechanisms. This
enables the synchronization of object components and hierarchy between multiple instances of the same Digital
Content Creation application in a non-destructive way. Conflicts between users are prevented with a strong right
management system. We demonstrate the interest of such an approach by means of an application example in
Blender and discuss collaborative experimental sessions outcomes over a Local Area Network and through the
Internet.

Keywords
Real-time collaboration, 3D creation workflow, Multi-user, Graphical human computer interfaces, 3D Scene De-
pendency Graph Replication

1 INTRODUCTION
An animation movie is an idea shaped throughout the
production process by many people. A typical 3D
animation pipeline requires a linear succession of tasks,
from storyboarding to compositing through various
stages; its workflow is similar to an assembly line.

Collaboration between each task of the production
chain relies on the exchange of individual work files
(see Fig. 1). The dataflow supports the workflow: the
transition between steps requires export phases that
format the file resulting from the previous task into a
new file for the next task’s tools.

Each production stage is handled by an almost entire
studio department. It is therefore common that an artist
working in department A does not know what another
person did during a previous step in department B. This
lack of communication (also known as the "silo effect")
often has a negative impact on the final production by

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Figure 1: A traditional dataflow in animation produc-
tions

hindering error anticipation. A problem may go unno-
ticed for several successive steps before being discov-
ered. When this occurs, the linear nature of the produc-
tion pipeline requires going back to the root of the issue
and redo all the subsequent steps, which is a very costly
process.

If real-time rendering engines speed up traditional lin-
ear productions by drastically reducing iteration time
within the different stages, they could also become a
new communication tool within animation production
teams by bringing 3D designers to collaborate with
each other across a real-time multi-user interface.

Real-time collaboration is widely used in other
fields. In software development, it appears in peer-
programming solutions such as Teletype [Git17] to
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facilitate knowledge transfer. In civil engineering,
Autodesk BIM1 is an interdisciplinary collaboration
hub where each actor of the construction (architects,
engineers and contractors) sees in real time the impact
of their work on the others.

Bringing real-time collaboration to the heart of cre-
ative applications in animation is a complex problem.
From a technical point of view, the 3D scenes of a pro-
duction are made of a wide variety of large software-
dependant creation data (meshes, materials, rigs, tex-
tures,...). From a human point of view, the vertical com-
munication flow and the segmented validation process
do not allow for an easy multi-user collaboration.

The experimental work described in this paper results
from a research-creation approach. Our framework
emerged from many collaborative real-time creation
sessions conducted in industrial and academic context
thanks to its initial Blender integration (see section 4).

In the course of these experiments, we identified several
requirements for the development of an efficient multi-
user collaboration within a 3D authoring software (that
will be hereafter also referenced by the name of Digital
Content Creation Software or DCC):

• User interface independence: do not interfere in the
interfaces of the 3D software, let the users use it as
it is designed to work.

• Asynchronous editing of the 3D scene: allow dif-
ferent users to edit different parts and aspects of the
scene simultaneously and without any friction.

• Error independence: An error caused locally by one
user should not impact other users.

• Flexibility of integration: allow the DCC program to
drive the replication pipeline.

• Non-destructive dataflow: allow the DCC program
to specify the data types it wants to replicate.

• Adaptive workflow: adapt the behavior of the col-
laboration to the needs of the artists (e.g. be able to
disable the replication of certain data).

• Dynamic loading: allow artists to join and leave a
collaborative creation session at any time.

To address these needs, we propose a framework that
brings real-time collaboration to the heart of 3D au-
thoring software. We articulate the critical notions of
dataflow and workflow at the core of the framework
thanks to a data definition interface, along with a set
of collaboration-aware functions allowing to model the
collaborative workflow to the artists’ needs (layout,
lighting, modeling tasks, etc.).

Our method uses an acyclic dependency graph to store
and structure the creation data for replication across the
corporate Local Area Network or through the Internet.
Each node contains serialized blocks of data, also called

1 https://www.autodesk.com/solutions/bim

datablocks, describing any element of the 3D Scene that
is stored and used by the 3D DCC software (for exam-
ple: a shader, a mesh, a particle system, etc.). A transla-
tion protocol for replicated data (i.e. RDP) enables the
definition of node types to match the data structures of
the 3D software API.

As soon as a datablock type has been defined in the
RDP, the framework will replicate instances of this
given datablock type across all the connected clients.
To avoid access conflicts, each node is subject to a strict
modification rights management policy. This node-
based approach provides an adaptive level of granular-
ity to address the complexity of data that is specific to
3D scenes used in animation.

The user and the rights management system enable the
storage of user-specific metadata in order to support the
addition of new collaboration tools. These tools con-
tribute to improve the artists’ collaboration awareness
by smoothing and optimizing the workflow of the multi-
user creation experience.

2 RELATED WORK
This section focuses on previous work on the topic of
real-time co-creation and explains the differences with
the proposed approach.

The first attempts to design a framework offering a
WYSIWIS experience (What You See Is What I See)
[Mar87] in a single user software started in 1987. De-
wan and Choudhary addressed this problem by propos-
ing a high-level framework based on a semi-replicated
network architecture [Dew92]. However, this approach
based on a callback system does not take into account
relational data, a crucial element for 3D creation where
the entire scene is formed by a multitude of data blocks
depending on each other.

Indeed, a large majority of 3D DCC solutions such as
Blender2 or Autodesk Maya3 use dependency graphs to
efficiently handle the updating of scene elements. By
relying on a similar structure, our approach is thus par-
ticularly adapted to the specific needs of 3D DCC soft-
ware.

In animation, real-time collaboration solutions can be
categorized as cross-DCC or mono-DCC applications.
A mono-DCC approach consists in replicating informa-
tion within several instances of the same application.
In contrast, a cross-DCC application will propagate the
collaboration between different applications (Example:
a texturing application, a modeling application, etc.).

By relying on the Universal Scene Description created
by Pixar (i.e. USD) [Pix21] to manage 3D scene data,
the Nvidia Omniverse solution [Nvi21] represents an

2 https://www.blender.org
3 https://www.autodesk.com/products/maya
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interesting cross-DCC collaborative platform. How-
ever, the standardization of 3D scene transmission for-
mats is still limited. Some data types such as rigs are
not supported. As a result, the Nvidia approach [Nvi21]
is restricted to the data types supported by the USD
[Pix21]. Moreover, it is complex to obtain a homoge-
neous interaction interface in the cross-DCC approach
due to the diversity of user experiences (UX) of the so-
lutions. To overcome these limitations, our framework
focuses on a mono-DCC approach and does not impose
a specific 3D data format; instead, it provides an inter-
face for specifying the structure of the replicated cre-
ation data and their relationships to fit the application’s
specifics.

From an architectural point of view, the Verse proto-
col [Hni11] provides an efficient solution to the delays
of 3D data transmission, but it relies on a centralized
architecture. Very early in our experiments, the artists
asked us for the possibility to suspend the replication
of certain data on demand in order to iterate changes
without impacting the other users. This requires saving
updates locally, which is impossible when operations
are centralized.

Another interesting approach is the Mixer add-on
[Ubi20] developed for Blender by UBISOFT. Its
centralized command-based architecture relies on
small transfers which resulted in good responsiveness
from a performance perspective. It handles the scene
representation as a linear stack of commands (stored on
server-side). The stack grows during the scene creation.
This architecture does not provide the relational data
required to prevent user editing conflicts, which is a
critical need we identified in our first experiments.
Since artists usually edit several aspects of an asset,
the access control system must be aware of that asset’s
dependencies in order to lock them. Moreover, its
centralized architecture does not allow the execution of
local operations because it fully relies on the order of
commands to rebuild the scene.

In the MMConf infrastructure [Cro90], Crowley and
Milazzo demonstrate that a replicated architecture en-
ables the implementation of client-specific operations
when the environment is copied locally. By having a
complete version of the dependency graph managed lo-
cally on each client, our framework is able to perform
local operations without impacting the other connected
clients.

3 PROPOSED METHOD
None of the previous approaches allowed us to explore
real-time collaboration within several instances of the
same 3D authoring tool in a non-destructive way and
without editing conflicts.

The proposed approach is designed to be integrated
in collaboration-transparent programs [Lau90], such

as 3D authoring software that is completely unaware
that it interacts with several users active on the same
scene. This framework contributes to solve some of the
problems listed above about multi-user experience im-
plementation for the 3D content creation in animation
thanks to the following features:

• A replicated data translation protocol: Acting as an
interface for the definition of replicated datablocks.

• A session system: Managing the connec-
tion/disconnection of users at any time during
the scene creation.

• An access control system: Preventing concurrent
datablocks edition conflicts.

• Collaboration-aware functions: Providing functions
to manage the replication pipeline behavior from the
DCC application programming interface.

• Collaboration-aware interface: Providing an inter-
face to enable the creation of collaboration coordi-
nation tools (e.g. to help users to organize them-
selves).

3.1 A multi-user abstraction layer for 3D
content creation software

In animation, most of the 3D DCC software solutions
provide a python API to extend their functionalities and
integrate them in a production pipeline. Therefore, our
multi-user framework has been designed as a python
module to facilitate its integration.

In traditional 3D DCC, users can access many opera-
tors in order to create and modify a 3D scene. Depend-
ing on the 3D authoring software, the creation work-
flow will be more or less procedural. In a classic lin-
ear pipeline, a loss of information occurs during the ex-
port between tasks. This ensures to lock the artistic as-
pect for the next tasks. But in the context of real-time
multi-user collaboration, tasks are parallelized. Thus,
keeping available all the creation information in a non-
destructive way is mandatory to guarantee the potential
parallelism of any task within the creation. However,
operators are often bound to a run-time context. Repli-
cating an operation would require synchronizing the as-
sociated context and imposing it to other clients when
the operation is being applied, resulting in potentially
unexpected interface behavior and degradation of the
user experience.

As a consequence, we opted for a data replication ap-
proach. This has several benefits with respect to our
initial needs.

• It preserves the ability to collaborate on procedural
data (e.g. a nodal network to generate geometry).

• It facilitates the implementation of a distributed ar-
chitecture to apply user-local operations on data.

• It allows to extend creation data with an access con-
trol system.
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Figure 2: Overall framework architecture

In our framework, a client and an application instance
are considered equivalent. Clients connect to a session
stored on a replication server. The session is a state ob-
ject over which the server has authority; it can be com-
pared to the GameState in the video game. It stores the
information of the connected clients and the status of
the current creation session. The server is a lightweight
script that can be launched on the computer of any of
the clients or on a dedicated server.

3.2 Framework architecture
The framework is structured as a combination of a dis-
tributed and a centralized architecture (see Fig. 2).
The distributed approach handle scene data replication
while the management of commands (such as locking,
connecting, etc.) is centralized to ensure server author-
ity.

Distributed data replication
The scene data is stored in a dependency graph gener-
ated by the data translation protocol. As shown in Fig.
5, this graph is stored in a repository object as a key-
value dictionary of entries. A key represents the unique
identifier of a node and the value is the associated data.

By cloning the latter during their connections, clients
get a complete local copy of this data (similar to a clone
operation on Git [Jun05]). Thereafter, the changes
made to it will be applied locally and then replicated.
This addresses the problem of error independence. By
executing certain of the collaboration-aware functions
(see section 3.5) locally, errors do not affect other users.

Centralized command replication
A command consists in a set of instructions to execute
on the repository (e.g. lock/unlock a node). The server
which has authority for access control validates whether
a command can be applied. Therefore, all commands
are first sent to the server for an authorization check
(e.g. does the client have the right to lock/unlock this
node ?). Then they are applied on the server repository
and relayed to other clients for execution. The com-
mands are used across the different components of the
framework to replicate such as:

• Authenticate: Login to a server.
• Clone : Transfer a full copy of the server repository

to the local client.
• Lock/Unlock : Used by the right management

system (see section 3.4) to acquire/release the mod-
ification right on given nodes.

• Kick: Remove a given user from the session.
• UpdateUserMetadata: Used by collaboration-

aware interfaces (see in section 3.6) to update the
metadata of a given user.

• Delete: Remove the given nodes from the reposi-
tory.

Network architecture
The framework implements a modified version of the
Clustered Hashmap Protocol [Hin11] (i.e. CHP) to ex-
change data across the network.

To reduce the bandwidth used by data transfers, node
changes are transmitted as deltas computed during
COMMIT (see in Section 3.5). The size of these deltas
varies greatly depending on the nature of the change.
E.g. moving an object will generate a small delta
while updating a complex mesh will be much larger.
Therefore, the granularity of the transmitted data
depends directly on the modifications made by the
users.

data update

command requests

alive request

DATA CMD TTL

Server

DATA CMD TTL

Client

DATA CMD TTL

Client

Figure 3: Network communication layer

As shown in Fig. 3, data and commands are transmitted
through two different sockets. This enables to handle
them asynchronously. By separating these two kinds of
transactions at server level (see Fig. 4), we guarantee
the responsiveness of the command-based right system
even when large delta are transferred.
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Each channel is based on TCP to limit packet loss. The
TTL socket mechanism allows to measure the ping re-
sponse and the latency to determine if the clients are
online. On client side, this regular heartbeat mecha-
nism is handled in a separate process, so that it will be
less impacted by the heavy computations typical of 3D
creation tools (rendering, etc.). Same strategy is applied
server-side.

Users states

COMMANDSDATA TTLThreads

Shared
session
objects

Repository

deltas

lock
unlock
delete
clone

metadata
kick

authenticate
latency

TCP/IP

Figure 4: Server internal architecture with asyn-
chronous network frame reception.

3.3 Replicated data definition protocol
The Replicated Data definition Protocol (abbreviated as
RDP) represents the keystone between the DCC pro-
gram and the framework. It acts as a translation dictio-
nary to transport data between the two (see Fig. 5).

To enable the support of a given type of datablocks, it
is necessary to define an implementation of the abstract
class ReplicatedDatablock offering the follow-
ing methods:

• dump: Translates the target object into a dictionary
using standard types.

• load: Loads the dictionary data into the DCC dat-
ablock.

• construct: Instantiates an empty datablock.
• resolve: Search for an existing instance of a spe-

cific datablock.
• resolve_dependencies: Returns the depen-

dencies of a given datablock (e.g. textures, meshes,
etc.).

The methods above are used by the collaboration func-
tions (see section 3.5) across the replication pipeline
to exchange data between the local repository and the
DCC datablocks.

The definition of these implementations takes place
only once. This occurs during the integration phase
of the framework into the DCC software. As they will
deeply interact with the 3D authoring software, a strong
knowledge of the program’s python API is required. In
our application example (see section 4), we developed
those implementations as sub-module of the add-on re-
sponsible for the framework integration. Once defined,
these implementations are stored in a key-value dictio-
nary (see Fig. 5). The key is the datablock type and the

value is the corresponding implementation. This dic-
tionary is then transmitted to the framework during the
session initial connection. In this way, the framework
is able to interact with the DCC data to replicate them.

The implementation dictionary will be used all along
the session by the framework to instantiate the defined
implementations. These instances represent the differ-
ent nodes of the replication graph stored in the reposi-
tory.

3.4 Concurrency access control
Initially, as the framework had no access control sys-
tem and several users were able to modify the same
datablock, which naturally led to editing conflicts. To
address this, we limited the modification of a datablock
to a single artist by means of the right management sys-
tem. The access control system manages the owner-
ship of each node of the replication graph. It will allow
or refuse/disable the modification of some nodes of the
latter according to their owner. The change_owner
function allows to change the rights on a node and op-
tionally its dependencies. When a node belongs to a
user, only this one has the ability to modify it.

By default, the right management policy assumes that a
node belongs to what we call ’the common right’. That
is, when a user unlocks a node, it yields its ownership
to the common right. Only nodes belonging in the com-
mon right can be locked by a user. This access control
system ensures frictionless collaboration by allowing
users to work asynchronously on different datablocks
of the 3D scene.

3.5 Collaboration-Aware Functions
The collaboration-aware functions (i.e. CA-function)
are the core of the framework’s replication pipeline.
They are exposed to the DCC program to let it con-
trol and adapt the rate of updates to its needs. Any of
them can be called automatically (by the program) or
manually (by the user). The Fig. 6 shows the place of
these functions in the replication chain. We took inspi-
ration from Git [Jun05] to develop these mechanisms of
collaborative work provisioning.

As shown on Fig. 5, the CA-function ADD first adds
the targeted datablock to the local repository by instan-
tiating a new node corresponding to its type (with the
RDP presented in 3.3). This is the entry point of the
replication pipeline. When a datablock is added to the
repository, it is considered as being tracked. During a
session, ADD must be called to register each new dat-
ablocks.

Then, the CA-function COMMIT can be executed
on any node. Firstly, it will check the state of
the datablock’s dependencies to ensure published
data integrity. For each datablock returned by
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Figure 6: Data collaboration primitive pipeline

resolve_dependencies (see section 3.3), it will
check if it is tracked and up to date. If so, the latter
will be subject to an ADD or a COMMIT. Secondly
it will calculate the changes and apply them to the
corresponding node in the local repository. The
changes consist of a differential of the data extracted
(with DUMP, see section 3.3) from the datablock in
its current state and the last committed version stored
in the node in the data field (see Fig. 5). We use
DeepDiff [Zep21] to compute the delta between the
two dumped versions of the datablock.
The PUSH CA-function is then called to transfer lo-
cal changes to the server which will apply them onto
its own repository and relay them directly to connected
clients.
As soon as the modifications are received by the con-
nected clients, they can be loaded with APPLY. This
CA-function checks the corresponding datablock exis-
tence with resolve (see section 3.3). If it is not re-
solved, it means that it is a new datablock correspond-
ing to a new scene element. In that case, it will be in-
stantiated using construct (see section 3.3). Once
a datablock instance is found, the load method (see
section 3.3) of the node implementation will load its
updated data into it.
The default behavior is to COMMIT then PUSH as soon
as a change occurs in the scene in order to ensure real
time updates. In certain situations (e.g. working on
large volumes of geometry) it is essential to give the

artist the ability to temporarily stop sending data to
avoid impacting the performance of other clients. By
separating the replication steps into functions, we ad-
dress the problem of disabling outgoing updates and the
need for an adaptive workflow.

3.6 Collaboration-Aware interfaces
During 3D scene editing, the user interactively edits the
assets in a spatial and temporal context. If we extrap-
olate this into a multi-user environment, it is important
for each user to be aware of who is working on what
element, where and when through collaborative user in-
terfaces.

Key Value
view_matrix [[0.0, 0.9, 0.0, 0.0],

[-0.4, 0.0, 0.9, 0.0],
[0.9, 0.1, 0.4,-5.0],
[0.0, 0.0, 0.0, 1.0]]

color [0.0, 0.3, 0.2, 1.0]
frame_current 91
scene_current main_stage
selected_objects [’object_1’, ’object_2’]

Table 1: A sample of the user metadata dictionary used
in the Blender framework integration

The user_states object of the framework is in-
tended to support such interfaces. More concretely, it
is a dictionary of metadata (e.g. in Tab. 1) specific to
each user stored and replicated across all clients. The
framework provides two functions to interact with this
object:

• update_user_metadata() allows a client to
update one or more of its metadata fields across all
connected clients.

• get_users_states() retrieve the metadata
dictionnary of all the connected clients (including
the local one).

To maintain collaboration awareness, it was crucial
to support a high metadata refresh rate. E.g. the
temporal snapping operator required a minimal 30 Hz
refresh rate on the frame_current field. To do
so, we limited the size of the updates to the strict
minimum. To do so, when a client request to up-
date a data field with get_metadata, only this latter
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will be relayed through the network encapsulated in an
UpdateUserMetadata command (see in Sec. 3.2)
that will patch all connected client’s user_states
object.

Figure 7: Collaboration aware interface in Blender
viewport

For instance, the implementation of the framework in
Blender relies on these interfaces to store the user’s
point of view (see the view_matrix field in Tab. 1)
in order to draw their frustums in the viewport of the
other connected clients (see Fig. 7). The same con-
cept is applied to represent the active selection (see
the selected_objects field in Tab. 1) bounding
box of each user. These two user interface elements
make connected artists completely aware in real time
of where each other are and what they are working on.
To allow artists to find each other in space and time,
two operators have been implemented in Blender.
They rely on the metadata made available through
a call to get_user_states (respectively the
view_matrix and frame_current fields in Tab.
1).

4 APPLICATION EXAMPLE
As an open-source Swiss army knife for 3D content cre-
ation, Blender can handle all stages of film production.
The animation studio CUBE CREATIVE [Cub21] has
made it its main DCC since 2019, from asset creation
(modeling, texturing, shading and rigging) to rendering
and animation.
A key advantage for real-time collaboration is its uni-
fied shader system between its real-time rendering en-
gine (EEVEE) and its path tracing engine (Cycles),
which allows for high-fidelity pre-visualization of ma-
terial rendering in real-time in the viewport. Applied to
the multi-user context, this provides the possibility for
all users to visualize in real-time the visual changes of
the scene in EEVEE while keeping a fidelity close to
the final rendering in CYCLES.
We integrated our framework into Blender as an open-
source add-on called Multi-User [Mar19]. This made
possible the study of the impact of real-time collabora-
tion in two different environments:

• An industrial one: In the studio CUBE CREATIVE
(where the framework was developed) with supervi-
sors and artists teams specialized in animated series.

• An Academic one: For teaching computer graphics
at university Paris 8.

The collaboration functions described in 3.5 were
placed in the callbacks provided by Blender (like:
depsgraph_update_post). Thus, Blender di-
rectly notifies the framework of any updates of the
scene and the framework publish these changes to all
the clients.

5 ANALYSES AND OBSERVATIONS
From July 2019 to January 2021 we conducted a set
of experimental sessions at CUBE CREATIVE using
our Blender integration of the framework (the Multi-
User add-on). The real-time collaboration was applied
to concrete use cases reflecting the reality of a produc-
tion through different exercises:

• Scene re-creation: Create scenes (any aspect) from
scratch, while being guided by a 2D reference im-
age.

• Background concept: Create scenery from already
existing assets issued from a production.

As mentioned in the section 1, the production of a film
linearly passes through many stages. Each step is iso-
lated and validated one by one. Within the production,
the real time collaboration can be conceived within one
or several production stages. These two configurations
will lead to two very different team compositions. We
will refer to a multi-disciplinary team for the collabo-
ration invoking multiple production stages, whereas for
performing collectively a single kind of task, we will
refer to a specialized team.

Both types of exercises were designed to test these two
team configurations. For the background concept ex-
ercise, the teams are specialized. But, the scene re-
creation requires several professions working together
because it encompasses all aspects of creation.

These two classes of exercises allowed us to evaluate
our approach in terms of efficiency and quality.

5.1 Collaboration efficiency
To study the impact of real-time collaboration on work
execution efficiency, we conducted a series of scene re-
creation sessions based on references images chosen for
their diversity.

Each of these scenes was created twice on Blender: one
version was created by a single person executing se-
quentially the different tasks, and the other version was
created by a team collaborating in real time with multi-
user add-on through the internet. In both cases, the
artists had to create the following aspects:
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• 3D models
• shading
• layout
• fx
• lighting
• compositing
• rendering

Despite being an abstract notion, the qualifications of
the artist is a very important factor regarding the re-
sults. We can distinguish three levels of experience in
animation teams: junior, mid and senior artists. In the
single-user creation experiment, the artists had a mid-
experience, such that they can handle all aspects of the
content production. In the multi-user part of the expe-
rience, the collaborative team was mixed equally with
mid and junior artists.

Scene SU MU
name tris Oc t t Ts
Campsite 3430 161 63 45 3
Paper Summit 22215 58 90 60 5
All seing monolith 59000 146 177 90 4
Xbox clubs image 16112 726 238 175 4
Abstract city 2267256 139 472 295 5

Table 2: Scenes re-creation sessions time (t) in minutes
in single-user(SU) and multi-user(MU) configuration
with corresponding team size(Ts), Total triangles(tris)
and objects count (Oc)

Tab. 2 shows how real-time collaboration can speed
up the scene creation time. This gain varies accord-
ing to the complexity of the scene and the size of the
teams. According to our data, teams of 4 artists ob-
tain the highest efficiency rate on complex scenes. Al-
though encouraging, the method’s efficiency could be
greatly improved with an optimisation of the work dis-
tribution before the session. During the re-creation ses-
sions, we didn’t impose that, and as a result, we found
the artists, by habit, tended to work individually on the
assets. Thus, we observed the main factor limiting the
parallelization of work was organizational. The goal
would be to overlap the creation of multiple aspects of
the same asset to improve the collaboration workflow
parallelism. For example, one artist can go-on building
an asset while another could place it in the scene.

Beyond efficiency, the re-creation sessions highlighted
other benefits of the real-time co-creation. Although
working on individual assets, the artists were naturally
led to simultaneously work on several aspects of the
scene. E.g. it was common for one artist to start
the lighting while other are modeling and laying out
elements. As a result, they were aware in real-time
of their impact on the work of others which greatly
improved error handling as opposed to a linear industry
pipeline.

5.2 Qualitative observations
While the analysis of the re-creation sessions has shown
the efficiency of our framework for collaborative work
in a concrete context (guided by references), we also
questioned the ability of such a workflow in an abstract
context such as in pre-production where new designs
have to be created.

During the collaborative background concept sessions,
the teams were composed of three to four members
ranging from mid to senior level.

In order to be as close as possible to real life conditions,
we used a set of existing assets coming from the Tan-
granimo series currently in production at CUBE CRE-
ATIVE. The exercise focuses on a collaborative layout
to design new sets based on an existing visual style.

(a) (b)
Figure 8: Background concept session 1 result, includ-
ing (a) the scene render and the corresponding (b) user
work distribution by color.

(a) (b)
Figure 9: Background concept session 2 result, includ-
ing (a) the scene render and the corresponding (b) user
work distribution by color.

The spatial distribution of work is a particularly inter-
esting criterion to study in this kind of improvisational
exercise. It provides a visual indication of the collab-
oration quality: this can be measured by coloring the
space regions occupied by objects according to the user
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who worked on them. When the collaboration is not
fluid, we observe very distinct islands that do not inter-
sect as well as a dominance of the occupation rate of
certain colors.

user occupancy
Session 1

yellow 3.9
green 1.9
red 0.8

Session 2
green 6.2
blue 3.4

Table 3: Users work occupancy percentage on the back-
ground concept session results.

This was the case of the first session which was con-
ducted without any preparatory phase. In the user’s
work distribution (see Fig. 8b), we observe very distinct
islands that do not intersect, as well as a dominance of
yellow on the spatial occupancy rate (3.9 % for the yel-
low user against 1.9 % for the green and 0.8 % for the
red, see Tab. 3). It means that the artists were working
in a spatially isolated way, revealing that the collabora-
tion was not smooth, as if they were shy of interacting
with each other. As a direct consequence, the resulting
scene shown in Fig. 8a lacks of coherence.

In the second experimental session we introduced a 5-
minute briefing period at the beginning of the session
dedicated to settle the creation of a common foundation
(in red in Fig. 9b). As shown in the user work distri-
bution in fig. 9b, the common conception of the space
resulted in a much more uniform distribution of work.
The resulting scene (see Fig. 9a) is coherent.

When errors occurred (e.g., an object casting an un-
intended shadow), we observed that the real-time na-
ture of the collaboration allowed the participants to no-
tice them and instantly fix them. In a traditional pro-
duction pipeline, this process would have been much
more time-consuming and tedious (as shown in fig. 1).
Thus, using the framework permitted to improve con-
siderably the communication between artists, greatly
increasing the anticipation of errors. Furthermore, the
artists started talking to each other during the creation,
which was not possible before because of the "silo ef-
fect". Adding this social dimension to the creative pro-
cess has led artists to evaluate and re-calibrate their
work according to the scene being created. This nat-
ural review process is intrinsic to the global vision of
the project given by the real-time nature of the collabo-
ration. It allows the artists to communicate about their
practices and thus generates a natural transmission of
knowledge between the different levels of experience.

Academic application
Although we mainly addressed the industrial applica-
tion of this work, it turned out that it would add a new

dimension to the teaching of computer graphics. For
example, we used the Multi-User add-on during 3D
modeling courses held at the department Art and Tech-
nology of the Image of University Paris 8 in 2020. This
led the teacher to share the same virtual space as the
students. By interacting with their practical work in real
time, the teacher is able to react naturally and quickly to
the questions and difficulties of each student. From an
educational point of view, our work may have a relevant
application in the academic world.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented an experimental frame-
work to explore and question the contributions of
real-time collaborative work in animation. Based on a
mono-DCC approach, our Replication Data Protocol
(RDP, see section 3.3) supports a non-destructive
dataflow thus adapting collaborative possibilities to
the specifics of 3D authoring software. With the
addition of collaboration-aware functions, we adapted
the collaborative workflow to the constraints of the
creation software and the needs of the artists.

We evaluated our framework on the efficiency and qual-
ity of the collaboration it supports. For this purpose we
conducted experimental sessions based on its integra-
tion in Blender. It turned out that in addition to speed-
ing up the process of creating 3D scenes, the presented
work also increases considerably the visibility of the
artists on their ongoing creation.

By adding the real-time aspect within the collaboration
we have moved away from the iterative nature of the
work. As presented, the framework relies on the cur-
rent version of the creation data. It would be interesting
to consider the validation and the tracking of the artistic
work in the context of a scene created in real-time by a
team. Adding a versioning layer of the changes could
help the production teams to track the team’s work over
time. This could be achieved by saving a full version
(i.e. snapshots) of the repository in different ways. An
automatic strategy triggered at a regular time interval
meets the backup and security requirements. In con-
trast, a manual strategy driven by the artist from its
DCC software would be ideal to iterate precisely on
a scene aspect. The latter would be used to perform
validation reviews based on a given state of the work.
Currently, the framework stores the entire repository in
memory, limiting the size of the supported scenes to
the available memory on the client computer. A fu-
ture work would be to add a disk-based cache system
to achieve larger 3D scenes support. By configuring
it via the data translation protocol, each type of dat-
ablocks would benefit from a caching strategy tailored
to its needs.
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ABSTRACT
The graphics rendering pipeline is key to generating realistic images, and is a vital process of computational design,
modeling, games, and animation. Perhaps the largest limiting factor of rendering is time; the processing required
for each pixel inevitably slows down rendering and produces a bottleneck which limits the speed and potential of
the rendering pipeline. We applied deep generative networks to the complex problem of rendering an animated 3D
scene. Novel datasets of annotated image blocks were used to train an existing attentional generative adversarial
network to output renders of a 3D environment. The annotated Caltech-UCSD Birds-200-2011 dataset served as
a baseline for comparison of loss and image quality. While our work does not yet generate production quality
renders, we show how our method of using existing machine learning architectures and novel text and image
processing has the potential to produce a functioning deep rendering framework.

Keywords
Graphics pipeline, rendering technologies, machine learning, image processing, generative adversarial networks,
text-to-image, semantic data processing

1 INTRODUCTION
Rendering a 3D environment often requires excessive
amounts of time and computational resources. The cost
of high quality rendering is multiplied by variable cir-
cumstances during production, such as changes to the
scene, cast, or script. A determining factor in the speed
of rendering is undoubtedly the amount of processing
which occurs in the rendering pipeline. We propose
the application of text-to-image deep learning networks
to the rendering of a 3D environment, to help sub-
vert the costs of traditional rendering processes. We
trained the Attentional Generative Adversarial Network
[Xu01a] using textual descriptions for small sections
of pre-rendered frames. We then generated renders of
the environment for a given frame by stitching together
outputs generated from the frame’s corresponding at-
tributes.
We show how current research may be used in new
ways to inject more relevance into generated images,
and ultimately produce reasonable renderings of un-
known scene data. Although our method does not yet
produce images of high enough quality to replace cur-
rent rendering technologies, we provide a proof of con-
cept to support future advancements for deep learning
approaches to the graphics pipeline.

2 BACKGROUND
Deep text-to-image synthesis was made possible
through advancements in computer vision and machine

learning. Although neural networks have been applied
to animation and frame prediction, none so far have
attempted to circumvent the rendering process as a
whole [Sem01a]. We propose the application of deep
generative networks to the rendering of a 3D scene
using textual data alone. Two models we found crucial
to solving this problem were generative adversarial
learning, and attention mechanisms. We utilized an
architecture combining both of these concepts, the
Attentional Generative Adversarial Network developed
by Microsoft Research [Xu01a], in the creation of a
deep rendering framework capable of rendering images
given textual descriptors of a 3D scene.

2.1 Generative Adversarial Networks
The Generative Adversarial Network (GAN) was first
proposed as a method of producing realistic images
from random noise [Goo01a]. The GAN is made up
of two sub-architectures which are trained in tandem: a
generator, G, and a discriminator, D. The generator is
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trained to progressively synthesize images that closely
resemble a target, while the discriminator is trained to
determine if a given image is real or fake.

A non-conditional GAN model functions as a random
image generator, where generated outputs share global
and local qualities of images from the training dataset.
The advent of the conditional GAN opened new av-
enues for research in adversarial learning, and has since
led to applications in image-to-image and text-to-image
translation.

2.2 Attention Mechanisms
Another deep learning concept applicable to text-to-
image generation is called Attention. Attention is a type
of sequence-to-sequence learning which uses attention
functions to reference past data during each iteration
of training. An attention function is a mapping of a
query and a set of key-value pairs to an output. At-
tention may be accomplished using an encoder-decoder
structure, where the encoder is trained to map feature
space (x1, . . . ,xn) to a continuous representation z =
(z1, . . . ,zn), and the decoder is trained to transform z
into an output sequence (y1, . . . ,ym) [Vas01a]. Applied
to text-to-image generation, feature space would consist
of all input words and the output sequence would con-
sist of 3-channel pixel data. The self-referential nature
of attention enables the learning of complex relation-
ships in long data sequences.

3 RELATED WORK
While they perform excellently as random generative
models, GANs tend to be unstable, and their outputs
often do not fully reflect the diversity in the training
set. Over-training of a GAN network may result in
preference of a small set of images rather than learn-
ing more detailed representations from the dataset. Re-
searchers also found it difficult to train GANs to learn
global structures; semantic meaning such as pose, com-
position, and color are impossible to control without
modifying the GAN model. Higher quality images with
more stability and semantic relevance were obtained by
seeding the model with non-random data – such as a
low-quality image or textual description – to generate
from [Par01a]. Others found that variation inference
and other types of embedding increased the quality of
generated images [Luc01a]. These discoveries led to
the creation of many variant GAN architectures, such
as the Deep Convolutional GAN (DCGAN) [Rad01a].

The DCGAN was first proposed as a way to bridge the
capabilities of unsupervised and supervised learning
through adversarial training. The model architecture
has a similar structure to the original GAN model,
but uses convolutional and convolutional-transpose
layers in the discriminator and generator, respec-
tively [Rad01a]. The addition of convolutional layers

increases abstraction and allows the DCGAN to recog-
nize more complex relationships. The text-conditional
convolutional GAN architecture was built off of the
successes from the DCGAN, and was one of the first
GAN architectures to produce results in adversarial
text-to-image synthesis [Ree01a].

Text-to-image generation was notably improved by Mi-
crosoft Research with the advent of their Attentional
GAN (AttnGAN) model [Xu01a]. The AttnGAN ar-
chitecture combines inherent inference obtained by the
generator and discriminator within the GAN framework
with the improvements in dependency correlation and
stability from attention mechanisms. Instead of encod-
ing the entire caption as a single input vector, each word
in the sequence is allowed an opportunity to claim re-
gional importance for the output image. This ability
provides better recognition of conditional sub-regions,
which improves overall semantic relevance and coher-
ence of the output image. AttnGAN was partially based
on the work of the StackGAN++ architecture, which
found a multi-stage approach was necessary for stabi-
lizing sensitivities in training GAN models [Zha01a].

Preceding adversarial training, the AttnGAN architec-
ture loads all textual attributes in the text dataset, and
creates a one-hot encoding representation of the data.
A one-hot encoding assigns each symbol a bit value of
a binary string of size n, where n is the size of the lan-
guage of all attributes. This creates an easy way for
the network to recognize words and ensures a minimal
amount of resources are allocated to tracking them. The
AttnGAN requires training two models: pre-training
for the text and image encoders, and generative train-
ing for image synthesis [Xu01a]. Pre-training is con-
tained in the Deep Attentional Multimodal Similarity
Model (DAMSM), which initializes the text and image
encoders preceding any adversarial training. This step
is essential to providing the stability necessary for con-
ditional image generation. Xu et al. used an LSTM
model for their text encoder, and Google’s Inception-
v3 CNN as the image encoder. After pre-training is
finished, the encoder paths are used for adversarially
training text-to-image generation.

Another architecture was created from the advance-
ments of AttnGAN, called LEarn, Imagine and CreAte
GAN (LeicaGAN) [Qia01a]. Similar to other attention-
based GANs, the LeicaGAN architecture is comprised
of a text-embedding phase followed by coarse-to-
fine image generation. The main improvement of
LeicaGAN is a result of their use of textual-visual
co-embedding (TVE) and multiple priors aggregation
(MPA) to further extract semantic meaning from input
images.

Finally, we review work from the related field of frame
prediction. Mathieu et al. were of the first to apply
adversarial learning to predict images in a seqence of
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frames. They developed a recursive, multi-scale GAN
framework to predict small portions of an input video
sequence. Their mult-scale approach provided them the
benefits of convolutional layers without lowering the
quality of their output images [Mat01a]. The Spatial
Transformer Predictor [Fin01a] and Geometry-Based
Next Frame Prediction [Mah01a] models deployed a se-
ries of convolutional Long Short-Term Memory units to
generate the next frame in a video sequence. The for-
mer predicted a series of transformations which were
masked and then applied to source frames, while the
latter predicted a depth map which was then converted
into a final image. Liu et al. trained a convolutional
encoder-decoder network to predict images between
two frames. Their architecture, which they called Deep
Voxel Flow [Liu01a], was trained to generate an in-
between frame by using voxels borrowed from the two
frames adjacent to it. Their approach notably did not
require pre-processing, as was used in the prediction
methods discussed previously.

4 APPROACH
We propose the creation of a machine learning frame-
work to render frames of a 3D environment given se-
mantic data input as text, a concept we refer to herein
as a deep rendering graphics pipeline. We chose to use
the AttnGAN as the generative architecture, to provide
a well-defined baseline for current and future work. In-
puts of the architecture were any number of textual at-
tributes containing contextual meaning for the objects
which were to be rendered. Once trained, the rendering
system was then used to preview new views of the scene
without re-rendering using the animation software or
re-training the AttnGAN architecture.

The deep rendering graphics pipeline, as we define it,
requires non-image seed data as input to produce a ren-
dered output image. We note that frame prediction and
deep rendering overlap in expectations for final outputs,
however given the divergence between text-to-image
and image-to-image networks, we classify the two as
separate deep learning problem spaces. Although we
require both text and image data during training, our fi-
nal outputs were constructed from text attributes alone.
This serves as a function of rendering directly from ex-
tracted scene data and does not involve the manipula-
tion or processing of image inputs to generate the final
frame, as is done in frame prediction.

4.1 Process
To measure the capabilities of our method, we created
a 3D scene with many moving parts and complex light-
ing interactions. We applied RenderMan [Chr01a] ma-
terials with varying properties, including blue glass,
soap bubble, gold, obsidian, thick glass, thin glass, beer
glass, and murky water. Lighting was applied via a

spherical HDRI image of a bright outdoor scene. We
animated 4 axes of rotation and 1 telescopic projection
over the course of 120 frames, and rendered the anima-
tion using RenderMan. These frames were then pro-
cessed further to create sets of images to be used as
training data.

Our datasets of training images were generated by ex-
tracting small portions of each frame, which we re-
fer to as “frameblocks”. It was clear that including
insignificant or redundant information could result in
over-training, so we ensured during extraction that el-
ements of the dataset contained minimal similarity to
one another. To generate frameblocks for frame Fi, we
compared the visual changes between the two adjacent
frames, Fi−1 and Fi+1, using a bit-wise XOR and vec-
tor sum capped at 255. The result was a grey-scale
image which highlighted changed components between
frames Fi−1 and Fi+1. While processing each frame-
block in the frame, we compared the total amount of
change in the block to the sum of all changes in the
frame. If the value surpassed the 1.0 percentile of to-
tal change, it was included in the dataset, otherwise it
was stored in a cache to be compounded in future cal-
culations for the same frameblock. Thus, even small
changes over many frames were represented in the im-
age dataset over the course of image pre-processing.

We then extracted corresponding text attributes describ-
ing the objects present in each frameblock of the im-
age dataset. Types of attributes we experimented with
included screen distance, frame and block index, and
vertex, edge, normal, and orientation information. In
experimenting with what attributes produced the best
outputs, we discovered the AttnGAN model found dif-
ficulty in recognizing relationships inherent to numer-
ical data. We concluded that, due to the use of one-
hot enocding, the AttnGAN network more easily rec-
ognized unique identifiers over numerical values. This
is also supported by similar studies of other learning
models [Zha02a].

To accommodate the loss in recognition, we attempted
to more precisely describe an object’s characteristics in
relation to its rendered pixels. Each frameblock was di-
vided into m×n regions, and each region was assigned
a bit position. We used these bit positions as flags for
marking the area a given 3D object was present inside
of. Figure 1 demonstrates this effect for finding the pre-
cision attribute of an object in the lower right corner of
the sample frameblock. Using the 3×3 grid shown, we
see the object resides inside of regions 0x020, 0x080,
and 0x100. The logical “OR” operator (⊕) was used
to combine these values and create the final precision
attribute. Thus, for our example, the precision value
was calculated from 0x020⊕0x080⊕0x100 = 0x416,
and resulted in the output attribute of “v416”. This pro-
cess was repeated for all objects present inside of each
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frameblock. As we expected, the increase in precision
improved recognition and output quality. We experi-
mented with the resolution of precision, from 2×2 sub-
divisions to 8× 8. In general, results did not improve
visually past 4× 4, so we decided to generate our fi-
nal results with m = 4 and n = 4, for a total of 65,536
possible resolution cases.

Figure 1: Example of the precision attribute for an ob-
ject in the bottom right corner of the sample frame-
block.

While the precision attribute was able to mask the pres-
ence of an object for a given frameblock, it was not
able to provide information on what part of the object
was in view. We decided to again employ unique iden-
tifiers, this time for indexing groups of faces visible in
the frameblock. For each object, we assigned an index
to the group of face indices exactly containing visible
faces. A running list of all face groups was maintained,
so that if a given group of faces was seen again, the
same identifier was used. This strategy provided spatial
relevance while maintaining uniqueness, and was found
to be paramount to the visual quality of our output im-
ages.

We obtained the best results by prepending the mesh
name to each attribute. Recognition also improved with
the addition of identifying words; we used “and” to sep-
arate attributes connected to the same object, and “also”
to identify the end of one attribute group and the start of
the next. A sample from the 8×8 dimension dataset is
shown in Figure 2, outlining the location of extraction
from the source frame in white. The attributes we used
included distance to the screen (d), face group identi-
fier (i), precision value (v), and concatenated Euler ro-
tation (r). The text required for this 8×8 pixel sample
describing 4 objects was approximately 400 characters
in length, while simpler samples with only one object
were represented in as few as 30 characters in total.

4.2 Training
To begin training, we generated text attributes for all el-
ements of the corresponding image dataset, as well as
for any test frames used in evaluating our framework.
We performed two experiments, one using 2 frames of
known input, and another using 30 frames. For these
experiments, we selected every other frame to be used
as a test case. Once the AttnGAN architecture was
fully trained, the model was used to generate the first
four frames of animation, 2 of which were novel views.

Figure 2: Example of attributes for an extracted 8× 8
pixel frameblock of a known frame.

The final stages of our process involved frame gener-
ation and analysis. To create a final synthetic frame,
we fed in the semantic attributes for all frameblocks of
the frame, and combined the generated images in their
corresponding block locations.

We experimented with varying frameblock sizes, to
gain insight into the efficacy of our text attributes. We
generated and tested with frameblocks of dimensions
2k × 2k pixels, for k = 2,3, . . . ,6. We found that us-
ing large values of k resulted in smaller datasets which
took less time to train, but also generated more visual
anomalies and less coherence. Smaller block sizes re-
sulted in very slowly training architectures with higher
image quality. Table 1 shows a synopsis of statistics
for various frameblock sizes, and Table 2 shows our
generated dataset size compared to the total size if all
frameblocks were included.

64 32 16 8

PT (hrs) 0.364 1.216 8.477 17.726

GT (hrs) 1.109 2.727 17.617 34.874

RT (hrs) 0.050 0.167 0.605 2.289
Table 1: Training and evaluation times in hours per
dimension of frameblock. PT represents pre-training
time, GT represents generation training time, and RT
represents final render time for a single frame.

64 32 16 8

Dataset Size 4,389 17,862 73,741 296,526

Dataset Max 14,400 118,800 241,200 9,720,000
Table 2: Total number of image-text pairs for each
dataset compared to the same dataset generated with-
out our selective pre-processing.

In using our method of frameblock selection, we
reduced dataset size to 30% of the maximum on
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average, and achieved an improvement of 112.8% for
SSIM and reduction of 143% in MSE. The model
trained on all frameblocks in the frame – in this
case a total of 241,200 images – over-trained on the
background attributes, which were more abundant
per frame than those of any other object in the scene.
Our pre-processing phase yielded a dataset of 73,741
unique images and attributes, which resulted in better
training and more visual cohesiveness, as seen by
the improvements between Figures 3a and 3b. This
shows the benefits of our novel use of frameblocks in
adversarial text-to-image synthesis.

(a) The frame generated with all attributes present in the frame,
including redundant information.

(b) The frame generated using our method of pre-processing.

Figure 3: Visual improvement accomplished using our
method of frameblock pre-processing for datasets gen-
erated with 16×16 pixel resolution frameblocks.

To serve as a baseline for comparison, we also trained
on images of the Caltech-UCSD Birds-200-2011
(CUBS) dataset. CUBS contained 200 categories of
bird types with a total of 11,788 images [Wah01a].
The attribute data was represented in multiple variable-
length captions for each image. An example caption
for an image in CUBS is, “this bird has a bright yellow
crown, a long straight bill, and white wingbars” –
these captions are much like the attributes used for
our datasets of frameblocks, however they are less
specific concerning the make up of the image, such as
in object placement, pose, and setting. Results from all
of our datasets outperformed those of CUBS, which
implies that our selection of attributes more accurately
represented images compared to the CUBS captions.

5 RESULTS
Since GANs do not optimize any kind of objective
function and operate instead on a learned latent space,
they can be difficult to analyze analytically [Ric01a].
To evaluate our results, we measured the closeness of
our generated images to their target frames via Mean
Squared Error (MSE), Structural Similarity Index
(SSIM), and Peak Signal-To-Noise Ratio (PSNR).
Training losses of all block sizes are produced in
Figure 4.

Figure 4: Final training losses for the AttnGAN model
trained on frame data.

5.1 Image Analysis
The final generated frames for our 2-frame and 30-
frame experiments are shown in Figures 5 and 6, re-
spectively. In both cases, we trained and tested with
4 datasets of block sizes 64, 32, 16, and 8 pixels. We
found that the smaller the resolution, the better quality
of image was generated. The decreased size in image
space improved the ability for the model to learn re-
lationships between pixel value and textual attributes.
The larger frameblock sizes of 64 and 32 did not have
enough context to produce cohesive outputs. For the 2-
frame experiment in particular, these sizes did not con-
tribute enough data to produce arguably good results.

While the model trained on 8 pixel dimension frame-
blocks produced the best renders of those we gener-
ated, it did not generate enough detail or coherence be-
tween blocks to constitute a visually accurate rendering.
The very center portion, which should display a rotat-
ing wooden texture, rendered very little texture in all of
our outputs. We note this quality is true for most por-
tions of the image with extremely fine textural details,
such as the subsurface scattering on the clear dome and
dark glass objects, and the reflection on the floor. This
is likely due to the lack of texture and lighting informa-
tion in the text attributes. Although we theorized that
decreasing the block size would improve textural gen-
eration, frameblock dimension did not affect the level of
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detail generated aside from improving object structure.
Further experiments would be necessary before we may
determine how to improve the accuracy for rendering
textures and lighting using our method of data genera-
tion.

Our analysis of output images is produced in Table
3. The values of any given category were mostly uni-
form across dimensions, which does not trend with
the dramatic change in visual quality between outputs.
Our further analysis in Table 4, which compares re-
sults on a block-by-block basis, reflects greater dif-
ferences between dimensions. This shows that gener-
ated frameblocks were more accurate individually, but
scored lower when combined for the final frame. This
premise is also supported by the significant improve-
ment in loss over the CUBS baseline. Notably, the most
accurate images generated from our datasets were close
to or completely correct, while the most accurate im-
ages of CUBS exhibited larger amounts of error.

Frames 2 and 4, which were not included in the train-
ing or test datasets, still held high correspondence to
their targets; the AttnGAN model was able to extract
enough semantic meaning from our attributes to create
plausible renderings of unknown views, and thus func-
tion as a true rendering system. Further, the high sim-
ilarity between our 2-frame and 30-frame experiments
demonstrates the abstraction power of our method. The
64 dimension case of the 2-frame experiment, however,
did not contain enough data for learning the seman-
tic descriptions, and thus we conclude our approach
is limited by dataset size and training time. Optimiz-
ing the number of epochs to data and frames processed
would create crisper images, however we found that
no amount of training could entirely overcome cross-
boundary incoherence or greatly improve the genera-
tion of textures. Taking the average of all frameblock
sizes, our dataset yielded 156% better MSE, and 130%
better SSIM over the CUBS dataset.

6 CONCLUSION
Generative Adversarial Networks show promise for im-
age generation, but can be highly unstable and at times
generate undesirable results. Attention-based GAN net-
works are proven to synthesize higher-quality images
with more semantic relevance and improved composi-
tion. Using the Attentional GAN model created by Mi-
crosoft Research, we successfully implemented a proof
of concept for generating frames without a commercial
renderer. Our method of frameblock selection reduced
dataset size for long animated sequences, and yielded
156% improvement in MSE over the CUBS dataset.
While the model trained on the CUBS data generated
birds in the likeness of their input captions, fine con-
trol of the pose and background was not possible. Our
semantic text attributes improved this capability for all

Blockdim 64

Frame MSE SSIM PSNR

1 45.443 0.857 31.556

2 46.304 0.863 31.475

3 45.607 0.859 31.540

4 46.533 0.863 31.453

Blockdim 32

Frame MSE SSIM PSNR

1 46.341 0.862 31.471

2 47.772 0.859 31.339

3 47.272 0.857 31.385

4 48.513 0.857 31.272

Blockdim 16

Frame MSE SSIM PSNR

1 42.997 0.874 31.796

2 45.049 0.867 31.594

3 45.273 0.863 31.572

4 45.778 0.864 31.524

Blockdim 8

Frame MSE SSIM PSNR

1 39.723 0.867 32.140

2 41.894 0.855 31.909

3 40.865 0.857 32.017

4 42.083 0.854 31.890
Table 3: Results of MSE, SSIM, and PSNR for all di-
mensions and frames analyzed.

block sizes, as we were able to dictate form, material,
and structure. The smaller dimensions of 8 and 16
obtained the most accurate renderings, since attributes
were more focused for each image. The larger sizes
of 32 and 64 failed to provide enough textual detail to
generate accurate outputs.
Our results present plausible basis for future work in
this area. Replacing the rendering pipeline is a com-
putationally very difficult problem, and would not be
possible without the use of advanced deep neural net-
works. We assert that future advancements in a deep
rendering graphics pipeline could decrease rendering
costs for static and dynamic rendering systems, and ul-
timately provide an alternative to traditional rendering
processes.
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Figure 5: Results of our framework for 64, 32, 16, and 8 dimension frameblocks, using 50 epochs and the first and
third frame of the 60 frame animation. The network did not have enough training data for the 64 and 32 dimension
cases, and thus more epochs would be necessary to produce rendering given only 2 frames as inputs.

Figure 6: Results of our framework for 64, 32, 16 and 8 dimension frameblocks, using 50 epochs and every other
frame of the source 60 frame animation. Frames 1 and 3 were included in the training set, while 2 and 4 were not.
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ABSTRACT 
Recently, customized manufacturing is gaining much momentum. Consumers do not want mass-produced products 
but are looking for unique and exclusive ones. It is especially evident in the furniture industry. As it is necessary 
to set an individual price for each individually manufactured product, companies face the need to quickly estimate 
a preliminary cost and price as soon as an order is received. The task of estimating costs as precise and timely as 
possible has become critical in customized manufacturing. The cost estimation problem can be solved as a 
prediction problem using various machine learning (ML) techniques. In order to obtain more accurate price 
prediction, it is necessary to delve deeper into the data. Data visualization methods are excellent for this purpose. 
Moreover, it is necessary to consider that the managers who set the price of the product are not ML experts. Thus, 
data visualization methods should be integrated into the decision support system. On the one hand, these methods 
should be simple, easily understandable and interpretable. On the other hand, the methods should include more 
sophisticated approaches that allowed reveal hidden data structure. Here, dimensionality-reduction methods can 
be employed. In this paper, we propose a data visualization process that can be useful for data analysis in 
customized furniture manufacturing to get to know the data better, allowing us to develop enhanced price 
prediction models. 

Keywords 
Data visualization, dimensionality reduction, machine learning, cost/price estimation and prediction, customized 
furniture manufacturing. 

1. INTRODUCTION 
A visualization is a powerful tool in data exploration. 
A human being is able to understand visually 
presented information much better than that shown in 
other forms. Visualization allows data analysts to 
delve deeper into the data. Good data knowledge 
enables developing or selecting methods for further 
data analysis to solve specific tasks, such as 
classification, prediction, etc. When solving real-
world problems, usually, data are of specific nature 
and complex structure, thus, sophisticated methods for 
data visualization are needed. Commonly, the real-
world data are multidimensional. So, data 
dimensionality reduction-based visualization methods 
are widely employed in order to see the general 
structure of the data. On the other hand, if the 
developed methods are integrated into a decision 

support system, and its users are not familiar with data 
mining and machine learning, visualization tools 
should be simple, easily understandable and 
interpretable. The challenge is to reconcile these two 
aspects of visualization methods. Moreover, the 
methods must best reveal the characteristics of the 
data being analyzed, considering the specificities of 
the domain. In this paper, we propose a data 
visualization process in order to adapt it to a 
specialized decision support system for an early price 
estimation in customized furniture manufacturing 
when data visualization is used by untrained experts 
for rapid prediction experiments. 

2. CUSTOMIZED FURNITURE 
MANUFACTURING 
Recently, customized furniture manufacturing is 
gaining much momentum. Consumers do not want 
mass-produced products but are looking for unique 
and exclusive furniture. Furniture manufacturing 
company faced with custom furniture pricing, which 
must be done quickly, but with sufficient accuracy. 
Here, machine learning techniques can be employed. 
The price estimation problem can be solved as a 
prediction problem using machine learning techniques 
[Kur21]. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 
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Usually, the furniture price consists of two 
components: the total cost of production	𝐶# and the 
profit 𝑃#. The price 𝑃% is a sum of these components, 
𝑃% 	= 	𝐶# 	+	𝑃#. The cost 𝐶# consists of direct costs 
and overhead costs. Direct cost includes direct 
material costs, direct labor costs, and other costs. 
Production costs, administrative costs, the cost of 
disposing belong to overhead costs. Usually, the early 
cost estimation is the most relevant problem [Nia06]. 
It is a complicated and time-consuming process due to 
the need to evaluate many components in the early 
design stage when information is most limited. When 
the cost is estimated, the profit is added as a certain 
percentage of the cost. 
If machine learning methods are to be used, it is 
necessary to have data from the domain in question. 
When analyzing customized furniture manufacturing 
data, one data item is a product (furniture), 
characterized by a set of various features: item 
measurement (length, height, width, weight, the 
volume of the bounding box); material data (the 
materials used for production and their costs); 
operational data (operation list and the time required 
to complete the operation process); labor data (much 
manual work, expensive machine tools are used); 
production time (the customer’s requirement for 
production time); batch size (more the same products 
reduce the cost of one product); manufacturing 
complexity (a qualitative parameter indicative of the 
uniqueness of the item and complexity of the work). 
Let’s denote these features by 𝑥), 𝑥+,… , 𝑥-. They are 
used as independent variables if regression-based 
methods are used for the cost prediction. In this case, 
the cost is a dependent variable. Let’s denote it by 𝑦.  
The cost estimation by machine learning is 
challenging due to the very wide variety of custom 
furniture. The prediction accuracy is not as high as one 
would like. Thus, it is purposeful to apply 
visualization methods to delve deeper into the data 
using visualization output as an additional source of 
information for external experts. The visual analysis 
will help select appropriate data subsets and data 
features that should be used in machine learning to 
improve cost prediction results.  

3. DATA VISUALIZATION METHODS 
Data visualization is crucial in the big data era. The 
data visualization helps to notice the totality of the 
analyzed data, allows for better knowledge of the data, 
resulting in easier decision making [Med17]. The data 
visualization can be used for various purposes: initial 
data cognition, exploratory data analysis [Bat17], 
interpretation of machine learning [Cha20a], etc. This 
is especially important if the person working with the 
data is not an expert in data mining and machine 
learning. Data should be presented in such a form that 
they would easily understandable and interpreted. 

Many methods for data visualization are developed 
[Sor14], [Wan15], [Dze13]. The methods can be 
divided into two large groups: direct visualization and 
dimensionality reduction-based visualization [Dze13]. 
When using direct visualization methods, the data are 
presented in a visual form acceptable to a human 
being. Scatterplots, bar plots, histograms, and others 
are assigned to this group.  Dimensionality reduction 
is one of the major data abstraction techniques in 
visual analytics. It aims to represent multidimensional 
data in low-dimensional spaces while preserving most 
of its relevant structure, such as outliers, clusters, or 
underlying manifolds [Sac16].  
Principal component analysis (PCA) is the best known 
and most popular approach for dimensionality 
reduction. It finds a linear subspace that aims to 
maintain most of the variability of the data [Wan16]. 
PCA is a linear projection method, while 
multidimensional scaling (MDS) is a nonlinear one. 
MDS aims to find low-dimensional points such that 
the distances between the points in the low-
dimensional space were as close to the proximities of 
multidimensional points as possible [Dze13].  The t-
distributed stochastic neighbor embedding (t-SNE) 
based on non-convex optimization has become the de 
facto standard for visualization in a wide range of 
applications [Aro18]. The state-of-the-art t-SNE 
algorithm manages to create low-dimensional 
representations that accurately capture complex 
patterns from the high-dimensional space, showing 
them as well-separated clusters of points [Cha20b]. 
Recently, one more group of dimensionality reduction 
approaches becomes popular—autoencoder neural 
networks [Wan16]. They can cope with large amounts 
of data because deep learning strategies are applied to 
their training. 
The problem arises how to select more appropriate 
visualization methods and how to organize the whole 
visualization process. In Fig. 1, the proposed data 
visualization process is depicted. In the beginning, a 
data set should be formed. After that, feature selection 
can be helpful. It can be performed manually or 
applying some feature selection techniques. The next 
step is data visualization. At first, simple direct 
visualization methods can be used (scatterplots, 
histograms, etc.). After that, more sophisticated 
methods should be employed. As the data to be 
analyzed usually are multidimensional, 
dimensionality reduction-based visualization methods 
can help dive into the hidden structure of the data. As 
a result, a set of visual presentations is obtained. A 
data analyst/decision maker should review and 
interpret the results obtained, i.e., to look for data 
properties and interrelationships that would help solve 
the main task of the data analysis—a classification, 
prediction, etc. If the obtained results are satisfactory, 
the final decision making can be performed, and the 
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process is completed. Otherwise, the process is 
continued selecting a subset of the data set if it turns 
out that the data items form groups and it is 
appropriate to analyze individual groups. Then the 
visual analysis is performed for data subsets. The steps 
are repeated until the final decision is made. 

 
Figure 1. Data visualization process 

The proposed visualization processes should be 
adapted to a domain to be investigated. As mentioned 
before, our domain is related to customized furniture 
manufacturing. Thus, historical data on already 
manufactured products should be collected. The data 
can be described by metal and wood processing times, 
various material features, number of different 
components, etc. A subset of these features is selected. 
After that, some direct visualization techniques can be 
used for initial explorative analysis. Scatterplots and 
histograms are most suitable here. In order to see the 
general structure of the data, the well-known principal 
component analysis and multidimensional scaling are 
irreplaceable. However, more modern methods, t-SNE 
and autoencoder neural networks, must be used, too. 
Moreover, integrating cluster analysis into 
visualization allows us to dive much deeper into the 
data and notice important insights. Here, we suggest 
using a specific clustering technique—Louvain 
algorithm [Tra19]. Suppose the results of the 
performed analysis on the whole data set do not satisfy 
the decision maker. In that case, a data subset should 
be selected, and the visual analysis is repeated for this 
data subset. 

4. VISUAL ANALYSIS 
The real manufacturing data for 1007 products 
provided by a Lithuanian furniture manufacturing 
company are used in the visual analysis to demonstrate 
the proposed visualization process. The data gathered 
over the last five years include the real prices of these 
products. A set of products includes items of various 
sizes and complexity (from small pieces of furniture 
to large furniture kits). Each product is characterized 
by some features 𝑥), 𝑥+,… , 𝑥-. The selected features 
are described in Table 1, 𝑚 = 17. Here, the price is 
denoted by 𝑦. All the feature values are numerical. 
Thus, a data matrix can be formed. Let’s denote the 𝑖th 
product by 𝑋4. Then we have a 𝑑 ×𝑚	 matrix 𝐗 =
8𝑥49:, 𝑖 = 1,… , 𝑑, 𝑗 = 1, … ,𝑚. The 𝑖th row of this 
matrix corresponds to the vector 𝑋4 = 8𝑥49:, 	𝑗 =
1, … ,𝑚, 𝑖 ∈ {1,… , 𝑑}, which elements are the feature 
values of the 𝑖th product, 𝑑 = 1007, 𝑚 = 17. The data 
mining software Orange is used for data visualization 
[Dem13] (https://orangedatamining.com). For training 
autoencoder neural network and visualizing the results 
obtained, the following python libraries are used: 
tensorflow, keras, scikit-learn, numpy, pandas, 
seaborn, matplotlib. 

𝑥4  Notation Short descriptions 
𝑥) … 𝑥@ m10-m50 metal processing times 
𝑥A … 𝑥B w60-w90 wood processing times 
𝑥)C m total meters of materials 

𝑥)) m2 total square meters of 
materials 

𝑥)+ kg total weight of materials 
𝑥)D qty total amount of materials 
𝑥)E qty_ parts number of parts 

𝑥)@ qty_ 
diff_parts number of different parts 

𝑥)A qty_ 
materials 

number of different 
materials 

𝑥)F qty_ order quantities (order size) 
𝑦 price price 

Table 1. Manufacturing data features  
At first, initial data exploration should be performed. 
Here, we confine ourselves to visual analysis. It is 
purposefully to see a general structure of data. 
Histograms or other simple direct visualization 
techniques are usable for this purpose. In Fig. 2, a 
histogram of the price is presented. We can see that 
the data set includes a lot of cheap products. About 
700 items are cheaper than 200 Eur. Only a few 
expensive products are costing more than 1000 Eur. 
Knowing this information, the data analyst can divide 
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the data into several groups according to the size of the 
prices.  
The histograms of other data features can be explored 
to see data similarities and dissimilarities. Due to the 
limited size of the paper, here, we present only a 
feature histogram. In Fig. 3, we see a frequency of the 
number of different parts of furniture. In many cases, 
the number of different parts is not greater than 20. 
Only a few pieces of furniture consist of many 
components. 

 
Figure 2. Price distribution 

 

 
Figure 3. Distribution of different parts of 

furniture 
As the data are multidimensional, dimensionality 
reduction methods can be employed for data 
visualization. Various approaches can be used. At 
first, the data dimensionality is reduced by PCA. If we 
want to represent the data of low-dimensionality in a 
2D Cartesian coordinate system, only two first 
principal components (PC1 and PC2) can be used 
(Fig. 4). Here, a point corresponds to a product (a 
piece of furniture). The points are colored according 
to the price size. We can see that the points 
corresponding to cheaper products are huddled in one 
place. Meanwhile, the points corresponding to 
expensive furniture are distributed farther apart. It 
should be noted that two principal components explain 
only 53% of the variance. In order to get 80%, even 
seven principal components need. However, in that 
case, the data cannot be represented visually. 

The well-known fact that PCA is a linear 
dimensionality reduction method. If the data are of 
nonlinear nature, nonlinear dimensionality reduction 
methods can be more suitable. Thus, the data are 
visualized by MDS (Fig. 5). Here the Euclidean 
distance is used as a data proximity measure. We can 
see not only accumulations of points but also data 
outliers. Using PCA, two yellow points were distant 
from other points. In the case of MDS, two yellow 
points remain outliers; additionally, two blue points 
are far away from the majority of the other points. 

 
Figure 4. The data visualized by two principal 

components 
 

 
Figure 5. The data visualized by MDS 

It is interesting to see how the data are distributed if 
the state-of-the-art t-SNE is used. The result is 
presented in Fig. 6. We can see that the data 
representation differs from Fig. 4 and 5. Here, some 
data clusters can be observed. One large group of the 
points is monitored at the bottom of the image. A 
smaller cluster is obtained at the top of the image. It 
should be noted that the points corresponding to more 
expensive products (green and yellow points) form 
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some clusters. Meanwhile, in the cases of PCA and 
MDS, no such clusters were obtained. It is worth 
noting that no clustering method was used here. We 
interpret cluster formation only by observing the 
image. 

 
Figure 6. The data visualized by t-SNE 

However, clustering methods can also be employed. 
Data clustering is commonly used in visual analysis. 
In this investigation, we use a specific clustering 
technique––Louvain algorithm [Tra19]. It is a 
hierarchical clustering algorithm that recursively 
merges communities into a single node and executes 
the modularity clustering on the condensed graphs. 
Originally it is proposed for community detection, but 
it can be used to solve other clustering problems. The 
furniture data also be clustered by the Louvain 
algorithm, and after that, they are visualized by t-SNE 
(Fig. 7). Here points are colored according to the 
clusters to which they are assigned. The Louvain 
algorithm automatically identifies six clusters. It is 
purposeful to see how clusters are related to the price 
size. Let’s take the points of cluster C6 (magenta) and 
represent them in a scatter plot (Fig. 8). The points are 
colored according to the price size. We can see that 
cluster C6 consists of the points corresponding to the 
furniture cheaper than 250 Eur. In Fig. 8, a few points 
fell outside of their cluster. It is necessary to review 
these products and look for the reasons for this. The 
reasons can be different: some products can be priced 
in an unusual way, there are inaccuracies in fixing the 
feature values, etc. 
In Fig. 9, the data are visualized by an autoencoder 
neural network. We can see that the points (blue, 
orange, and green) corresponding to cheaper products 
are huddled close together; meanwhile, the points 
corresponding to more expensive products (red and 
magenta) are spread far apart.   
It should be noted that the set of the analyzed products 
includes items of various sizes and complexity. There 
are a lot of small pieces of furniture, but large furniture 
kits are also included. It is purposeful to perform a 
visual analysis of the data subsets. Let’s take a subset 

of the products, the price of which is between 100 and 
500 Eur. The data of these products are visualized by 
t-SNE (Fig. 10). Here the clusters are obtained by the 
Louvain algorithm. We can see three large clusters. 
 

 
Figure 7. The data clustered by Louvain 

algorithm and visualized by t-SNE 
 

 
Figure 8. Representation of the cluster C6  

 

 
Figure 9. The data visualized by autoencoder 

neural network 
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Figure 10. The data subset clustered by Louvain 

algorithm and visualized by t-SNE 

5. CONCLUSIONS 
The paper aims to highlight the benefits of 
visualization in solving data mining tasks. Visual 
analysis is performed in a very specific domain––
customized furniture manufacturing. Here, the main 
task is to predict the prices of the products before a 
designed phase. We have proposed a data 
visualization process that included various 
visualization approaches that would be useful in 
explorative data analysis. The approaches will allow 
decision makers to know the data better and, as a 
result, will be able to estimate/predict more accurate 
product prices. Moreover, the proposed process will 
be implemented into a decision support system. This 
system is designed for managers and constructors of 
furniture companies who want to quickly and 
conveniently evaluate the received individual 
furniture order and provide the preliminary price of 
the products. In the system, a machine learning-based 
module is integrated for price prediction, too. The 
visual analysis module will enhance this decision 
support system and ensure its usability and efficiency. 
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ABSTRACT
Many parking lot facilities suffer from capacity over-
loads and many times there are no monitoring tools to
provide feedback. As a consequence, the people, want-
ing to park, become frustrated as there is considerably
loss of time. In this paper, we present a novel proto-
type of an automatic parking-lot analysis platform us-
ing image-based machine learning to (a) guide a drone
autonomously; and (b) to process useful information to
be handled into a smartphone application to communi-
cate with the parking lot users.

We have collected a reasonable amount of test images
to build a classification model using Convolutional neu-
ronal networks (CNNs) to classify parking lot images,
and build different object detection models to identify
free and occupied parking spots. Those models have
been exported to the back-end module of our platform
so it can control the drone and record the computed in-
formation to its database. In addition, we have imple-
mented an iOS application that requests and displays
the parking lot status and its empty spots.

We have been able to prove that this prototype is fea-
sible, functional, and opens a path towards future im-
provements and refinements. The flight control and the
data classification algorithms have been shown to work
using the machine learning models. In summary, we
found a clear and and concise way to display useful in-
formation in real time to our users.

Keywords
Drones, AR, Parking Lot, Navigation, Deep Learning

1 INTRODUCTION
It is really a universal experience that we have all faced
parking lots frustrations, such as spending time look-
ing for an available free spot, or even realizing that
there are no spaces after visiting all of the parking spot.
There are several related papers: [1, 2, 3, 4]. In most of
these cases, static cameras pointing to the parking lot
are used, resulting into non-variant images. Then build
manually a mask to segment each parking space into

the parking lot and then, after segmenting the original
image, individual parking lot space images are used as
input to a classifier, using mainly Convolutional Neu-
ronal Networks [5] to determine if those are free or
occupied. Traditionally, in robotics, sensor informa-
tion such as LIDAR [9], sonar and other technologies
that give proximity information could be used as well.
Yet, our drones are the cheapest available in the mar-
ket and these drones do not provide this kind of sen-
sors. Other approaches are depth maps computed from
drone images. One of the most well known models
is the Faster Regional Convolution Neuronal Network
(Faster-RCNN) [6]. The difference between Faster R-
CNN and the other R-CNN techniques is that instead
of using Selective Search it uses Region Proposal Net-
works (RPN) [7]. Other object detection approach very
different from Faster-RCNN are the You Only Look
Once (YOLO) models [8]. The research found in [9]
concluded that they could autonomously guide a drone
through indoor corridors only using the front camera
and without any GPS or other sensor information. To
detect and classify parking spaces given dynamic im-
ages we will use object detection models to localize and
identify two classes, the free parking lots and the occu-
pied parking lots. To achieve good results, we will train
different object detection models defined in the Tensor-
flow Object Detection API such as Faster R-CNN or
SSD. We would evaluate the goodness of fit for each
model and its speed to choose the final models we will
export to use in our back-end system. Figure 1 shows
the working of our overall algorithm. The central server
will be developed with Python and Django framework.
This way, our algorithm integrates the Tensorflow mod-
els. The server will be responsible for controlling the
drone and receive images from it. Furthermore, serve
will also use the trained object detection and flight pre-
diction models to process all the data and store useful
information and compute accurate flight instructions for
the drone. We have also designed and built a simple iOS
application developed with Swift that interacts and re-
trieves information from the server’s database and dis-
plays it to the user so we can have a complete prototype
of the desired system.
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Figure 1: Overall system structure diagram.

2 DATA SETS
All of the machine learning models we wanted to de-
velop receive an input of a parking lot image. That is
why we started by collecting them. We created a Python
program that could control the drone manually from the
computer and display its video stream in the screen.
Using different keyboard keys we could fly the drone
around parking lot 228, 7 and the different sections of
the lot 224. The available instructions to the drone are
listed in the Table 2. After 50 takes, we achieved 1129
RGB 960 by 720 images.

Graphics Top In-between Bottom
Tables End Last First
Figures Good Similar Very well

Table 1: Table captions should be placed below the ta-
ble

Figure 2: Examples of captured images.

This is a binary image classification problem where the
positive class is the image that contains a parking lot
and the negative are the images that don’t. Since it is

Key Action
Up arrow Move forward
Down arrow Move backwards
Left arrow Move left
Right arrow Move right
W Move up
S Move down
A Rotate counter clockwise
D Rotate clockwise
T Take-off
L Land
C Start/Stop capturing images

Table 2: Manual drone flight instructions.

a supervised machine learning scenario, we manually
label the drone images we collected so we can trans-
fer the human experience into observations and trans-
fer knowledge into our classification algorithm. To
make things easy, we developed a simple Python script
that goes through each captured images placed in the
"Takes" directory mentioned earlier, displays each im-
age one by one and asks if that current image is a park-
ing lot or not through the terminal console. After going
through the original 1129 drone images, we classified
1096 as valid observations. 737 observations are set
as positive parking lot (67,3%) and 358 were found as
negative parking lot (32,7%).
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In order to retrieve more visual information to guide the
drone automatically, and obtain parking spot informa-
tion from images we implement different parking spot
object detection models. And to train them, we need
a labelled parking spot object detection data-set. The
"PKLot" data set [11] contains nearly 13.000 images of
different angle and conditions of the parking lots of the
Federal Univeristy of Parana and the Pontical Catholic
University of Parana. From the previous mentioned im-
ages, nearly 700.000 segmented images of the parking
spaces are obtained too. For each parking lot image
there is an XML file that contains the position of each
bounding box of the parking spaces and the occupancy
status.
The bounding boxes have a rhomboid shape as shown
in Figure 1. The majority of object detectors work with
rectangular boxes aligned with the image axis. That
is why we converted each bounding box found on the
XML files into a aligned-rectangular shape before be-
ing recorded into the CSV file. This method basically
chooses min and max points to create a rectangle.

3 CREATING MODELS
In order to guide a drone over a parking lot automati-
cally we will require image information. We decided
that one of those key pieces would be a binary im-
age classification machine learning algorithm devel-
oped with a Convolutional Neuronal Network. Due to
the specifications of our own parking lot classification
data-set, the network is required to have as input ten-
sor of 128 by 128 grayscale image. Furthermore it has
to be able to be used by our back-end service imple-
mented with Python and Django. The resulting network
needs to present acceptable prediction results since it
will have a primary relevance in the navigation system
of the drone. That means that we are aiming for an ac-
curacy of 90% and above.
There are many different models to choose and per-
form fine-tuning in the Tensorflow Object Detection
API. We will test two different families of algorithms.
The Faster-RCNN family, known for their speed over
the previous RCNN models and its accuracy, and the
Single Shot Detector family, known for their speed and
real time applications. The difference between Faster
R-CNN and the other R-CNN techniques is that in-
stead of using Selective Search it uses Region Pro-
posal Networks (RPN) [7]. This change improves the
speed of the network. The first model we have cho-
sen is the faster-rcnn-resnet50-coco pre-trained model
since it has a good balance between speed and accu-
racy between all other Faster-RCNN models found in
the library. This model in particular is been pre-trained
with the Common Objects in Context (COCO) data-
set and uses Residual Networks (ResNets) in its imple-
mentation [13]. The second model is the faster-rcnn-
inception-coco pre-trained model. This model uses the

Inception architecture [14]. The main idea behind the
Inception architecture is that in a same layer of convolu-
tion, different filter sizes are being used and then com-
bined to get the output tensor. The GoogLeNet CNN
developed by Google(TM), found also in [14] uses 1
by 1 filters, 3 by 3 filters and 5 by 5 filters working to-
gether in the same layer. This model is also pre-trained
over the COCO data-set. Single Shot Detector (SSD)
model takes a different approach to the object detec-
tion problem [15]. Previous state-of-the-art object de-
tection models were composed by two steps. For each
location, K default boxes, called anchors, with multi-
ple shapes and aspect rations are considered. For each
anchor, the network will predict the probability of each
class for the object that may fall into the box and also
four offsets for the anchor to get an accurate bounding
box for the object. The first SSD model we have chosen
is the ssd-mobilenet-v2-coco pre-trained model. It is a
balanced model among all the pre-trained SSD mod-
els. This model is also pre-trained over the COCO
data-set and as a feature extraction architecture uses the
one proposed by MobileNetV2 CNN architecture [17],
a fast classification CNN developed by Google, found
in many portable and real time systems. The second
SSD model we will test is the ssd-inception-coco pre-
trained model. It combines the SSD detection architec-
ture with the Inception feature extraction architecture
mentioned above.

Before testing the resulting object detection models, we
can observe that the Faster-RCNN ones tend to con-
verge at a lower loss levels than the SSD ones.

Comparing them with other reported loss metrics of
other fine tuned models, we can see that are quite low
values. It is a sign that our model is being able to fit cor-
rectly to the test data. Yet, we can see that the Faster-
RCNN models presents less loss than the SSD models.
In particular, the Resnet50 version is achieving remark-
able results. Besides, among the SSD models, the Mo-
bilenetV2 seem to present better results in terms of loss
than the Inception one.

4 BACK-END
The central functional piece of our system is the back-
end, it handles multiple responsibilities. In the first
place in here we define the information models of our
system as SQL tables. Furthermore it establishes end-
points so that HTTP clients, such as our iOS applica-
tion, can retrieve data and send actions to the server
and trigger actions. Those two responsibilities are part
of the RESTful API block of our back-end. In the other
hand, our server is responsible of flying the drone au-
tomatically and intelligently by integrating and using
the previously exported image-based machine learning
models. Besides, given the drone images and the model
predictions, it has to be able to process and retrieve
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the required information to create and update the re-
quired database models so we can serialize them and
send them over HTTP requests and provide the clients
with the needed information. We have used Python as
the programming language since it has many resources
and frameworks to support an incredible number of pos-
sibilities. In particular, we are using the popular Django
framework to easily design the REST API and the struc-
ture of the program. In addition, we are using the Ten-
sorflow graph framework to load the exported machine
learning models and use them for the drone flight con-
trol and the data retrieving from images.

5 INFORMATION MODELS
When creating the database models of information, we
need to do a design effort and figure out the basic
blocks of information that better represent the problem
we want to represent and resolve and how they interact.
Django provides a smooth way to define those models.
It allows us to define those models as Python classes by
sub-classing the Model class found in the framework.
That subclass will generate the particular SQL table for
us. Then, each attribute of that class will map to its ta-
ble’s columns. When creating instances of that class,
filling the attributes and calling its save method, we are
recording a new row in the table. Each model inherits
the id property that represents the primary key of the
table’s row.

5.0.1 Lot model

The lot model represents any parking lot we want to
monitorize in our system. It consists of metadata infor-
mation and useful data regarding the state of it. The
first attribute, or database field is the name given to
it as a char field. For example, one of our analyzed
lots is names lot 224 . The created and updated at-
tributes are Date fields representing when the lot has
been created and when it has been modified. The image
attribute is an image field representing the path where
a descriptive image of the parking lot is found on the
static files directory of the server. The occupancy is a
Float value representing the percentage of occupancy of
the lot recomputed every time new spots are recorded.
In a similar way, the tendency is a discrete attribute
of five possible string values that represent how the oc-
cupancy is changing over time, if the lot’s occupancy
is decreasing, increasing or maintaining given different
predictions over time.

5.0.2 Spot model

The spot model represents a single parking spot found
in a specific parking lot that we are analysing. This en-
tity also has a created date field that represents when
the model is created, that is, when it has been detected.
Since we want to provide a descriptive image for each

spot, we include a image field too. A Boolean field
named is_free is used to determine if the spot is oc-
cupied or free. In addition, the Integer field lot_id is
a foreign key that matches each spot with its relative
parking lot where it belongs.

5.0.3 FlightState model

The FlightState model represents a more abstract en-
tity in our system. In this structure, we represent the
state of the flight algorithm. It is used as a central
piece of communication between the HTTP client and
the flight algorithm through the REST API. The state
field represent each possible state the flight algorithm
can be. It consists into LANDED, STARTING, SCAN-
NING, STOPPING and ERROR. The lot_id also is the
foreign key to the parking lot we are analysing. The
enabled Boolean flag is manually set if the flight is en-
abled. And finally the created date field is specified
too.

6 ENDPOINTS
The endpoints are defined URLs that allow the HTTP
clients to interact and request data with the back-end.
Each URL is linked with a particular action called View.
The View is responsible to perform its defined action
and return a HTTP response with the data body and sta-
tus of the request.

7 MACHINE LEARNING MODEL IN-
TEGRATION

As mentioned in previous chapters, we used Tensorflow
framework to build, test and export the image-based
machine learning models proposed by this project. Now
is time to deploy them and make them useful. We ex-
ported them in a standard way where in a single file
the network structure, operations and weights were de-
fined. This file is called frozen graph. To make use of
the frozen graphs of our lot classification model and the
different parking spot object detection models, the Ten-
sorflow framework must be present in our back-end too.
We will use it to recreate the models in memory reading
from the disk files. To make our code modular and in-
tuitive to use, we encapsulated the model business logic
into Python class definitions and build useful methods
so we define a simple interface to work with the image
predictions in our algorithms. All the files regarding the
model class definition and the actual frozen graphs are
placed in a sub-module inside our back-end.

7.1 Lot Classification Model
The first class containing all the classification model
logic is called IsLotCNN. In the initialization phase of
that class the Tensorflow graph is loaded into memory.
As a default parameter we pass the path to where the
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frozen graph is placed. Once the graph is loaded into
memory, we define the input tensors to the network so
we can pass new image to predict. The first tensor is
the actual input, it consists of a tensor of size [None,
128, 128, 1]. That means that the network can handle
an undefined number of 128 by 128 grayscale images.
The second input tensor is the keep probability of the
dropout technique explained in [9]. This class defines a
method to predict the probability of an input image to
be a parking lot.

7.2 Spot Object Detection Models
When predicting the parking spots given a drone image,
we use the defined method called detect_drone_img.
This method runs the output tensors boxes, classes and
scores in the defined session with the drone image as
the input value from the input tensor of the network.
The output tensors return arrays of boxes (x,y mini-
mum and maximum) defining the bounding boxes of
each spot detection, the class of each detection and the
confidence score of each detection respectively. Yet,
to work easily with the predictions, we defined a class
called PKLotBox that keeps all the information of a sin-
gle detection so we can return a single array that each
element contains all the detection information instead
of a collection of arrays.

8 PARKING LOT DATA PROCESSING
Before handling the flight control algorithm, we de-
cided to prepare first the components that retrieve in-
formation from the images and predictions since it is
a smaller component that can be easily tested and pre-
pared before facing the main algorithm of the system.
The parking lot data processing module expects that we
already have an incoming image and we have already
computed the spot detection on that image. Those two
elements combined with the previous information in the
database regarding the state of the parking lot model
and the corresponding spots found in early iterations
are the inputs for this process. As for the output, we
expect to have registered the new classifications found
in the incoming image transformed into Spot database
models. Furthermore, once the new spots have been
recorded, we need to recompute the new occupancy and
tendency of the Lot model we are analyzing.
To compose the Spot models from spot predictions, we
are segmenting the original image and storing it into the
static files directory so we can access it over HTTP re-
quests, assign this image to the Spot model, retrieving
the class of the detection and save the model into the
database. Once we recorded all the new spots in the
database, retrieve all stored spots given the lot we are
analyzing. The new occupancy will be estimated given
the ratio of all occupied spots over the total spots. Then,
quantizing the difference between the old and new oc-
cupancy we obtain the new tendency category.

9 FLIGHT CONTROL – NOVEL AL-
GORITHM

The flight control algorithm is the core process of our
system. It is responsible of the drone guide and com-
munication, including the retribution of images over the
UDP video streaming that the drone provides. Further-
more it uses the imported image classification model
and multiple object detection models to perform deci-
sions and retrieve information using the defined classes
IsLotCNN and PKLotDetector. Besides it uses the
PKLotDataRetriever class to obtain information from
the spot predictions and update the database. In addi-
tion, the algorithm is responsible to update the Flight-
State database model so we can have its information
centralised. Also it will check the FlightState to know
if the HTTP client requested for the flight to stop.

As we mentioned before, this process will be triggered
from the action related to the flight/lot/<int:pk>/start/
endpoint exposed by our REST API module. This
means this will be triggered by the client iOS appli-
cation once we detect that the user wants to know the
actual situation of a parking lot. Since the HTTP re-
sponses of our back-end have to respond quickly to the
client petition, we will need to execute this algorithm in
a background thread from our back-end Python process.

9.0.1 Algorithm Overview
Find in Figure 3 the main skeleton of the flight con-
trol algorithm. In the first step we initialise all the re-
sources that the algorithm needs, starting with retriev-
ing the needed database models, initialising the ma-
chine learning models and setting the drone connection,
video streaming and taking off.

9.0.2 Implementation
In Algorithm 1 can be seen the pseudo-code implemen-
tation of the start method, that is, the main body of
the algorithm. It maps the overview algorithm diagram
we described above. Yet it delegates important tasks to
other functions of the class as explained in the Flight-
Control class diagram to better structure the code. Be-
low we explain the most important methods used by the
main algorithm.

The algorithm 2 shows the pseudo-code for the
is_pointing_to_lot(image) method. It can be seen that
we use the lot classification model cnn to compute
the probability if the input image of being a parking
lot or not. Following with the description of internal
methods, the Algorithm 3 illustrates how we adjust
the initial pose of a scanning iteration when at that
point we are not properly pointing to a parking lot.
We will do that by performing small and random
movements. Afterwards, we will check again if we are
pointing to a lot or not. Eventually the drone may find
a good position and proceed with the scanning process.
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Figure 3: Flight control algorithm diagram

Algorithm 1 Flight control main algorithm (start
method)
flight_state := get_flight_state();
lot := self.get_lot();
set_up_networks();
set_up_drone();
set_initial_position();
set_state_to(SCANNING);
While True
While not is_pointing_to_lot(image=stream.frame)
adjust_initial_pose();
retrieve_info_from(image=stream.frame);
for angle in [90, 180, 270] move_to_next_angle();
If is_pointing_to_lot(image=stream.frame) re-
trieve_info_from(image=stream.frame);
should_finish_flight() break
change_initial_position();
finish_flight()

First, we will determine the rotation direction, then
between 20 and 180 degrees we will find a random
rotation angle magnitude. The forward movement
magnitude will be found between 200 and 300 cm. The
Algorithm 4 shows how the algorithm uses the FRCNN
model to predict the spots found in a given image
and then pass the image and the spot detections to the
PKLotDataRetriever module explained above. Finally,

in the Algorithm 5 we can see the implementation of
how we change to the next initial scanning position
after a complete iteration. First, the forward distance is
set to 500cm. Then we rotate the drone with a random
angle until we are certain that the drone is pointing
correctly to the parking lot. This way we make sure
that the drone is moving forward in a direction where
more probably the parking lot extends.

Algorithm 2 is_pointing_to_lot(image) method
image is_lot
lot_prob := cnn.predict_drone_img(image=image);
lots = ssd.detect_drone_img(
image,confidence=ssd_detect_conf);
lot_count := length(lots);
is_lot := (lot_prob >= is_lot_thr) AND (lot_count >=
ssd_count_thr);

Algorithm 3 adjust_initial_pose() method
rotation_direction := random(0, 1);
rotation_angle := random(20, 180);
forward_distance := random(200, 300);
rotation_direction drone.rotate_clockwise(rotation_angle);
drone.rotate_counter_clockwise(rotation_angle);

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

120 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.13



Algorithm 4 retrieve_info_from(image) method
detections := frcnn.detect_drone_img(image,
confidence=frcnn_detect_conf)
info_retriever.retrieve_data_from(lot_image=image,
predictions=detections)

Algorithm 5 change_initial_position() method
forward_distance := 500;
WhileTrue
rotation_direction := random(0, 1);
rotation_angle := random(20, 180);
Ifrotation_direction
drone.rotate_clockwise(rotation_angle);
drone.rotate_counter_clockwise(rotation_angle);
Ifis_pointing_to_lot(image=stream.frame) break;
drone.move_forward(forward_distance);

9.0.3 Testing the flight control

The Figures 4 through 7 show four real tests over dif-
ferent points of the University of Colorado at Colorado
Springs parking lot 224. In each test we tested a dif-
ferent combination of object detection models for the
tasks of guide the drone and the retribution of infor-
mation to see which one is performing better. In each
one of the tests a complete scanning loop iteration has
been recorded and analysed.In the 90 degree angle anal-
ysis the classification CNN detected that it may not be
a parking lot even though the SSD model was detecting
some spots yet some of them where wrong classifica-
tion. That image was a hard one to analyse due to the
occlusions so the CNN did a good job by skipping it.
In the rest of the images the drone was pointing to the
parking lot correctly and the CNN gave high probability
values for those, meaning that it is working. The SSD
MobilenetV2 model is doing a good job by analysing
fast the drone images for possible spots. Regarding to
the third test found int Figure 6, we are using the FR-
CNN Inception model for both information and guide
tasks. It is performing a bit slower than the first test
since the SSD models compute faster. Yet the timings
are acceptable for our task. In this test can be seen that
our detection models struggle most with the detection
of empty parking spots. Again, the CNN is working as
expected by giving a high probability to the lot images
and a low one for the images not pointing to it. Finally,
the last test found in Figure 7 we are using the FR-
CNN Resnet50 model for the data computing task and
the FRCNN Inception for the fast spot analysis. Again,
using the Resnet50 model is resulting into a non accept-
able timing in the scanning iterations. Yet in this test,
we are able to detect a good amount of spots, including
the empty ones.

10 CLIENT APLICATION
At this point, we have already put all the pieces together
to obtain parking lot state information and detecting
their spots by controlling the drone automatically, pro-
cessing its images with our own built machine learning
models and recording it to the database. Yet we are
missing the piece that would allow to make this system
useful by displaying the information we are processing.
In our case, this piece is the iOS application. It serves
as a client of our back-end and requests data through
the defined endpoints to display parking lot informa-
tion in an intuitive way. To implement it we have used
Apple’s native tools. We used Swift 5 as the program-
ming language and XCode as integrated development
environment.

11 SUMMARY OF RESULTS AND FU-
TURE RESEARCH

In total, we tried four different model architectures so
we could evaluate their performance and have multiple
options at the time of the flight control algorithm im-
plementation. Those models were: two Faster-RCNN
family models, one using Residual Networks and the
second one using the Inception technique as a feature
extractor. The other two models were from the Single-
Shot-Detector family, one using MobileNetV2 as fea-
ture extractor and the other using also the Inception
technique. As a result we achieved really precise mod-
els with a higher time complexity, which can only im-
prove with better infrastructure such as faster networks
and computers in future. We implemented methods
which were usr selected and could be more precise yet
are capable of working on real time. So we feel that
we have provided good balance in our research. As
mentioned earlier, it is not only necessary to build al-
gorithms to retrieve information from parking lots. The
resulting model could classify with a 90% of accuracy
over the test images and it predicts with an speed of half
a second. After deploying that model in the flight con-
trol algorithm, the parking lot classification model was
able to provide confident predictions, resulting into nice
drone navigation results with 90% accuracy on limited
training.
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Figure 4: Flight test with FRCNN Inception and SSD MobilenetV2

Figure 5: Flight test with FRCNN Resnet50 and SSD Inception
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Figure 6: Flight test with double FRCNN Inception

Figure 7: Flight test with FRCNN Resnet50 and FRCNN Inception
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Figure 8: Sample of Lot list

Figure 9: Pull to refresh data
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ABSTRACT
We propose an extension of a recent work using convo-
lutional neural networks and drones, such as Learning to
fly by using DroNet [8] that can possibly safely drive a
drone autonomously. The combination of (i) the DroNet
architecture and weights to apply to CNNs to avoid the
crashes; (ii) combining it with DLIB tracker, a corre-
lation implemented tracker based on Danelljan et al.’s
paper [3] work; (iii) the extraction of descriptors using
Speeded Up Robust Features [1]; and (iv) Fast Library
for Approximate Nearest Neighbors [10] for the feature
matching – leads a drone to track any object and avoid
crashes autonomously without any prior information
about the object. The main goal is to create a partnership
between the drone(s) and the participant as the drone
follows the participant and avoids collisions. Our work
extends existing methods to also included a way for a
drone to follow a person even if the person is hidden
for a few frames. Our algorithms also work in low/poor
ambient light satisfactorily. In future, our technique can
be used to provide novel indoor applications for drones.

Keywords
Drones, Navigation, Deep Learning, Tracking a person

1 INTRODUCTION
A drone, in a technological context, is an unmanned
aircraft formally known as unmanned aerial vehicles
(UAVs) or unmanned aircraft systems (UASs). Essen-
tially, a drone is a flying robot. These flying robots
can be controlled or can fly autonomously using neural
networks, for example, working in conjunction with on
board sensors, cameras or GPS [?]. Our focus is to use
machine learning algorithm to control the functionality

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

of drones and extend the personal spaces. State-of-the-
art approaches on this topic have already provided mod-
els and algorithm to autonomously fly a drone indoor
or outdoor avoiding crashes. While such approaches
are able to safely fly the drones, they are not using it to
provide any other application than just flying the drone.
By combining flying with object tracking with drones’
navigation we have implemented a new application for
drones in our work, and extended drones usage to fol-
low the participant in the indoor spaces. Our efforts can
allow the participant to extend there environment and
work with drones in a collaborative manner .

2 RELATED WORK
There have been several attempts to use drones effec-
tively in both outdoor and indoor environments [8, 3, 4,
1, 10, 7, 6, 11, 5, 2, 9]. DroNet [8] is a convolutional neu-
ral network (CNN), whose purpose is to reliably drive
an autonomous drone through the streets of a city.

2.1 Learning to fly by driving
DroNet [8] is trained with data collected by cars and
bicycles, this system learns from the collected data to
follow basic traffic rules, e.g, do not go off the road, and
to safely avoid other pedestrians or obstacles. Surpris-
ingly, the policy learned by DroNet can be generalized.
For example, we were able to extend the training to fly
a drone in indoor corridors and parking lots. Learning
approaches predicts a steering angle and a probability
of collision from the drone on-board forward-looking
camera. These are later converted into control/flying
commands which enable a UAV to safely navigate while
avoiding obstacles. Since the goal is to reduce the image
processing time, this paper advocate a single convolu-
tional neural network (CNN) with a relatively small
size. The architecture is partially shared by the two
tasks to reduce the networks complexity and process-
ing time, but is then separated into two branches at the
very end: Steering prediction is a regression problem,
which means that it requires the prediction of a quantity,
while collision prediction is addressed as a binary clas-
sification problem. During the training procedure, only
imagery recorded by manned vehicles is used. Steer-
ing angles are learned from images captured from a car,
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while probability of collision is learned from images
captured from a bicycle. DroNet system has been tested
[8] for autonomously navigation on a number of differ-
ent urban trails including straight paths and sharp curves
as described in citedronet. Moreover, to test the gen-
eralization capabilities of the learned policy, they also
performed experiments in indoor environments. They
compare the approach against two baselines: Straight
line policy and Minimize probability of collision policy.
One of the metric is to use the average distance trav-
elled before stopping or colliding. Results indicate that
DroNet is able to drive a UAV for a long time on almost
all the selected testing scenarios. The main strengths of
the policy learned by DroNet are twofold:

• the platform smoothly follows the road lane while
avoiding static obstacles.

• the drone is never driven into a collision, even in
presence of dynamic obstacles, like pedestrians or
bicycles, occasionally occluding its path.

2.2 Learning to fly by crashing
In this paper [4], a drone whose goal is to crash into ob-
jects is built: it samples random trajectories to crash into
random objects. A larger number of crashes are recorded
(11,500 times) to create one of the biggest UAV crash
related data-set. This negative dataset provides scenarios
of different ways that a UAV can crash. It also represents
the policy of how UAV should NOT fly. They use all this
negative data in conjunction with positive data samples
from the same trajectories to learn a simple yet surpris-
ingly powerful policy for UAV navigation. A simple
self-supervised paradigm is quite effective in navigating
the UAV even in extremely cluttered environments with
dynamic obstacles such as humans. Parrot Ar-Drone
2.0 is used. The research is very interesting as no addi-
tional sensors/cameras are attached in the flying space
during the data collection process. A two-step proce-
dure for data collection is implemented. First, sample
naive trajectories lead to collisions with different kind
of objects. Then an annotation procedure for collected
trajectories is described. The trajectories are first seg-
mented automatically using the accelerometer data. This
step restricts each trajectory up to the time of collision.
Finally, trajectories are segmented into positive and neg-
ative data classification. For the Neural network por-
tion, AlexNet architecture uses the ImageNet-pertained
weights as initialization for the network. The network
learns how to do a simple classification which uses an
input image to predict if the drone should move forward
in straight line or not. Based on the right cropped image,
complete image and left cropped image, the network
predicts the probability to move in right, straight and left
direction respectively. If the straight prediction (P(S)) is
greater than alpha, drone moves forward with the yaw

proportional to the difference between the right predic-
tion (P(R)) and left prediction (P(L)). Intuitively, based
on the confidence predictions of left and right, robot is
turned to left or right while moving forward. Model’s
performance is tested using (i) a Straight-line policy, (ii)
a depth prediction based policy and (iii) a human con-
trolled policy. The method is tested on 6 complex indoor
environments doors, floors, entrance, etc. To evaluate
the performance of different baselines, average distance
and average time of flight without collisions is used as
the metric of evaluation. This metric also terminates
flight runs when drones take small loops (spinning on
spot). On every environment/setting, this method per-
formed better than the depth baseline. The best straight
baseline provides an estimate of how difficult the en-
vironments are. The human controlled baselines have
better results than their method for most environments.
However, for some environments such as hallway and
chairs, presence of cluttered objects makes it difficult for
the participants to navigate through narrow spaces, and
in this case drone method surpasses human level control
in this environment.

2.3 DroNet Architecture
DroNet[8] is a convolutional neural network which is
able to predict the probability of collision and the steer-
ing angle in real time having as the input, each frame
of the drones camera. It was trained using data col-
lected by cars and bicycles driving through different
cities. It can guide a drone through a road following the
traffic signs, avoiding obstacles and without going off

the road. To reduce the image processing time, DroNet
architecture is shared by the two tasks (probability of
collision and steering angle) but then is separated into
two branches at the end. Steering angle is a regression
problem, which means that requires the prediction of a
quantity, and probability of collision is a binary classifi-
cation problem. DroNet uses the ResNet-8 architecture
plus a dropout layer of 0.5 and a reLu non-linearity.
The residual blocks of ResNet were proposed by He
et al. [6]. After the ReLu layer, the two tasks share
more parameters and the architecture splits into two dif-
ferent fully-connected layers. The first output is the
steering angle and the second one is the probability of
collision. The input of this convolutional neural network
is a 200x200 frame in gray-scale.

2.4 Drone control
To control the drone, we use the outputs of DroNet. They
used probability of collision to modulate the forward
velocity and the predicted steering angle to calculate the
yaw angle of the drone. For the forward velocity, the
drone fly at a maximal speed when the probability of
collision is zero and the drone stops when the probability
of collision is close to one. A low-pass filtered version
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of the modulated velocity to drive the drone smoothly is
used.

vk = (1−α)Vk−1 +α(1− pt)Vmax (1)

For the steering angle, a [-1, 1] range is mapped to a
desired yaw angle in the range [−π/2,π/2] and low-pass
filtered using:

ωk = (1−β)ωk−1 + (βπsk/2) (2)

Depending on the environment the value can be changed
as well. One of the benefits of using DroNet is that it
works perfectly in many indoor and outdoor scenes that
contain line features but it fails in environments such as
forests because of the lack of this features in the data
set.

2.5 DLIB correlation tracker
DLIB tracker is a correlation implemented tracker based
on [3]. Their work is based on MOSSE tracker [2].
The MOSSE tracker works well for objects that are
translated but it does not work properly for objects that
change in scale. DLIB tracker uses a scale pyramid to
accurately estimate the scale of an object after the opti-
mal translation is found. This helps us to track objects
that change in translation but also in scaling through-
out a video stream and furthermore in real-time. The
approach works by learning discriminating correlation
filters based on scale pyramid representation. They learn
separate filters for translation and scale estimation. This
scale estimation approach is generic and it can be incor-
porated into any tracking method with no inherent scale.
Incorporating scale estimation makes the computational
cost become much higher and their goal was to have
an accurate and robust scale estimation approach and at
the same time computationally efficient. Their method
propose a fast scale estimation approach by learning
separate filters for translation and scale. This restricts
the search area to smaller parts of the scale space. In
order to estimate the scale of the target in an image, [3]
uses separate I-dimensional filter. and compares sev-
eral trackers. The list includes ASLA tracker[7], SCM
tracker [?], Struck[11], the LSHT tracker [5]. DLIB
tracker works well for scaling and translation, and 2.5
times faster than Struck, 25 times faster than ASLA and
250 times faster than SCM in median FPS [?].

Obviously, the main advantage of using this correlation
tracker in our research is that it will track our selected
target and it will compute the translation and the scale
of it. This lets our algorithm know either the object is
moving left or right and furthermore we will be able to
know if the tracking object is moving closer or further
from us by just computing the area of the tracking object.
While this algorithm helps us in a very prominent and
efficient way it has a very big disadvantage which could
make our algorithm fail. This disadvantage occurs when
the object we are following, completely disappears from

the camera field and then it appears again. As this tracker
is based in the correlation between frames, it will not
be able to detect and track the same object again. To
address this problem, we implemented a novel algorithm
using descriptors and key points of the tracked object
so that when the object we are tracking disappears for
a few frames, the algorithm will be able to find it again.
This feature will be explained and discussed later.

2.6 Feature extraction: SURF
Speeded Up Robust Features (SURF) is a feature ex-
traction algorithm presented in [1]. It is a faster version
of SIFT algorithm [9]. While Scale Invariant Feature
Transform (SIFT) uses Lowe approximated Laplacian of
Gaussian with Difference of Gaussian for finding scale-
space, SURF approximates LoG with Box Filter. The
main advantage is that convolution with box filter can
be easily calculated with help of integral images and it
can be done in parallel for different scales. SURF rely
on determinant of Hessian matrix for both scale and lo-
cation. For orientation, SURF uses wavelet responses in
horizontal and vertical direction. Gaussian weights are
also applied to it. The dominant orientation is estimated
by calculating the sum of all responses within a sliding
orientation window of angle 60 degrees. For feature
description, this algorithm uses Wavelet responses in
horizontal and vertical direction. A neighborhood of
size 20sX20s is taken around the key-point where s is
the size. It is divided into 4x4 sub-regions. For each
sub-region, horizontal and vertical wavelet responses
are taken and a vector is formed. This when represented
as a vector gives SURF feature descriptor with total 64
dimensions. Lower the dimension, higher is the speed of
computation and matching, which provide better distinc-
tiveness of features. Another important improvement is
the use of sign of Laplacian (trace of Hessian Matrix)
for underlying interest point. It adds no computation
cost since it is already computed during detection. The
sign of the Laplacian distinguishes bright blobs on dark
backgrounds from the reverse situation. In the match-
ing stage, we only compare features if they have the
same type of contrast. This minimal information allows
for faster matching, without reducing the descriptor’s
performance. SURF adds a lot of features to improve
the speed in every step. Analysis shows it is 3 times
faster than SIFT while performance is comparable to
SIFT. SURF is good at handling images with blurring
and rotation, but not good at handling viewpoint change
and illumination change.

3 OUR ALGORITHM FOR A DRONE
TO FOLLOW A PERSON

The most useful feature that we have taken profit from
DroNet is the probability of collision because the steer-
ing angle must cause some bad prediction. This is caused
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Figure 1: DroNet Usage pseudo code

because DroNet is trained to follow roads and not ob-
jects, by that we mean that the steering angle will follow
the road direction and will not follow the object if the
object tries to get off-road. Knowing that we have used
the probability of collision as basis of our implementa-
tion, we are proposing that if the probability of collision
is higher than a threshold, the drone should stop imme-
diately. If this probability of collision is lower, then the
velocity of the drone will not be calculated based on that
probability but based on the velocity of the object we
are following. This is a very different feature than the
one used in DroNet but since our objectives are very
different, our proposal is the best way to add their work
into our project.

While the probability of collision is higher than the
T HRES HOLDPROB, the drone will be stopped at the
same position as shown in Figure 1. This is because our
goal is to follow anything, for in our example a person.
If we are behind this person, following him, we will not
have any collision if he has no collision either but we
could have a collision if something crosses between the
drone and the person. In this case the drone will stop
and once this object has crossed, the drone will restart
following the person again.

3.1 Using DLIB tracker in our research
The DLIB tracker is a correlation algorithm. So this
algorithm does not know what is exactly following does
not have memory. This means that if for example, the
light goes off and on, the tracker will not know what
to follow and it will get lost. This tracker returns a
number which tells the confidence the tracker has for
following the object correctly. If the object is partially
occluded then this probability will decrease. Knowing
this number, we can tell when we are tracking our object
or when it is lost. Therefore, our algorithm for the
tracker is very similar to the Algorithm in Figure 1. If
the confidence of the tracker is lower than a threshold,
then we will mark our tracking object as lost and we
will start trying to find it again. If the confidence of the
tracker is high enough, then we will move the drone as
the object is moving as shown in Figure 2.

Figure 2: DLIB tracker usage pseudo code

As we are going to follow every object from the same
approximate distance, we know exactly which is the dis-
tance that separates the drone and the tracking object.
We can also, easily know, before losing the object what
was the direction it was moving (right or left). By know-
ing that, we could re-find our object again if our tracker
would know what was the object we were following. As
our tracker does not know it, we use descriptors and key
points to be able to re find the lost object.

3.2 Novel Algorithm: use of descriptors

We extract features, called descriptors, of the object we
are tracking. We use this descriptor to re-find the object
we were tracking. The basic idea is that we create a
buffer of size N where we store these descriptors while
we are tracking the object and the confidence of the
tracker is high. Once the object has been lost, we use
this buffer to check descriptor by descriptor if someone
matches with what the drone is capturing. The main
point of using a buffer, instead of a single variable is that
we want to store several descriptors of the object we are
following in case this object changes its form during the
following process (due to moving faster or for example
sitting down etc). Imagine we are following a person
from the back, but then this person turns 180 degrees
and he is facing the drone, then we want the descriptors
of the person facing the drone and not his back. To be
able to do that, our buffer has a fixed size N and every
position has a different descriptor value. This value is
overwritten once the buffer is full. The only position we
do not overwrite is the first position of the buffer where
we store the descriptors of the Region of Interest (ROI)
of the first frame we used to track because the first ROI
will have for sure the descriptors of the object we want
to follow without any kind of occlusion. As the drone is
sending up to 30 frames per second (fps) and the object
we are pursuing will rarely move or change its form that
fast we just store 2 descriptors per second. Using this
technique, our algorithm becomes more efficient and we
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Figure 3: Saving Descriptors Pseudo Code

Figure 4: Using Descriptors to re-find the object Pseudo-
code

need less space to store the buffer. The algorithm of
storing descriptors is shown in Figure 3.

Saving these descriptors in a good and efficient way is
really important to be able to re-find our object once
it has been lost. Once the object is lost, our algorithm
tries to re-find the object by using the descriptors stored
in the buffer position by position and starting at posi-
tion 0 which is where the initial descriptors were stored.
If the object is found, then we start tracking again the
object using the DLIB tracker. This is a major improve-
ment proposed towards resiliency of our work, we added
descriptors to to re-find the object as shown in Figure 4

4 HANDLING TOUGH SCNEARIOS
The most common tough cases our system could face
are:

• No light

• Occlusions

• Very sharp turns

Figure 5: General Edge case usage Pseudo-code

These are handled by implementing (a) Re-finding algo-
rithm and (b) and an algorithm to handle poor lighting
conditions.

4.1 Re-finding the object of interest
As we cannot distinguish each of these cases while we
are flying, we have implemented a general algorithm to
be able to re-find the object. As we previously know
the distance between the object and the drone and also
the last direction that our object moved, the RE-FIND
object algorithm is shown in Figure 5:

Using this algorithm, the drone will be expected to first
move straight D meters and then turn either left or right
based on that last direction the object moved to find it
again. If the object has not been found, then the drone
will make a 360 degrees rotation movement to try to find
the object again, see Figure 5 for pseudo code. If the
object has not been found, then the drone will land and
the program will be stopped.

4.2 No light: Novel Algorithm
When there is no light at all, our tracking algorithm
confidence value is NaN (Not a Number). Therefore,
our implementation is to set the probability of collision
to 1 when the tracking algorithm value is NaN. Using
this approach, our drone will stop when the light is off

and then re-start the tracking when the light is on as
shown in Figure 6.
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Figure 6: No light Pseudo code

5 OVERALL WORKING OF OUR AL-
GORITHM

To control the drone, we have to combine all the algo-
rithms we have explained before into one single algo-
rithm. The most relevant parameter we have to check
is the probability of collision. If it is higher than the
threshold, then we will stop the drone movement until
this probability has decreased. No matter what is hap-
pening, we do not want our drone to crash. The second
parameter we have to take into consideration is the DLIB
tracker confidence. If this confidence is higher than the
threshold, then we will follow the object while we save
the correspondent descriptors. If it is lower than the
threshold, then we will stop saving descriptors and we
will start to find the object again. If it is found, then we
will start the tracking movements again, if it is not after
completing the edge-cases movements, we will land the
drone and stop the program.

Some parameters can change when we follow different
objects. It is not the same to follow a human than a bike
or even a car. These parameters are initialized by the user.
These parameters are the following: Distance between
the drone and the object; Height of the drone; Velocity
of the drone. Complete drone algorithm implemented
by us is shown in Figure 7 as a Pseudo code.

6 IMPLEMENTATION AND RESULTS
We have programmed everything using Python and Py-
Charm as the IDE. The libraries we have used for this
project are the following: AR Parrot 2.0, DJI Tello
python API, OpenCV, DLIB: main tracker API, and
Tensorflow.The most useful feature that we have taken
profit from DroNet is the probability of collision because
the steering angle must cause some bad prediction. This
is caused because DroNet is trained to follow roads and
not objects, by that we mean that the steering angle will
follow the road direction and will not follow the object
if the object tries to get off-road. Knowing that we have
used the probability of collision as main feature of our

project. we are proposing that if the probability of col-
lision is higher than a threshold, the drone should stop
immediately. If this probability of collision is lower,
then the velocity of the drone will not be calculated
based on that probability but based on the velocity of the
object we are following. This is a very different feature
than the one used in DroNet but since our objectives are
very different, our proposal is the best way to add their
work into our project. While the probability of collision
is higher than the T HRES HOLDPROB, the drone will
be stopped at the same position. This is because our goal
is to follow anything, for example a person. If we are
behind this person, following him, we will not have any
collision if he has no collision either but we could have
a collision if something crosses between the drone and
the person. In this case the drone will stop and once this
object has crossed, the drone will restart following the
person again. This DLIB tracker returns a number which
tells the confidence the tracker has for following the ob-
ject correctly. If the object is partially occluded then this
probability will decrease. Knowing this number, we can
tell when we are tracking our object or when it is lost.
Therefore, our algorithm for the tracker is very similar
to the Algorithm 1. If the confidence of the tracker is
lower than a threshold, then we will mark our tracking
object as lost and we will start trying to find it again. If
the confidence of the tracker is high enough, then we
will move the drone as the object is moving. As we are
going to follow every object from the same approximate
distance, we know exactly which is the distance that
separates the drone and the tracking object. We can
also, easily know, before losing the object what was the
direction it was moving (right or left). By knowing that,
we could re-find our object again if our tracker would
know what was the object we were following. As our
tracker does not know it, we use descriptors and key
points to be able to re find the lost object. We extract
features, called descriptors, of the object we are tracking
using the algorithms we have developed. We use this
descriptor to re-find the object we were tracking. The
basic idea is that we create a buffer of size N where we
store these descriptors while we are tracking the object
and the confidence of the tracker is high. Once the object
has been lost, we use this buffer to check descriptor by
descriptor if someone matches with what the drone is
capturing.

The main point of using a buffer, instead of a single
variable is that we want to store several descriptors of
the object we are following in case this object changes
its form during the following process (due to moving
faster or for example sitting down etc). Imagine we are
following a person from the back, but then this person
turns 180 degrees and he is facing the drone, then we
want the descriptors of the person facing the drone and
not his back. To be able to do that, our buffer has a fixed
size N and every position has a different descriptor value.
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Figure 7: Drone Control Pseudo-code
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This value is overwritten once the buffer is full. The only
position we do not overwrite is the first position of the
buffer where we store the descriptors of the Region of
Interest (ROI) of the first frame we used to track because
the first ROI will have for sure the descriptors of the
object we want to follow without any kind of occlusion.
As the drone is sending up to 30 frames per second
(fps) and the object we are pursuing will rarely move or
change its form that fast we just store 2 descriptors per
second. Using this technique, our algorithm becomes
more efficient and we need less space to store the buffer.
Saving these descriptors in a good and efficient way is
really important to be able to re-find our object once it
has been lost. Once the object is lost, our algorithm tries
to re-find the object by using the descriptors stored in
the buffer position by position and starting at position 0
which is where the initial descriptors were stored. If the
object is found, then we start tracking again the object
using the DLIB tracker.

7 DRONE CONTROL
The DJI Tello is a newer and smaller drone but it is also
cheap and robust. As it is newer, the implementation of
the python API is more efficient and more reliable. The
most important specifications for the DJI Tello drones
are: Weight: 0.2 lbs; Dimensions: 3.86 x 1.61 x 3.64
inches; Max flight time: 13 minutes; Battery: 1100
mAh LiPo; Camera: 5MP camera 720p, 30 fps video
output. The drone has three axes to control: Pitch (Y
axis), Yaw (Z axis) and Roll (X axis). If the aircraft
rotates around the Pitch axis it will move in the X axis
direction. If the Pitch angle is positive, the direction
will be backwards, or in the negative X axis. The same
will be applied when rotating the Roll axis, which will
move the aircraft in the Y axis direction. If the pitch
value is positive, the drone will move forward and if it
is negative the drone will move backwards as we can
see in the following image. If the yaw value is positive,
the drone will rotate in clockwise direction on itself
and if the yaw is negative, the drone will rotate counter
clockwise on itself. If the roll value is positive, the
drone will move right and if it is negative the drone will
move left as we can see in the following image. There
is another drone variable which has to be controlled,
the throttle. This controls the aircraft’s average thrust
from its propulsion system. When the aircraft is level,
adjusting the throttle will move the aircraft up or down as
all the thrust is in the vertical direction. However, when
the aircraft is not level (has non-zero pitch or roll), the
thrust will have a horizontal component, and therefore
the aircraft will move some horizontally. A larger pitch
or roll angle will result in more horizontal thrust and
therefore faster horizontal movement. To control this
axes of the drone autonomously, what we want is to have
always our tracking object in the middle of the frame.
If the object we are tracking is in the green zone of the

Figure 8: Simple walk result 3 (left) and 4 (right)

frame, we will not move the drone. If the object is in any
blue zone, we will set the throttle of the drone to either
go up or down. We always set the roll angle to 0 as we
do not want the drone to move right or left but in case
the object is in any white space, we will set the yaw in
order to rotate the drone to the correct direction. To be
able to set the drone’s pitch to move the drone forward
or backward, what we do is to calculate the area of the
tracking object at the beginning of the tracking and if this
area increases, we move the drone backwards because
it means that the object is approaching the drone, if
this area decreases, we move the drone forward because
the tracking object is moving further. The yaw, pitch
and throttle velocities are changed depending on the
environment and the distance between the drone and the
object has to be defined by the user in order to be able
to run the re-finding algorithm when the object is lost.

8 RESULTS: TEST CASES FOR ALGO-
RITHMS DEVELOPED

The test cases we are going to test are going to follow
three different things/objects: a human, a bike and a
car. Each of the test cases are going to have different
situations which its difficulty will have a range between
easy, medium, hard and extreme as explained in the
following table. Also, we show several frames which
were recorded by the drones. Test cases can be divided
based on situation and difficulty: (i) Human walking
with no interference is easy; (ii) Human walking with a
probability of collision is harder; (iii) Human walking
with interference is of medium complexity; (iv) Human
walking when person disappears and then appears is of
extreme difficulty; (v) Human walking with sharp turns
is harder; (vi) Low light is of medium complexity, and
(vii) Light on and off is harder. We have implemented
all these cases with success as the following images and
results show below. Two video sequences submitted
with this paper also show that these algorithms have
been successfully implemented.

8.1 Human walking: no interference
This is the most basic test case. We want our drone
to follow a human while he is walking and there are
no interference in the tracking. By that, we mean that
there are no objects crossing between the drone and the
human.

8.2 Human walking: with interference
This test case is the same as the last test case but with
objects/persons crossing between the drone and the hu-
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Figure 9: Walking with interference 5 (left) and 6 (right)

Figure 10: Probability of collision 3 (left) and right (7).

Figure 11: Disappear and appear 4 (left) and right (7)

Figure 12: Sharp turns 5 (left) and 6 (right)

man. Having this interference will force our algorithm
to re find the human if the obstacles occlude him.

8.3 Human walking: probability of colli-
sion

We want to test if our drone stops moving when the prob-
ability of collision is really high and if it starts tracking
again when this probability of collision becomes lower.

8.4 Human walking: disappear/appear
When the tracking object disappear and appears again
we ant to make sure we recognize it as the object we
were following before. We wan to test how we apply the
descriptors algorithm against this situation.

8.5 Human walking: sharp turns
Sharp turns are really difficult to overcome. The sharper
the turn is the more challenging is to follow the tracking
object.

8.6 Low light
We also want to test our algorithm again adverse con-
ditions and one of them is the low ambient light. The
tracker will need to track the human with low light and
this could cause some problems.

Turning the light off could cause a lot of problems calcu-
lating the probability of collision, tracking the object and
saving descriptors. We want to test our system against
these difficulties.

9 CONCLUSION
In this paper we implemented a new way to track and
follow objects in real time with no previous information

Figure 13: Low light recognized the edges of a mobile
phone.

Figure 14: Light on/off 3

about that object before. This mean that the user selects
the object to track in real time. As the real time feature
and the lack of delay between what the user is seeing
and what the drone is doing were some of our priority
goals, we used a multi-threading approach in order to
implement our algorithm. We found a new application
to apply DroNet and the probability of collision. We
have also introduced a new technique on how to use
features descriptors. Storing descriptors in a buffer and
then using this information in case that the object is lost
is a new and efficient way to re-find lost objects which
worked for us successfully as can be seen by two video
sequences we have submitted with this paper. There
has been a huge trade off between the tacker and the
probability of collision. As our primary requirement was
not to crash the drone, no matter what, the probability of
collision predominates the control of the drone and this
decision could lead to sometimes loosing the tracking
object in some cases. In future, we would like to extend
our ideas to providing interactive spaces where drone-
interactions can lead to novel aapplications.
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ABSTRACT 
In this paper, the novel correspondence search method called point-to-block matching was proposed. Recently, in 

many proposed multimedia systems, depth estimation is performed on compressed input views. To address this 

problem and increase the quality of such depth maps, in the proposal, a point in a view is not compared simply 

with a point in another view, but to the most similar point in a small block surrounding it. The introduction of this 

method in the depth estimation process is beneficial to the quality of depth maps, as it decreases the influence of 

small shifts in images, caused e.g., by encoding-related errors introduced to input views. The method was 

implemented in one of the state-of-the-art depth estimation methods and tested in series of experiments. Based on 

the comparison of synthesized virtual views with the input views, the proposal increases the quality of estimated 

depth maps in most of the tested configurations. 

Keywords 
Depth maps, depth estimation, inter-view correspondence, similarity metric, virtual view synthesis. 

 

1. INTRODUCTION 
The methods of creating natural three-dimensional 

content are recently under constant development, as 

the emergence of new applications of immersive 

media systems such as free-viewpoint television 

[Tan12] and virtual reality systems can be easily seen 

[Dom17] [Laf16]. 

One of the most common representations of such 

multimedia content is the use of depth maps that 

correspond to each view captured by a camera system 

and show the distance from the acquired 3D point to 

the camera [Mül11]. Depth maps can be used to 

synthesize virtual views, so the user can freely move 

and see an acquired three-dimensional scene from any 

viewport.  

In its essence, the depth estimation methods are based 

on the inter-view correspondence search. The result 

and efficiency of this search are dependent on 

a similarity of a point in one view of the scene to 

a point that most probably shows the same part of the 

scene in another view [Tip13]. Unfortunately, this 

search can be very difficult due to factors that we will 

summarize below. 

Recently, in many proposed multimedia systems, the 

depth estimation is proposed to be performed using 

compressed input views, e.g., in the representation 

server that sends the requested virtual view to the user 

[Dzi16], or directly, in the client-side decoder of the 

multi-view image encoder [Gar19]. Therefore, the 

depth estimation methods should take into account 

that some encoding-related errors can be present in 

used videos. 

The comparison of uncompressed and compressed 

input view can be seen in Figure 1, while Figure 2 

shows the difference between uncompressed and 

compressed images, unveiling artifacts introduced by 

the high compression. The main differences are 

clearly visible in highly-textured areas and all edges 

visible in the scene.  

 

Figure 1. Input view of Fencing sequence [Dom16] 

without compression (A) and with high (B) / low 

(C) compression. 

The presence of high-frequency harmonics is 

necessary for the correct representation of the edges in 

the image, unfortunately, due to coding, when the 
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transform coefficients are quantized, high-frequency 

components are notched out, which in turn leads to 

blurring or, in the worst case, an edge shift in the 

image. Such shift can also occur in highly compressed 

videos because of the high share of temporally 

predicted parts of videos [Leo07].  

 

Figure 2. The logarithm of difference between 

compressed and uncompressed input view of 

Fencing sequence for high compression. The 

contrast of the image was increased to increase 

the visibility of differences. 

 

Depth maps are of course most often estimated before 

any compression of the representation of a scene. In 

this case, the input views are usually uncompressed, 

so the compression-related distortions do not 

influence the quality of depth maps. On the other hand, 

this quality can be decreased due to low accuracy of 

camera parameters (understood as the accuracy of 

camera distortion models [Tan17] and intrinsic and 

extrinsic camera parameters [San17] [Che21]), and the 

use of floating-point representation [God20] and 

rounding errors. 

Other causes of depth estimation errors are related to 

inter-view correspondence search can be seen also in 

noise present in input views of natural sequences 

[Sta14], as such noise influences the original color of 

points. 

In order to address all listed problems, we propose the 

novel correspondence search method called point-to-

block matching. In the proposal, a point in a view is 

not compared simply with a collocated point in 

another view, but to the most similar point in a small 

block surrounding it.  

The introduction of such a degree of freedom in the 

estimation can be very beneficial on the quality of 

depth maps, as it decreases the influence of small 

shifts in images. Moreover, the proposal also can 

decrease the noise-induced errors, as the proposed 

method lets us find a less noised similar point in the 

nearest neighborhood. 

To fully test the proposal, the point to block matching 

was implemented in one of the publicly available 

state-of-the-art methods of depth estimation [Mie20a] 

and tested in 10 different configurations to find the 

most proper applications in which the proposed 

matching should be used. 

The organization of the paper is as follows: Section 2 

shows the description of the most relevant similarity 

measurement methods, with emphasis on their 

usefulness in the case of use of compressed views in 

the depth estimation process; Section 3 describes in 

details the proposed inter-view matching method; 

Section 4 includes the results of the comparison of the 

proposed point-to-block matching with the traditional 

point-to-point matching.  

In the end, Section 5 summarizes the paper and 

includes conclusions drawn from the performed 

experiments. 

2. RELATED WORKS 
Some studies were already performed in order to 

evaluate the efficiency of the existing matching or 

similarity measurement methods in various cases, e.g., 

for noised views. Study [Weg09] has shown that a 

mixture of census or rank transforms with the simple 

sum of absolute differences (SAD) or sum of squared 

differences (SSD) can be very efficient for such multi-

view sequences. [Zeg20] proves that the use of 

structural similarity performs very well when 

radiometric distortions are present in processed input 

views.  

Authors of [Say15] indicate that similarity 

measurement should be adapted to the local features 

of input views. It can be used to change the weight of 

used mixture similarity metrics and lead to better 

estimation in problematic areas, such as low-texture 

regions or occluded parts of views. Another method 

that tries to adapt to processed views is [Cha18], but 

in this proposal, the size and shape of the matching 

window become dependent on the characteristics of 

the part of the image. 

Other methods were proposed to improve the 

efficiency of inter-view matching by introducing 

temporal information into the similarity metric 

[Shi17]. The temporal stability of depth maps is 

crucial for the quality of the final view synthesis. On 

the other hand, such stability can be ensured on other 

stages of the depth estimation process, e.g., by post-

processing filtering [Köp13]. 

An interesting method is proposed by [Suo12]. Its 

authors propose to perform the matching of views in 

the transform domain. Such an approach results in 

exposure-independent estimation, very valuable when 

multi-view systems are used. However, if the 

encoding of input views would be performed as 

simulcast compression (independent in each view, 

e.g., performed in each camera as post-processing 

step), the distribution of frequencies could 

significantly vary in compressed views, negatively 

influencing the efficiency of transform domain 

matching. 
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Matching methods base on minimum spanning tree, 

such as [Zha19], show high robustness for complex 

scenes, however, no qualitative results of efficiency 

for noised or compressed images are provided. This 

method uses also SURF [Bay08] and KAZE [Alc12] 

features detectors, which are translation invariant, so 

they could be also invariant to compression-induced 

errors, however, these detectors are used only for 

calculation of disparity range, not depth maps 

themselves. 

To the best knowledge of the authors, contrary to the 

proposal presented in Section 3, none state-of-the-art 

method of inter-view correspondence search takes 

specifically into account the compression-induced 

artifacts present in the encoded input views. 

 

3. PROPOSED INTER-VIEW 

MATCHING METHOD 
The problem of the depth map estimation can be in 

most cases presented as a cost (goal) function 

minimization [Kol02]. In its most commonly used 

form, the cost function is defined as: 

𝐸(�̅�𝑝) = ∑ 𝐷𝑝(�̅�𝑝)

𝑝∈P

+ ∑ ∑ 𝑉𝑝,𝑞(�̅�𝑝  , �̅�𝑞)

𝑞∈Q𝑝∈P

 , (1) 

where P is set of points of an input view, 𝑝 is point of 

this view, �̅�𝑝 is currently considered depth of a point 

𝑝, 𝐷𝑝 is data term that represents a cost of assigning 

the depth 𝑑𝑝 to the point 𝑝, Q is set of points in the 

neighborhood of 𝑝, 𝑞 is point in this neighborhood, �̅�𝑞 

is currently considered depth of a point 𝑞, 𝑉𝑝,𝑞 is 

smoothness term that represents the intra-view 

discontinuity cost of using the depth values 𝑑𝑝 and 𝑑𝑞. 

The proposed method changes the data term 𝐷𝑝, which 

is responsible for the correspondence between points 

in different views. 𝐷𝑝 usually uses some similarity 

metric (e.g., one of metrics described in Section 2) 

between a point 𝑝 and a point 𝑝’, which is a point in 

neighboring view that corresponds to the point 𝑝 for 

the considered depth of a point (�̅�𝑝).  

In the proposal, the data term compares the point 𝑝 

with points in a small block of points R that surround 

point 𝑝′ and chooses the point that gives the lowest 

matching error (highest similarity) to point 𝑝. So, if 

the SAD metric would be used, then: 

𝐷𝑝(�̅�𝑝) = min(𝑆𝐴𝐷(𝑝, 𝑟)) , 𝑟 ∈ 𝑅. (2) 

Therefore, if 3×3 block would be used as 𝑅, the 

𝐷𝑝(�̅�𝑝) would be equal to the smallest of 9 SAD 

values, calculated for the central point 𝑝’ and its 1- and 

2- pixel neighborhood, respectively. 

Note that any similarity measure can be used with the 

proposal. Therefore, such a method can enhance 

almost any depth estimation method with robustness 

to small shifts in images caused e.g., by image 

compression and decrease the noise-induced errors. 

The drawback of the proposal can be seen in the small 

increase of the computational complexity, as the 

similarity is now performed not once for each point, 

but 𝑅2 times, nevertheless, the calculation of 

similarity can be easily parallelized. 

As the proposal was implemented in the depth 

estimation software provided in [Mie20a], the Graph 

Cut method [Kol02] was used to minimize the 

function (1). 

 

4. EXPERIMENTAL RESULTS 
The performed experiments were performed for 

different configurations of the modified depth 

estimation software [Mie20a]: 

1. Standard parameters: 

 256 levels of depth, 

 50,000 superpixels per view, 

 uncompressed input views, 

 all views used in the estimation. 

2. Decreased number of depth levels: 

2.1. 16 levels of depth, 

2.2. 128 levels of depth. 

3. Changed number of superpixels [Ach12]: 

3.1. 5000 superpixels per view, 

3.2. 100000 superpixels per view. 

4. Compression of input views: 

4.1. Low compression, 

4.2. Medium compression, 

4.3. High compression. 

5. Decreased number of used cameras: 

5.1. 70% of cameras, 

5.2. 20% of cameras. 

 

All configurations were tested 3 times: for the 

unmodified depth estimation and the point-to-point 

matching performed in 3×3 and 5×5 blocks. The use 

of larger blocks is possible, but as preliminary tests 

have shown, does not have a large influence on the 

estimated depth maps. 

The quality of estimated depth maps directly affects 

the final product, which is the most faithful 

representation of the three-dimensional scene. 

Nevertheless, in the case of using depth maps for the 

view synthesis purposes, such faithfulness is 

understood more as the ability to provide virtual views 

of high quality, rather than the low absolute error in 

comparison with ground-truth depth [Fan16]. 

Moreover, such ground-truth depth maps are not 

available for natural multi-view sequences, making 

such comparison not possible. 

Therefore, in order to test the proposal, a set of 

estimated depth maps was used for the synthesis of 
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virtual views which were placed in the same position 

as the real cameras that captured a scene. The 

synthesized views were in the end compared with the 

original input views. The objective comparison was 

performed using IV-PSNR [MPEG20], which is the 

PSNR-based metric used by the ISO/IEC MPEG 

Video Coding to evaluate immersive video quality. 

The calculated IV-PSNR was averaged for all views 

in each test sequence (listed in Table 1). 

The experiments were performed for 5 multiview test 

sequences that vary in the number of input views and 

their arrangements.  

Sequence name Number of views Resolution Source 

Carpark 9 1920×1088 [Mie20b] 

Fencing 10 1920×1080 [Dom16] 

Frog 13 1920×1080 [Sal18] 

Painter 16 2048×1088 [Doy18] 

Street 9 1920×1088 [Mie20b] 

Table 1. Test sequences used in experiments. 

 

The virtual view synthesis software used in the 

experiments is VVS 2.0 with its default configuration 

[Boi19], i.e., the synthesis of each virtual view was 

performed using 4 nearest views (and corresponding 

depth maps). 

The software used for compression of input views is 

x265 [X265] which is the implementation of the 

MPEG HEVC encoder. The values of the quality 

parameter crf were equal to 0 (low compression, 

near-lossless), 26 (medium compression), and 51 

(high compression). 

The following five subsections include the description 

of acquired results for each test sequence. Color green 

in tables denotes that the quality of the proposal 

(point-to-block matching) was higher than for 

unmodified depth estimation. The last subsection 

contains a summary of performed experiments. 

 

Carpark 
Table 2. shows the average IV-PSNR of synthesized 

views for the Carpark sequence.  

For 8 out of 10 the point-to-block matching 3×3 

provides a gain in the quality, making this option the 

best for this sequence. On the other hand, the highest 

gain (more than 3 dB) can be seen for the number of 

superpixels decreased to 5000 for 5×5 block. 

 

Fencing 
For the Fencing sequence, the results, presented in 

Table 3, show that the proposed matching provides a 

gain in the quality mainly for the compressed input 

views. This sequence is the only one with a non-planar 

camera arrangement, which can suggest that in such a 

case, the use of point-to-block matching is not 

beneficial when uncompressed input views are used. 

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 

configuration 

Point-to-point 

matching 

Point-to-block 
matching 

(3×3) 

Point-to-block 
matching 

(5×5) 

Standard parameters 37.09 37.19 37.11 

16 levels of depth 36.09 36.13 36.13 

128 levels of depth 37.07 37.20 37.16 

5000 superpixels 32.28 32.39 35.55 

100000 superpixels 38.28 38.35 38.21 

Low compression 37.10 37.23 37.14 

Medium compression 37.36 37.28 37.18 

High compression 34.08 34.17 34.20 

70% of cameras 36.19 36.21 35.95 

20% of cameras 35.21 35.17 35.21 

Table 2. Results of experiments for the Carpark 

sequence. 

 

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 
configuration 

Point-to-point 
matching 

Point-to-block 

matching 

(3×3) 

Point-to-block 

matching 

(5×5) 

Standard parameters 40.24 40.13 39.90 

16 levels of depth 35.40 35.55 35.72 

128 levels of depth 40.56 40.23 40.05 

5000 superpixels 37.87 37.77 37.71 

100000 superpixels 40.89 40.87 40.55 

Low compression 40.49 40.10 39.98 

Medium compression 38.19 39.03 39.14 

High compression 34.09 36.19 36.18 

70% of cameras 33.80 39.65 39.06 

20% of cameras 38.41 38.40 38.43 

Table 3. Results of experiments for the Fencing 

sequence. 

 

Frog 
In the Frog sequence, the best results were obtained 

for Point-to-block matching in 3×3 block (Table 4).  

One of the possible explanations to results observed 

for Frog can be a very high amount of noise present in 

this sequence. Table 5 shows the standard deviation of 

noise estimated for each sequence (from [Dzi20]).  As 

it can be seen, Frog has more than twice the amount of 

noise than other sequences. Therefore, in 

configurations without the compression of input 

views, the point-to-block matching provides a gain in 

most cases, as it decreases the influence of noise on 

the inter-view matching.  

On the other hand, compression of video highly 

reduces the noise of sequences, even for low 

compression. In this sequence, objects have very 

detailed, rich textures (see Figure 3), so the changes in 

the position of edges in compressed views do not 
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occur so often as e.g., in the Fencing sequence, where 

the foreground and background objects have similar 

color characteristics. We can see that a high gain in the 

quality in Frog cannot be seen until high compression 

is applied. 

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 
configuration 

Point-to-point 
matching 

Point-to-block 

matching 

(3×3) 

Point-to-block 

matching 

(5×5) 

Standard parameters 38.95 39.00 38.54 

16 levels of depth 32.63 32.97 33.05 

128 levels of depth 38.99 39.01 38.66 

5000 superpixels 37.27 36.97 36.53 

100000 superpixels 39.07 39.16 38.62 

Low compression 39.04 38.98 38.47 

Medium compression 38.99 38.92 38.33 

High compression 33.90 34.26 33.88 

70% of cameras 38.05 37.89 37.58 

20% of cameras 33.28 33.31 33.08 

Table 4. Results of experiments for the Frog 

sequence. 

 

Sequence σY σU σV 

Carpark 10.29 4.23 4.57 

Fencing 12.83 3.38 3.83 

Frog 26.77 5.59 5.62 

Painter 10.17 3.89 3.89 

Street 9.85 3.84 4.21 

Table 5. Estimated noise standard deviation for 

luma (σY) and chromas (σU and σV) [Dzi20]. 

Evaluated sequences have 10 bits per sample. 

 

Painter 
Painter is the only sequence that shows decreased 

quality in almost all cases of estimation with the 

point-to-block matching (Table 6). This sequence is 

the only sequence with lightfield-like arrangement of 

cameras (matrix of cameras). 

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 

configuration 

Point-to-point 

matching 

Point-to-block 

matching 
(3×3) 

Point-to-block 

matching 
(5×5) 

Standard parameters 40.55 40.18 39.57 

16 levels of depth 39.04 39.12 39.13 

128 levels of depth 40.63 40.36 39.73 

5000 superpixels 39.51 39.14 38.70 

100000 superpixels 40.64 40.24 39.47 

Low compression 40.68 40.17 39.86 

Medium compression 39.87 39.66 39.04 

High compression 36.32 35.85 35.58 

70% of cameras 40.22 39.84 39.66 

20% of cameras 40.31 40.12 39.70 

Table 6. Results of experiments for the Painter 

sequence. 

Street 
Results for the Street sequence (Table 7) clearly 

benefit from using the proposed point-to-block 

matching for all tested configurations of depth 

estimation.  

The gain of quality is very high in most cases (up to 3 

dB). As it can be seen in Figure 4, most of the 

differences between synthesis that used depth maps 

with point-to-point matching and point-to-block 

matching are still visible mainly on the edges of 

objects.  

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 

configuration 

Point-to-point 

matching 

Point-to-block 
matching 

(3×3) 

Point-to-block 
matching 

(5×5) 

Standard parameters 37.34 40.23 40.09 

16 levels of depth 36.14 39.09 39.03 

128 levels of depth 37.23 40.23 39.98 

5000 superpixels 31.99 32.75 32.83 

100000 superpixels 38.34 40.43 39.95 

Low compression 37.37 40.35 40.06 

Medium compression 40.24 40.08 40.53 

High compression 32.52 34.59 34.49 

70% of cameras 35.34 37.99 38.04 

20% of cameras 38.97 38.32 40.10 

Table 7. Results of experiments for the Street 

sequence. 

 

Summary of experiments 
In order to summarize the performed experiments, the 

results were averaged for all sequences and presented 

in Table 8.  

 Average IV-PSNR [dB] of synthesized view 

Depth estimation 

configuration 

Point-to-point 

matching 

Point-to-block 

matching 
(3×3) 

Point-to-block 

matching 
(5×5) 

Standard parameters 38.83 39.35 39.04 

16 levels of depth 35.86 36.57 36.61 

128 levels of depth 38.90 39.41 39.12 

5000 superpixels 35.78 35.80 36.26 

100000 superpixels 39.44 39.81 39.36 

Low compression 38.94 39.37 39.10 

Medium compression 38.93 38.99 38.84 

High compression 34.18 35.01 34.87 

70% of cameras 36.72 38.32 38.06 

20% of cameras 37.24 37.06 37.30 

Table 8. Results of experiments averaged for all 

sequences. 

 

Although the results vary for different sequences, as 

was presented in previous subsections, these results 

show that for the used set of test sequences the point-

to-block matching in 3×3 block was on average better 

than standard point-to-point matching in all but one 
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tested configurations. Most significant gains can be 

observed for the reduced number of cameras, high 

compression, and levels of depth reduced from 256 to 

16. 

5. CONCLUSIONS 
This paper presents the novel method of the inter-view 

correspondence search called point-to-block 

matching. In the proposal, a point in a view is not 

compared simply with a point in another view, but 

with the most similar point in a small block 

surrounding it. 

Series of performed experiments based on the 

comparison of synthesized virtual views with the input 

views showed that on average the proposal increases 

the quality of estimated depth maps in almost all 

configurations. The results for individual sequences 

seem to confirm that the method provides the best 

results for highly compressed input views or when the  

 

Figure 3. Comparison of virtual views synthesized using depth maps estimated using point-to-point 

matching (left column), point-to-block matching with 3×3 block (center), and with 5×5 block (right).  

Test sequences (top to bottom): Painter, Frog, Fencing, Carpark, Street. 
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Figure 4. Logarithm of differences between virtual views synthesized using depth maps estimated using 

point-to-point matching and point-to-block matching with 3×3 block (left) / 5×5 block (right). 

 Test sequences (top to bottom): Painter, Frog, Fencing, Carpark, Street.  The contrast of the image was 

increased to increase the visibility of differences. 
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amount of noise present in a multi-view sequence is 

significant.  

A gain in quality was also observed for all sequences 

in cases of decreased number of depth levels tested 

during the estimation process. Such estimation is 

much less computationally expensive, which indicates  

that the method could also be very effective in visual 

systems with limited resources (e.g., a typical PC with 

two internet cameras). Such systems almost always 

operate using compressed input video streams, 

therefore, the abovementioned efficiency of the 

proposal in such cases further increases its usability in 

such real-life configuration. 

The need for further research on depth estimation 

methods adapted to be used with compressed input 

views can be seen also in the current state of the 

development of the new MPEG Immersive Video 

codec [Boy21] for virtual and augmented reality 

applications. This soon-to-be video encoding standard 

includes Geometry Absent profile [MPEG21] which 

can be used to send a subset of input views to the 

decoder, where the depth estimation process is 

performed to synthesize any viewport of the three-

dimensional scene. 
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ABSTRACT
This paper is concerned with making 3D scans of semitransparent ambers with and without inclusions. The paper
presents results of using a variety of devices applied for this purpose. Equipment used in the experiments includes
a 3D laser scanner, a structured light scanner, a stereo camera, a camera array and a tomograph. The main object
used in the experiment was an amber with a fossil of a lizard. The paper shows possibilities of acquiring the 3D
structure of fossils embedded in semitransparent material which interfere with the measurement performed by 3D
scanning equipment. Moreover, the paper shows the application of results of 3D scanning as the 3D scan of a
lizard was reconstructed in a virtual reality cave making it possible to visualize in detail its shape and texture.

Keywords
3D scanning; scanning of amber; scanning of semitransparent material; VR caves

1 INTRODUCTION
The paper is dedicated to the problem of acquiring 3D
scans of ambers. Ambers are fossils which can be semi-
transparent or not transparent. They can also contain
inclusions such as parts of plants or insects. These fos-
sils may have heterogeneous structure and a single am-
ber stone may contain parts differing in their density
and hue. Features of amber cause that it is particularly
problematic to obtain 3D scans of this kind of speci-
mens. One of the purposes of obtaining a 3D scan of
an amber is the possibility to precisely present it to a
potential purchaser. It includes both unprocessed am-
ber stones, jewelry and other ornaments. Apart from
that 3D scans of the most valuable ambers can be used
to create virtual museums making it possible for virtual
visitors to watch exhibits.

This paper presents the results of acquiring 3D scans
with the use of different kind of scanning equipment.
Authors of this paper performed experiments with scan-
ning amber with the use of Light Detection and Ranging
(LIDAR), a structured-light 3D scanner, a stereo cam-
era, a camera array and a tomograph. Ambers scanned

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

in the experiments are exhibits displayed in municipal
Amber Museum located in Gdansk, Poland. One of the
most precious exhibits provided by the museum is am-
ber with fossilized lizard. It is one of only few such
objects in the world. Moreover, as a part of the research
presented in this paper the results of scanning was used
to reconstruct the fossilized lizard in virtual reality cave
making it possible to precisely visualize its shape.

Original contributions of this paper includes applica-
tion of a camera array for obtaining 3D scans of semi-
transparrent amber with inclusions, results of perform-
ing a scan using a tomograph on a fossil of an ancient
lizard embeded in a amber and visualizing the result
in a virtual reality cave in cooperation with a muzeum
of amber. The structure of the paper is the following.
Section 2 is a literature overview. Section 3 and 4 de-
scribe experiments and Section 5 presents their results.
Section 6 shows the application of 3D scans to virtual
reality cave. The last section presents the conclusion of
the paper.

2 RELATED WORK
Ihrke et al. presented a detailed survey on 3D scan-
ning of semi-transparent objects [Ihr10a]. They identi-
fied nine classes of transparency. Eight of these classes
refer to levels of light transport in objects including
opaque, translucent and fully transparent objects. The
ninth class are inhomogeneous objects consisting of
parts with various transparency. Amber can be foremost
classified as an inhomogeneous object. Light passing
through amber is affected by many factors including
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sub-surface scattering, reflections and absorption. Ihrke
et al. described also suggestions for selecting the most
suitable 3D scanning methods depending on the trans-
parency of scanned objects. They considered perform-
ing 3D scans of objects such as glass, gas flows and fire.

Scanning transparent objects is also the subject of re-
search of Wu et al. [Wu18a]. They developed a method
for automatically and directly reconstructing complete
3D models for transparent objects based only on their
appearances in a controlled environment. The envi-
ronment is designed using affordable and off-the-shelf
products, which include a LCD monitor, two turnta-
bles, and two cameras. This setup can work in fully
automatic fashion, removing the needs for manually
adjusting object positions and calibrating the cameras.
The weakness of this approach is the assumption that
the transparent object is homogeneous, which is rarely
true in the case of amber. Interesting results were
also brought by the research of the same team on the
simultaneously recovering the 3D shape of both the
wavy water surface and the moving underwater scene
[Qia18a]. This approach exploits multiple viewpoints
by constructing a portable camera array. However, the
assumption is that the water is homogeneously trans-
parent.

Research was also performed regarding 3D scanning of
amber with inclusion. In particular, the usage of con-
focal laser scanning microscopy was analyzed by Clark
et al. (scanning of trichomes) [Cla10a] and Zaharenko
et al. (scanning of a spider) [Zak19a]. Selden took ad-
vantage of cameras, microscopes and X-ray computed
tomography for imaging fossil spiders [Sel17a]. Kamp
et al. showed possibilities of using X-ray microtomog-
raphy with amber [Kam14a]. Li et al. analyzed amber
in the context of its characteristics as a martial [Li15a].

To the best of our knowledge there were no research
regarding usage of camera arrays for scanning amber
with inclusions. Moreover, research papers concerned
with scanning amber focus on analyzing its structure
and content in the context of geological or biological
research. These studies are not performed with the pur-
pose of reconstructing amber inclusions in virtual real-
ity cave which we present in this paper.

Equipment for 3D scanning
Laser and structured-light scanners
Laser 3D scanners produce separate clouds of points
for every position of scanning. Each of these points
is described by its three coordinates. They are calcu-
lated by timing the round-trip time of a pulse of light
(time-of-flight laser range finder) or by analysis of the
locations of the laser dots on the 2D image recorded
by a camera embedded in a scanner camera related to
the position of the camera and the laser emitter (tri-
angulation). Acquiring a full specimen requires scan-

ning it from all sides with some angular resolution.
The created local clouds of points should then be com-
bined into one global cloud by matching correspond-
ing to each other distinctive points (so called reference
points) identified in scanned shape for each local cloud
[Kyo13a]. Then, the global cloud can be displayed di-
rectly [Lev85a, Wim06a, Dis18a] or to avoid inconsis-
tencies it should be converted into polygon (e.g. trian-
gle) mesh by special software.
Pure laser scanners produce only geometrical shape of
object represented by a point cloud or a polygon mesh
without information about color. In order to enrich the
scan by color an extra camera is usually needed for as-
signing color for every point of the cloud or for captur-
ing a texture applied to a larger area of the surface.
Analogically to laser scanners, structured-light 3D
scanners produce also separate local clouds of points
for each view of a specimen, where every point is
described by three coordinates. Positions of cloud’s
points are calculated on the base of assessment of
deformation of the multiresolutional patterns projected
on the specimen and taken by an embedded camera
located on the side of the projector. If the structured
light is white the same camera can be used for register
a color of scanned object. Otherwise, an additional
camera that records the color in white light is needed.
The global cloud and polygon mash are created in the
same way as for laser scanners.

Microcomputed tomograph
Microcomputed tomography (µCT) is a nondestructive
technique that generates cross-sectional images of a
sample using an X-ray source. Using these 2D repre-
sentations, it is possible to generate a 3D reconstruc-
tion of the sample and perform analysis on the ma-
terial structure. Amber with fossil inclusions is well
suited for µCT, both in terms of typical size and com-
position. The method is non-destructive and requires
minimal preparation, generating 3-dimensional recon-
structions that can be sectioned and viewed from nu-
merous angles, essentially permitting digital ’dissec-
tion’ of the specimen within the amber. In recent
years various forms of µCT have proved particularly
well-matched for imaging inclusions in amber [Die07a,
Keh14a, Mor16a] and have been successfully applied in
fossil lizards [Pol02a, Daz16a]. A µCT scanner looked
inside the amber without damaging the fossils, allow-
ing study researchers to digitally piece together tiny
bones and examine soft tissue. The 3D images of the
detailed preservation provided insight into the anatomy
and ecology of ancient lizards.
Unfortunately, the tomograph is unable to register the
color of the specimen. Therefore, if the geometric form
itself is not satisfactory, then the reconstructed solid
should be colored separately. We stopped at the non-
colored reconstruction 3D.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

146 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.16



Figure 1: Amber exhibits used in experiments (a)
Gierłowska’s lizard (b) Amber with part of a leaf (c)
Zernebach’s Cabinet (photo by Michał Kosma Szcz-
erek, courtesy of the Amber Museum, a branch of the
Museum of Gdansk

Stereo cameras

A pair of cameras resembling a pair of eyes makes it
possible to record 3D visual information of the sur-
rounding area. Such a pair of cameras aimed in the
same direction is called a stereo camera. A stereo cam-
era produces two images taken from different points of
view. Locations of the same objects is different in these
images unless these objects are too distant from cam-
eras. The difference in locations of objects in two dif-
ferent images is called a disparity. The closer the object
is to a stereo camera, the greater is a disparity. Dis-
parities are retrieved from a pair of images as a result
of processing these images by a stereo matching algo-
rithm which are designed to identify areas of images
corresponding to the same objects.

A stereo camera consists of a reference camera and a
side camera. A reference camera is a point of view
of the camera set. Disparities for a series of points
visible in a reference image are saved in the form of
a disparity map. Disparity maps can be converted to
depth maps which contain values of distances between
a reference camera and objects visible in images. Con-
verting disparity map to a depth map requires taking
into account parameters of a stereo camera such as fo-
cal length of lens and the distance between constituent
cameras called the baseline.

Disparity maps and depth maps obtained with the use
of stereo cameras may contain errors which are incor-
rect values occurring in these maps. This issue is re-
lated to the selection of an appropriate stereo match-
ing algorithm. There is a large variety of such algo-
rithms. They differ in the quality of results, speed, the
amount of required computer resources and other pa-
rameters. There are also rankings of stereo matching al-
gorithms considering these parameters. Leading rank-
ings of these algorithms are provided by Middlebury
Stereo Vision Page [Mid21a] and the KITTI Vision
Benchmark Suite [Kit21a]. The former ranks more than
100 stereo matching algorithms and the latter takes into
account over 140 algorithms. Experiments presented
in this paper considered well-known algorithms with

available implementations. Disparity maps can also be
obtained using camera arrays. [Kac17b, Kac19c] in-
clude overview of this technology.

3 DATA ACQUISITION
Ambers used in experiments
Amber Museum located in Gdansk, Poland provided
amber fossils and items decorated with amber which
were used in the experiments. Objects subjected to
experiments were Baltic ambers aged about 40 mil-
lion years. Some of used fossils were ambers contain-
ing inclusions. We have experimented with acquiring
3D scans of both natural amber forms with inclusions
(Gierłowska’s lizard - amber with lizard fossil and am-
ber with part of a leaf) and amber works of art made by
former master craftsmen (Zernebach’s Cabinet).

The Gierłowska’s lizard is a semitransparent Baltic am-
ber (succinite) with inclusion of a lizard Succinilac-
erta succinea of the family Lacertidae. It was found
by Gabriela Gierłowska (it is named after its finder) in
material obtained through rinsing from Holocene fossil
beach sediments about 1 kilometer away from the shore
in Gdansk’s Stogi district in June 1997. Unfortunately,
the animal of preserved length of 3.7 centimeters is in-
complete. The front part of the head, dorsal fragment
of the trunk and the rearmost fragment of the tail are
missing [Kos97b]. The fossil is presented in Fig. 1(a).

An amber with part of a leaf is another item used in the
experiments. Similarly to the Gierłowska’s lizard this
object is a semitransparent Baltic amber (succinate), but
it is definitely bigger (3.5 × 4 cm). The specimen is
shown in Fig. 1(b).

The cabinet also used in the experiments was made by
a master of the Gdansk’s amber guild Johann Georg
Zernebach in 1724. This small box-shaped baroque
piece of furniture has a shape of a cuboid with di-
mensions of 42 × 31 × 19 cm. Its doors and draw-
ers are made of amber, ivory, silver, mirror and wood
[Kos08a]. The cabinet is presented in Fig. 1(c).

Laser and structured light scanners
Laser and structured light 3D scanners are widely used
in museology. Many museum objects were archived
using these devices. Although the difficulties that
arise when scanning transparent and shiny objects are
known, we decided to check these technologies also for
amber. That is why we asked two companies dealing
professionally with scanning to scan the pieces of
amber presented above. One of them used a Surphaser
laser scanner and a structured blue LED light ZEISS
COMET L3D scanner, another one - a structured white
light SmartTech Scan3D Surface scanner. The results
of these tests were already described in [Leb17c], but
it is worth presenting them briefly here.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

147 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.16



Figure 2: The laser scan of the Zernebach’s Cabinet
(made by Łukasz Piasecki using Surphaser scanner,
courtesy of EC Test Systems) [Leb17c]

All laser 3D scanners use only a specific frequency of
light. It means that process of scanning can catch only
shapes visible to the used monochromatic laser light
rays. The ray is reflected either from the amber exte-
rior or from some internal amber surfaces (inclusions,
fissures, structure changes etc.). If the ray enters the in-
terior, its trajectory refracts on the external surface. For
this reason, the ray measurement is disturbed. Further-
more, for complex specimens made of different kinds
of amber (e.g. Zernebach’s Cabinet) scanning may pro-
duce different results: a front surface for opaque frag-
ments or a back surface (alternatively internal elements)
for transparent parts [Leb17c]. This is clearly seen in
Fig. 2, which presents result of use of the Surphaser
laser scanner on the Zernebach’s Cabinet.

Structured-light 3D scanners use rather polychromatic
light (Fig. 3). Rays of a certain range of wavelength can
reflect from external surfaces, while other rays can re-
flect from internal surfaces (inclusions, fissures, struc-
ture changes etc.). Such a diverse spectrum allow to
acquire different, separate layers of amber. The het-
erogeneous structure of amber that has multilayer form
can be reconstructed by a few correspondingly matched
light rays reaching different layers of an amber and its
inclusions. Unfortunately, today’s scanners do not dif-
ferentiate light rays relative to wavelength and this ap-
proach requires the construction of a new scanner and
goes beyond the scope of described research. Existing

Figure 3: Process of structural light scanning of the
Zernebach’s Cabinet

Figure 4: (a) The structured white light scan of the
Gierłowska’s lizard (made by Szymon Bloch using
SmartTech Scan3D Surface scanner, courtesy of Scan
3D - authorized distributor of SmartTech) (b) The im-
age corresponding to a scan (photo by Michał Kosma
Szczerek, courtesy of the Amber Museum, a branch of
the Historical Museum of Gdansk) [Leb17c]

Figure 5: A structured white light scan of a central
part of the Zernebach’s Cabinet (made by Szymon
Bloch using SmartTech Scan3D Surface scanner, cour-
tesy of Scan 3D - authorized distributor of SmartTech)
[Leb17c]

scanners can register point clouds consisting of a cou-
ple of point set layers, but they are sparse and may have
a lot of holes [Leb17c], as one can see in Fig. 4 (a),
which presents result of use of the SmartTech Scan3D
Surface scanner based on structured white light on the
Gierłowska’s lizard. Fig. 4 (b) presents an image cor-
responding to a scan.

Analyzing results of multilayer amber scanning it is
worth remembering that the reflected rays can also re-
fract passing between different parts of an amber and
its inclusions. This means that the algorithm locating
individual points of the amber interior should also cal-
culate the phenomenon of refraction. Otherwise, ob-
tained results can be inaccurate. They will consist of a
few point clouds corresponding to sequent surfaces, but
reconstructed shapes inside the amber can be deformed
by refraction.

The glossy ambers are an additional problem in accu-
rate scanning both for laser and structured light scan-
ners. These scanners cannot register surfaces where
specular reflection is and point clouds have holes in
these places. Therefore only matt and opaque ambers
can be scanned without much difficulty, as shown in
Fig. 5 presenting a structured white light scan of a cen-
tral part of the Zernebach’s Cabinet made by the use of
the SmartTech Scan3D Surface scanner [Leb17c].

Usage of tomograph
More precise way for the 3D acquisition of amber or its
inclusions is provided by X-ray tomography [Dun11a,
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Figure 6: Real EBCA used in the experiments

Ste16a]. The basic disadvantage of this method is its
huge cost but it has also some other limitations. For in-
stance, metal parts in acquired objects make difficult to
acquire amber jewelry. Fortunately, it is not a problem
for natural amber forms. The size of acquired speci-
mens is the next limitation. The dimensions of the to-
mographic equipment chamber limit the size of the ex-
amined object. Furthermore, the results produced by to-
mography are represented as memory consuming vox-
els instead of point clouds or easy to visualize polygon
meshes generated by the other acquisition techniques.

The X-ray micro-CT observations were conducted at
Warsaw University of Technology, Poland using a Zeiss
Xradia XCT-400 system. Scans were performed with a
polychromatic X-ray beam at an energy of 40 kV and
power of 10 W. Sample to detector distance was set to
60 mm, and a source to sample distance of 80 mm was
used. Tomographic slices were generated from 1200
rotational steps through 216-degrees of rotation, using
a LFOV objective, and the exposure time during each
projection was set to 4 s. Acquired images were binned
(2 × 2 × 2) giving voxel size of 38 µm.

Usage of cameras
Equal Baseline Camera Array (EBCA) is a device sim-
ilar to a stereo camera however it produces a higher
quality of disparity maps [Kac17b, Kac19c, Kac15a].
EBCA consists of a central camera and four side cam-
eras equidistant from the central one. Side cameras are
placed around a central camera forming a configuration
resembling a plus sign. The image of a real EBCA used
in the experiments is presented in Fig. 6. The set con-
sists of Basler acA2500-14uc cameras with resolution
2590×1942 px and 1/2.5" sensor size.

EBCA has functions of four stereo cameras combined
with each other. The considered subsets are pairs of
cameras which consists of a central camera and one of
side cameras. The central camera is a reference one in
every such a pair. The same reference camera in ev-
ery pair cause that using EBCA can be regarded as per-
forming four measurements of the same distance with
the use of four stereo cameras containing different side
cameras. Perceiving EBCA in this way has many ad-
vantages and makes it possible to obtain results that

have over 26% less errors than the results acquired from
a single stereo camera [Kac17b].

Images from EBCA need to be analyzed in order to
retrieve 3D data similarly as in case of a stereo cam-
era. This paper presents results of using Exceptions
Excluding Merging Method (EEMM) in this process
[Kac17b]. This method proved to be the best one for
obtaining disparity maps with the use of Equal Base-
line Camera Array (EBCA). When EEMM is used dis-
parity maps are obtained from four stereo cameras from
EBCA independently from each other. Afterwards,
these maps are merged together in order to acquire a re-
sulting disparity map that has a higher quality. EEMM
defines functions for processing data from four dispar-
ity maps in order to minimize the error rate in the re-
sulting map. The method is further described in Sect. 4
of this paper.

In the experiments two stereo matching algorithms
were used i.e. Semi-Global Block Matching (Stere-
oSGBM) and Graph Cut with Expansion Moves
(GC Expansion). StereoSGBM is provided with the
OpenCV library [Bra08a, Hir08a]. OpenCV is a
widely used open-source programming library which
includes a variety of algorithms for computer vision. It
also contains implementations of four stereo matching
algorithms. StereoSGBM was chosen because it is the
only algorithm from OpenCV classified in Middlebury
ranking and it has the highest score among OpenCV
algorithms in the KITTI ranking. Another stereo
matching algorithm used in the experiments is Graph
Cut with Expansion Moves (GC Expansion) provided
by Middlebury Stereo Vision Page [Boy01a]. It is an it-
erative algorithm which minimizes the energy function
using Markov Random Field [Sch02a]. This algorithm
was selected for tests because of previous research on
the five camera array used in the experiments presented
in this paper [Kac17b, Kac19c]. The research showed
that GC Expansion produces high quality of results
when it is used with the considered array.

Images obtained with the camera set presented in Fig.
6 were used both for testing the usage of EBCA and for
testing the stereo vision technology based on two cam-
eras. Results for a stereo camera were obtained by pro-
cessing an image from a central camera and an image
from the left camera selected from an entire set of five
images provided by EBCA. Sample images of ambers
obtained by EBCA for the experiments are presented in
Fig. 7.

4 DATA PROCESSING
Processing laser and structured-light scan
The process of combining local point clouds obtaining
as a result of "one-side" static scanning into a global
cloud is very complicated and so far it cannot be fully
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Figure 7: Images of amber with inclusion of a lizard taken with the use of (a) central, (b) right, (c) top, (d) left and
(e) bottom cameras of EBCA

automated. Usually it takes the specialist more time
than the process of registering points with scanner. Cre-
ating the global cloud relies on careful merging of
individual local clouds. For this purpose, the corre-
sponding reference points in combined local clouds are
distinguished. Then they form the basis of combin-
ing [Kyo13a]. Setting reference points is not a trivial
task. If the scanned object has many different landmark
points (i.e. points in a shape that are located accord-
ing to some mathematical or geometrical property) and
consists of unique elements, then the choice of refer-
ence points as these landmarks is obvious. However, if
the object is uniform and consists of large single-color
areas with a small curvature, it is difficult to indicate
the same points as reference points in aggregated scans
taken from different sides. In this case, one can stick
on the object special markers that will act as reference
points. Unfortunately, museum curators refuse to stick
such markers on their exhibits.
A separate problem is the conversion of point clouds
into a polygon mesh, which is often more convenient
for further processing than cloud. Fig. 8 shows point
cloud of the upper part of the cabin obtained using
structured blue LED light ZEISS COMET L3D scan-
ner (a) and the triangle mesh generated by the ZEISS
colin3D software (b). The number of points in such
a cloud is usually very large, therefore such conver-
sion needs simplification. The easiest method for it is
decimation, consisting in leaving only every n-th point
and omitting all other points. More sophisticated meth-
ods rely on leaving only points distinctive for a scanned
shape (e.g. peaks, valleys, saddle points) [Leb17c].
In the case of transparent objects, the problem is also
the separation of external surface and internal layers.
Conversion of point cloud into a polygon mesh should
be preceded by the separation of points into individ-
ual layers. This guarantees conversion to correct sur-
faces, which will be useful for the rendering mentioned
as planned in Sect. 6. Automating this process is not
always effective.

Processing tomograph data
Images were imported into Avizo Fire (ver. 2020.2)
software platform for segmentation and 3D visualiza-
tion. The powerful Watershed algorithm with interac-
tive techniques [Rus03a] were used to provide a highly

Figure 8: Visualization of the point cloud (a) and the
triangle mesh (b) of the Zernebach’s Cabinet (made by
Łukasz Piasecki using structured blue LED light ZEISS
COMET L3D scanner and the ZEISS colin3D software,
courtesy of EC Test Systems)

effective strategy for segmenting complex 3D structures
of the fossil lizard. The process was based on a marker-
controlled algorithm which segments a gray level image
based on extracted landscape image and set of mark-
ers which identify a subset of the regions of interest in-
side the data set. The resulting volume was manually
programmed to separate the specimen from other ob-
jects embedded within the amber (mainly air bubbles).
Direct Volume Rendering was used for visualizing 3D
scalar fields.

Processing images

Amber fossils are visible only in parts of considered
images. Therefore, only these parts were processed in
order to acquire disparity maps. Remaining areas of
images were not considered in calculations. The part of
the image with the Gierłowska’s lizard used in calcu-
lation has a size of 1000× 800 pts and the size of the
image of amber with a leaf was set to 1040×1030 pts.

Two stereo matching algorithms were used in experi-
ments for obtaining disparity maps of amber. These are
StereoSGBM and GC Expansion presented in Sect. 2.
The obligatory input parameter of these algorithms is
a range of disparities for which the algorithm verifies a
match between a reference image and a side image. The
selected range was wider than the real range of dispari-
ties of objects visible in images for which disparities are
calculated. All other input parameters of stereo match-
ing algorithms were set to default values or values used
in examples provided with the software.
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This paper presents the comparison of disparity maps
obtained using a stereo camera with disparity maps ob-
tained using EBCA. The results for a stereo camera
were based on images from the central and the right
camera included in the real EBCA used in experiments.
StereoSGBM and GC Expansion algorithms were used
both in tests with a stereo camera and tests with five
camera set.

In case of using EBCA a method of taking advantage
of this five camera set needs to be applied in order to
acquire disparity maps that have a higher quality than
disparity map based on a single stereo camera. In the
experiments presented in this paper Exceptions Exclud-
ing Merging Method (EEMM) was used for retrieving
3D data on the basis of five image sets [Kac17b]. The
usage of EEMM consists of two steps. In the first step,
stereo cameras forming EBCA are used independently
from each other to obtain disparity maps. Only those
stereo cameras are considered for which a central cam-
era is a reference one. Different stereo matching algo-
rithms designed for stereo cameras can be used in this
step. Disparity maps acquired from stereo cameras are
input data to the second step of Exceptions Excluding
Merging Method. In the second step maps are merged
in order to obtain a resulting disparity map that has a
higher quality than input maps.

Each point of a disparity map contains either a value of
a disparity or a value indicating that a disparity for this
point is unknown. The reason for the lack of dispar-
ities is such that a stereo matching algorithm was not
able to determine the disparity on the basis of images
from a stereo camera that the algorithm processed. It is
mainly caused by limited visibility of the same objects
in two different images from a stereo camera. When
EBCA consisting of five cameras is used then four dis-
parity maps are merged into a single resulting disparity
map. Therefore, every disparity in a resulting map is
based on input disparities whose quantity range from 0
to 4. Exceptions Excluding Merging Method specially
defines functions for merging disparities with regard to
the number of input values. Details of EEMM are de-
scribed in [Kac17b].

5 RESULTS OF EXPERIMENTS
Laser and structured light 3D scanners
Fig. 2, 5, 8 present results of scanning of the
Zernebach’s Cabinet by different laser and structured
light scanners. Fragments of the cabinet made with
opaque and matt amber were scanned with satisfactory
accuracy. However, the transparent ambers have
already been "lost" and the scan only showed their
back wall (e.g. door corners in the Fig. 2). In the
case of the Gierłowska’s lizard, the scan result is a
scattered cloud of points that presents both the lizard
skin and amber faces (Fig. 4a). The scan result in

Figure 9: The µCT three perpendicular slices of the
amber (a-c) and volume rendering of the Gierłowska’s
lizard hidden in amber

this form is unacceptable. It would require manual
separation of both shapes - the lizard and the amber,
which would require many hours of painstaking work
of the operator. Widespread losses, especially in the
cloud of points representing amber, would require
manual replenishment, which in essence boils down to
manual modeling of missing parts of amber shape.

Tomograph
Three perpendicular slices of the amber are shown in
Fig. 9 a-c, and the whole 3D volume renderings are dis-
played in Fig. 9d. The extraction of 3D objects and its
visualization was one of the most important steps in the
analysis of the pre-processed image data. The segmen-
tation of lizard based on gray-scale gradient was not
possible for volumetric approach. The lizard could not
be sufficiently separated from the surrounding struc-
tures. Even by calculating the threshold for each slice
separately, we failed. Therefore, we decided to use wa-
tershed algorithm with interactive techniques [Rus03a]
and finally, the 3D model was exported from special
segmentation software in 3D standard triangle language
(STL) format.

Stereo camera and EBCA
Fig. 10 presents disparity maps obtained in the exper-
iments with EBCA presented in this paper. The figure
has a form of a table. The first raw corresponds to re-
sults of processing images of amber with a lizard. The
second row presents results for amber with part of a
leaf. The column containing images (a) and (f) shows
results of using the StereoSGBM algorithm for a pair
of images taken by a single stereo camera. The col-
umn with images (b) and (g) presents results for the
same stereo matching algorithms used with the EEMM
method and a set of five images. These are the results
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Figure 10: Results of using a stereo camera and Equal Baseline Camera Array for obtaining disparity maps of
amber items

of executing the version of EEMM described in Sect. 4.
Similarly, the third column presents results for the GC
Expension algorithm used with a pair of images and the
fourth column presents results for GC Expension ap-
plied to five image sets. The last column consists of
raw images of ambers from which disparity maps were
calculated.

The comparison of images presented in Fig. 10 shows
differences between disparity maps obtained from two
images and those obtained on the basis of five images.
In both of these disparity maps there are areas with
the same or similar value of a disparity depicted by a
similar shade of gray in disparity maps. It can be no-
ticed that when StereoSGBM algorithm is used edges
of these areas are more irregular in case of disparity
maps based on two images than in case of maps from
five images. Moreover, two image disparity maps con-
tain more parts in these areas with unknown value of
disparity. These parts are more filled with disparity val-
ues in five image disparity maps. When GC Expansion
is used than taking advantage of five images instead of
two ones reduces the number of disparities for which
the stereo matching algorithm obtained incorrect val-
ues. These disparities are visible in maps (c) and (h)
as the brightest areas. Disparity maps based on five
images contain only the most credible values of dis-
parities. Instead of incorrect values of disparities these
maps contain black values indicating that the disparity
is unknown.

6 3D VISUALIZATION OF ACQUIRED
AMBER SPECIMENS

Successful acquisition of 3D structure of amber spec-
imens allows us to visualize the reconstructed objects,
but the semitransparent nature of amber requires the use

of advanced mathematical modeling and graphic ren-
dering methods. A uniform 3D voxel grid, or a 3D tree
such as an octree or a k-d tree can be used for modeling
of acquired amber objects [Leb17c]. Such structures
divide the object into parts and allows to define some
quantities like the light transmittance for each part. Us-
ing the finite element method we can model ray trac-
ing by solving a system of light transmittance equa-
tions corresponding to these individual parts. Such a
method can simulate complex optical phenomena such
as global illumination, subsurface scattering, caustics
and internal reflections and offers very high quality of
visualization [Leb17c].

A ray tracing engine for semitransparent materials is
now being developed. It will allow the visualization
of amber objects in virtual reality environments. We
hope that the developing engine will be an attractive
tool for curators of the Amber Museum and will allow
them to prepare inviting museum exhibitions. An ex-
ample of the expected capabilities of the engine is the
virtual reconstruction of the Amber Room in the virtual
reality cave located in the Immersive 3D Visualization
Lab (Fig. 11) [Leb14a, Leb16b, Leb17c].

Precise reconstruction of the Gierłowska’s lizard shape
obtained thanks to the tomography allowed us to visual-
ize the lizard itself as a zoological fossil [Leb20d]. Un-
fortunately, other methods do not yet provide adequate
accuracy for reconstruction in VR. So we can see the
three-centimeter lizard in the virtual reality cave with
100× magnification. We can walk around it and view
it from any angle. Rendezvous in virtual reality with a
lizard that is 44 million years old and has been enlarged
to the size of a crocodile leaves an indelible impression
(Fig. 12). Particularly noteworthy are the lizard’s sur-
prisingly slender fingers.
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Figure 11: Visualization of the Amber Room in a vir-
tual reality cave

Figure 12: 3D reconstruction of the Gierłowska’s lizard
in a virtual reality cave with 100× magnification

7 CONCLUSIONS
The paper presents various classic scanning approaches
applied to amber acquisition. The use of laser and
structured-light scanners, microcomputed tomograph,
stereo cameras and camera arrays were tested. The ad-
vantages and disadvantages of each of the approaches
were described. None of the methods gave satisfactory
results. The best results were obtained for tomogra-
phy, but it is the most expensive and time-consuming
method. In addition, it cannot cope with colors. Laser
and structured light scanning as well as stereo cameras
and EBCA methods capture the color correctly, but due
to the translucency and multilayer structure of amber
(anterior and posterior surfaces as well as inclusions
and blemishes), the resulting reconstruction is burdened
with significant inaccuracies. Scanning amber is a dif-
ficult task that requires further research. Amber as a
structure of heterogeneous transparency, also changing
abruptly (e.g. inclusions) and often with a glossy sur-
face, seems to be one of the most difficult challenges
in the acquisition of a 3D image. The conducted re-
search has shown that it is necessary to develop special
methods dedicated to amber scanning. At the moment,
work is underway to develop proprietary amber scan-
ning methods. An important element of this research is
also the development of a mathematical model for the

description of heterogeneity in semitransparent materi-
als such as amber.
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[Leb14a] J. Lebiedź, A. Mazikowski. Innovative Solu-
tions for Immersive 3D Visualization Laboratory.
22nd Int. Conf. on Computer Graphics, Vis. and
Computer Vision WSCG 2014 - Comm. Papers
Proc., 315–319, 2014.
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ABSTRACT

We present an easy-to-use and lightweight surface and volume mesh sampling standalone application tailored for the needs of
particle-based simulation. We describe the surface and volume sampling algorithms used in LEAVEN in a beginner-friendly
fashion. Furthermore, we describe a novel method of generating random volume samples that satisfy blue noise criteria by mod-
ifying a surface sampling algorithm. We aim to lower one entry barrier for starting with particle-based simulations while still
pose a benefit to advanced users. The goal is to provide a useful tool to the community and lowering the need for heavyweight
third-party applications, especially for starters.

Keywords: mesh sampling, volume representation, surface representation, particle-based simulation

1 INTRODUCTION
In many fields of computer graphics, the plausible sim-
ulation of different physical phenomena is an impor-
tant topic. As simulations hit interactive framerates, the
urge for a unified simulation solver allowing to simu-
late various phenomena in one framework grew. A lot
of methods like position-based dynamics [16] and their
successors unified particle physics [14] and projective
dynamics [3][19] use particles to represent all various
simulation objects, like rigid-bodies, cloth, fluid, gran-
ular material, gases, and deformable solids. Further, in
other non-real-time simulation methods, like Smoothed
Particle Hydrodynamics (SPH) [18] or material point
methods [9], particle representations play an important
role. They are not only used for characterizing parts of a
continuum but also in the efficient and correct handling
of object- and domain boundaries [2].

We experienced that especially for beginners generat-
ing a particle representation of different geometrical ob-
jects is an entry barrier for getting started with particle-
based simulations. There are a certain number of well-
described algorithms for generating surface representa-
tions, as well as some algorithms for generating suitable
volume representations (see Section 2).

Beginners often struggle to find a convenient and
ready-to-use implementation or tool that is suitable for
the requirements of particle-based simulation. The use
of heavy-weight third-party software for sampling can
also introduce new issues. These programs can be

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

hard to access and learning how to work around the
vast amount of functions can be unnecessarily time-
consuming. Furthermore, data-export is often limited
to undocumented binary data formats.

Therefore, we introduce LEAVEN, a Lightweight sur-
facE And Volume mEsh sampliNg application tailored
to the needs of particle-based simulations. LEAVEN
is an easy-to-use graphical application that enables be-
ginners to sample a surface or volume of a 3D trian-
gle mesh with only a few straightforward clicks. Fur-
thermore, it leaves enough customization options to be
valuable for experienced simulators. LEAVEN is made
available as open-source and can be used as a library in
other projects.

Our paper is organized as follows: first, we give a
brief overview of sampling algorithms (Section 2), then
we describe the algorithms used for sampling in our ap-
plication (Section 3), followed by a detailed description
of the developed application (Section 4) and its usage
(Section 5). Our main contributions are:

• Giving a beginner-friendly introduction to particle
sampling techniques

• Lowering the entry barrier for particle-based simu-
lations

• Modifying a surface sampling method to generate
volume samples that satisfy blue noise criteria

• Contributing an easy-to-use, lightweight, open-
source standalone application for sampling the
surface and volume of arbitrary closed triangle
meshes for use in particle-based simulations
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Figure 1: Different samplings in comparison. Surface sampling (left), volume sampling with randomly distributed
particles (middle), and volume sampling with grid-based packing (right).

2 RELATED WORK
Various fields of computer graphics, such as textur-
ing, remeshing, rendering, modeling, or animating frac-
tures, have methods for sampling surfaces or volumes
that are tailored to their specific needs. An important
sampling criterion that many of these methods have in
common is that the sampling behaves like blue noise.
Blue noise distributions have been an important re-
search topic [8][17][6]. A sampling that has blue noise
characteristics is uniform and unbiased distributed in
the spatial domain. Furthermore, when looking at the
frequency domain with the Fourier transformed spatial
information, there should be a lack of low-frequency
noise and structural bias. One popular method for gen-
erating samplings that satisfy blue noise criteria is Pois-
son disk sampling [15][5]. In Poisson disk sampling,
the samples are placed randomly on the valid spatial do-
main, which is the surface of an object for surface sam-
pling or its volume for volume sampling. After plac-
ing the samples, a validation process guarantees that
no two samples are too close to each other. Cline et.
al. [7] introduced an optimized dart-throwing algorithm
for generating Poisson disk point sets as a sampling
of the surface of a 3D triangle mesh. Their algorithm
needs sequential processing and has its applications in
modeling and polygon remeshing. Wei et. al. [23]
present a parallel dart-throwing algorithm by drawing
suitable samples from a dense point cloud on the ob-
ject’s surface. This parallel version can achieve interac-
tive frame-rates even for a large number of samples and
is therefore well suited for real-time applications. Bow-
ers et. al. [4] extended this algorithm to work not only
with the Euclidean but also with a fast approximation of
the Geodesic norm, as a measurement of sample point
distances. This method is well suited for interactive tex-

turing applications or other tasks where quick sampling
is needed. Yuksel [24] describes an approach of gen-
erating surface samplings without using a form of dart-
throwing but rather assigning weights to possible sam-
ples. He uses a greedy algorithm to eliminate the points
with the highest weight. Wang, T. et. al. [21] pro-
pose another rapid parallel surface sampling method.
They use blue-noise pattern planes that they progres-
sively project on the mesh surface using ray tracing.
This method has its applications especially when fast
sampling is required. A novel data-driven approach by
Wang, Z. et. al. [22] promises to achieve even better
performance than the classic geometrical approach on
triangle meshes.

In contrast to the previously mentioned techniques,
Jiang et. al. [11] use different methods inspired by SPH
simulations. They are not only generating surface sam-
plings but also volume samplings in that way. Their
idea is to treat each sampling point as an SPH particle
and establish a constant density in SPH kernel estima-
tion functions by applying correction forces. Adams et.
al. [1] describe an adaptive volume sampling method
for particle-based fluid simulation. They use a sampling
condition to put more focus on geometrically complex
simulation regions.

3 ALGORITHMS
The main algorithms used in LEAVEN can be divided
into surface- and volume sampling algorithms. In
particle-based simulations, surface representations are
typically used for boundary handling and sometimes
for two-way coupling, while volume samplings are
used for initial particle positions or rigid-body rep-
resentations in unified solvers. They both have in
common that they need a discrete 3D representation
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Model BBox Surface Sampling Random Volume Sampling Grid Volume Sampling
Scaling time particles time particles time particles

Bunny 2.0 13ms 9122 293ms 14875 100ms 22206
Squirrel 3.0 30ms 14889 573ms 31795 109ms 48012
Armadillo 6.0 87ms 53921 5096ms 145403 2559ms 215141
Dragon 12.0 595ms 233355 23444ms 943703 6710ms 1445523

Table 1: Timing results for different meshes and varying particle numbers resulting from different scales of the
bounding box and a fixed particle radius of 0.02m for volume sampling / minimum distance for surface sampling.

as an input. 3D geometry in computer graphics is
often represented as polyhedrons, with a polygon mesh
defining the surface of the object. We use triangle
meshes as input since these meshes are most com-
mon, easy to work with, and accessible. For volume
sampling, the input mesh describing the surface of an
object must be closed to have a distinguishable inside
and outside. Figure 1 shows different samplings of
the same 3D object. On the left the surface sampling
algorithm is applied, where particles can get as close
as half the particle diameter. Shown in the middle is
our approach to generating random blue noise samples
within a volume, with a minimum particle spacing
equal to the particle diameter. A grid-based volume
sampling is shown on the right. Table 1 shows timing
results for the three algorithms available in LEAVEN on
different standard meshes.

3.1 Surface Sampling
Akinci et. al. [2] describe how boundary particles can
be a suitable boundary representation in SPH fluid sim-
ulation and how to calculate a two-way fluid-rigid cou-
pling. Later this practice has been used for boundary
handling in position-based methods like position-based
fluids [13], or for the simulation of gases and granular
material [10].

There are some basic requirements for a good surface
representation with particles. First of all, the sampling
should be dense enough that no simulation particle can
tunnel through holes between boundary particles. Fur-
thermore, the particles should be spread out uniformly
on the object’s surface to guarantee an even force dis-
tribution to prevent artifacts.

To generate such a sampling of the surface of an ob-
ject, we use a uniform sampling algorithm on arbitrary
triangle meshes introduced by Bowers et. al. [4]. The
method builds upon a grid cell sampling approach to
generate Poisson disk samples on arbitrary manifold
surfaces [23]. The goal of the sampling process is to
find a set of sample points (particles) S that is randomly
but uniformly distributed on the surface ∂V of a 3D Vol-
ume V . Thereby all particles should have a minimum
distance d to each other, i.e.

dist(sssi,sss j)≥ d, ∀sssi,sss j ∈ S

For most cases in particle-based simulation, d equals
the radius r of the simulation particles. The distance

metric dist(·, ·) measuring the spatial separation can be
Euclidean or Geodesic. The Euclidean distance mea-
sures the shortest line segment between two points in
3D space. The Geodesic distance measures spatial sep-
aration with respect to the object’s surface as a sub-
manifold. This can be beneficial for achieving a good
sampling of complex objects with thin features. For
a detailed explanation of Geodesic distances and their
fast approximation, we refer the reader to [4].

The algorithm starts initially by calculating a much
larger set P with candidate positions on the surface ∂V
without bothering about the distances between them.
The candidate samples are found by picking a random
triangle from the triangle mesh with a probability pro-
portional to the triangle’s area. On this triangle, an ar-
bitrary position ppp is generated by choosing two random
values τ1,τ2 ∈ [0,1] for its barycentric coordinates

u = 1−
√

τ1, v = τ2
√

τ1, w = 1−u− v

inside the triangle, which leads to a random position

ppp = uaaa+ vbbb+wccc,

where aaa,bbb,ccc are the three vertices of the triangle. In this
manner, the initial set P is filled with a large number
of candidate positions. In the application LEAVEN, we
generate ρS · A(∂V )

πr2 positions in this way, where A(∂V )
is the surface area, which is the sum of all triangle ar-
eas and ρS is a controllable density parameter. We use
a default value of ρS = 40. After this, the bounding
box containing V is sliced into grid cells with a uni-
form side length of d√

3
. This leads to a cell diagonal of

d. For each position, ppp ∈ P the corresponding grid cell
id is calculated and the whole data array containing P
is sorted by the grid cell id. Each cell that contains at
least one position ppp is a valid surface cell. Cells with-
out candidate positions are much likely located outside
or inside the volume.

Since the majority of cells is empty a hash table is
a suitable lookup structure for finding valid cells and
their positions. The cell id is used as the hash key. In
contrast to [4], we use a spatial hashing function with
bit-wise xor:

(i · p1 xor j · p2 xor k · p3) % size(hash_table)

where

p1 = 73856093, p2 = 19349663, p3 = 83492791
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as described in [20], where i, j,k are the cell indices, to
prevent hash collisions. Each hash bucket contains the
cell id, a pointer to the first position ppp that is associated
with this cell id in the concurrent sorted data array, and
if already chosen, the sampled position. In the end, each
valid surface cell will contain at most one sample.

Algorithm 1 Uniform surface sampling
1: generateCandidateSetP()
2: sortSetPByCellId(setP)
3: insertSetPInHashMap(setP)
4: for trial t = 1, . . . ,n do
5: for all valid cells i do
6: if cell i is already sampled then
7: break
8: if t-th candidate point pppit doesn’t exist then
9: break
10: conflict = false
11: for all neighbor cells j do
12: if j not a valid cell then
13: break
14: if j has no sample sss j yet then
15: break
16: if dist(pppit , sss j) < d then
17: conflict = true
18: if conflict == false then
19: sample for cell i: sssi = pppit
20: put sssi in S

The main sampling algorithm consists of several tri-
als n, which is another controllable parameter. A higher
number of trials n makes it more likely to find a sample
for each valid cell but needs more computation time.
We employ a default value of n = 10. In each trial
t = 1, . . . ,n, each valid cell is processed. If the cell al-
ready contains a valid sample it is skipped. If there are
no more candidate positions in P, the cell can also be
neglected. Otherwise, neighboring cells are checked to
see if any already sampled position is too close to the
current candidate position pppit . If this is not the case pppit
is added to the set of samples S. The whole sampling al-
gorithm is shown in Algorithm 1. For a parallel version
and further details, we refer the reader to [4].

3.2 Volume Sampling
In contrast to surface sampling, volume sampling is
used to define initial positions of simulation particles,
whether it may be free-moving particles like fluid, gas,
or granular material, or a rigid-body representation in a
unified solver like unified particle physics [14]. There-
fore the requirements for the sampling are different. For
initial positions the particles mustn’t be primarily in
an invalid state, meaning that the particles are not al-
lowed to overlap. Overlapping initial positions can lead
to high correction forces/position changes, causing the
simulation to explode.

Figure 2: LEAVEN’s application window with a triangle
mesh sampled with 4650 randomly distributed particles
through the volume.

Particles that represent a rigid-body should maintain
a constant distance from each other during simulation.
Therefore it makes sense to sample them closely and
uniformly inside the volume V . The goal is to find a set
of sample positions S, that is spaced out on an equidis-
tant grid with a minimal side length of 2 · r, where r is
the particle radius. For deciding which positions are in-
side the Volume V we use a signed distance field (SDF).
It is defined as a signed distance function Ψ : R3→R,

Ψ(ppp) = sgn(ppp) inf
ppp∗∈∂V

‖ppp− ppp∗‖ with

sgn(ppp) =

{
−1 ppp ∈V
1 otherwise

measuring the Euclidean distance of a point ppp ∈ R3 to
the nearest point ppp∗ on the object surface ∂V . Gener-
ating such a parametric SDF representation of an arbi-
trary closed Volume V is a topic on its own and beyond
the scope of this paper. In LEAVEN we use a grid-based
SDF with hierarchical cell size and polynomial degree
refinement based on polynomial fitting as described in
[12]. The general idea behind this is to fit polynomial
functions in cells of axis-aligned hexahedral grids de-
fined by the input meshes. The algorithm iteratively
refines the SDF either by spatial subdivision or cell-by-
cell adjustment of the degree of the polynomial.

After generating the SDF, the bounding box contain-
ing V is divided into grid cells similar as described in
Section 3.1 but with a cell size of 2 · r. For each cell i
one sampling particle is added to the cell center at posi-
tion pppi. Then the signed distance function is evaluated
as position pppi. When Ψ(pppi) < 0 the position is inside
the Volume V and therefore it is a valid sampling po-
sition sssi, that can be added to the sampling set S (see
Algorithm 2).
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Figure 3: Volume and surface samplings used in a unified simulation framework simulating a granular material
and a rigid-body (red) moved by an excavator.

Algorithm 2 Grid-based volume sampling
1: generateSDF()
2: for all cells i do
3: position pppi = cellCenter
4: if Ψ(pppi) < 0 then
5: sample sssi = pppi
6: put sssi in S

Particles that represent parts of fluids, gases, or gran-
ular materials, in general, change their distance to each
other during the simulation. Sampling them in regular
patterns, like previously, can introduce disturbing vi-
sual artifacts at the beginning of a simulation. There-
fore we modify the concept of Bowers et. al. for sur-
face sampling [4] explained in Section 3.1 to present a
novel approach for generating random samples inside a
3D volume that satisfies blue-noise criteria.

Our modified sampling method divides the bounding
box of V into uniform grid cells with a side length of
2·r√

3
resulting in N cells. We fill the set of candidate

positions P by picking uniformly distributed positions
within the whole bounding box and only adding the po-
sitions ppp to P that lie inside the volume (i.e. Ψ(pppi)< 0).
In this way, we generate ρV ·N samples, where the num-
ber of samples generated is proportional to the number
of grid cells in the bounding box. The proportional-
ity constant ρV is a controllable density parameter. We
recommend this parameter to be equal to the number of
trials n. The rest of the sampling process is the same
as for the surface sampling algorithm with Euclidean
distance norm (see Algorithm 1).

4 APPLICATION
As mentioned before, the main goal with LEAVEN is to
provide an easy-to-use tool suitable for beginners and
advanced users in particle-based simulation. In the fol-
lowing, we will briefly explain the settings the user can
manipulate in the application1.

Figure 2 shows the LEAVEN user interface (UI). On
the righthand side of the UI is the viewer. It displays
the result of the sampling process. The depicted 3D
model can be manipulated by arcball rotation, zoom-
ing, and panning. The lefthand side of the UI contains
the settings for the sampling process. When mesh nor-
malization is turned on, the mesh is uniformly scaled to
fit inside a bounding box with a side length of 1. The
mesh can be scaled further up or down by a factor. It
is also possible to scale each axis individually, for ex-
ample, to easily generate rectangular boxes from a unit
cube for non-cubic simulation domains.

For volume sampling, the radius of the sampling par-
ticles can be specified. When sampling is inverted, the
volume between the bounding box and the mesh outside
is sampled. The SDF Resolution defines the accuracy
of the parametric volume representation. For objects
with finer details, a higher resolution is needed. The
grid mode samples the particles uniformly and aligned
on a grid inside the volume. Random mode generates
randomized sampling inside the volume that satisfies
blue noise criteria as described in Section 3.2. In ran-
dom mode the controllable density parameter ρV and
the number of trials n can be set.

1 https://github.com/a1ex90/Leaven
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For surface sampling, the radius of the displayed
sampling particles can also be specified. This only af-
fects the visual appearance of the particles in the ap-
plication’s preview display and should not be confused
with the Min Dist parameter, which controls the min-
imum distance d between particles that influences the
sampling (see right side of Figure 2). For boundary
handling, a good rule of thumb for choosing d is to use
the same size as the simulation particle radius r. Fur-
thermore, the controllable density parameter ρS and the
number of trials n can be chosen (see Section 3.1). It is
also possible to switch between Geodesic or Euclidean
distance norm for sampling particle distances. For more
fine details in the mesh, the geodesic norm should be
the one in favor.

5 USAGE EXAMPLE
Figure 3 shows a simulation scene where our sampling
has been applied to many various objects. The scene
has been simulated with the unified particle physics
[14] variant of position-based dynamics [16]. A gran-
ular material with friction, behaving like sand, is simu-
lated. Initial particle positions (sand-colored) are sam-
pled with LEAVEN’s volume sampling random mode
on. The rigid-body, a squirrel, is simulated within
the same framework with a two-way coupling with the
granular material. It is sampled with grid-based volume
sampling (red). The excavator (yellow dots), as well as
the domain boundaries (blue dots), are surface sampled
with a minimal distance between samples equal to the
particle radius.

6 CONCLUSION
With this paper we contribute an easy-to-use applica-
tion for representing surfaces and volumes by a set of
particles. We used a state-of-the-art surface sampling
algorithm [4] and present a novel approach for gener-
ating volume samples that satisfy blue noise criteria by
using an SDF representation of the volume. Further-
more, we give a beginner-friendly introduction to the
field of sampling techniques tailored for the needs of
particle-based simulation.
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ABSTRACT 
Model based tracking (MBT) of painted cars in the automotive mass production on conveyor belts with robots is 

a challenging task. Many disturbing sources that have an impact on the MBT exist, like the influence of the 

localized work illumination, the synchronization of the MBT to the conveyor belt, reflections in the paint, variants 

of the cars and the complexity of the used CAD models. By having such complex systems the mere assessment of 

the accuracy and stability of MBT approaches by literature can be hard. A real world application is necessary for 

a better understanding. Therefore, we present the evaluation of MBT for a robotic gap measurement system on 

painted cars. The influence of local lighting and car paint is analysed in detail regarding the MBT accuracy. To 

reduce complexity considering the car variants on a production line, we evaluated the MBT with different model 

setups and show the influence on the MBT results. Regarding MBT in a complex calibrated system that runs 

twenty-four-seven, a broken or slightly displaced camera should not have a huge impact like a loss of production. 

For this reason, we present a method to exchange a camera within minutes and without a loss of the overall 

accuracy. The method relies on a separate test specimen and is evaluated in detail. The presented evaluations can 

help researchers and the industry to better understand and assess the influence and correlations of different error 

sources or disturbing factors for the usage of MBT in complex conveyor belt based robotic applications. 

Keywords 
Application, evaluation, model-based tracking, coated cars, synchronization to conveyor, robotic production line

1. INTRODUCTION 
By using MBT in complex systems a lot of 

correlations exist between different influencing 

factors, like the reflectivity of considered objects, the 

lighting situation, the optimal selection of the used 

CAD model or the synchronization to other system 

components or machines. During research in the 

literature we found that such relationships are often 

sparsely considered for MBT approaches and that 

there is a lack of detailed evaluations of MBT in 

action. Therefore, we present evaluations of different 

factors that have an influence to the results of MBT in 

a complex system. The industrial use case presented in 

this paper is the automatic measurement of gap points 

on painted cars on a conveyor belt with a light weight 

robot. To avoid a crash of the robot with the car, an 

MBT approach is used that measures the car. On this 

basis, the robot can correct its teached coordinates 

with the actual tracking results. Such automated vision 

based systems play a more and more important role in 

the context of future manufacturing systems. Various 

international initiatives like the industrial internet 

consortium, industry 4.0 or smart factories support 

these ambitions. Against this background, efficient 

and pragmatic solutions, e.g. maintenance models, for 

the every day use of such systems are necessary. 

Based on this motivation, we present a fast method to 

handle the exchange of broken or displaced cameras 

without the need of initial measurements for the total 

system. This method is evaluated in detail and the 

results are presented and discussed. The presented 

methods and evaluations in this paper can help 

researchers and the industry to better assess the 

behaviour and accuracy of MBT in complex systems 

and to better understand the impact of different 

influencing factors and their correlations. 

2. RELATED WORK 
[VP05] gives an overview of monocular model-based 

tracking approaches in a survey. The authors give a 

categorized overview to support the selection process 

which approach may be suitable for a use case, but it 

is a very rough overview without many details. In-

depth evaluations that consider different influencing 

factors are missing. 

[Gar18] summarises state of the art frameworks and 

datasets for the evaluation of six degrees of freedom 

object trackers. They limit their method to the criteria 

of stability, robustness to occlusion and accuracy 

during challenging interactions.  

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 
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Several evaluation techniques use fiducials like 

[Hin11] or a checker board [Wu17]. Therefore, the 

quality of ground truth information is limited.  

In [Hod17] a summary of the state of the art can be 

found for the evaluation of 6D pose estimation for 

textureless objects. They also use fiducials to create 

ground truth data. 

In our former work [Sch20], MBT was evaluated with 

devices of the measurement technology and an 

detailed overview of the influence and correlations of 

several factors was given. A robotic conveyor belt 

based gap measurement application was shown, but 

limited to body shells. In this paper our work is 

extended by considering painted cars that are 

completely assembled. Section 3.2 recapitulates the 

used application. Different gloss paints with light 

reflections are challenging for the MBT. Therefore, 

different lighting situations in correlation with the 

car’s gloss paint, the optimal CAD model selection 

and the accuracy of the total system will be evaluated. 

Detailed results for the gloss paints will be given. 

Furthermore, a fast method to exchange a camera in 

the system will be shown and evaluated in detail. It 

merely introduces a small, acceptable error regarding 

the system’s total accuracy. 

In this paper, the MBT approach of [Wue07] that is 

based on [Com06] and [Vac04] was used for all 

evaluations. The authors evolved the approach and 

reached a high degree of maturity. The results in 

[Sch20] prove that with this MBT a high degree of 

accuracy and robustness in industrial applications can 

be achieved. Since we also focus on an industrial use 

case, this was important in the selection process for the 

MBT. Only one MBT approach is considered in this 

paper, due to the great expense for all presented 

evaluations. To solve the initialization problem, 

[Wue07] relies on a real camera perspective that 

closely matches a specified CAD perspective. If both 

perspectives match, a continuous tracking takes place 

for subsequent frames and the CAD model can be 

augmented on the video image (see Figure 1,top right). 

3. System and workflow overview 
Our system uses MBT to track painted cars on a 

conveyor belt. Tracking results are sent to a light 

weight robot to navigate to predefined points on the 

outer shell of a car where gaps are measured. By using 

the MBT results the robot avoids collisions with a car. 

3.1 Motivation 
Industrial robot applications rely on an initial setup 

and configuration stage. In this stage, all components 

are in a defined state. This is necessary to calibrate the 

different components and put the system into 

operation. For our use case, a painted car is put on the 

conveyor belt in an initial position. In this position 

measurement points on the outer shell of the car are 

taught to the robot. During production, the painted 

cars are driven onto the conveyor belt by workers. 

Therefore, the pose of the cars deviates from the pose 

of the car in the initial position. Thus, without any pose 

correction the robot could collide with the cars on the 

conveyor belt during production. Furthermore, the tire 

pressure of the cars can lead to the effect that the 

robots are not measuring the exact gap position on 

every car. To avoid the described problems a pose 

correction for every car on the conveyor belt is needed. 

3.2 System setup and workflow 
In Figure 1 the setup of the industrial application is 

shown. To run the MBT, an industrial PC is used that 

is integrated into a carriage. On top of the carriage a 

robust and adjustable camera mount is installed that 

holds a video camera. A uEye UI-3000SE-C-HQ 

camera with global shutter, 12 mm lense and a 

resolution of 4110x3006 was used for all evaluations 

in this paper. The light weight robot is also attached to 

the carriage. To get information about the conveyor 

Figure 1: System Components. The camera mount is zoomed. Top right: Overlay of CAD data to video 

image. Middle right: template for robot teaching. Bottom right: Laser line tool without protective cover. 
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belt movements a rotary encoder is attached under the 

conveyor belt. A light barrier detects if a car enters the 

station. All components are connected to a 

programmable logic controller (PLC) that controls the 

production station. The PLC on the other hand is 

connected to the production system and provides 

information about type, color and variant of the actual 

car to the system. With this information the correct 

CAD model can be loaded for the MBT.  

To setup the MBT and to teach the robot, the same car 

is used. The car is brought into a reference position 

that is fully visible in the view of the camera. This 

position is called the virtual trigger (VT). Then the 

painted car is measured with the MBT and the pose is 

stored as 𝑃𝑟𝑒𝑓 . The increment value of the rotary 

encoder 𝐼𝑛𝑐𝑉𝑇 is also stored. During production the 

passing cars are measured by the MBT at the VT 

position. From the VT an earlier position in the 

opposite conveyor direction is calculated and called 

“first fit”. The first fit position lies directly behind the 

light barrier and is used to start the matching of the 

edges of the CAD model with the edges detected in the 

video frames to obtain a continuous tracking for the 

following frames. When cars during the production 

pass the VT, the pose 𝑃𝑉𝑇is measured by the MBT and 

the transformation between 𝑃𝑟𝑒𝑓  and 𝑃𝑉𝑇  is calculated 

with 𝑃𝑑𝑖𝑓𝑓 =  𝑃𝑟𝑒𝑓
−1 ∗ 𝑃𝑉𝑇  and send to the PLC. 𝑃𝑑𝑖𝑓𝑓 

determines the shift and twist of the actual car in 

comparison to the reference car. This information is 

used further to correct the teached coordinates of the 

robots measurement points for every car. In this way 

collisions between the cars and the robot are avoided. 

3.2.1 Synchronization of robot, conveyor belt 

and model-based tracking  
By using a rotary encoder attached under the conveyor 

belt the covered distance can be calculated by a 

conversion factor.  The rotary encoder delivers 

increment values of the belt that can be read by the 

PLC. If a car enters the station, the light barrier detects 

it and sets an increment counter to zero. From then on, 

the PLC sends the actual increment value 𝐼𝑛𝑐𝑎𝑐𝑡 every 

4 milliseconds (ms) to the MBT system. When 𝐼𝑛𝑐𝑎𝑐𝑡  

is greater than 𝐼𝑛𝑐𝑉𝑇 , the car has reached the VT and 

a timestamp 𝑡𝑎𝑐𝑡 is stored in the MBT system. The 

MBT system sets a timestamp for every calculated 

pose. Thus, the last pose 𝑃𝑡1 before timestamp 𝑡𝑎𝑐𝑡 and 

the first pose 𝑃𝑡2 after 𝑡𝑎𝑐𝑡 can be used together with 

the time difference 𝑡𝑑𝑖𝑓𝑓 to calculate the interpolated 

pose 𝑃𝑉𝑇  at the virtual trigger position. With 

𝑃𝑉𝑇 𝑡𝑑𝑖𝑓𝑓 = 𝑓𝑎𝑐𝑡𝑜𝑟⁄ , the slerp function can be used to 

interpolate between the poses. In this way 𝑃𝑉𝑇  at time 

𝑡𝑎𝑐𝑡 is calculated and can be compared directly with 

the reference pose 𝑃𝑟𝑒𝑓 . Because the increment values 

are merely sent every 4 ms, an additional error of 

approximately 0.3 mm can occur with a conveyor 

speed of 75mm per seconds that was used in the 

experiments. 

In the configuration stage of the production station the 

transformation of the car to the robot base and the 

conveyor belt direction is measured with a high 

precision measurement device like a Faro laser tracker 

[Far21] or a Creaform metra scan [Cre21]. By using 

these information together with the pose correction 

𝑃𝑑𝑖𝑓𝑓  and the conveyor increments including the 

conversion factor, the robot can predict the exact car 

position and respective measurement points. Thus, the 

robot can approach each calibrated measurement point 

on the car correctly without any collisions. 

3.3 Error sources 
Several error sources have an influence on the 

accuracy of the total system in this complex 

application. A detailed evaluation regarding the single 

error sources can be found in [Sch20]. We sum up the 

most important ones under an assumption of 2 σ:  

 MBT errors: 0.7 mm ± 1.5 mm 

 MBT-conveyor synchronization:1.7 ± 1.5 mm 

 Robot to conveyor synchronization: ± 0.5 mm 

Figure 2: Tests with light turned on, belt parallel lights turned off and light in the station turned off. Top 

row: Unmodified images. Bottom row: Images with automatic color and contrast correction. 
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 Robot calibration of gap points: ± 0.5 mm 

 Production tolerance of test object ± 0.5 mm 

 Calibration conveyor direction 

 Calibration robot to test object 

In addition, several other factors have an influence on 

the MBT results, like the localized work illumination, 

the different colors of the car paint or the selection of 

the CAD parts that are used for MBT.In the following 

sections these factors are evaluated in detail. An 

accuracy analysis for such a complex system is 

difficult, since many factors have an influence on the 

result. In [Sch20] separate factors are evaluated. But 

at least the accuracy of the final system output is 

essential. Therefore, we also present an evaluation of 

the total accuracy of the system. Thereby, the laser line 

tool at the robot head is used to determine how precise 

the robot can approach the several measurement points 

on the outer shell of painted cars. 

3.4 Influence of illumination 
In [Sch20] the influence of lighting and temperature 

over time on MBT for body shells was evaluated. For 

the use case of painted cars the influence of lighting is 

bigger due to reflections or the influence of car paint 

to the edge detection and matching of the MBT. As 

first evaluation criterion, we used the tracking quality. 

This is an output of the used MBT that describes how 

many edges of the CAD model could be matched to 

the edges in the respective camera image. A factor of 

0.8 for examples denotes that 80 percent of the CAD 

model edges could be matched. 

The localized work illumination for production 

facilities is built up considering a norm. Mostly 

fluorescent tubes are used. Fluorescent tubes that are 

aligned parallel to the conveyor belt can have a 

negative influence to the MBT. The reflections of the 

tubes can cause the detection of an edge by the MBT 

that is similar to edges coming from gaps between car 

parts. If these edges lie in the surrounding area of a 

correct edge a mismatch can occur. The effect is 

visible in Figure 2. A light reflection lies in the direct 

surrounding of the gap between the car hood and the 

car wing. Another observed issue was that white areas, 

e.g. walls, in the video image can outshine image 

regions. This can be seen in Figure 2. The background 

wall outshines the contour edges of the car roof. This 

can lead to a bad initial match of the MBT edges. 

Another problem concerning a correct MBT matching 

process is the bad contrast between the black colored 

belt and the underbody for cars with dark or black 

gloss paint. To overcome the described problems we 

tested different settings in our evaluation. First, we 

tested three light situations: All lights turned on, belt 

parallel lights turned off and all lights turned off. We 

call this test “test 1”(see Figure 2). Then we modified 

the camera images with an automatic color and 

contrast correction. This is “test 2”. In “test 3” we 

modified the tracking parameters. Thresholds were 

modified to detect more edges in the video image and 

the initial tracking value was lowered. The initial 

tracking value relies on the tracking quality value that 

describes in percentage from when on a matching can 

take place, e.g. try a match if 50 percent of the edges 

match. The results are listed in Figure 3.  

For this test we defined a tracking success rate. Only 

results with a tracking quality greater than 0.55 and a 

jitter smaller than 5 mm were considered as a 

successful tracking. The decision was based on the 

observation that with results smaller than 0.55 the 

MBT more often runs into local minima. The success 

rate is marked on the left scale and describes how 

many of the evaluated cars could be successfully 

Figure 4: Tracking quality results for cars with white gloss paint over time in different lighting situations. 

Figure 3: Results of the light tests for different gloss paints. 
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tracked after the criteria described above. The gloss 

paint of the cars is depicted in the bottom line and 

corresponds to the bars. The numbers on the bottom of 

the bars show how many cars per color were 

considered. This means: If 5 cars were considered per 

gloss paint and all are tracked successfully the bar 

goes up to a value of one. If only three out of five are 

tracked successfully the bar goes up to 0.6. 

The most significant findings are that the automatic 

color and contrast correction improves the success rate 

for the situation where all lights are turned off. 

Otherwise, no big differences can be found between 

“test 1” and “test 2”. The best overall result can be 

found when the belt parallel lights are turned off in 

“test 3”. Further tests considered the behavior of the 

MBT over time. In Figure 4 the results of the tracking 

quality for a moving white car can be seen for a period 

of 35 seconds. The best results were also achieved for 

the lighting situation with belt parallel lights turned 

off. This lighting achieves the best matching rates 

between CAD and video image edges from the 

beginning of the period. Under the other light 

situations the MBT needed some time until the 

matching yields the best rates and the tracking quality 

is generally lower. Due to our findings we kept the 

light and tracking parameter settings that achieved the 

best results for our further evaluations.  

In Figure 4 we also listed an average error. We 

estimated for all poses of a car during the period a best 

fitting line with RANSAC and computed the average 

deviation along this line. This can serve as a measure 

to check how stable the MBT calculates the car poses, 

because due to the conveyor belt setup it can be 

expected that the cars poses lie on a straight line 

according to the belt direction. 

Throughout the evaluation we found that completely 

black cars are a challenge for the MBT. Especially the 

low contrast to the conveyor belt can have a disturbing 

influence on the MBT. Due to this, we conducted 

another evaluation with additional lights. Four 

spotlights were used to illuminate the gap between the 

belt and the underbody and another spotlight behind 

the car that illuminates the background to improve the 

contrast (see Figure 7). Furthermore, the gamma 

correction of the video camera was turned on to further 

improve the contrast. For black cars we found that the 

additional lighting improves the tracking quality 

value, meaning more edges could be matched. 

Approximately 10 percent more edges could be found 

(see Figure 7, top row). By turning on the gamma 

correction with no additional lighting we achieved 

nearly the same tracking quality values (see Figure 7, 

middle row). Turning the light and the gamma 

correction on, a tracking quality value of 0.79 was 

achieved (see Figure 7, middle row). Since additional 

Figure 6:Tracking quality results over time for CAD models of cars with common parts over all 

variants (left), of a half car model (mid) and of the outer contour of common parts(right). 

Figure 5: Results over time for different models: Left: Common parts. Right: Full model with all variants. 
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lights tend to outshine image regions a test for white 

gloss paint was needed to exclude any unwanted side 

effects. For such a car we achieved opposite results. 

With gamma correction a result of 0.84 was obtained. 

With lighting turned on the tracking quality dropped 

to 0.78 (see Figure 7, bottom row).  

 

Figure 7: Images of the test with additional 

lighting and gamma correction turned on. 

With outshined surfaces MBT has problems in finding 

edges correctly. This test was also conducted for other 

gloss paints. In general, we found that the gamma 

correction improves contrasts and reduces outshined 

surfaces in the images in a way that the MBT can 

achieve a better matching. We also found that the 

gamma correction has a similar effect on the tracking 

quality than the color and contrast correction. 

Therefore, we just use the gamma correction and 

avoided the additional color and contrast correction. 

Since we don’t want to use special adjustments of the 

MBT parameters, the camera settings and the lighting 

situation for every possible gloss paint, the best 

solution to work with is one setting that fits it all. 

According to the results above the best solution 

regarding a cost-benefit analysis can be achieved with 

the belt parallel lights turned off, the gamma 

correction of the camera turned on and the usage of the 

optimized parameters for the MBT.  

3.5 Evaluation of different CAD models 
Considering all car variants produced on a production 

line, there is a high complexity of the used CAD 

models. Reducing this complexity would lead to a 

more manageable situation for the usage of MBT in 

industrial settings. Therefore, another evaluation was 

conducted that compares the usage of CAD models 

with all variant parts, of common parts over all 

variants only and of the outer contour of common parts 

only. Common parts are for example the chassis, the 

hood, the doors, the trunk, the roof, the windows, the 

front shield, the car wings, etc.. 

In the production every station meter costs. Reducing 

the station length by shortening the view space of the 

camera would reduce such costs. On that account, we 

evaluated the usage of a half car model only. This 

evaluation was conducted at the beginning of all of our 

tests. Therefore, the settings described in the previous 

section 3.4 were not used. This can be seen in the 

generally lower tracking quality values and higher 

jitter around the fitted RANSAC vector for all tests in 

this evaluation (see Figure 6). 

In Figure 6 the tracking quality over time is shown for 

common parts that can be used for all car variants 

(left), a half car model (middle, the front half of the 

car was used) and for the outer contours (only contour 

edges used for the MBT) of common parts of all car 

variants. Considering the tracking quality value, the 

number of matched edges for the outer contour 

achieves the best results, followed by the common 

parts. The results for the half car model are the worst. 

But setting these values in correlation to the fitted 

average vector with RANSAC, the situation looks 

different. The poses of the common parts test slightly 

vary around the fitted average vector. For the half car 

model the deviations to the RANSAC vector increase 

and for the outer contours we found a big jitter and 

even big jumps in the single poses in relation to the 

straight fitted vector of poses with RANSAC. The 

tests also contained outliers as can be seen on the 

deviations in form of errors to the RANSAC vector. 

The tests were conducted before the illumination tests 

in section 3.4. By using the results of section 3.4, we 

observed that such outliers are drastically reduced. 

Finally, the common parts achieved the best results in 

terms of stability and robustness, even though a 

smaller amount of edges can be matched.  

In another test, common parts are compared to the 

CAD model that contains the full car variants CAD 

data, for example with special parts for a car line like 

the sill, driving mirror, radiator grill etc.. In Figure 5 

the results are shown. The results are ambivalent. For 

some cars the tracking quality with the common parts 

are better and for other cars the full CAD model gets 

better results. A handful of cars benefit from the full 

CAD model, but don’t represent the majority of cars. 

With the common parts slightly more outliers are 

present considering RANSAC. Since the results aren’t 

that clear and overall both method generate stable and 

robust average results, we decided to continue with the 

method of using common parts. This is because the 

model preparation, including part search in the 

database, data export and converting the data into the 

necessary formats takes time. Under a cost-benefit 

analysis, using the common parts makes sense in 
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regard to an industrial application. Furthermore, this 

approach is safeguarded by the evaluation in the next 

section, where the accuracy of the total system is 

evaluated. But if an application or approach has 

problems reaching given accuracy requirements, our 

findings confirm that it may be better to use the full 

CAD model for MBT of painted cars. 

3.6 Evaluation of the system accuracy 
The determination of the accuracy of a complex 

system can be challenging. Correlations exist between 

single error sources and further influencing factors, 

like lighting, CAD model selection or the gloss paint. 

In section 3.3 the single error sources are described 

that were evaluated in [Sch20]. For painted cars 

further factors have to be considered, whose influence 

was evaluated in the previous sections. With these 

evaluations researchers and the industry can better 

understand the relationship and possible effects of 

single components, influencing factors and their 

complex interaction. But in the end the total error of a 

complex system is essential to assess the accuracy, 

robustness or applicability. 

Therefore we use the same method to determine the 

total accuracy of the system as described in [Sch20]. 

The laser line tool (LLT) that is mounted on the robot 

head to measure gaps is also used to measure the 

accuracy of how exactly the robot approaches a 

measurement point. The LLT consists of two laser line 

scanners. They are arranged in a special mount and 

specifically aligned to create one large laser scan line. 

In Figure 1 the LLT is shown. If the robot measures a 

gap point at a car the deviation of the gap midpoint to 

the LLT midpoint can be measured (the output is a 

coordinate on the laser line and the distance to the 

surface). This error is given in 2D LLT coordinates 

and serves as a metric to assess the total accuracy of 

the system. With this evaluation criterion it can at least 

be determined how precise the robot can reach a single 

measurement point and gives us an assessment of the 

operational fitness of the MBT for this kind of 

application scenario. 

The measurement points are taught to the robot in the 

initial position. The LLT is aligned perpendicular to 

the normal of each gap and precisely aligned with a 

special template (see Figure 1). Little bridges on the 

backside guarantee a tight fit into a gap. Then the large 

laser line is orthogonally aligned to the template by an 

expert and the robot’s position is stored. To overcome 

possible errors in this manual process, a software 

offset based on the measurements is calculated. It 

corrects systematic deviations and ensures a tight 

orthogonal alignment of the LLT’s laser line to a gap. 

With the car in the reference position for the MBT, the 

direction of the conveyor belt and the transformation 

between the robot base and the painted car is measured 

with a high precision measurement device, like a Faro 

laser tracker. All these values together with the 

conveyor belt increments for the reference position are 

used by the robot in the conveyor belt synchronous 

mode to predict the position of a car for the actual belt 

increment values. The MBT measures the actual car at 

the VT (see section 3.2) and calculates a pose 

correction in comparison to the reference car. With 

this pose correction and the predicted car position the 

calibrated measurement points can be corrected in 

robot coordinates for the considered car.  

To evaluate if the accuracy is suitable to avoid 

collisions of the robot with the cars and to fulfill the 

accuracy requirements, an evaluation for five 

measurement points on 261 cars was conducted. 

Measurement point P1 is at the middle of the gap 

between the car front door and the car wing. P2 is on 

the middle of the gap between the back and the front 

door. P3 is at the middle of the gap between the back 

door and the rearward car wing. P4 is at the middle of 

the gap between the hood and the car wing. And the 

last measurement point P5 is at the middle of the 

horizontal bottom gap of the tank cap. The results are 

shown in Table 1. As explanation: The origin of the 

car coordinate system is at the center of the front 

suspension, whereby the X-axis points along the cars 

main axis to the back wheels, the Y-axis points to the 

right front wheel and the Z-axis points up. Since the 

LLT has to be aligned orthogonally to a gap to perform 

measurements and delivers 2D results, vertical gaps 

are measured with X and Y coordinates, according to 

the cars coordinate system, and horizontal gaps are 

measured with Y and Z coordinates. We evaluated the 

mean value and the standard deviation of the 

difference between the measured gap and the 

measured LLT midpoint. In sum 261 cars were 

considered. In Table 1 only 257 are shown, because 

the additional cars had four separate colors, whereby 

no mean value and standard deviation could be 

calculated. In Table 1 the results are listed under an 

assumption of a Gauss distribution with 2 σ. Thus, 

approximately 95% of all measurements should lie in 

Table 1: Results for the total system accuracy for different gloss paints. 
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the range µ ±2 σ. Generally, the standard deviation in 

the X direction are higher, because of the errors from 

the conveyor belt synchronization with the robot and 

with the MBT. Another finding is that for the Z 

coordinate of P4 the deviation for all considered gloss 

paints is constantly higher. This is partially caused by 

the error in the z coordinate for the point itself and in 

addition by the synchronization to the conveyor belt in 

x direction. Since P4 is on the curved hood, errors in 

the synchronization have an influence on the position 

where the gap is measured. This results in higher 

deviations of the Z coordinate. But nevertheless, the 

mean values are mostly in the range of up to two 

millimeters. Further findings are, that darker colors 

have a slightly higher standard deviation. This is 

plausible, because darker colors are more challenging 

for the MBT. From Table 1 it may be not that clear, 

but if the results for different colors are grouped by 

brightness, the difference gets much clearer. This can 

be seen in Table 2. The results represent the values for 

two times the standard deviation (2 σ). 261 car were 

considered. Referring to the colors in Table 1, black, 

obsidian black, graphite grey, covansit blue and selenit 

grey were assigned to the cluster “dark”. White, 

diamant white and hightech silver were assigned to the 

cluster “bright”. In sum 12 different gloss paints were 

considered. By separating colors like pure white or 

pure black, that are more challenging to the MBT 

(white gloss paint due to the outshining), and showing 

clusters without these cases, other findings are that for 

the bright colors without white the deviation slightly 

decreases; but for dark colors without black in the 

opposite case a slight tendency is recognizable that 

black may not be the most challenging color. Other 

dark colors seem to have a slightly more increasing 

influence on the standard deviation. 

Considering the mean values, the total system 

achieves results, mostly varying in the range of up to 

two mm. In comparison of all values the point P3 

achieves the worst results over all colors for the X 

coordinate. Since this point is one of the last measured 

points, rotational errors in the system could increase 

the results. The results for the tank cap with P5 

however foil this assumption. P5 is measured as the 

last point, but neither shows very high results for the 

mean value, nor the standard deviation. Thus, we don’t 

expect the MBT or the measured belt direction and 

transformation between the car and the robot as the 

reason for this effect. The most likely cause seems to 

be that during the manual calibration of the point by 

the robot, an error was introduced. 

Overall the total system achieves results for the five 

measurement points and for all gloss paints that are 

suitable for automatic gap measurements. For 80 

coordinate values listed in Table 1, 71 were under an 

total error of 8 mm, under an assumption of a Gaussian 

distribution with µ ±2 σ. Six values lied under 9 mm 

and three under 10 mm. From these nine values above 

8 mm, six are related to the X coordinate of point P3. 

The possible reasons for this behavior were described 

above. Finally, the laser scan line has a total length of 

several centimeters. Under these circumstances, the 

evaluation showed that even with the worst case 

accuracy of up to 10mm in some cases, gaps can be 

measured by the LLT without any difficulty. 

4. Evaluation of a pragmatic camera 

maintenance concept 
The setup of the system requires the measurement and 

teaching of a reference car. In case of a camera defect, 

this procedure has to be repeated in a production free 

time slot. It is also necessary for a camera position 

change. Normally, the occurrence of the second case 

is rather unlikely due to the robust and tight camera 

mount, but if an object or person crashes with the 

camera mount, it cannot be completely excluded that 

the position of the camera slightly changes. To 

overcome these limitations we present a method to 

compensate such errors without the need of a new 

initial measurement. Therefore, we use a special test 

specimen that is shown in Figure 8. During the car 

measurement in the reference position the test 

specimen is setup and also measured with the MBT. If 

no camera position change occurred, the measurement 

of the test specimen by the MBT can also be conducted 

after the initial measurements. With these 

measurements, the transformation between the 

reference car and the test specimen can be calculated, 

as shown in Figure 8 (left). If the camera is exchanged 

due to a defect or if the camera is displaced, the 

specimen is set up again and measured with the MBT. 

By using the transformation 𝑇𝑆𝑝𝑒𝑐
𝐶𝑎𝑚2, the former 

calculated transformation between the car and the 

specimen 𝑇𝑆𝑝𝑒𝑐
𝑅𝑒𝑓𝐶𝑎𝑟

 and the pose of the actual car during 

production 𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝐶𝑎𝑚2 , the transformation between the 

actual car and the car in the reference position out of 

Table 2: Results for the total system accuracy grouped by brightness. 
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sight of the new or modified camera can be calculated. 

This transformation can be further used as the pose 

correction for the robot (see Figure 8, right). 

4.1 Evaluation camera exchange 
The approach to handle a camera exchange or camera 

displacement in a pragmatic way without the need for 

time consuming initial measurements was evaluated in 

several tests. The CAD model of the specimen was 

created by a 3D scan with a high precision GOM 3D 

scanner [GOM21]. 

4.1.1 Repeatability of the installation 
 X Y Z RotX RotY RotZ 

µ 1071,58 -998,44 2202,91 44,03 55,82 61,35 

σ 0,10 0,14 0,14 0,005 0,007 0,005 

Max diff to µ 0,21 0,29 0,26 0,011 0,017 0,010 

Table 3: Results for repeated setup of the specimen. 

The specimen is mounted on the ground of the factory. 

Therefore, a pinned fitting was used to overcome 

problems that may arise by screw tightening. In the 

test the specimen was setup and dismantled ten times 

and measured with the MBT. We calculated mean, 

standard deviation and maximum difference to the 

mean value. Results are shown in Table 3 and show 

that with this installation method the standard 

deviation is very low and the biggest deviations are in 

the range of 0.2 to 0.3 mm for the translation and about 

0.01° for the rotation. Thus, the setup and mounting of 

the test specimen is not a big error source. 

4.1.2 Verification of new pose correction 
 X Y Z RotX RotY RotZ 

Mean difference 0,030 -0,138 0,346 -0,004 -0,012 -0,006 

Table 4: Mean of pose correction differences. 

To compare the new pose correction calculation with 

the test specimen with the old pose correction 

calculation, another test was conducted that 

investigates the influence of the further measurement 

of the specimen with the MBT. First the specimen was 

measured with the MBT. Then, the pose correction for 

27 cars on the belt was calculated with both methods 

under the usage of the same camera. Then the 

difference between the pose correction 

transformations was calculated. In Table 4 the mean 

of these differences is shown. The results only differ 

in the first decimal place for the translation and in the 

second decimal place for the rotation values. Thus, in 

a direct comparison the pose correction with the help 

of the test specimen introduces a very small error. 

4.1.3 Camera exchange and position change 
In the next step, three tests with different uEye UI-

3000SE-C-HQ cameras were conducted to test the 

camera exchange. First, camera 3 (cam3) was used 

and 30 cars were measured in the same way described 

in section 3.6. These measurements were used as a 

reference to compare the further test results. Instead of 

five measurements points we neglected the tank cap 

and used four points only. These were the same as in 

the evaluation in section 3.6. In test 1.1 cam3 was 

exchange with cam1 and then 20 cars were measured. 

Then cam1 was exchanged with cam2 and 22 cars 

were measured. Afterwards cam2 was exchanged with 

cam3 again and 23 cars were measured. In test 2.1 

cam1 was used again and we simulated a crash of an 

object or person with the camera mount by rotating the 

camera a bit within the ball joint of the mount. 20 cars 

were measured subsequently. Then, cam1 was 

exchanged by cam2 and 20 cars were measured. After 

this, cam2 was exchanged by cam3 and 20 cars were 

measured. For test 3.1 cam3 was used and the camera 

position was modified somewhat stronger. Therefore, 

the cameras were rotated with the ball joint and also 

translated by moving the horizontal and vertical 

elements of the camera mount for some centimeters. 

With this setting 19 cars were measured. In test 3.2 the 

procedure was repeated and the camera position was 

further changed. Then, 12 cars were measured. The 

test results are shown in Table 5. We calculated the 

mean value and then the difference to the mean value 

of the reference test (see above). Therefore, the results 

in Table 5 are given as µdiff ±2 σ. The results show 

the difference of the mean of the new method with test 

specimen in comparison to the calculation method 

from section 3.6 and two times the standard deviation. 

For the mean difference, the majority of the results lie 

in the range of up to 1 mm. Only a few are in the range 

of 2 to 4 mm. The results for two times the standard 

deviation are comparable to the results of section 3.6 

with a very slight tendency of increasing values. Since 

the laser line of the LLT is several centimeters long, 

Figure 8: Transformations for the usage of an additional test specimen for the pose correction calculation. 
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the results show that the MBT and this concept to 

handle maintenance cases of the camera is suitable for 

the kind of automatic gap measurement application 

described in this paper. Camera exchanges or smaller 

position and rotation changes of the camera can be 

handled by the concept of measuring a test specimen 

with the MBT to correct calibrated relations of the 

system components. With this concepts a camera 

exchange can be performed within minutes, instead of 

some hours that are needed for initial measurements. 

5. CONCLUSION 
In this paper we presented the evaluation of model-

based tracking (MBT) for robotic gap measurements 

on painted cars. Different lighting situations in 

correlation with the car’s gloss paint were evaluated 

and analyzed. In this context image and lighting 

optimizations were tested to maximize the matching 

quality of the MBT. In this regard, another evaluation 

considering the optimal CAD model selection for the 

MBT was presented. We showed the industrial use 

case of using MBT to track painted cars on a conveyor 

belt and to use the results to correct learned robot 

measurement points. With this method collisions 

between the robot and the cars can be avoided. The 

applicability of MBT for such an industrial use case 

was proven by an evaluation of the total accuracy of 

the system. Therefore, the gap measurement tool of 

the robot that consists of a laser line was used. It was 

shown that the majority of measurement points could 

be approached by the robot with an accuracy of up to 

8mm. Furthermore, a method to exchange a calibrated 

camera in the system within minutes was presented. 

The method relies on a separate test specimen and was 

evaluated in detail. The results showed, that with this 

method an efficient camera maintenance model can be 

implemented, that merely introduces a small and 

acceptable error in regard of the total system accuracy. 

The presented methods and evaluations can help 

researchers and the industry to better assess and 

understand the influence and correlations of different 

factors on MBT in complex industrial use cases. 
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ABSTRACT 

Popularity of Multiplayer Online Battle Arena (MOBA) video games has grown considerably, its popularity as 
well as the complexity of their playability, have attracted the attention in recent years of researchers from various 
areas of knowledge and in particular how they have resorted to different machine learning techniques. The papers 
reviewed mainly look for patterns in multidimensional data sets. Furthermore, these previous researches do not 
present a way to select the independent variables (predictors) to train the models. For this reason, this paper 
proposes a list of variables based on the techniques used and the objectives of the research. It allows to provide a 
set of variables to find patterns applied in MOBA videogames. In order to get the mentioned list, the consulted 
works were grouped by the used machine learning techniques, ranging from rule-based systems to complex neural 
network architectures. Also, a grouping technique is applied based on the objective of each research proposed.  
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1 INTRODUCTION

Videogames are already present in our everyday life. 

They have reached a massive audience from all ages 

due to their wide variety of genders and thematics. 

Those genders evolve trought time and originate new 

ones, for instance, Real Time Strategy games (RTS) 

originates at the early 2000’s a different sub-gender 

known as Massive Online Battle Arena (MOBA) [1]. 

 

There are many games that could be considered as 

MOBA predecessors. Although, the first videogame 

formally classified as a MOBA was Defence of the 

Ancients (DotA). It was created in 2003 by players of 

the RPG videogame Warcraft III. DotA is based on the 

Warcraft III lore, however, it has specific gameplay 

characteristics. These characteristics have become 

intrinsic to MOBA gender: 

 

Each match starts with two adversary teams, typically 

conformed of five players. Players work together as a 

team to achieve the ultimate victory condition which is 

to destroy their enemy's base whilst protecting their 

own [1]. Usually, both teams have main structures that 

are located at the opposite corners of the battlefield. The 

first team to destroy the adversaries' main structure 

wins the match [1]. Destroying other structures within 

the adversary team's base may provide other benefits. 

Defensive structures, which are usually automatic 

"towers", are located in place to prevent the base 

destruction. Each team is assisted by relatively weak 

computer-controlled units, called "minions", that 

periodically spawn in groups at both bases, marching 

down predefined paths (called "lanes") toward their 

enemy base. While their charges are counterbalanced 

by the adversary team's minions. Players can aid them 

which turns the minions into a useful army for striking 

the adversaries' defenses [2]. There are typically three 

(3) "lanes" on the battlefield that are the main ways of 

getting from one base to another. The lanes are known 

as top, middle and bottom lane, or, in gamer shorthand 

– "top", "mid" and "bot". Between the lanes is an 

uncharted area called "jungle" [3]. The "jungle" is a 

territory to neutral monsters that are hostile to both 

teams and appear in marked locations on the map 

known as "camps" [4]. Defeating neutral monsters 

brings various benefits to the players and their team, 

such as growth in power, buffs, or assistance in pushing 

the lane [5]. 

 

In 2009 and 2012 respectively born the most popular 

MOBA videogames: League of Legends (LoL) and 
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Defence of the Ancients II (DotA II). They maintain the 

gameplay described above: Two teams of five players 

have to destroy the nexus of the enemy team located in 

the different side of a predefined map. Fighting against 

defensive structures, player and non-player characters. 

 

Both achieved great popularity in the e-sports scenario. 

For instance, 2019 League of Legends World 

Championship got an online audience greater than one 

hundred million through several electronic platforms as 

Twitch [7]. Also, it got an in-site audience near to forty 

thousand people on the Shanghai Olympic stadium. 

 

Due to players face several real-time decisions with a 

wide spectrum of possibilities MOBAs are very 

complex videogames [8]. Mentioned complexity and 

their popularity have attracted a lot of researchers’ 

attention from various knowledge fields as psycology, 

marketing, computer science and artificial intelligence. 

Figure 1 shows the growth in the number of reviewed 

papers by year as evidence of the researchers’ interest 

since 2014. 

 

The above complexity had allowed the application of a 

wide spectrum of machine learning techniques from 

regression models [6] to different neural networks 

architectures [7]. Technique’s evolution will be 

presented in Section 2. 

 

There are several objectives related to MOBA’s 

research. For instance: how game dynamics 

differentiate one player from another [7], how the 

chosen avatar has impact in the odds to win a game [8]. 

Every found objective will be described in Section 3. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Number of reviewed references per year. 

One important decision is how to define what items a 

player should buy in order to maximize his chance to 

win a game. As mentioned above, every decision in a 

MOBA videogame has a wide spectrum of feasible 

solutions turning them into complex optimization 

problem. Each player could buy until six items in each 

game from a pool higher than eighty options, for that 

reason, the number of possible builds is around 2.2e11 

combinations. 

 

According to the number of possible decisions that 

players can take, there are many variables to consider. 

In consequence the present work contains the sections 

describe below: Section 2 describes the most common 

machine learning techniques used on MOBA 

videogames with a special emphasys on what 

independent variables have been used in each 

technique. Section 3 groups the consulted researches by 

his objective and what independent variables have been 

used in each one. Section 4 presents a summary of the 

results and introduce the proposed list of relevant 

variables. Finally, Section 5 has main conclussiones and 

describes future works. 

2 MOBA’S MACHINE LEARNING 

TECHNIQUES LISTING 

An exhaustive research was performed in several 

academical repositories to collect researches related to 

MOBA videogames. Researches where investigators 

have used a machine learning technique was reviewed 

in detail to identify what techniques they were using 

and, the question investigators were trying to answer 

within the research. 

 

Every reviewed paper uses one or more techniques to 

solve its objective. These techniques were tabulated and 

clustered into categories. It helped to find the most 

popular technique categories: Heuristics, neural 

networks, regression models and trees-based models. 

Figure 2 shows their evolution through time. 

 

Most popular technique categories will be described in 

further sub-sections. As mentioned before, for each 

category will be listed the independent variables used 

by. Finally, there will be a sub-section to describe the 

methods and independent variables used in other 

categories. 

 

 
Figure 2. Number of reviewed references grouped 

per year and technique category. 

2.1 Heuristics 

During early years, heuristics were the predominant 

models which mainly use rule-based systems. For 

instance, a decisions’ tree that will describe a rational 

agent who works like a novice players tutor [9] which 
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provide a rational agent the actions to execute whether 

the human player are dead, absent or under attack. 

 

This category also contains: To develop an Artificial 

Intelligence MOBA player [10], adjusting the difficulty 

of a rational agent based on player performance [11], to 

suggest the avatar to choose in order to maximize the 

odds to win a game [8] [12] and which items should be 

bought during a game [13]. 

 

Table 1 presents the independent variables used as 

predictors in heuristic models and their number of 

appearances in different papers. 

Table 1. Independent variables used in Heuristics 

Models. 

 
2.2 Regression Models 

Another relevant category during early years is 

regression models. They were applied mainly to predict 

which team will win a game. Then, as a classification 

problem the more used method has been logistic 

regression [6] [14] [15] [16] [17]. Regression models 

have also been used to explain how the way players and 

teams move influences the game result [18] or how 

game result is influenced by bought items [19]. Finally, 

researchers have used generalized linear models to 

model the performance on professional teams during 

the 2018 League of Legends world championship [20]. 

 

Regression models have used 65 different independent 

variables. Those that were used in more than one model 

were shown in Table 2. 

 
2.3 Tree-Based Models 

A recently popular category has been tree-based models 

as simple classification trees [21] and behavior trees 

[22]. However, most used methodology has been 

random forest: 

• to predict the learning ratio for a new player 

[16]. 

• to determine whether a skill or a usable item is 

available to be used [23]. 

• to predict the game outcome [24] [25] and  

• to suggest the avatar to be used into a game 

[17] [26]. 

They have used 38 independent variables. Table 3 

shows the variables that have been used into more than 

one model. 

Table 2. Independent variables used in Regression 

Models. 

Table 3. Independent variables used in Based-Tree 

Models. 

 
2.4 Neural Networks 

Recently, neural networks had become the predominant 

techniques during the last years. The variety of 

architectures in this group is remarkable. There could 

be found simple artificial neural networks [7] [27] [28] 

[19] [29], or more complex architectures: recurrent 

neural networks [30] [31] [32], convolutional neural 

networks [23], deep neural networks [33] [34] [35], 

fully-connected neural networks [26] [35], 

discriminative neural networks [36] and transformers 

[37]. 

 

Into the reviewed papers which used a neural network 

model were identified 42 independent variables. Table 

4 presents those used into more than one paper. 

 

Table 4. Independent variables used in Neural 

Network Models. 

variable type
number of 

appearances

Chosen hero vector 4

Gold integer 4

Creeps integer 3

Assists integer 2

Damage to heroes integer 2

Deaths integer 2

Gold difference between teams integer 2

Items vector 2

KDA Ratio float 2

Kills integer 2

Roles vector 2

variable type
number of 

appearances

Chosen hero vector 3

Kills integer 3

Bans vector 2

Creeps integer 2

Gold difference between teams integer 2

Roles vector 2

variable type
number of 

appearances

Attacked by tower boolean 1

Champion range float 1

Creep missing percentage of health points float 1

Distance between champions and creep float 1

Distance between champions and tower float 1

In turret boolean 1

Items vector 1

Partner AFK boolean 1

Partner alive boolean 1

Partner close boolean 1

Partner dead boolean 1

Partner recalling boolean 1

Safe in ally turret boolean 1

Teammate around boolean 1

Tower range float 1

variable type
number of 

appearances

Chosen hero vector 4

Items vector 3

Gold integer 2

Gold difference between teams integer 2

Kills difference between teams integer 2

Tower kills difference between teams integer 2
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2.5 Other Techniques 

In addition to the most popular categories, there are 

reviewed papers focused on to develop visualization 

methods to improve the comprehension about game 

patterns. They could be used by players [38] [39], 

coaches [40] [41] [42] [43] and spectators [44]. 

 

Also, classification models based on linear hyperplanes 

where support vector machines are the most popular [6] 

[45] [23] [17] accompanied by factorial [15]. 

 

Other categories are: Boosting [15] [46] [24] [17], 

clusterization [18] [47] [13] [29], Bayesians [6] [30] 

[15], behavioral [7] [48] [49] [50], bio-inspired [45] 

[51] [52], network analysis [53] [43] [54], mixed 

models [55] [56], recommender system [57] [27], fuzzy 

logic [58] [59], singular value decomposition [60], 

auto-regressive [61] and sequence analysis [50]. 

 

Summarizing the reviewed researches it is possible to 

notice: a) the intrinsic complexity of MOBA 

videogames let researchers to use a wide spectrum of 

machine learning techniques and b) there are variables 

which are repeated transversally in several researches, 

even when the used tecniques are evolve through time 

there are variables like the chosen hero present in three 

of the four tables shown. 

3 OBJECTIVE CATEGORIES 

As previous section clustered the reviewed papers into 

categories based on the applied machine learning 

techniques, this section will tabulate and cluster 

researches based in the paper objectives. Figure 3 

describes ths most popular categories. 

 

Figure 3. Number of researches per category. 

 

Each category will be explored in detail during the 

further sub-sections. Besides, aligned with the main 

goal for each category will be analyzed the used 

independent variables. 

 
3.1 Spatio-Temporal 

Most popular category was called spatio-temporal. It 

refers to researches that have sought patterns related to 

how the game is developed in different map coordinates 

or different time slices: 

• To detect an experienced player based in the 

way that he navigates across the game map 

[18] [39] [41] [43]. 

• To develop rational agents which determine 

the best way to navigate the game map at a 

specific moment of the game [9] [10] [35]. 

• To analyze the advantage of one of the teams 

at a specific time during the game [28] and 

specifically when this advantage generates an 

irreversible snowball effect [38]. 

• To improve spectators experience by 

determining in which sectors of the game map 

the events most relevant to the game are taking 

place [46] [55]. 

• To predict the outcome of an encounter with 

two or more players [14] [61] [34]. 

• Finally, to determine whether an ability or an 

actionable item could be used [23]. 

 

Although, it was possible to identify 64 different 

independent variables that were used in the 

aforementioned research. Due to the variety of topics, 

only 3 were used in more than one work, these are 

presented in Table 5. 

 

Table 5. Independent variables used in Spatio-

Temporal Research. 

 
3.2 Players 

The second category was called players. Players’ 

category groups the research that analyze 

characteristics of the players. These characteristics do 

not depend on the game condition, on the contrary, they 

tend to be present into every player’s game. In this 

category we found objectives such as: 

• To adjust automatically the level of difficulty 

for any player based on his historical 

performance [58]. 

• To predict the outcome of a game based on the 

historical performance of the players [62] [31] 

[50] 

• To categorizing players according to their 

historical performance and design analysis 

strategies to improve it [40] [41] [42] [43] 

[29]. 

• To analyze the learning speed of a new player 

[16]. 

• To predict based on their gaming habits if a 

player is at risk of quitting the game [48], the 

best way to match players based on their 

variable type
number of 

appearances

Gold difference between teams integer 3

Experience difference between teams integer 2

Positions of avatars tuples 2
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historical performance [33] [63] and,  

• how the player's social network within the 

video game affects the outcome of his games 

[53]. 

 

For this category, a total of 51 different independent 

variables were identified. Table 6 shows those used in 

more than one research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Independent variables used in Players 

Research. 

 
3.3 Champions 

The researches that study the impact of the avatar 

selected by the players have been grouped into the 

champions category. Due to it is the way in which 

avatars are known within the MOBA League of 

Legends. The main objective in these researches has 

been to design champion recommendation systems [30] 

[27] [8] [12] [51] [17] [64] [60] [36] [26] [32] and 

predict the outcome of a game [15] [45] [7]. 

 

Although these works use a total of 18 different 

independent variables, the only one that appears in all 

researches is 'chosen-hero': a vector that represents the 

champion selected by one or more players. 

 
3.4 Victory 

Another of the objectives found in selected researches 

is the prediction of the winning team in a game. This 

category uses variables that are known at the beginning 

of the game [15] [27] [60] [43] [31] [65] [24] [25], at 

any time during the game [14] [62] or variables known 

at the end of a game in order to understand their 

influence on the result [66] [54] [20]. Therefore, this 

category will be called victory. 

 

Of the 49 independent variables used within this 

category, table 7 shows those that were used in more 

than one research. 

 
3.5 Team Composition 

A limitation commonly mentioned in research is how to 

introduce into the models the synergies that must exist 

between players of the same team. Related to this 

question the category of team composition was created 

for those papers that seek objectives related to the roles 

of each player within a team [6] [50], the analysis of 

player behavior in the composition of a team [7] [45] 

[67] [42] [68], predicting the outcome of a game 

considering synergies between players [15] [65] or 

optimizing the construction of a team of players [8] [32] 

[49] [52] [63]. 

 

Table 7. Independent variables used in Victory 

Research. 

 

A total of 45 different independent variables were 

identified in the works within this category. Table 8 

presents those used in more than one research. 

 

 

 

 

 

 

 

 

Table 8. Independent variables used inTeam 

Composition Research. 
 

3.6 Items 

One of the least explored dimensions in the game is the 

purchase of items to equip each player's virtual avatar. 

In League of Legends, each player has the possibility of 

acquiring up to six objects throughout a game from a 

pool of more than 80 different objects, all with different 

benefits for the character. The researches that study this 

game characteristic were grouped within the category 

objects. These seek to develop systems that recommend 

to the player which are the objects to acquire during the 

game [13] [69] [19] [35]. 

 

In a similar way as in the champions category, the only 

variable that appears more than once in the item’s 

category is 'items': a binary vector that identifies 

whether or not a champion has a specific item equipped. 

 

It is important to mention that none of the researches in 

the item’s category considers the player’s resources 

when is generated a recommendation. It could be 

obsolete if player does not have enough gold to acquire 

variable type
number of 

appearances

Gold integer 5

Creeps integer 3

Assits integer 2

Deaths integer 2

Items vector 2

KDA Ratio float 2

Kills integer 2

Roles vector 2

Start time timestamp 2

Winning boolean 2

variable type
number of 

appearances

Chosen hero vector 5

Gold integer 3

Gold difference between teams integer 3

Creeps integer 2

Creeps per minute float 2

Gold per minute float 2

Kills integer 2

Level integer 2

Roles vector 2

variable type

number of 

appareances

Assists integer 2

Chosen hero vector 2

Creeps integer 2

Kills integer 2
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the suggested item. 

4 ANALYSIS OF RESULTS 

In total, 165 different independent variables were 

identified. This number is a consequence of the variety 

of objectives identified in the reviewed researches, 

therefore, many of these variables are used only in one 

paper or one objective category. 

 

The variables aggrupation presented could be useful for 

future researches, specifically, authors future work will 

be focus on: how to define the items that maximize the 

chance to win a game. In consequence, results related 

with the categories players, champions and items will 

be highlighted. These categories were selected based on 

the qualitative hypothesis described below: 

i. Players: These researches describe 

characteristics and play styles that are 

present in every player's games. It indicates 

that there may be a basket of items a player 

acquires in every game. 

ii. Champions: Each virtual avatar has 

different characteristics (speed, armor, 

attack speed, ability power, among others) 

just like each object, therefore, each 

champion can have a greater affinity with 

those objects that share similar 

characteristics. 

iii. Items: The papers within this category 

share the objective of future work. 

 

The set of independent variables identified (165) were 

mapped into the three chosen categories, as presented 

in Figure 4 only three variables are repeated in more 

than one category. 

 

Figure 4. Independent variables that are repeated 

throughout the categories of interests. 

 

'chosen_hero' variable is a binary vector that represents 

whether a player or a team has selected a specific 

champion. 'items' variable is also a binary vector that 

indicates whether a player or a team has equipped their 

champion with a specific object. 'roles' is a categorical 

variable that indicates the role of each player in the 

game. 

As evidenced in [70], in order to keep the champions 

balanced, the developer company makes adjustments to 

champion and item attributes, it happens in the same 

way with the objects, for that reason, the relations and 

synergies in ‘chosen_hero’ and ‘items’ variables are 

constantly changin. Therefore, using these vectors of 

binary variables as predictors could quickly become 

obsolete after an update. However, both variables can 

be expressed based on the attributes of champions and 

items, so these predictors will not be linked to a specific 

champion / item with specific characteristics but to any 

champion / item whose attributes are similar to the 

vector of attributes trained by the model. 

5 CONCLUSIONS 

Thanks to the exhaustive papers review, built categories 

and variables match, presented in previous sections, it 

is possible to conclude: 

i. Reviewed papers do not show a consistency 

in the independent variables use, even in 

researches with related objectives. It 

suggests variables were mainly chosen by 

the authors preferences and it is not related 

to previous researches or a specific 

methodology. 

ii. It is possible to determine the chosen hero, 

the items and roles are the most commonly 

used variables and, for that reason, they 

could be considered as a baseline variables 

to machine learning applications in MOBA 

videogames. 

 

Author’s future work will be focused on the importance 

of bought items in the victory probability during a 

match. Below the acquire lessons that will be useful: 

i. Variables mentioned (chosen hero, items 

and roles) will be used as baseline 

predictors to train machine learning 

models to determine the impact of items 

in the probability to win a match. 

ii. Due to the periodic changes in the 

champion and items stats [71] future 

works will suggest representing the 

independent variables (chosen hero and 

items) in a way agnostic to the current 

game patch. So far, they were represented 

as binary vectors, in consequence, the 

stats updates made trained models less 

relevant with every patch. 
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iii. None of the researches reviewed consider 

into their models the player available 

resources, it means, suggestions made are 

optimal ones considering a player can buy 

any item he wants in any time during the 

game. Then, considering available 

resources when suggesting an item will be 

an exclusive contribution of future works. 
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ABSTRACT
Visual defect detection is a key technology in modern industrial manufacturing systems. There are many possible
appearances of product defects, including distortions in color, shape, contamination, missing or superfluous parts.
For the detection of those, besides traditional image processing techniques, convolutional neural networks based
methods have also appeared to avoid the usage of hand-crafted features and to build more efficient detection
mechanisms. In our article we deal with autoencoder convolutional networks (AEs) which do not require examples
of defects for training. Unfortunately, the manual and/or trial-and-error design of AEs is still required to achieve
good performance, since there are many unknown parameters of AEs which can greatly influence the detection
abilities. For our study we have chosen a well performing AE known as structural similarity AE (SSIM-AE),
where the loss function and the comparison of the output with the input is implemented via the SSIM instead of
the often used L1 or L2 norms. Investigating the performance of SSIM-AE on different data-sets, we found that its
performance can be improved with modified convolutional structures without modifying the size of latent space.
We also show that finding a model with low reconstruction error during training does not mean good detection
abilities and denoising AEs can increase efficiency.

Keywords
autoencoder neural network, convolutional neural network, defect detection, unsupervised anomaly detection

1 INTRODUCTION
There are several applications of neural networks in
manufacturing systems [Wang2018], visual inspection
of products is a critical step during their production. To
have the greatest freedom in the handling and imaging
of objects we need sophisticated methods to allow
different distortions such as changes in lighting, posi-
tion and orientation, especially in case of 3D objects.
Due to this problem, in recent times, different deep
learning solutions have been developed, autoencoder
(AE) neural networks are very promising for anomaly
detection in visual quality inspection, surveillance, or
medical image analysis.
As we will discuss, there are several types of autoen-
coders, it is not clear which one suits best unsupervised
defect detection and segmentation. Recent improve-
ments in generative networks mainly focused on

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

creating photo-realistic "natural" images as faces,
nature, cityscapes, etc. In defect detection, while we
have the advantage of the narrower image domain (we
can train separate AEs for each class of products),
reconstruction errors are much less tolerable, otherwise
the succeeding detection phase may fail. Moreover,
there is a large set of parameters which significantly
influence detection abilities. Our purpose is to investi-
gate the applicability of a well-performing autoencoder
(namely SSIM-AE) for the fault detection on repetitive
and partly repetitive structures. A great advantage of
using AEs is that unsupervised training and detection is
possible without making efforts to collect samples with
anomalies. However, there is no guarantee that images
with errors will not be reconstructed making detection
unsuccessful since many times errors are reproduced
in the decoded image. Fig. 1 shows a good example
for failing anomaly detection with the otherwise well
performing SSIM-AE [Bergmann2019]. Input image
has a missing capacitor and the AE reproduced the
image with the same defect.
First, we overview the different approaches for visual
anomaly detection mainly focusing on AE networks,
then, in Section 3, the SSIM-AE and its variants are
introduced. Section 4 details the selected data-sets,
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while in Section 5, we explain our experiments and
discuss the performance of SSIM-AEs with different
settings for the pixel-wise segmentation of different
errors. Finally, we summarize our paper in the last
section.

(a) Defect free image. (b) CPU with missing capaci-
tors.

(c) Reconstructed image. (d) Failing detection map.

Figure 1: Illustration of failed detection of missing
components from a CPU with SSIM-AE at resolution
512×512.

2 ALTERNATIVES FOR VISUAL IN-
SPECTION

Optical defect detection approaches can be grouped
in the following main categories: Template matching
[Buniatyan2017], [Zhou2019] local feature based
methods [Gai2016],[Xi2017], statistical texture mod-
els [Cogranne2014],[Cao2015], neural networks
[Weimer2016], [Tuluptceva2019], [Tuluptceva2020],
[Alaverdyan2020], [Nagy2021]. There can be overlap
among these groups, and each category have some
advantages, but there is no doubt that due to the
generality, robustness and accuracy of deep learning
convolutional AE approaches, they are getting more
focus in recent years. In our article we discuss only AE
networks having the main advantage of unsupervised
training and the ability to handle various imaging
conditions.

2.1 About Autoencoders
An autoencoder is a special kind of feed-forward neural
network containing three main sequential components:
the encoder network E : Rk×h×w→Rd , the latent space

Rd , and the decoder network D : Rd → Rk×h×w.

x̂ = D(E(x)) = D(z), (1)

where x is the input image, z is the latent information,
and x̂ is the output of the network.
AEs were originally used for dimensionality reduction,
feature extraction, but nowadays they are very popular
tools for generative modeling. The similarity of
principal component analysis (PCA) and AEs is well
know, moreover, in many scenarios AEs outperformed
linear or kernel PCAs [Sakurada2014].
The low-level neural structure in AEs can be con-
volutional or can utilize extreme learning machines
[Kasun2013].
They can also be categorized according to their regu-
larization techniques. The loss function (J), to learn a
specific task, can be generally formed this way:

J(x,θ) =
1
n ∑‖x− x̂‖+R(z), (2)

where θ = (wE ,bE ,wD,bD) are the weights and bi-
ases of the encoder and decoder networks and n is the
number of elements. In sparse AEs R is based on the
Kullback-Leibler divergence or on the L1 norm, the
purpose is to make the most of the hidden unit’s acti-
vations close to zero. Contractive AEs apply the Frobe-
nius norm on the derivative of z as a function of x to
make the model resistant to small perturbations; and in
an information theoretic-learning autoencoder Renyi’s
entropy is used.
Variational AEs (VAEs) impose constraints on the la-
tent variables in a different way, they estimate posteriori
probability p(z|x) with an assumption of a prior knowl-
edge p(z) being a normal Gaussian distribution. Adver-
sarial AEs (AAEs) use generative adversarial networks
(GANs) to perform variational inference. VAEs and
AAEs are both generative models, and both are based
on maximum likelihood. The difference between VAEs
and AAEs can be characterized that while VAEs apply
explicit rules on z, AAEs control its distribution implic-
itly.
Denoising autoencoder (DAE) is an extension of the
basic autoencoder, which is trained to reconstruct cor-
rupted input data. In [Vincent2010] not only Gaussian
noise, but also salt-and-pepper noise and zero-masking
noise was also investigated. C denotes the corrupting
function generating x̃. Eq. 1 now becomes:

x̂ = D(E(C(x))) = D(E(x̃)) = D(z). (3)

The applied loss puts an emphasis on the corrupted ar-
eas by proper weighting:

J(x, x̃,θ) = α ∑
i∈C

(xi− x̂i)
2 +β ∑

i/∈C
(xi− x̂i)

2, (4)
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where C denotes the indexes of corrupted components.
Feature matching autoencoder [Dosovitskiy] enforces
the features of the input and its reconstruction to be
equal:

J(x, x̃,θ) = wim ∑(x− x̂)2 +w f t ∑(F(x)−F(x̂))2,

(5)

where F is a feature extractor which can be fixed or
also trained. In [Dosovitskiy], besides using features
for evaluation, adversarial discriminator was also
utilized.
We guide people, with more interest in the overview of
AEs, to papers [Zhai2018] and [Yuan2019].

2.2 Autoencoders for Defect Detection
In general, trained AEs can generate very similar out-
puts to their inputs, if the later fits the trained model
or with other words, the image models could learn the
inherent features properly. That is if the difference be-
tween the two is above a threshold T h, we set the de-
tection map to 1:

m =

{
1, if ||x− x̂||> T h,
0, otherwise.

(6)

The applied ||.|| can be various (e.g. L1, L2, SSIM
[Bergmann2019]).
In [Beggel2019] they deal with the problem of training
AEs when the training set is contaminated with a
small fraction of outliers. Their proposed adversarial
autoencoder imposes a prior distribution on the latent
representation, placing anomalies into low likelihood
regions, thus potential anomalies can be identified and
rejected already during training.
[Tuluptceva2020] proposes perceptual deep au-
toencoders where relative-perceptual-L1 loss
[Tuluptceva2019], robust to low contrast and noise, is
applied for training and also to predict the abnormality
for new inputs. The applied progressive growing
technique helped the efficiency of training: in the
beginning of the training, the loss function computes
the dissimilarity between the low-resolution images
using the features from the coarse layers of the net-
work, whereas, as the training advances, the "level" of
this information is increased by including deeper and
deeper features. The addition of the new layers to the
autoencoder with the gradual increase of the depth of
the features entailed in the calculation of the perceptual
loss was synchronized.
Siamese networks are good for supervised anomaly
detection, since they can learn discriminating features
efficiently [Nagy2021]. In [Alaverdyan2020] an
unsupervised siamese convolutional autoencoder is
proposed to detect anomalies in brain MRI images.

Anomalies are detected by a one class SVM in latent
space. The role of the siamese network is to regularize
the latent space: R(z) (Eq. 2) is the cosine distance of
two independent samples in the two siamese branches
in the latent space. Since each voxel of the MRI data
is handled independently (with its own SVM), thus
anomalies are learnt for every location.
The approach we utilize in our study is from
[Bergmann2019], which applies structural similar-
ity (SSIM) in the loss function. It was reported
that it outperforms many other AEs and reaches the
state-of-art on some data-set. It is discussed in details
in the next section.

3 SSIM AUTOENCODERS FOR DE-
FECT DETECTION

In our understanding SSIM-AE [Bergmann2019] is a
kind of feature matching AE (Eq. 5) with the following
loss function:

J(x,θ) =
1−SSIM(x, x̂)

2
=

1− l(x, x̂)α c(x, x̂)β s(x, x̂)γ

2
.

(7)

l stands for the luminance measure, estimated by com-
paring the patches’ mean intensities, c for the contrast
responsible for the local variance, and s evaluates
the covariance of patches. We set all three exponents
to 1, and other inner variables (not detailed here) as
follows: c1 = 0.01, c2 = 0.03, and the window size of
the patches K = 11. SSIM is not only utilized in the
loss but also in the comparison of the input and outputs:

m =

{
1, if 1−SSIM(x,x̂)

2 > T h,
0, otherwise.

(8)

Since SSIM already includes the luminance of pixel
values, wim = 0 in Eq. 5, colors are simply neglected.
The SSIM index was originally designed to create an
accurate perceptual quality metrics for the comparison
of two K×K image patches [Wang2004]. In our case
not the perceptual information makes it appealing to use
it in the loss function but its efficient extraction of struc-
tural information: SSIM-AE is forced to represent, be-
side luminance, local variance and covariance. Accord-
ing to [Bergmann2019] SSIM-AE could significantly
outperform the FM-AE of [Dosovitskiy] and a tested
VAE. The code available at the Internet1 is not fully
identical to the description in their paper. In our ex-
periments we followed the paper except for setting the
stride of overlapping windows when fusing the cropped
images for reconstruction (32 instead of 30).
The structure of the encoder is given in Table 1, the de-
coder has the opposite structure, as generally.

1 https://github.com/plutoyuxie/AutoEncoder-SSIM-for-
unsupervised-anomaly-detection-
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Layer Output Size Kernel Stride Padding
Input 128x128x3

Conv1 64x64x32 4x4 2 1
Conv2 32x32x32 4x4 2 1
Conv3 32x32x32 3x3 1 1
Conv4 16x16x64 4x4 2 1
Conv5 16x16x64 3x3 1 1
Conv6 8x8x128 4x4 2 1
Conv7 8x8x64 3x3 1 1
Conv8 8x8x32 3x3 1 1
Conv9 1x1xd 8x8 1 0

Table 1: Architecture of the encoder of SSIM-AE
[Bergmann2019] for input image 128 × 128 × 3.
d = 100 for the texture images, d = 500 for the CPUs.

In our experiments we investigated several questions:
Can the results be improved by increasing the number
of layers but keeping the size of the latent space? How
does SSIM-AE perform in case of less periodic struc-
tures? What happens if some components are added or
removed from the original images?
We made two modifications to the original SSIM-AE:

1. In one modification (named SSIM-AEe) we in-
creased the number of convolutional layers as
depicted in Table 2. We kept the latent layers
untouched.

2. In SSIM-DAE we followed Eq. 3 to build a denois-
ing AE trained with masked blocks (see Section 5
for details). The purpose of our SSIM-DAE was to
implement an implicit regularization of the network
to reconstruct patches from a larger vicinity. There
is low probability that during decoding both the tar-
get and source areas are all affected by defects. But
either one is distorted ||x̂− x̃|| will have high value.

4 DATA-SETS
The visually observable defects can be various such
as faulty color, contamination, geometrical distortion,
missing parts, or superfluous parts. We assume that our
objects are almost 2D (like the surface of a rectangular
object without significant bulges or holes), and images
have variations in translation, orientation, and lighting
conditions.
In our study, we used five data-sets. Two of them, pro-
vided by [Bergmann2019], contain regular patterns of
woven fabric textures. Each of these two sets include
100 defect-free images, and 50 test images with vari-
ous defects. Ground truth images were also provided
in binary maps. We have chosen these textures, since
they are good representatives of roughly regular repet-
itive patterns. Since we focus on convolutional AEs,
the radius of convolutions and the number of layers can

Layer Output Size Kernel Stride Padding
Input 128x128x3 3x3
Conv1 64x64x32 3x3 2 1
Conv2 64x64x32 3x3 1 1
Conv3 64x64x32 3x3 1 1
Conv4 32x32x64 3x3 2 1
Conv5 32x32x64 3x3 1 1
Conv6 32x32x64 3x3 1 1
Conv7 16x16x128 3x3 2 1
Conv8 16x16x128 3x3 1 1
Conv9 16x16x128 3x3 1 1
Conv10 8x8x256 3x3 2 1
Conv11 8x8x256 3x3 1 1
Conv12 8x8x256 3x3 1 1
Conv13 1x1xd 8x8 1 0

Table 2: Architecture of the encoder of SSIM-AEe for
input image 128× 128× 3. d = 100,500 for the texture
images, d = 500 for the CPUs.

have a great impact on the generation abilities depend-
ing on the texture size.
The other data-sets involve 60 genuine images of the
backside of a CPU of size 37.50 mm × 37.50 mm. We
separated 48 images for training purposes and the re-
maining 12 for various tests. Three different test cases
were generated for the CPUs:

• CPUa: we added extra components with visually re-
alistic appearance;

• CPUc: the test images are loaded with synthetic
contamination;

• CPUm: some components (such as pins or capaci-
tors) are removed.

Table 3 summarizes the mean and standard deviation of
the defected areas for all 5 data-sets. In case of textures,
anomalies are significantly larger.

Texture 1 Texture 2 CPUa CPUc CPUm
mean 8.00 5.52 0.16 0.69 0.31
standard deviation 4.56 2.20 0.07 0.26 0.28

Table 3: Mean and standard deviation of defected areas
(in percentage) in the different test sets.

The selection of the CPU images is twofold: first,
such and similar images are typical in the production
of electronic components; second, the image of the
CPU contains regularly repetitive (outward areas with
contacts) and regular but much less repetitive regions
(central capacitor area). Besides, the CPU images
contain more finer details than the textures.
All images are of size 512 × 512, their illustration with
defects is in Fig. 2. Ground truth images were also
provided as binary maps.
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(a) Sample from Texture 1
with a defect.

(b) Sample from Texture 2
with a defect.

(c) An example of the CPU
without defects.

(d) Sample from CPUa with
added extra components.

(e) Sample from CPUm with a
missing capacitor.

(f) Sample from CPUc with
synthetic contamination.

Figure 2: Illustration of test images with various de-
fects.

5 TRAINING, TESTING, AND EVALU-
ATION

During training we followed the method and hyper-
parameters described in [Bergmann2019]. They first
resized images to 256 × 256, then image cropping
was applied to the size of 128 × 128. Networks were
trained on NVIDIA RTX 2070 GPU for 200 epochs
with ADAM optimizer, initial learning rate was 2×
10−4 with 10−5 weight decay. The latent space was
set to d = 100 and d = 500 for Texture 1 and Texture
2, and d = 500 for the CPU, considering its structural
complexity and finer details. Furthermore, the window
size of the SSIM was adjusted to 11.
In [Bergmann2019], for both texture data-sets, they in-
creased the variability of training data by generating
10,000 images using various augmentation procedures
such as rotation, cropping, and flipping (both vertically
and horizontally). In our study, we did the same, except
in the case of the CPU tests, where no flip was involved
to keep the asymmetric structure.
To train the SSIM-DAE we added noise to the input

images: small, homogeneous masks were added to the
48 images of the original training data-set. The size of
masks were set to 20×20, being greater than the size of
one capacitor in the middle of the CPU; the color was
set to the dominant color of the actual (128×128) crop.
Each training image contained one masks, α = β = 1
in Eq. 4.
For evaluation, we have chosen the standard receiver
operating characteristic (ROC) curves and the area un-
der curve (AUC) values. We defined the true positive
rate (TPR) as the rate of pixels that were correctly clas-
sified as defect, and false positive rate (FPR) as the ratio
of pixels that were misclassified as defect. The process
of testing was accomplished by the reconstructions of
image patches of 128 × 128, by moving over the test
images (with stride of 32). Residual maps were created
using SSIM (Eq. 8), then ROC curves and AUC values
were computed thresholding with increasing SSIM val-
ues.
To monitor the reconstruction abilities of the differ-
ent networks, we also computed the SSIM and mean
squared error (MSE) of reconstructions for defect-free
testing images (last columns of Table 5).

5.1 Results and Discussion
Four kinds of AEs (SSIM-AE, SSIM-AEe, SSIM-
DAE, and SSIM-DAEe) were compared in 5 test
cases (Texture 1, Texture 2, CPUa, CPUc, CPUm) as
described before. Results are summarized in Table 4
and Table 5 (best values are in bold), ROC curves are
illustrated in Fig. 4 and Fig. 5.
For Texture 1 and Texture 2 SSIM-AE performed very
well, neither increasing the number of convolutions
(SSIM-AEe), nor increasing the size of the latent space
(from d = 100 to d = 500) could make (significant)
achievements. In general, Texture 1 and 2 are missing
fine details (see Fig. 2 a and b) making deeper convo-
lutions useless.
In case of the CPU tests we got different results. Com-
paring SSIM-AE to SSIM-AEe we see that increasing
the number of convolutional layers could increase the
accuracy of reconstruction but it could not help the
ability to detect anomalies (except for CPUm). That is
if a network is better in the reconstruction of defect-less
items, it does not mean it is also better to mishandle
defected inputs (thus to detect anomalies).
Since the CPU images had more details, SSIM-AEe
could learn the image models more accurately than
SSIM-AE (even with the same latent space): it is
shown by MSE and SSIM values, measured between
error-less inputs and their reconstructions, in Table 5.
Since CPUa contained small anomalies, detection went
quite well (AUC is between 0.9822 and 0.9952), while
CPUc had the worst results. Finally, we found that the
larger number of layers and the denoising type training
of SSIM-DAEe resulted in the best performance for all

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

185 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.20



CPU test cases (bold in table).

Texture 1 Texture 2
SSIM-AE 0.9490 0.9710
SSIM-AEe 0.9445 0.9697
SSIM-AE, d = 500 0.9186 0.9773
SSIM-AEe, d = 500 0.9118 0.9709

Table 4: AUC values when testing AE methods on data-
set Texture 1 and Texture 2.

CPUa CPUc CPUm SSIM MSE
SSIM-AE 0.9930 0.9071 0.9262 0.7263 90.0472
SSIM-AEe 0.9822 0.8939 0.9557 0.8195 66.5257
SSIM-DAE 0.9914 0.9059 0.9651 0.7851 88.7726
SSIM-DAEe 0.9952 0.9499 0.9815 0.9133 57.3972

Table 5: Testing AE methods for different distortions
on the CPU data-set. AUC values are given in the first
three columns, SSIM and MSE is measured as the re-
construction error of error free test samples. SSIM is on
the [-1,1] scale, MSE stands for Mean Squared Error.

6 CONCLUSION
In case of visual quality inspection we are often not sat-
isfied with the statistical definition of normal patterns
and anomalies. For many products the strict topological
structures should be retained during production, thus,
the otherwise normal, missing or superfluous parts are
not acceptable.
We investigated the performance of different SSIM au-
toencoders for defect detection on repetitive and semi-
repetitive structures on 5 data-sets. By introducing
modifications to the proposed AE of [Bergmann2019]
we found, that:

1. If an AE can reproduce (anomaly free) images with
higher fidelity it does not strictly induce it is better
in anomaly detection. It is an important observa-
tion, since AE’s main application area is unsuper-
vised anomaly detection, where no examples of de-
fects are available to design and train optimal neural
networks.

2. Unsupervised AEs are not reliable for (at least
small) contamination or superfluous parts, DAEs
may fit many defect detection tasks better.

The proposed SSIM-DAEe outperformed other variants
in our CPU experiments without the growth of the la-
tent space, while in case of textures, the DAEe could
not increase detection accuracy. (We also outperformed
those feature matching and VAE approaches which are
used as reference methods in [Bergmann2019]). Some
illustrations of the results on CPU images are given in
Fig. 3 for the SSIM-AE and SSIM-DAEe.
We believe current AEs are very far from their limit for

(a) Input test image with missing capacitor and ground truth.

(b) Reconstruction with SSIM-AE and SSIM-DAEe.

(c) Corresponding detection maps with SSIM threshold set to
0.8425

Figure 3: Illustration of the detection performance of
SSIM-AE and SSIM-DAE for a CPU with missing ca-
pacitor.

defect detection, most recent regularization techniques
consider the probability density functions with less em-
phasis on strict structural features.
No systematic design is known to optimally set the en-
coder, decoder, and latent parts, or the type of regular-
ization. In future we plan to make more tests on the
industrial data-sets of [Bergmann2021], and to build
more structure awareness in the neural models inves-
tigating structural and contextual attention similar to
[Yu2018].
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(a) AEs on Texture 1 at resolution 256 × 256.

(b) AEs on Texture 2 at resolution 256 × 256.

Figure 4: The performance of the AEs on Texture 1 and
Texture 2.
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ABSTRACT 
This paper summarizes the research on the influence of HEVC (High Efficiency Video Coding) configuration on 

immersive video coding. The research was focused on the newest MPEG standard for immersive video 

compression – MIV (MPEG Immersive Video). The MIV standard is used as a preprocessing step before the 

typical video compression thus is agnostic to the video codec. Uncommon characteristics of videos produced by 

MIV causes, that the typical configuration of the video encoder (optimized for compression of natural sequences) 

is not optimal for such content. The experimental results prove, that the performance of video compression for 

immersive video can be significantly increased when selected coding tools are being used. 

Keywords 
Immersive video coding, immersive video systems, video compression. 

 

1. INTRODUCTION 
Many modern multimedia systems that include steps 

in which the video compression is applied can be 

described as codec-agnostic. It means that any video 

codec can be utilized, so the selection of the 

compression method is completely transparent to the 

rest of the system. Obvious examples of 

codec-agnostic video systems and methods are 

streaming-related methods (e.g., MPEG Dynamic 

Adaptive Streaming over HTTP [Sod11]) or simple 

simulcast compression required, e.g., in surveillance 

or free-viewpoint television systems [Sta18].  

Besides these applications, recently a new trend of 

using existing compression methods as an internal 

processing tool in new video codecs can be seen. The 

latest examples are MPEG-5 LCEVC (Low 

Complexity Enhancement Video Coding) [Mea20] 

that introduces an enhancement layer which, when 

combined with a base video encoded with another 

existing video codec, produces an enhanced video 

stream, or VPCC (Video-based Point Cloud Coding) 

[Gra20] or MIV (MPEG Immersive Video) [Boy21] 

that utilize video compression for dynamic three-

dimensional scenes and objects. In immersive video, 

user can change the viewpoint and is not limited to 

watch views acquired by cameras located around 

a scene. While the use of existing state-of-the-art 

compression methods makes it easier to develop new 

codecs for more and more new emerging technologies, 

configuration of internal coder is often not optimized 

for these applications, as the default configuration 

usually provides already satisfactory results. 

This paper describes a different approach, in which 

adaptation of the internal coder configuration is 

performed, while the external one is not changed. The 

proposed experiments focus on the influence of HEVC 

configuration on immersive video coding performed 

by MIV. In MIV, some views (base views) are fully 

transmitted, while for others (additional views) only 

the non-redundant information is included in atlases – 

synthetic videos containing information from many 

input views (as a mosaic of patches – Fig. 2). 

The content of atlases highly varies from the typical 

video sequences, motivating the need for using 

a non-standard set of coding tools and testing their 

configuration. 

2. EXPERIMENTS METHODOLOGY 

Overview 
In the experiments (Fig. 1), the input views together 
with depth maps were processed in the TMIV (Test 
Model for MPEG Immersive Video) [MPEG21a] 
encoder. It outputs 4 atlases: 2 containing texture 
information (called T0 and T1) and 2 containing depth 
information with reduced resolution (G0 and G1). 
Then, each atlas was separately encoded with x265 
video encoder [X265] with 5 QP values: 22, 27, 32, 37, 
and 42 for texture and 4, 7, 11, 15, and 20 for depth. 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 

fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee. 
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Figure 1. Scheme of an experiment. 

The TMIV encoder works in two major configurations: 
“MIV Atlas” (A17, presented earlier) and “MIV View” 
(V17, Fig. 3). In the MIV View configuration, a subset 
of input views is transmitted within atlases. The 
remaining views are completely skipped thus some 
information is ignored (e.g., for Group sequence, only 
8 of 21 input views are transmitted). We tested both 
configurations, thus each experiment was run twice. 

  

 

 
Figure 2. Atlases for Group sequence, MIV Atlas 

(A17). From left: atlas T0, T1, G0 (top), and G1. 

  

 

 
Figure 3. Atlases for Group sequence, MIV View 
(V17). From left: atlas T0, T1, G0 (top), and G1. 

To preserve the readability of the paper, results 
obtained for all 5 QP values and all 14 test sequences 
were averaged. 

We have decided to use the x265 encoder [X265] 
because of two main reasons. At first, it allows to 
flexibly change numerous encoding parameters, so we 
can easily analyze, which aspects of video encoding 
influence the immersive video encoding the most. 
Secondly, x265 is a very fast encoder, it is two orders 
of magnitude faster than HEVC Test Model (HM) 
[MPEG17] – the HEVC Test Model [Sze20]. 

In the experiments, 13 encoding parameters were 
tested. For some of them, several tests were performed 
resulting in 22 experiments in total. We have tested 
parameters, which potentially could improve the 
encoding efficiency of the immersive video: 

1. b-adapt – flexibility of setting the GOP (group of 

pictures) structure, 

2. bframes – maximum number of consecutive B-

frames (bidirectional-predicted frames), 

3. bframe-bias – probability of choosing B-frames, 

4. lookahead-slices – number of threads used for 

frame cost calculation, 

5. max-merge – maximum number of neighboring 

blocks analyzed in motion prediction, 

6. me – motion search method (method of searching 

of corresponding blocks in previously-encoded 

frames), 

7. no-early-skip – additional analysis of possible 

modes providing better quality in increased time, 

8. rd – rate-distortion optimization level, 

9. rdoq-level – level of rate-distortion analysis within 

quantization step, 

10. rect – rectangular motion partitioning, 

11. rect amp – rectangular motion partitioning with the 

possibility of asymmetric partitioning, 

12. ref – number of L0 references, 

13. subme – subpixel refinement level. 

# 
x265 parameter default value tested value 

other 
changes 

1 
--b-adapt 2 

0  

2 1  

3 --bframes 4 16  

4 
--b-adapt 2 

0 
--bframes 16 

5 1 

6 --bframe-bias 0 100  

7 --lookahead-
slices 

8 
1  

8 4  

9 --max-merge 2 3  

10 

--me hex 

dia  

11 umh  

12 star  

13 --no-early-skip disabled enabled  

14 

--rd 3 

1  

15 2  

16 5  

17 --rdoq-level 0 2  

18 --rect disabled enabled --limit-
modes 19 --rect --amp disabled enabled 

20 --ref 3 4  

21 --subme 2 3  

22 optimal configuration 

Table 1. Performed experiments. 
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Test sequences 
The test set contained 14 miscellaneous high-

resolution test sequences, including 7 synthetic, 

computer-generated sequences (Fig. 5): 

1. ClassroomVideo, 16 full-360° 4K×2K cameras 

[Kro18], 

2. Museum, 24 semispherical 2K×2K cameras placed 

on the sphere [Dor18], 

3. Hijack, 10 parallel 4K×2K cameras with angle of 

view 180°×90° [Dor18]. 

4. Chess, 10 semispherical 2K×2K cameras placed 

on the sphere [Ilo19], 

5. ChessPieces, 10 semispherical 2K×2K cameras 

placed on the sphere [Ilo20], 

6. Kitchen, 25 perspective FullHD cameras placed in 

the 5×5 matrix [Boi18], 

7. Fan, 15 perspective FullHD cameras placed in the 

5×3 matrix [Dor20a], 

8. Group, 21 perspective FullHD cameras placed on 

a sphere [Dor20b], 

and 6 natural sequences, captured by real multicamera 

systems containing different numbers of perspective 

cameras (Fig. 4): 

1. Fencing, 10 FullHD cameras placed on an arc 

[Dom16], 

2. Carpark, 9 FullHD cameras placed linearly 

[Mie20], 

3. Street, 9 FullHD cameras placed linearly [Mie20], 

4. Hall, 9 FullHD cameras placed linearly [Mie20], 

5. Frog, 13 FullHD cameras placed linearly [Sal18], 

6. Painter, 16 cameras with resolution 2048×1088 

placed in the 4×4 matrix [Doy17]. 

All sequences are commonly used in immersive video 

applications, e.g., within ISO/IEC JTC1/SC29/WG04 

MPEG Video Coding group [MPEG21]. Each 

sequence has 17 frames. 

  

  

  

Figure 4. Natural sequences. Left column: Frog, 

Hall, Painter; right: Fencing, Carpark, Street. 

 

 

 

 

 

 

 

 

 

Figure 5. Computer-generated sequences. Left 

column: ClassroomVideo, Hijack, Kitchen, Fan, 

and Group; right: Museum, Chess, ChessPieces. 

3. EXPERIMENTAL RESULTS 
In total, 22 experiments were performed. In each, only 

one parameter was changed, while other parameters 

were set to default values. Each configuration was 

compared to the default configuration of the x265 

encoder. Results of the encoding using default 

configuration are presented in Tables 2 and 3. 

As mentioned earlier, all the results presented in 

Section 3 were averaged over 5 QP values and 14 

sequences. 

 

Table 2. Encoding of depth atlases. 

 

Table 3. Encoding of texture atlases. 

In consecutive subsections, only the most beneficial 

experiments are described. Results of all performed 

experiments are included at the end of the section. 

bitrate 

[kbps]

PSNR 

[dB]

bitrate 

[kbps]

PSNR 

[dB]

avg G0 8583 69.86 8563 69.82

avg G1 10131 70.82 10174 70.76

default 

configuration

A17 V17

bitrate 

[kbps]

PSNR 

[dB]

bitrate 

[kbps]

PSNR 

[dB]

avg T0 17781 42.36 17352 42.33

avg T1 10588 45.22 10531 45.26

V17
default 

configuration

A17
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Number of B-frames 
In experiment #3, the influence of maximum number 

of consecutive B-frames was tested. By default, this 

number is set to 4. We have tested 16 B-frames, so the 

whole tested sequence was treated as one GOP. 

 

Table 4. Encoding of depth atlases, 

--bframes 16 (default: 4). 

 

Table 5. Encoding of texture atlases, 

--bframes 16 (default: 4). 

The results obtained for texture and depth atlases are 

different – an increase of the number of B-frames 

allows to significantly decrease the bitrate of texture 

atlases, while for depth the difference is much smaller. 

In the immersive video, the cameras are usually 

stationary, as the change of viewing position is made 

by the final viewer himself. Therefore, increasing the 

B-frames number allows to increase the coding 

efficiency of the video. This assumption is true both 

for textures and perfect (usually computer-generated) 

depth maps. The depth maps estimated for natural 

content are often not stable, thus a smaller number of 

B-frames is a better solution in this case. 

Moreover, for the A17 configuration of the TMIV, the 

coding gain for atlases T1 and G1 is much smaller than 

for atlases T0 and G0. For V17 such a difference 

cannot be spotted.  

The reason of this phenomenon is the different 

characteristics of the first and second atlas. The first 

atlas in the A17 configuration contains full base views 

while the second one contains many smaller patches, 

so it is much less temporally consistent. In the V17 

configuration, both atlases contain similar information 

– full views. 

Motion search method 
In experiments #10, #11, and #12, different methods 

of motion search were tested. The default method in 

the x265 decoder is “hex” – hexagon-shaped search. 

We have tested three other methods: “dia” – diamond 

search, “umh” – uneven multi-hexagon, and “star” 

with 8 directions of searching. An exhaustive search 

(“full”) was not tested because it is ridiculously slow 

and impractical. 

Diamond search performs worse than the default 

hexagonal search (see Tables 20 and 21). More 

sophisticated search methods (“umh” and “star”) 

allow to increase coding efficiency, especially for 

depth atlases (Tables 6 and 8). 

For texture atlases, the coding gain is smaller but 

noticeable. It should be noted, that both search 

methods perform better for atlas T1 than for T0. 

The “hex” method is adapted for analyzing the natural 

videos (i.e., textures), while it performs worse for 

depth maps. In uneven multi-hexagon and star 

methods, more prediction directions are being 

analyzed, allowing to better adapt to different 

characteristics of depth video (large smooth areas, 

sharp edges). 

 

Table 6. Encoding of depth atlases, 

--me umh (default: hex). 

 

Table 7. Encoding of texture atlases, 

--me umh (default: hex). 

 

Table 8. Encoding of depth atlases, 

--me star (default: hex). 

 

Table 9. Encoding of texture atlases, 

--me star (default: hex). 

RDO level 
In experiments #14, #15, and #16, the different levels 

of the rate-distortion optimization were tested. In 

x265, the level of the RDO may vary from 1 to 5, 

where 5 is the full RDO analysis and 1 is the least 

exhaustive optimization. By default, RDO level is set 

to 3. 

We have tested three levels of RDO: 1, 2, and 5 (4 was 

omitted as it produces exactly the same results as 3). 

Setting the RDO level to 1 or 2 speeds up the 

computations, but it greatly decreases the coding 

efficiency (see Tables 20 and 21). 

The results of using full RDO are presented in Tables 

10 and 11. For encoding of texture atlases, full RDO 

not only increases the computational time but also 

dBitrate dPSNR dBitrate dPSNR

avg G0 -0.22% -0.06% -0.21% -0.07%

avg G1 0.42% -0.07% -0.21% -0.05%

A17 V17
bframes 16

dBitrate dPSNR dBitrate dPSNR

avg T0 -2.41% -0.06% -2.13% -0.07%

avg T1 -0.54% 0.10% -1.88% -0.07%

bframes 16
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -1.53% 0.03% -1.57% 0.03%

avg G1 -1.59% 0.04% -1.50% 0.04%

me umh
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -0.14% 0.01% -0.13% 0.01%

avg T1 -0.46% 0.05% -0.10% 0.00%

me umh
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -2.78% 0.06% -2.91% 0.05%

avg G1 -2.44% 0.07% -2.79% 0.06%

me star
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -0.19% 0.01% -0.18% 0.01%

avg T1 -0.62% 0.06% -0.14% 0.01%

me star
A17 V17
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decreases the coding efficiency. The opposite results 

were obtained for depth atlases, where full RDO 

allows to decrease the bitrate by more than 14%. 

The video encoders are adapted for natural video 

encoding, while, as mentioned earlier, depth maps 

have significantly different characteristics. The 

encoding tools, including partial rate-distortion 

optimization, are optimized for texture encoding. 

When the full RDO process is performed, these 

texture-aimed simplifications are disabled. 

 

Table 10. Encoding of depth atlases, 

--rd 5 (default: 3). 

 

Table 11. Encoding of texture atlases, 

--rd 5 (default: 3). 

Rectangular motion partitioning 
In experiments #18 and #19, the influence of the 

rectangular motion partitioning was tested. By default, 

x265 uses square partitioning only. In order to keep 

the short computational time, the --limit-modes 

parameter was used. This parameter limits number of 

modes analyzed for each CU, significantly decreasing 

the computational time while having a slight impact 

on coding efficiency. 

In #18, only the symmetric motion partitions were 

permitted, thus the block can be split into two N×2N 

or 2N×N blocks. 

The results gathered in Tables 12 and 13 indicate, that 

enabling the rectangular motion partitioning allows 

increasing coding efficiency, both for depth and 

texture atlases. However, the bitrate reduction 

achieved for depth atlases is significantly higher. 

As mentioned earlier, depth video contains large 

smooth regions that often include only constant depth 

values. These regions are separated by sharp edges and 

many of them are horizontal or vertical. Enabling of 

the rectangular partitioning allows to better fit the CU 

grid to objects in the depth video thus significantly 

increase the coding efficiency. For textures, 

rectangular partitioning also allows to increase the 

efficiency, but the gain is much smaller because of 

video characteristics (fewer smooth areas, highly 

textured objects, etc.). 

In #19, also asymmetric partitioning was permitted, so 

each block can be split also in 25%/75% or 75%/25% 

proportion (both vertically and horizontally. As 

presented in Tables 14 and 15, it allows to additionally 

increase the coding efficiency, but the difference is 

slight. 

 

Table 12. Encoding of depth atlases, 

--rect --limit-modes. 

 

Table 13. Encoding of texture atlases, 

--rect --limit-modes. 

 

Table 14. Encoding of depth atlases, 

--rect --amp --limit-modes. 

 

Table 15. Encoding of texture atlases, 

--rect --amp --limit-modes. 

Max number of L0 references 
In experiment #20, the maximum number of L0 

references was tested. HEVC specification allows up 

to 8 references, the default value in x265 is set to 3. In 

the experiment, 4 L0 references were tested. 

As shown in Tables 16 and 17, the coding gain is 

slight, but noticeable for all the data types. In general, 

it decreases the bitrate of the atlases without having 

any impact on the quality. 

 

Table 16. Encoding of depth atlases, 

--ref 4 (default: 3). 

 

Table 17. Encoding of texture atlases, 

--ref 4 (default: 3). 

dBitrate dPSNR dBitrate dPSNR

avg G0 -14.06% 0.74% -14.15% 0.70%

avg G1 -14.09% 0.94% -13.83% 0.75%

rd5
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 1.64% 0.22% 1.21% 0.22%

avg T1 0.72% 0.12% 1.25% 0.23%

rd5
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -21.87% 0.54% -22.44% 0.51%

avg G1 -22.71% 0.70% -22.06% 0.53%

rect
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -0.70% 0.05% -0.75% 0.05%

avg T1 -1.39% -0.12% -0.72% 0.05%

rect
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -21.94% 0.54% -22.50% 0.52%

avg G1 -22.71% 0.70% -22.11% 0.53%

rect amp
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -0.76% 0.06% -0.83% 0.06%

avg T1 -1.54% 0.02% -0.79% 0.06%

rect amp
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -0.17% 0.00% -0.17% 0.00%

avg G1 -0.15% 0.00% -0.14% 0.00%

ref 4
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -0.08% 0.00% -0.08% 0.00%

avg T1 -0.13% 0.01% -0.07% 0.00%

ref 4
A17 V17
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Subpixel refinement level 
In experiment #21, the number of subpixel 

refinements was changed. By default, it is set to 2. We 

have tested value 3, which increases the number of 

half-pel iterations and allows using the chroma 

residual in the motion estimation decisions. 

As presented in Table 18, such a change allows 

reducing bitrate of depth by 0.3% without quality 

change. For texture atlases, increasing the subpixel 

refinement level slightly increases the bitrate. 

 

Table 18. Encoding of depth atlases, 

--subme 3 (default: 2). 

 

Table 19. Encoding of texture atlases, 

--subme 3 (default: 2). 

All tests 

 

Table 20. Encoding of depth atlases. 

Other tested parameters decrease the coding 

efficiency, or their impact is negligible. In Tables 20 

and 21, the results for all tested parameters are 

presented. To preserve the readability of Table 20, 

values for G0 and G1 were averaged. For the same 

reason, we have averaged values for T0 and T1 in 

Table 21. 

 

Table 21. Encoding of texture atlases. 

Optimal combination of parameters 
The analysis of the results of 21 experiments allowed 

to find the set of optimal parameters for encoding the 

immersive video. 

In the last, 22nd experiment, the encoder was 

configured in order to provide the best encoding 

efficiency. For depth atlases, we have used: --me star 

--rd 5 --rect --amp --limit-modes --ref 4 --subme 3. For 

texture encoding: --bframes 16 --me star --rect --amp 

--limit-modes --ref 4. 

The results are presented in tables 22 and 23. 

 

Table 22. Encoding of depth atlases, --me star 

--rd 5 --rect --amp --limit-modes --ref 4 --subme 3. 

 

Table 23. Encoding of texture atlases, --me star 

--bframes 16 --rect --amp --limit-modes --ref 4. 

4. CONCLUSIONS 
The paper presents the research on the influence of 

HEVC configuration on immersive video coding. 

MPEG Immersive Video is agnostic to the internally 

used codec, therefore, the proposed experiments tested 

a set of coding tools in order to find the optimal 

configuration, i.e., adapted to the characteristics of 

immersive video. 

dBitrate dPSNR dBitrate dPSNR

avg G0 -0.32% 0.01% -0.31% 0.01%

avg G1 -0.28% 0.01% -0.27% 0.01%

subme 3
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 0.05% 0.00% 0.05% 0.00%

avg T1 0.20% 0.03% 0.06% 0.00%

subme 3
A17 V17

dBitrate dPSNR dBitrate dPSNR

b-adapt 0 1.12% -0.04% 1.47% -0.04%

b-adapt 1 2.06% 0.06% 2.43% 0.03%

bframes 16 0.13% -0.07% -0.21% -0.06%

b-adapt 0 bframes 16 5.74% -0.32% 5.96% -0.30%

b-adapt 1 bframes 16 2.00% 0.05% 2.35% 0.02%

bframes bias 1.73% -0.19% 1.26% -0.19%

lookahead-slices 1 -0.01% 0.00% 0.00% 0.00%

lookahead-slices 4 -0.01% 0.00% -0.01% 0.00%

max-merge 0.00% 0.00% 0.00% 0.00%

me dia 0.77% -0.02% 1.05% -0.02%

me umh -1.56% 0.04% -1.54% 0.03%

me star -2.59% 0.06% -2.85% 0.06%

no-early skip 0.37% 0.13% 0.58% 0.17%

rd 1 53.04% -1.40% 50.88% -1.24%

rd 2 20.01% -0.89% 21.96% -0.86%

rd 5 -14.08% 0.84% -14.00% 0.73%

rdoq-level 2 1.60% 0.85% 1.87% 0.59%

rect limit-modes -22.32% 0.62% -22.27% 0.52%

rect amp limit-modes -22.36% 0.62% -22.32% 0.53%

ref 4 -0.16% 0.00% -0.16% 0.00%

subme 3 -0.30% 0.01% -0.29% 0.01%

A17 V17
Parameter

dBitrate dPSNR dBitrate dPSNR

b-adapt 0 0.84% -0.58% 0.70% -0.03%

b-adapt 1 5.80% 0.23% 6.49% 0.06%

bframes 16 -1.71% 0.02% -2.01% -0.07%

b-adapt 0 bframes 16 3.75% -0.54% 2.12% -0.29%

b-adapt 1 bframes 16 5.78% -0.14% 6.48% 0.06%

bframes bias -0.50% -0.21% 0.03% -0.23%

lookahead-slices 1 0.00% 0.00% 0.00% 0.00%

lookahead-slices 4 -0.02% 0.00% 0.00% 0.00%

max-merge 0.00% 0.00% 0.00% 0.00%

me dia 0.03% 0.00% 0.01% 0.00%

me umh -0.26% 0.03% -0.12% 0.00%

me star -0.35% 0.04% -0.16% 0.01%

no-early skip 0.74% 0.17% 0.66% 0.17%

rd 1 14.36% -0.69% 8.44% -0.36%

rd 2 1.89% -0.26% 0.44% -0.08%

rd 5 1.30% 0.17% 1.23% 0.22%

rdoq-level 2 3.60% -0.14% 3.04% -0.38%

rect limit-modes -0.96% -0.04% -0.73% 0.05%

rect amp limit-modes -1.05% 0.04% -0.81% 0.06%

ref 4 -0.10% 0.00% -0.08% 0.00%

subme 3 0.11% 0.02% 0.05% 0.00%

Parameter
A17 V17

dBitrate dPSNR dBitrate dPSNR

avg G0 -27.57% 1.01% -28.07% 0.96%

avg G1 -30.27% 1.26% -27.50% 1.00%

optimal 

configuration

A17 V17

dBitrate dPSNR dBitrate dPSNR

avg T0 -3.41% 0.01% -3.15% -0.01%

avg T1 -2.74% 0.11% -2.86% 0.00%

optimal 

configuration

A17 V17
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The experimental results showed that the 

configuration of the internal codec (one of the 

available HEVC implementations was tested – x265) 

has a significant impact on the overall coding 

efficiency, confirming the importance of performing 

the proposed optimization. The proper configuration 

allowed to reduce the bitstream on average by 3% for 

textures and even by 30% for depth maps encoding.  

Moreover, the noticed differences in encoding of 

textures and depth maps draw interesting general 

conclusions that can be utilized not only in the coding 

of immersive videos but can be used in future research 

on coding adapted to typical characteristics of depth 

maps. 
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ABSTRACT
The paper deals with efficient compression of immersive video representations for the synthesis of video related
to virtual viewports, i.e., to selected virtual viewer positions and selected virtual directions of watching. The
goal is to obtain possibly high quality of virtual video obtained from compressed representations of immersive
video acquired from multiple omnidirectional and planar (perspective) cameras, or from computer animation. In
the paper, we describe a solution based on HEVC (High Efficiency Video Coding) compression and the recently
proposed MPEG Test Model for Immersive Video. The idea is to use standard-compliant Screen Content Coding
tools that were proposed for other applications and have never been used for immersive video compression. The
experimental results with standard test video sequences are reported for the normalized experimental conditions
defined by MPEG. In the paper, it is demonstrated that the proposed solution yields up to 20% of bitrate reduction
for the constant quality of virtual video.

Keywords
Video compression, video codecs, virtual reality.

1 INTRODUCTION
The recent development of virtual reality applications
raises rapidly growing research interests in immersive
video [Isg14]. In particular, substantial efforts are made
in virtual view synthesis [Ceu18], [Yua18], [Rah18],
[Zhu19], virtual navigation and free-viewpoint televi-
sion [Tan12], [Sta18], [Cha19]. Recently, image-based
rendering of virtual views became widely applicable for
head-mounted devices and other displays suitable for
VR content. The content may be computer-generated
or it may be acquired from multiple omnidirectional
and perspective (planar) cameras. Such visual content
constitutes an immersive video that may have various
representations. Recently, great interest is attained by
point clouds [Cui19], [Zha20], [Li20], [Sch19], but the
representation that is most often used in research is mul-
tiview video plus depth (MVD) [Mue11]. Therefore,
this paper is focused on multiview video plus depth rep-
resentations of immersive video. For such representa-
tions, depth has to be estimated, and a lot of work has

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

already been done for depth estimation in the above-
mentioned applications, e.g. [Mie20]. Once the repre-
sentation is estimated, the representation of immersive
video needs to be compressed before transmission (cf.
Fig. 1).

Obviously, the compression artifacts deteriorate the fi-
delity of view synthesis. Therefore, in the paper, we
consider immersive video compression and the influ-
ence of the compression on the quality of the virtual
video rendered from compressed data. Moreover, we
propose an alternative approach to immersive video
compression, and we demonstrate the advantages of
this alternative approach. In particular, we demonstrate
that our approach results in a reduced bitrate for the
same quality of virtual views, i.e., for a constant bi-
trate, the proposed approach results in the improved
quality of the synthesized virtual views as compared
to the approaches from [Dom19], [Fle19], [Laf19], and
[Wie19].

2 IMMERSIVE VIDEO COMPRES-
SION

A multiview representation of immersive video may
consist of multiple perspective (planar, 2D) views with
vastly overlapping fields of views, or it may consist of
a few overlapping 360-degree videos. The compression
of immersive video takes advantage of the inter-view
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Figure 1: Data flow in immersive video systems.

Figure 2: MPEG immersive video encoder (TMIV framework).

Figure 3: MPEG immersive video decoder (TMIV framework).

redundancy existing in the input multiview representa-
tion. Removal of this redundancy will result in decreas-
ing the amount of data required to fully represent the
whole three-dimensional scene.

One of the possible scenarios assumes the compression
of MVD representation using a standard 3D-HEVC
video encoder. Its coding techniques use inter-view pre-
diction based on depth maps and statistical dependen-
cies between views and corresponding depth maps. The
use of this encoder reduces the required bitrate by up
to 50% in comparison with simulcast HEVC [Tec16],
which encodes each view and each depth map sepa-
rately. Other works focus more on the reduction of
pixel rate, i.e., the number of pixels that have to be
sent during the transmission. An interesting technique
described in [Gar19] proposes a decoder-side recon-
struction of depth maps using views compressed using
simulcast HEVC or MV-HEVC. This solution provides
a 50% reduction of the pixel rate (because depth maps
do not have to be sent) and up to a 35% reduction of the
required bitrate while preserving similar quality of the
video.

The state-of-the-art technology for immersive video
compression is being developed by ISO/IEC MPEG
group [ISO19e]. The MPEG Test Model for Immer-

sive Video (TMIV) is already publicly available as
a descriptive and software framework for research
[ISO19d], and in the next months, the works on this
future video standard are planned to enter one of the
final stages of preparation.

The forthcoming standard is built using the technolo-
gies presented by proponents in response to the Call
for Proposals for 3DoF+ video coding [ISO19a]. Some
proposals followed nearly the same basic idea that sev-
eral base views gathering most of the information of the
scene should be encoded in their entirety, while sup-
plementary information (e.g., disocclusions from other
views, Fig. 4) can be transmitted in the form of a
mosaic of much smaller patches, that all together are
grouped into atlases [Dom19], [Fle19]. The main idea
of TMIV follows a similar scheme – see Fig. 2 and Fig.
3 for the overview.

First of all, n input views with depth maps are split into
two groups: m base views and n-m additional views.
The pruner (cf. Fig. 4), basing on depth, identifies and
extracts regions occluded in the base views. These oc-
cluded regions are left in additional views, while the
rest of the regions are removed. It results in small
patches left in the pruned additional views. The packer
gathers patches from all additional views into k at-
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A B C D

Figure 4: a) Base view, b) additional view, c) pruned
additional view (preserved disocclusions), d) atlas.

Figure 5: Example of an atlas with a corresponding
depth map.

lases. In order to provide better encoding efficiency,
the patches in atlases contain all information from their
bounding box, as this decreases the number of sharp
edges in the encoded atlas. A schematic example of
pruning and packing is presented in Fig. 4. For exam-
ple, an atlas for the TechnicolorMuseum [Dor18] test
sequence is presented in Fig. 5. The number of at-
lases is usually much smaller than the number of addi-
tional views, ensuring the reduction of pixel rate, while
still preserving the whole representation of the encoded
three-dimensional scene. In the end, the base views and
atlases are fed to simulcast HEVC encoders.

In the decoder, base views and patches from atlases, to-
gether with metadata that contain the initial positions
of patches in input views, are used to synthesize l out-
put views, which can be reconstructed input views, or
any number of virtual views required by a user of the
immersive video system (e.g., a stereopair for a virtual
reality headset).

The development of an entirely new competitive com-
pression technology would require huge costs and man-
power. Therefore, in order to reduce the time needed
to finish the works on the new coding technology and
standard, the current approach is to build the immersive
video coding technology on top of the general video
compression technology [Dom19], [Fle19], [ISO19e].

The common feature of the above-mentioned coding
technologies is the use of virtual view synthesis and
the application of general video coding techniques like
HEVC or even the application of 3D-HEVC that is the
specialized coding technology for multiview plus depth
video. In the following section, we propose the appli-
cation of HEVC Screen Content Coding [Xu16b], the
technique for computer-generated visual content, in or-
der to increase the quality of virtual view synthesis per-
formed on the compressed representation of the immer-
sive video.

3 NEW APPROACH TO COMPRES-
SION OF PATCH ATLASES

block being
encoded

Figure 6: Operation of Intra Block Copy.

As mentioned before, for the efficient compression of
patch atlases, the authors propose to use HEVC Screen
Content Coding [Xu16b] instead of a standard video
coding technology like HEVC [ISO15] or 3D-HEVC
[Tec16]. Screen Content Coding is developed as an
extension of HEVC, dedicated for the compression of
computer-generated visual content, such as a remote
keyboard, screen recordings or cloud gaming.

The basic tool used in HEVC-SCC is Intra Block Copy
[Xu16a]. It is designed to improve the compression ef-
ficiency of fonts and other repetitive patterns that may
appear multiple times within a single frame (cf. Fig. 6).
The IBC tool searches the encoded part of the frame in
order to find the best match for the unit being currently
encoded. This search results in a two-dimensional shift
vector with the components being integer multiples of
the sampling periods (i.e., the horizontal and vertical
sampling periods).

The idea to apply Intra Block Copy to the compression
of camera-captured content was presented in [Sam17]
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Figure 7: Proposed MPEG immersive video encoder with HEVC Screen Content Coding.

Sequence
Content

type
Number of
base views

Number of
atlases

Classroom [Kro18] O, CG 1 1
Museum [Dor18] O, CG 2 2
Hijack [Dor18] O, CG 1 2
Kitchen [Boi18] P, CG 1 2
Painter [Doy17] P, NC 1 4
Frog [Sal19] P, NC 2 8
Fencing [Dom16] P, NC 1 3

Table 1: Test sequences. O – omnidirectional, P –
perspective, CG – computer generated, NC – natu-
ral content.

and [Sam19]. It was proven that IBC can be success-
fully used to exploit inter-view similarities in frame-
compatible stereoscopic videos. The authors now pro-
pose to extend this idea onto the compression of patch
atlases (Fig. 7). A single atlas often contains similar
patches, located in distant parts of a frame. The IBC
tool would be an ideal solution for efficient compres-
sion in such a case.

Other arguments in favor of using HEVC-SCC for the
compression of patch atlases are additional SCC tools
– Color Transform [Xu16b] and Palette Mode [Xu16c].
As presented in [Sam17], the influence of these tools
on the compression efficiency of camera-captured con-
tent is negligible, however, they may provide a signif-
icant gain when applied to the compression of depth
patch atlases. The results of using HEVC-SCC instead
of HEVC are presented in the following section.

4 EXPERIMENTS AND RESULTS
4.1 Methodology of the experiments
The goal of the experiments is to demonstrate the use-
fulness and efficiency of the standard-compliant Screen
Content Coding HEVC extension applied in immersive
video coding. In order to present the advantages of such
an approach, the recent MPEG Immersive Video en-
coder – TMIV [ISO19d] is used. The video data gener-
ated by TMIV is then encoded using HEVC-SCC. The
results are compared to those obtained by the use of
HEVC main profile.

The proposed approach is assessed using 7 miscella-
neous test video sequences as described in Table 1.
These sequences are commonly used in research and
standardization activities on immersive video [ISO19b]
because of their very diversified characteristics (natural
and computer-generated content, omnidirectional and
perspective cameras, different resolutions, etc.). For
each sequence, 97 frames are used, which refers to 3
full groups of pictures (GOPs).
All common coding parameters (e.g. GOP size, Intra
Period, max CU Width, Sample Addaptive Offset, etc.)
are exactly the same for both encoders and the same as
defined in MPEG recommendations for experiments on
immersive video coding [ISO19b], [Yu15]. The same
values of QP (Quantization Parameter) are set for both
encoders: HEVC and HEVC-SCC. The ∆QP between
depth and texture data is set to 10 in order to better pre-
serve depth quality (e.g. when QP for texture was set
to 22, QP for corresponding depth was set to 12; exper-
iments were performed for 5 QP values – for texture:
22, 27, 32, 37, and 42), which is crucial for proper view
synthesis.
In Section 4.2, the results of encoding of atlases are pre-
sented. For each sequence, the bitrate was calculated as
a sum of bitrates for all atlases.
The quality (the average difference between atlases be-
fore and after encoding) was calculated as the average
PSNR of all atlases. The texture and depth atlases are
discussed separately.
In Section 4.3 the results of the virtual view synthesis
are discussed. For each sequence, the bitrate is calcu-
lated as a sum of bitrates for all atlases, including both
depth and texture.
The quality of synthesized views was measured using
5 objective quality metrics, which are commonly
used in immersive video applications: Weighted-to-
Spherically-Uniform PSNR (WS-PSNR) [Sun17],
Multi-Scale SSIM (MS-SSIM) [Wan03], Visual In-
formation Fidelity (VIF) [She06], Video Multimethod
Assessment Fusion (VMAF) [Li16] and ISO/IEC
MPEG’s metric for immersive video: IVPSNR
[ISO19c].
All used metrics are full-reference ones, therefore in or-
der to estimate quality, the virtual views in positions
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Bitrate reduction Quality improvement
Sequence Base view Atlas Base view Atlas

Classroom 0.78% 1.74% 0.02 dB 0.04 dB
Museum 1.16% 4.00% 0.01 dB -0.01 dB
Hijack 0.00% 6.55% 0.03 dB 0.22 dB
Kitchen 0.49% 7.44% 0.05 dB 0.11 dB
CG 0.61% 4.93% 0.03 dB 0.09 dB

Painter -0.09% 1.53% -0.01 dB 22.86 dB
Frog 0.44% 1.39% 0.00 dB 33.00 dB
Fencing 0.30% 0.69% 0.00 dB 0.02 dB
NC 0.22% 1.20% 0.00 dB 18.63 dB

Average 0.44% 3.33% 0.01 dB 8.03 dB

Table 2: Bitrate reduction and quality improvement
for the use of HEVC Screen Content Coding tools
instead of the plain HEVC for the base views and
atlases. A positive number denotes bitrate reduction
or quality index increase for the synthesized videos
due to the usage of SCC.

of input views were synthesized using decoded video
data. Then, the estimated quality was averaged over all
views.

In order to calculate the difference between two encod-
ing approaches, the Bjoentegaard Delta [Bjo01] metric
was used.

4.2 Efficiency of immersive video coding
using HEVC-SCC

In the proposed approach, all videos, i.e., base views,
atlases, and corresponding depth maps, are being in-
dependently encoded using HEVC-SCC. Therefore, it
was possible to split the encoding results depending on
the data type.

In Figs. 8 and 9, the rate-distortion curves for views
only (excluding depth) are presented. In general, the
usage of HEVC-SCC allows to achieve better quality
at the same bitrate when compared to the HEVC main
profile.

At this point, it has to be mentioned why the quality of
the TechnicolorPainter and IntelFrog sequences is as-
tonishingly high. Actually, the PSNR value presented
in Fig. 9 was averaged over all encoded base views
and atlases. While there were no issues for base views,
some of the atlases contain no patches within one or
more group of pictures (e.g., within the third GOP of
the IntelFrog sequence, where there are fewer occlu-
sions than for the first two GOPs, 5 of 8 atlases are
empty thus completely grey).

As discussed in Section 3, HEVC-SCC should perform
better on atlases than on base views. Indeed, as the re-
sults presented in Table 2 show, the bitrate reduction
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Figure 8: Rate-distortion curves for the immersive
video codecs with the HEVC-SCC as compared to
the plain HEVC: computer-generated sequences, in-
put views encoding; red: HEVC, green: HEVC-
SCC. Vertical axis: PSNR [dB], horizontal: bitrate
[Mbps].

caused by using HEVC-SCC instead of HEVC is sig-
nificantly higher for atlases than for base views. In gen-
eral, also the quality improvement is bigger for atlases,
however, the difference between HEVC and HEVC-
SCC is really slight (except for the TechnicolorPainter
and IntelFrog sequences, where HEVC-SCC performs
much better for their almost empty atlases).

The second type of data being encoded is depth maps.
The RD curves for depth are presented in Figs. 10 and
11. Compared to the encoding of input views, the en-
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Figure 9: Rate-distortion curves for the immersive
video codecs with the HEVC-SCC as compared to
the plain HEVC: natural sequences, input views en-
coding; red: HEVC, green: HEVC-SCC. Vertical
axis: PSNR [dB], horizontal: bitrate [Mbps].

coding gain in depth maps caused by the application
of the SCC extension of HEVC is significantly higher.
For all test sequences, HEVC-SCC allows for achiev-
ing a significantly better quality of depth maps, while
preserving the same bitrates.

Such results are highly expected because of the char-
acteristics of depth maps which contain mostly no tex-
ture, but large, smooth, semi-repeatable regions which
can be efficiently encoded using SCC tools.

The efficiency of HEVC-SCC for base views and
atlases is compared in Table 3. While for the input
views encoding results were similar for natural and
computer-generated sequences, the results for depth
encoding are different for both sequence types. For
computer-generated sequences, HEVC-SCC performs
significantly better for atlases than for base views.
However, for natural sequences, there is no significant
difference between both types of data. The reason is the
quality of depth maps, since for computer-generated
sequences the depth is smooth within the objects’
interior and sharp at their edges, while depth maps for
natural content were algorithmically estimated based
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Figure 10: Rate-distortion curves for immersive
video codecs with HEVC-SCC as compared to plain
HEVC: computer-generated sequences, depth maps
encoding; red: HEVC, green: HEVC-SCC. Vertical
axis: PSNR [dB], horizontal: bitrate [Mbps].

on input views, therefore, they contain artifacts, such as
blurred edges or grained objects. As a result, the atlases
contain many small, different patches that negatively
influence the HEVC-SCC encoding efficiency.

However, despite the problems described above, for
depth data, HEVC-SCC performs much better than
plain HEVC (even for natural sequences), helping
reduce the bitrates and slightly increase the quality of
decoded views.
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Bitrate reduction Quality improvement
Sequence Base view Atlas Base view Atlas

Classroom 11.76% 18.38% 1.85 dB 3.14 dB
Museum 8.52% 13.12% 0.56 dB 0.62 dB
Hijack 7.89% 9.25% 1.09 dB 1.43 dB
Kitchen 15.34% 25.10% 1.28 dB 1.80 dB
CG 10.88% 16.47% 1.20 dB 1.75 dB

Painter 4.60% 4.27% 0.27 dB 8.77 dB
Frog 2.01% 3.16% 0.12 dB 32.32 dB
Fencing 14.23% 12.22% 0.90 dB 0.87 dB
NC 6.95% 6.55% 0.43 dB 13.99 dB

Average 9.19% 12.22% 0.87 dB 6.99 dB

Table 3: Bitrate reduction and quality improvement
(compared to the HEVC main profile) for base views
and atlases, depth data.

Sequence WSPSNR VIF VMAF SSIM IVPSNR

Classroom 22.36% 10.87% 16.42% 10.28% 10.24%
Museum 7.82% 4.07% 8.77% 4.48% 4.78%
Hijack 19.83% 14.91% 20.06% 15.88% 9.20%
Kitchen 22.64% 16.35% 30.19% 16.30% 5.65%
CG 18.16% 11.55% 18.86% 11.74% 7.47%

Painter 3.37% 3.75% 2.92% 3.37% 3.33%
Frog 3.85% 2.70% 5.04% 4.14% 1.48%
Fencing 11.41% 11.18% 10.23% 10.31% 9.46%
NC 6.21% 5.88% 6.06% 5.94% 4.76%

Average 13.04% 9.12% 13.38% 9.25% 6.31%

Table 4: BD-rate reduction.

4.3 Rendered video quality from com-
pressed data using the standard and
proposed approaches

As presented in the previous section, HEVC-SCC al-
lows for decreasing the total bitrate of immersive video
data. However, the user of the immersive video sys-
tem is not concerned about the quality of atlases or cor-
responding depth maps but pays attention to the final
quality of the video he or she is watching. Therefore, in
this section, the quality of synthesized virtual views is
considered.
In Figs. 12 and 13 the RD-curves for synthesized vir-
tual views are presented. On the horizontal axis, the to-
tal bitrate (base views + depth maps and atlases + depth
maps) is presented, on the vertical one – the average
value of WS-PSNR for luma component of synthesized
video. As presented, the proposed approach allows for
increasing the quality of synthesized views (compared
to HEVC main profile) while preserving the total bi-
trate.
For each sequence, the average bitrate reduction
(Bjoentegaard Delta – BD) between two curves was
also estimated. The BD-rate measures the average
bitrate change. The same calculations are performed
also for 4 other, commonly-used quality metrics. All
these values are gathered in Table 4.
As presented, HEVC-SCC performs better for
computer-generated sequences. The encoding effi-
ciency for natural sequences is lower, however, even
for that type of content, HEVC-SCC works better than
HEVC main profile.
In Fig. 14 fragments of virtual views synthesized us-
ing data compressed by two encoders are compared
with fragments of input views. Note shifted and ragged
edges generated by HEVC main (at the middle column).
In general, HEVC-SCC clearly outperforms plain
HEVC for all the test sequences and all calculated
quality metrics. Therefore, HEVC-SCC is a good
choice for immersive video coding.
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Figure 12: Rate-distortion curves for video synthe-
sis from immersive video codecs with HEVC-SCC
as compared to HEVC main profile: computer-
generated sequences; red: HEVC, green: HEVC-
SCC. Vertical axis: PSNR [dB], horizontal: bitrate
[Mbps].

5 CONCLUSIONS

Immersive Video Coding is a new compression tech-
nology that is currently in the process of well-advanced
standardization. The technology provides a solution for
the generation of video sequences and parameters that
represent immersive video. The video sequences may
be then compressed using standard video coding tech-
niques. In the process of development of this technol-
ogy and its standardisation, HEVC coding was consid-
ered along with some experiments with VVC (Versatile
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Figure 13: Rate-distortion curves for video synthe-
sis from immersive video codecs with HEVC-SCC
as compared to HEVC main profile: natural se-
quences; red: HEVC, green: HEVC-SCC. Vertical
axis: PSNR [dB], horizontal: bitrate [Mbps].

Figure 14: Fragments of: input views (left), views
synthesized using data encoded using HEVC main
profile (middle) and views synthesized using data
encoded using HEVC-SCC (right). From top:
ClassroomVideo, TechnicolorMuseum, Technicol-
orHijack.
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Video Coding) [Che20]. For Immersive Video Coding,
both technologies proved to be useful and efficient ac-
cording to the results obtained by MPEG. In this paper,
we demonstrate that the overall rate-distortion coding
efficiency may be even further improved by the use of
the standard HEVC-SCC (HEVC Screen Content Cod-
ing). The proposed usage of HEVC-SCC requires no
modification of the current draft for the standard on Im-
mersive Video Coding [ISO20].

The novelty of the paper also consists in the applica-
tion of the Screen Content Coding (SCC) technique for
the compression of atlases that represent the immersive
video. It is a new use of Screen Content Coding that
was developed for completely other applications, i.e.,
with the aim to compress computer-generated images,
like those transmitted to remote screens. This technique
with the Intra Block Copy tool was never meant as a
tool for the compression of immersive video content,
in particular, natural immersive content acquired using
cameras. The abovementioned application of Screen
Content Coding was never described in the references.
To our best knowledge, such an application is described
for the first time in this paper.

In the paper, the application of Screen Content Coding
to immersive video compression is experimentally
tested in the framework of the Test Model for Im-
mersive Video [ISO19d] that was recently developed
by MPEG as a framework for the forthcoming in-
ternational standard of immersive video compression
[ISO20]. Currently, in the immersive video community,
the research is executed using HEVC or 3D-HEVC
codecs within the Test Model for Immersive Video.
The idea of the paper is to replace HEVC or 3D-HEVC
by another standard profile of the HEVC video codec,
i.e., HEVC-SCC. It is worth to underline that the ap-
plication of SCC (like HEVC-SCC) does not interfere
with the general structure of the Test Model proposed
for the future standard. For the standard test video
sequences and the normalized experimental conditions
used in the research on immersive video coding, the
experimental data demonstrate that the application
of HEVC-SCC is significantly more efficient than
the traditional application of HEVC or 3D HEVC
codecs for the compression of atlases representing
the immersive video. This is clearly demonstrated for
all MPEG test immersive video sequences available
together with their reference data.

The quality improvement of the virtual views corre-
sponds to the bitrate reduction of up to 20%. This
quite a high value if we keep in mind that the whole
HEVC technology has brought about 50% of the bi-
trate reduction. The experimental data (cf. Section
4.2) indicate that the main improvement yielded by
the application of SCC is related to the higher fidelity
of the decoded depth maps, and it is well-known that

the fidelity of depth significantly influences the quality
of the virtual views. For the approach proposed, the
quality improvement of virtual views is also higher for
computer-generated content than for natural content ac-
quired from cameras.
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ABSTRACT
Nowadays, public bicycle sharing systems have become popular and widespread across the world. Their usefulness
largely depends on their ability to synchronize with citizens’ usage patterns and optimize re-balancing operations
that must be carried out to reduce outages. Two crucial factors to tackle this problem are stations’ characteristics
(geography, location, etc) and the availability of bikes and drop-off slots. Based on the requirements and input from
regular users and experts in policy-making, system operation, and urban planning, we have created a web-based
visualization system that facilitates the analysis of docking stations’ behavior. This system provides the first group
with the availability prediction of both bike and free slots in docking stations to assist their planning. Besides,
the system helps the second group understand patterns of usage and get deeper insights (e.g. need for resizing or
complementary transportation systems) to facilitate decision-making and better fulfill the citizens’ needs. In a final
evaluation, both groups found it highly useful, effective, and better suited than other existent applications.

Keywords
Human-centered computing, Visualization systems and tools, Visual analytics.

1 INTRODUCTION
Bicycle usage is undergoing a rapidly growing popu-
larity in urban areas thanks to its multiple environmen-
tal, economic, social, and health benefits. Bicycles are
commonly used as a replacement to other transportation
systems for short-to-medium distance trips and for the
so-called last-mile (or first-mile) connections to other
transportation modes. Most bicycle sharing systems re-
quire citizens (from now on called regular users) to bor-
row a bike by going to one docking station, and later re-
turn the bike to another station. This use is commonly
complemented by web services or mobile applications
where regular users can check availability or current oc-
cupation of the stations, as well as booking bicycles in
advance. However, information available through of-
ficial applications is scarce or not reliable enough and
oftentimes the interfaces are poorly designed.

Moreover, applications for system monitors and do-
main experts in urban planning and policy-making

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(from now on called advanced users) are not suited for
proper monitoring of the system as a whole, since they
lack information that may be relevant to these users
such as the predicted occupation of a docking station
or usage patterns.

The objective of this study is to pilot a web-based vi-
sualization system that takes into consideration the re-
quirements of regular and advanced users and provides
additional and novel features not existing in other sys-
tems. For instance, the prediction of slots or bicycles of
each type (mechanical or electrical), analysis of dock-
ing stations suffering outages, or a prioritized list of sta-
tions close to a point of interest.

2 PREVIOUS WORK
Public bicycle sharing systems (from now on BSS),
have received a lot of attention lately, since they are
a huge opportunity for medium and large cities to re-
duce pollution and increase the health of their citizens,
among other benefits [Ric15].

The analysis of how the BSS are used has been ad-
dressed in various ways. One common approach is
to study the effect of urban configuration (e.g. eleva-
tion of stations) on bicycle flows and the destination
preferences [KPL, FR14, FIE15]. Other studies mainly
focus on building mathematical models to analyze the
characteristics of bike trips or to make trip predictions
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[BAF*11, HMO18]. The effect of weather and other
variables such as the calendar events has been also in-
vestigated [YZWB20]. These studies mostly illustrate
their findings with charts and maps, but no visual tool
has been developed to help users to drill down the data.
Another area of interest is optimizing re-balancing op-
erations to generate efficient vehicle routes, but we fo-
cus on a wider audience that includes citizens and ad-
vanced users.

With a different focus, several approaches have been
developed to face the problem of BSS visualization
with diverse goals in mind. In some cases, the visual-
izations are simply static depictions, while in others,
authors provide fully interactive tools or propose
the development of multiple channels to increase
engagement. The individual customers’ journeys have
been analyzed by different authors [WBD14, BWB14]
to gain insights into people using those services. In
contrast, our approach focuses on the analysis of
stations’ behavior instead of people’s. Other inves-
tigations develop multiple bicycle sharing systems
[OMS18, OCB14, MDO*20], but they are restricted
to the analysis of aggregated data. Hence, insights
on a single system to the detail required by advanced
users cannot be extracted from their work. Several
studies propose interactive visualization systems.
[OST*16] explores a BSS behavior with multiple
views emphasizing the balance of both weekdays and
weekends. [DTL20] facilitates the exploration of what
they call patterns of usage which can be extracted using
a combination of spatial, temporal and destination
dimensions, and clustering. Therefore, even when we
share with these studies their focus on the availability
of bicycles and clustering, we cover other purposes,
such as the prediction of station behavior, as well as
understanding long outages or resizing needs.

3 ANALYSIS OF REQUIREMENTS
After the analysis of several BSS, we identified some
limitations on how the information is provided (e.g.
clarity on the number of available bikes), usability
problems, or lack of details (prediction of future
availability). Given that the reported problems and
digital maturity largely vary among public BSS, we
have concentrated on Barcelona’s BSS named Bicing.
We performed a number of semi-structured interviews
with several regular and advanced users to get more
details of their needs. We were especially concerned
with issues that can be addressed using the publicly
available data. As a result, we identified the following
requirements that are typically provided by official
applications:

R1: Clear availability of bicycles and free slots.

R2: Distinction between mechanical/electrical bikes.

R3: Closest stations to a certain position.

A surprising factor found is the importance of clearly
distinguish between the availability of mechanical and
electrical bikes. For instance, some regular users re-
ported that if an electrical bike is not available they will
choose an alternative form of transportation (electrical
motorbike, underground,. . .). In addition, regular users
also have some needs not fulfilled by the current sys-
tems:
RU1: Prediction of bicycles or slots availability in the
next one or two hours.
RU2: Prioritized list of stations closest to a point.
RU3: Distance and slope to a certain station.
RU4: Usage ratio: number of bicycles that are picked
up or dropped off in a certain time interval.
In fact, real-time information of docking stations’ state
is useful, but predictions are also necessary for planning
trips in advance, especially short term. Furthermore, in-
formation regarding the three of four closest stations to
the one of interest together with the distance and slope
needed to reach them is also a must for all users. Addi-
tionally, for stations with high usage, one user also sug-
gested having some flow ratio that helps to understand
whether bicycles might be available even if a certain
station is currently empty.
On the other hand, advanced users highlighted the need
to address problems such as re-balancing the docking
stations, the overall flows of stations along the day and
the week, as well as the proximity of other means of
transportation systems; adding to our list of require-
ments the following ones:
RP1: Daily docking station usage
RP2: Usage patterns for multiple stations.
RP3: Visual exploration of stations’ behavior around a
certain position.
RP4: Stations with a higher degree of outages (might
require increase/decrease their capacity).
Fulfilling these needs may facilitate the understanding
of how the system works as a whole and helps advanced
users to better plan BSS optimization.
To address all the collected requirements, we have de-
signed a multiple-view visualization system and sev-
eral features intended to help both regular and advanced
users with the tasks that are more likely going to be use-
ful for them.

4 BSS EXPLORATORY ANALYSIS
Our application offers two different modes: User de-
signed for regular users and Planning with features
useful for advanced users; both are based on the re-
quirements presented in section 3. Although currently,
we do not restrict the views to access, the idea is to
present as initial view, the one corresponding to the type
of use expected. In both cases, the main screen consists
of multiple coordinated views, as described next.
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4.1 User mode
The user-mode has been tailored to solve regular users
common tasks which include: i) Current status of dock-
ing stations, ii) prediction of future availability of bikes
and free slots, iii) closest stations to a point of interest or
position, and iv) information regarding the frequency of
stations’ usage. As in many other applications, we build
the view around the map of the city, where we show the
availability of bicycles, as shown in Figure 1.

Users can access the availability of free bicycles or slots
in two different ways: i) Clicking on a docking station
in the map, and ii) Selecting a point of interest in the
left menu. The outcome of any of those interactions is
a set of views that provides the following information to
the user: current availability and prediction, prioritized
list of closest stations, and usage ratio chart.

The availability information solves requirements R1
and R2. Moreover, since this can be triggered using
a nearby docking station position in the map through
the points of interest, it also solves R3. The predic-
tion widget is a stacked bar chart that encodes the num-
ber of available bikes and free slots for the following
two hours, solving RU1. Given that the available bicy-
cles may be scarce (and bike reservations are not visi-
ble through the official applications), we also provide a
list of the closest stations. The list is prioritized based
on two parameters: distance and altitude. This facili-
tates the user to make informed decisions (such as not
going uphill if sweating could be an issue) and solves
RU2 and RU3. Finally, the usage ratio is presented as a
line plot to help users decide whether bicycles might be
available even if the docking station is currently empty
(fulfilling requirement RU4). This is reported as a quite
common situation typically around large transportation
hubs. In order to solve the most common tasks, we have
designed a set of interactions in the different views de-
scribed next, based on the view that triggers them.

Control Panel. The user view can be configured by us-
ing different tools on the left panel. By default, we ren-
der the bicycles’ availability on the map (color-coded),
but the user can swap it to show free slots. Second, the
user can change the day of the month and the hour and
make bus, metro, and train stations visible by toggling
them on. A widget that gives the altitude of the docking
stations can also be used to filter out stations. For users
that may not be completely familiar with the city, we
also enable an option to show points of interest such as
the main transportation hubs and some special highly
touristic zones such as Sagrada Família or Park Güell.
By selecting one of those points the closest stations are
highlighted and their predicted availability is shown.

Map navigation. The map provides the usual naviga-
tion features such as drag and zoom. Hovering over
one station on the map will highlight it, together with
the closest ones by increasing their size. Moreover, the

highlighted station displays a popup that indicates its
ID and current availability data (see Figure 2). Sim-
ilarly, the elevation chart, located in the control panel,
emphasizes the altitude of the pointed station. Selection
is carried out by clicking. Upon selection, the rightmost
view is populated with detailed information of bicycle
availability for the following two hours (30 minutes in-
tervals) for the selected station and the closest ones and
the usage ratio chart. Figure 3 illustrates this.

Prediction panel. As discussed in section 3, decisions
can be made taking into account three factors: i) avail-
ability of mechanical bicycles, ii) availability of electri-
cal bikes and iii) free slots. Therefore, this view con-
tains color-coded information to depict the number of
elements in each category for the selected point and the
four closest stations that have been prioritized accord-
ing to distance and slope. Hovering over each of those
categories in any of the bars highlights it in the other
bar charts to facilitate quicker inspection of the data, as
shown in Figure 4. A line chart indicating the activ-
ity is also displayed. This helps the user to distinguish
between stations that may be empty but without activ-
ity and others that might be currently empty but have
a high amount of activity, thus resulting in a potential
bike available in the following minutes.

Getting insights. This set of features secures that users
get relevant information from the BSS to make more
informed decisions. For example, one can get an idea
of how difficult is to get a bicycle near a certain metro
or bus stop by activating the transportation layers and
changing the day and hour. By filtering stations us-
ing the elevation chart and checking the activity ratio
and the predicted availability, we can also see how the
stations with higher elevation get empty soon and then
keep low activity throughout the day. More complex
cases are analyzed in Section 6.

4.2 Planning mode
The planning view provides more information related
to groups of stations, so the advanced users can an-
alyze their behavior collectively, instead of exploring
the stations one by one. To this end, we implement
useful features such as clustering based on the pickups
and drop-offs (RP2), heatmaps that show the status of
all the stations along the day (RP4), sliders to explore
the behavior of stations per time frame (RP1), among
others. Figure 5 shows this interface. As discussed in
section 3, advanced users have many more needs than
a regular user, so it is necessary the development of a
larger set of higher-level features. For instance, the de-
tection of stations with long outages can help system
operators to better plan re-balancing operations, deter-
mine which regions of the city may require a new dock-
ing station, or which stations need to be resized. Be-
sides, urban planners can complement zones with a low
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Figure 1: Interface for regular users. The user has selected the stations that are above a certain elevation on a
Friday at 13:00. The map shows the availability of bicycles in stations (red colors indicate low availability). The
right view displays the prediction for the next two hours. After selecting the one she is interested in, the rightmost
view shows the closest stations prioritized by difficulty to access (altitude + distance) and the prediction shows that
only one e-bike might arrive. Moreover, their activity is very low (bottom line chart).

Figure 2: By hovering over the map, stations are high-
lighted and a donut chart glyph with the ID of the sta-
tion and its availability is shown.

number of stations or large outage periods with other
transportation means, such as bus stops. To solve their
most common requirements, this view is divided into
five components: Control panel, interactive map (RP3),
status, clusters, and details view.

Clusters. After analyzing different strategies (e.g.
pickups vs availability), both the pickups and drop-offs
seem to produce an understandable classification of
docking stations. We also separate the clustering for
weekdays and weekends, since weekends tend to have
a much smaller amount of activity and completely
different patterns, as shown earlier [OMS18]. More
details are given in section 5. The result for weekdays
is a set of 5 clusters that can be described as:

Cluster 1: Peak of pickups in the 8-10 a.m. range and
medium usage along the day. In general, low availabil-
ity during the day.

Cluster 2: Peak of pickups in the 8-10 a.m. range and
strong intensity of use during the afternoons, especially
arrivals. Relatively low availability the central hours of
the day.

Cluster 3: Low use and availability during the day.

Cluster 4: A high number of arrivals from 7 a.m. and
intense use along the day, no clear availability pattern.

Cluster 5: Peak of drop-offs in the 7-9 a.m. range and
medium activity with more departures than arrivals for
the rest of the day, especially in the afternoon. They
offer a healthy availability balance in the central hours
of the day.

The identified behavior, relatively sharp peaks in clus-
ters early in the morning but more distributed activity
along the evening, and some usage peaks around 7-10
p.m., seems to align with the fact that working times
in Barcelona start early in many jobs, but the end of
the working journey is less defined, as found in other
reports [ftIoLC*10].

Control panel. By default, the planning view displays
weekdays data clustered and the cluster panel is show-
ing the arrivals. Likewise, stations on the first cluster
are selected and colored in the map panel using clus-
ter information, and the stations with outages are em-
phasized. However, users can swap between different
views with the tools on the left panel to show the infor-
mation that suits their interest at most. As before, the
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Figure 3: The prediction view provides the current sta-
tus of the selected station and the closest ones, and the
availability prediction for the following 2 hours in 30
minutes intervals. Finally, the bottom activity chart in-
dicates whether the station is highly active or not.

day, hour, and transportation hubs can be changed, and
stations can be filtered by their altitude, but there is no
option to display the points of interest.

Map Navigation. As in user view, it is possible to drag
and zoom. Using the control panel, it is easy to view
the information for one cluster or all the stations and
change the station’s color by their cluster or by their
availability. Hovering over one station will highlight
it together with the closest stations, and will show a
popup with the current availability. Station selection
is carried out by clicking. This operation also empha-
sizes the pointed station in the elevation chart. The se-
lected station and the closest ones are also highlighted
in the status and cluster panel and the information panel
is updated with the predicted availability for the next
two hours at 30 min intervals and the usage ratio for the
selected station.

Status panel. It is composed of three heatmaps that
show arrivals, departures, and availability of all stations
in the selected cluster along the day to facilitate the ex-
ploration per time frame and easily identify patterns.

Figure 4: Exploring the status and prediction of a dock-
ing station and its neighborhood. After selecting a sta-
tion on the map, we can hover over the prediction charts
to see which ones will have electrical bikes, and the ac-
tivity of the station is also highlighted, together with its
location on the map.

Stations in a cluster are sorted according to the simi-
larity between them, taking as an initial reference the
medoid. Station and hour selection is done by hover-
ing, this action also shows a popup with the percentage
value of arrivals, departures, or availability and high-
lights the closest stations. The pointed station and the
closest are emphasized in the elevation chart and the
cluster and map panels. The control panel can be used
to highlight the stations with extremely large outages.

Clusters behavior. It shows the information for all sta-
tions divided by clusters along the day and is useful
to check different patterns between them. By default,
the information of arrivals is displayed but it can be
changed for departures or availability using the control
panel. When a cluster is selected, the color of its cor-
responding plot changes to easily identify it. If users
hover over a station, this and the closest ones are em-
phasized, even if they belong to a different cluster. This
action also highlights the same stations in the map, sta-
tus, and elevation chart.

Information panel. This panel is divided into three
sections. The first one contains the predicted availabil-
ity, for the selected station in the following two hours
divided by electrical, mechanical bikes, and slots avail-
ability. The second part corresponds to a popup with
information regarding its capacity, altitude, and current
status. The last section shows the usage ratio chart.

Getting insights. The above-mentioned features may
reveal interesting patterns that would be difficult to
achieve with regular apps. For example, we can infer
that rebalancing operations happen when we see sudden
availability changes at night (or followed by very low
activity ratios). Line charts can also reveal which dock-
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Figure 5: The planning interface. The map may encode the different clusters or the availability, together with
information of potential outages. The heatmaps show different aspects of the usage: arrivals, departures, and
availability. On the right, the view displays the behavior of each cluster, using the same usage state defined in the
left panel. In this case, she has selected cluster 2, which groups several stations in the center of Barcelona. By
hovering over them, we can see that they keep a high degree of activity along the central hours of the day, as may
be inferred from the bottom heatmaps.

ing stations belong to mostly residential zones (e.g.
high number of pickups in the morning and evening and
very low activity in the middle of the day).

5 IMPLEMENTATION
Interface. The interface is built using HTML and it’s
composed of two different tabs: PlanningHome and
UserHome. The code is built using Flask for manag-
ing HTTP calls and rendering templates. Views are im-
plemented using D3, and Leaflet library for the maps.
Data management is carried out in Python, using pan-
das and numpy. The forecasting and initial data pro-
cessing, which includes cleansing, clustering, and data
derivation algorithms are performed using R.

Data gathering and processing. The original sam-
ples are updated approximately every 5 minutes hav-
ing more than 3.5 million records every month. Con-
sidering that 2020 data had an abnormal behavior due
to the lockdown period and several mobility restric-
tions, we use data from 2019 to train and evaluate the
models and deploy the use cases. Moreover, the Bic-
ing provider company has changed during 2019 which
means there is no continuity in the information during
the first months since the change occurred gradually.
Therefore we focus on the last months of 2019 from
September to November.

The Barcelona BSS has 424 docking stations. We first
clean the data to avoid including information of dock-
ing stations that could appear in the set but are still not
used, a special field in the set denotes it, as well as

others that were not working properly. The final re-
sult is a set of 409 stations. Also, garbled information
is cleaned such as dates outside the analyzed range or
negative data availability. From this data, we calculate
additional information necessary to deploy the visual
interface: day of the week (and month), the number of
total docks available in each station, and we summarize
data about the number of pickups and drop-offs (abso-
lute and relative). Additionally, the Bicing usage data
is combined with other sources that include informa-
tion such as the GPS position of the docking stations
as well as their altitude. We also add other public data
such as the location of all metro, bus, and train stations
and some information regarding the large transporta-
tion hubs in Barcelona city, such as Barcelona-Sants or
Plaça Catalunya.

After the data is cleaned, we apply different algorithms
to derive the data that is later used in our visualization.
These includes: i) Clustering docking stations, ii), clos-
est stations calculation for all stations, iii) calculation
of usage ratios, iv) calculation of outages, and v) pre-
diction of usage per station.

Clustering. It can be addressed in different ways con-
sidering several aspects. First, data partitioning can be
done for different time intervals (months, weeks, days,
hours. . .). In our case, after some experimental evi-
dence, we find that the behavior changes depending on
whether the day is a weekday or a weekend [OMS18].
Second, we can use data of pickups, drop-offs, avail-
ability, or some ratio of usage. After testing different
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combinations, we discover that data from pickups and
drop-offs give us better results clustering the stations to
discover their behavior. There are many clustering al-
gorithms [RCC*19] that may be suitable for different
tasks. Key to the clustering algorithm is the selection of
the distance measure, and we have many options such
as the Euclidean, correlation, temporal correlation, or
dynamic time warping. Depending on the measure se-
lected, our similarity measure will be more or less re-
sistant to noise, and to time shifts [SGP16]. After test-
ing some of the most widely used algorithms (PAM,
K-means, DBSCAN, AGNES), we find that both Par-
titional Around Medoids (PAM or k-medoid) [KAU87]
and K-means [M*67] outperform both internal and sta-
bility results and are suitable for our problem. PAM
method has the objective of minimizing the average dis-
similarity around the nearest medoid (always an ele-
ment of the original dataset) which is recomputed in
each iteration. K-means works in the same way, but
groups the elements of a cluster around the nearest
mean. Using the PAM method (which gives better re-
sults for the silhouette coefficient), we build two clus-
terization sets: one based on the activity score during
weekdays and the other for the weekends. A similar-
ity matrix is defined based on Euclidean distance, and
the silhouette analysis is executed to test the degree of
separation between the clusters.

Closest stations. When a docking station is empty and
the user needs to take a bike, or when it is full and the
user needs to drop off one, BSS do not provide informa-
tion on the closest ones. To build this feature, we need
to have some information on what are the closest sta-
tions. In our case, this is precalculated and attached to
each element. Computation is pretty simple and has a
quadratic cost. For each docking station, the four clos-
est are found using the earth distance metric from fos-
sil package in R and ranked using their distance to the
original point and their altitude.

Usage ratios. Usage ratios are derived from the fre-
quency of pickups and drop-offs. This ratio helps us to
understand if a docking station status corresponds to a
high dynamic behavior or a static behavior. It is calcu-
lated as follows:

usei jk = ∑arrivalsi jk +∑departuresi jk

Where i = StationID, j = day, k= hour

To better interpret this ratio, we re-scale the value to
make all the elements lie between 0 and 1, having a
common scale:

UsageRatioi jk =
(usei jk −MinUse)
MaxUse−MinUse

Where i = StationID, j = day, k= hour

Outages ratios. Two different ratios are calculated:
one used to identify stations that have a low number
of bicycles available (10% or less) most of the day and
the other to label those stations that have a high number
of bikes available (75% or more) during working hours.
These ratios are estimated with a daily frequency divid-
ing the numbers of hours when a station i had an out-
age of type k by the number of total hours (24 hours for
k=empty, and 11 hours for k=full). The generic formula
used is presented as follows:

outageRatioi jk =
∑outagei jk

Totalhoursk

Where i = StationID, j = day, k= type of outage

Usage prediction. Usage forecasting is extremely im-
portant for both types of users. For advanced users, it
is key for re-balancing stations and studying mobility
patterns while for regular users is essential to plan fu-
ture trips. Several studies have been conducted to pre-
dict bike-sharing trips using different methods and data
[LHP18, XJL18, WK18]. These contribute valuable in-
sights to understand the factors that affect bike-sharing
demand. We use different features to train the models,
which can be classified as station-related and weather
features. Station-related features are the day, time slot,
number of available bikes, and station’s capacity. The
weather features are composed of temperature, wind,
humidity, atmospheric pressure, and weather classified
in four categories: sunny, cloudy, light rain, and heavy
rain. As mentioned before, the provider company was
changed during 2019 causing data inconsistency during
this transition. To tackle this, the models are trained
using data from September and October 2019 and test
with November data.

We test two forecast models: Random Forest [FW17]
and Prophet [TL17]. As there are mechanical and elec-
trical bikes available in each station, we run both mod-
els for each station and predict both mechanical and
electrical bikes. Besides the predicted variable (avail-
ability) is transformed using the natural logarithm but
results are not improved. Different measures are used
to compare both models, but we keep RMSE since oth-
ers (e.g. MAE, MAPE) have a very strong correlation
with it and do not add valuable insights. Random For-
est is the model which gives better results with lower
RMSE levels for both scenarios especially for electri-
cal bikes forecasting using non-transformed data. It is
optimized in terms of the number of trees (500 trees).
Additionally, we create a different error measure con-
sidering the scenarios that affect the users: no bicycles
available or no slots to return bikes. The stations are di-
vided into three categories: i) Available bikes less than
10% ii) Available slots less than 10% iii) Healthy sta-
tus (bikes between 11-89%). Finally, we evaluate how
many times our model predicts a different status. The
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results are promising, for mechanical bikes only 33% of
times the status is different while for electrical bikes the
error is less than 6%. These results suggest the model
applied has reasonably good prediction accuracy. How-
ever, it can be improved as systems mature and data is
collected across a longer period.

6 USE CASES
To illustrate the use of the application, we design two
different use cases that correspond to the two views de-
signed: one for a regular user-oriented profile, and an-
other for a planning-oriented profile.

6.1 Availability and free slots prediction
The first use case consists of a multi-query situation:
the user is leaving from a meeting and she wants to
know where is the closest docking station and whether
it has electrical bikes because she is going to an elevated
part of the city. Then, she wants to check the availabil-
ity of free slots near her destination in one hour or later.

To solve the problem, she has to look for a docking sta-
tion using the map. By hovering with the mouse, the
visual marks indicating the closest stations scale up and
are emphasized with an outline. Given that they are col-
ored according to availability, it is easy to infer whether
there are free bikes. If she is close to one of the most
visited areas in the city, she can also use the left panel
to select the closest stations to that point. By clicking
on the station of interest, a list of the closest stations
will appear on the right panel. Each station shows a
horizontal bar chart where the first bar (top) is the cur-
rent availability and the others are the prediction for 30
minutes slots. Electrical bikes are encoded in green,
thus, it is easy to identify their availability in any of the
neighboring stations. By hovering over the green bar,
the concrete number can be read. Additionally, the us-
age ratio chart at the bottom is also highlighted for the
currently selected station. Therefore, if the availabil-
ity is low, she can have extra information on whether it
is due to the lack of movement or the high throughput
by checking it. Similarly, to determine the best place
to leave the bicycle she can use the map. By hovering
over a docking station near her destination, she will be
able to see whether there are free slots. If there are no
slots are available, by clicking on it, she can see a pre-
diction of future available slots in the selected station
as well as in neighboring docking stations. The list of
docking stations specifies the slope and the distance to
cover. This way, she can make more educated decisions
on which stations are adequate for her needs.

6.2 Analyzing stations with severe outages
In this case, an urban planner wants to analyze docking
stations that suffer outages. If that is the case, she will
be interested in knowing where, and how other closest

stations behave in the same time intervals. She will use
a deductive method thanks to the characteristics pro-
vided by the application.
By selecting the planning view and the outages op-
tion, the stations that have outages or are full an impor-
tant part of the day are highlighted on the availability
heatmap. To increase clarity, she may set the color of
the stations on the map to encode the availability in-
stead of the cluster color, using the left control panel.
By hovering over the availability heatmap the station
under the mouse and the closest stations are empha-
sized to further investigate. For example, she sees a
group of 3 stations that have outages, but one of them
(number 3) behaves slightly differently along the day,
as shown in Figure 6-left. She may hypothesize that it
might be related to the presence of public transporta-
tion. Effectively, if she toggles metro stations on, there
is a metro station, La Llacuna, which is closer to the
docking stations that have severe outages (see Figure 6-
right), while station number 3 is slightly farther. If the
bus stops layer is activated, she sees that station 3 lies
next to two bus stations. It turns out that those are
precisely two stations belonging to two different (and
orthogonal) lines that have highly frequent buses (the
types H and V, which travel horizontally and vertically).
Given that the same transportation ticket can be used
(within one hour and a half) to take a bus, those passen-
gers might not need to change to a bicycle because they
can take a bus instead.

Figure 6: Inspecting the behavior of four neighboring
docking stations. Station 3 does not suffer outages for
so long in the afternoon. By activating the transporta-
tion layer, we find that 1 and 2 are next to a metro sta-
tion. Moreover, we can also see that 3, is next to two
bus stations that have highly frequent buses (H and V
type) which travel in orthogonal directions, and can be
used with the same transportation ticket.

6.3 Evaluation
We evaluated our application in two different ways: i)
an informal user study with a few subscribers of the
Barcelona Bicing system, and ii) interviews with do-
main experts in urban planning, system operation, and
policy-making.
For the user study, we had an interactive remote session
(due to the limitations in mobility and social contacts
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during the pandemic) where we demonstrated the fea-
tures of the application. This was followed by an inter-
view where we discussed the possibilities and limita-
tions of the system. Then, we asked them to complete a
standard questionnaire offline. The questionnaire con-
sisted of a series of questions that should be evaluated
using a 1-7 Likert scale where 1 means totally disagree
and 7 means totally agree. Questions were related to
their experience with the Bicing system application and
how the features of our application could benefit them.
The average of obtained results are quite positive:

Question Grade
It is useful to better plan usage 6.7
I would use it to check station status 6.7
I would use it to check future availability 5.7
Usage prediction would help me decide 7.0
Importance: stations altitude & closeness 6.0
Utility: check availability in relevant areas 6.0
Utility: prioritized list of closest stations 6.7
Information is relevant for a Bicing user 7.0
Ease of use 6.0
More useful than current website or app 6.3

Table 1: Results of users’ interviews

We interviewed three domain experts, an architect with
experience in urban planning, a politician with respon-
sibilities in policy-making in the area of Barcelona, and
a technician that supervises the bike-sharing system of
a small city. We asked them to complete a question-
naire regarding potential features of the system. These
advanced users agreed that being able to see the usage
patterns is strongly useful to better understand citizens’
behavior. Some features were highly rated such as the
clustering based on stations’ behavior and their repre-
sentation using heatmaps (especially useful for the cre-
ation of mobility policies). They also considered the
availability heatmap more relevant to monitor the sys-
tem as a whole. Bikes’ availability, altitude, and dis-
tance to the neighboring stations were quite interest-
ing for re-balancing purposes. Detailed information on
times of high usage of docking stations and availabil-
ity prediction was found very useful for transportation
planning and policy-making. Stations that are most of
the time full or empty were considered extremely im-
portant for mobility planning. After the system was
almost finished, we showed an interactive demo to a
technician that supervises the BSS in his city, and he
found that the usage patterns shown by the application,
and no present in others, are highly useful to make de-
cisions such as changing the placement of a docking
station, improving the public transportation in certain
locations, getting regular reports on the status and us-
age of the system, and monitoring the real usage (be-
yond to what the system operator company actually re-
ports). All of them are aspects that they cannot analyze
with their current means. As seen, both regular and ad-

vanced users were enthusiastic with the application, and
have provided very important feedback for future im-
provements.

7 CONCLUSIONS
We implement a full web-based visualization system
to explore and analyze public BSS. Barcelona Bicing
system is used as our first scenario. Compared to cur-
rent alternatives, we provide much-desired features for
regular users such as availability prediction and near-
est docking stations prioritized by distance and altitude.
For advanced users, we also show station patterns along
the day, emphasized stations with long outages, and
cluster the stations based on their behavior.

However, the information we used is constrained to the
one that is available through the Barcelona Open Data
website, and unfortunately, there is only historical data
available through this platform. The real potential of
this application can be leveraged with real-time data
that would require access to the original data sources
and permanent computer resources. Due to pandemic
and temporal limitations, the sample taken to evaluate
the system has been reduced and a larger quantitative
study would be needed to characterize it with greater
precision. Additionally, the interaction with the system
operator was challenging due to the change of operator
and the pandemic.

There are several development lines we are considering.
Regarding the prediction, we have already tested Ran-
dom Forest and Prophet models but we plan to evaluate
other algorithms’ performance. The used data is lim-
ited in time due to the change in the operator and the
effect of the 2020 lockdown. So, we plan to perform a
deeper study on the most suitable prediction algorithm
whenever the system is not interrupted again and re-
covers normal usage patterns. In addition, the current
databases do not contain detailed information regarding
the trips, that is, the concrete pickup and drop-off dock-
ing stations of each bike. This would open other pos-
sibilities to perform more advanced analysis. We have
had contact with the Barcelona Open Data director to
gain access to this information. Finally, another possi-
bility would be to establish relationships between BSS
and other transportation systems, for instance, informa-
tion of travellers’ arriving and leaving to Barcelona via
train stations.
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ABSTRACT 
The generation of video content from a small set of data representing the features of objects has very promising 

application prospects. This is particularly important in the context of the work of the MPEG Video Coding for 

Machine group, where various efforts are being undertaken related to efficient image coding for machines and 

humans. The representation of feature points well understood by machines in a video form, which is easy to 

understand by humans, is an important current challenge. This paper presents results on the ability to generate 

images from a set of SIFT feature points without descriptors using the generative adversarial network CycleGAN. 

The impact of the SIFT keypoint representation method on the learning quality of the network is presented. The 

results and a subjective evaluation of the generated images are presented. 

Keywords 
SIFT, features, keypoints, CycleGAN. 

1. INTRODUCTION 
 

Image or video compression is used in order to reduce 

the storage requirements of an image or video without 

substantially reducing the image quality so that the 

compressed image or video may be utilized by a 

human user. However, image and video data is 

nowadays not only looked at by human beings. 

Fuelled by the recent advances in machine learning 

along with the abundance of sensors, image and video 

data can successfully be analysed by machines, such 

as a self-driving vehicles, robots that autonomously 

move in an environment to complete a tasks, video 

surveillance in the context of smart cities (e.g. the 

traffic: monitoring, flow prediction, density detection 

and prediction). This led to the introduction of Video 

Coding for Machines (VCM) as described in 

document ISO/IEC JTC 1/SC 29/WG 2 N18 “Use 

cases and requirements for Video Coding for 

Machines” [Mpe20]. 

The current work of the MPEG VCM working group 

is concerned with the efficient transmission of both the 

stream of keypoints and descriptors intended for 

machines, classification algorithms as well as the 

stream of vision intended for humans who would have 

a view of the content that is described by a stream of 

features and feature points [Mpe20b].  

It must be made clear, the technique presented here is 

not a video compression technique. The main goal is 

to reconstruct the image based on its features only. 

Features do not carry all the information about the 

image.  Hence, we have taken the trouble to propose a 

method to reconstruct the video content represented by 

the features only. Such a reconstructed, synthetic, 

image could serve as a visual representation of content 

intended for humans and could, in some situations, 

replace a stream of vision transmitted in parallel. 

Moreover, an attempt has been made to generate video 

content based only on keypoints and not on the 

descriptors that accompany such keypoints in SIFT, 

SURF or MPEG-7 CDVS streams [Pas12, Dua15, 

Mpe17]. This approach is unique and there is a lack of 

such solutions in the literature. 

The paper is organized as follows. In Section 2, we 

briefly review techniques of partial reconstruction of 

an image from its features only. In Section 3, briefly 

the SIFT technique is presented. In Section 4, the 

GAN networks, with special attention to CycleGAN 

networks are presented. In Section 5, we discuss our 

proposed reconstruction algorithm and the impact of 

different approaches to defining input feature maps on 

the reconstruction process. The extensive quality 
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assessment results are presented in Section 6, and a 

final summary is given in Section 7. 

 

2. RECONSTRUCTION OF AN IMAGE 

FROM ITS FEATURES - REVIEW 
There exist some analytical approaches of 

reconstruction of an image from its features [Vond13, 

Deso17, Deso18]. The reconstruction is built from the 

functions, which gradients match to the original 

descriptors. The results are mostly monochromatic 

and sometimes recover the object shapes well. 

Other group of techniques are the techniques of partial 

reconstruction of an image. Work [Wein11] proposed 

to build the approximation of an image from small 

patches taken from external database. The descriptors 

from the original image are divided into subsets, 

corresponding to smaller areas. Then these subsets are 

matched to the features stored in database. The best 

matches point to the small patches, which should be 

placed in appropriate place in the reconstruction. The 

images obtained by this method looks like mosaic of 

patches. However most of the details of image like: the 

corners, edges are reconstructed, so the content can be 

recognized by the human. 

Next group of techniques are methods that use the 

convolutional neural networks or, more precisely, 

using generative adversarial networks. At  the output, 

the reconstruction looks natural, but the results 

strongly depend on the learning dataset used. In paper 

[Wu20c], the authors proposed an accurate generative 

model to reconstruct an image based on its SIFT 

features. The designed generative model consists of 

two networks, the first one tries to learn the structural 

information of the image by transforming from SIFT 

features to LBP (Local Binary Pattern) features, and 

the second one aims to reconstruct the point values 

with LBP support. The results are for the test sets very 

good. The authors conclude that it is much more 

difficult when only the SIFT descriptors are accessed 

and not their coordinates, then "modest success" of 

image reconstruction can be achieved for highly 

structured images (e.g. faces), but the technique fails 

for more general images. The image can be 

reconstructed with reasonably good quality from the 

SIFT coordinates alone. Another article showing the 

possibility of reconstructing a face image on the basis 

of its descriptors is [Wu19b]. The authors proposed a 

novel end-to-end face reconstruction model from local 

SIFT descriptors based on the Conditional Generative 

Adversarial Networks (cGAN). Their model works in 

a coarse to-fine manner. By resorting to the well 

designed multiscale feature maps generation 

algorithm and the conditional adversarial networks, 

their approach has substantially improved the 

reconstruction results compared with existing ones. 

The authors conclude that local descriptors contain a 

surprising amount of information about the original 

image. If the local descriptors (even part of them) are 

extracted, the image can be reconstructed with high 

probability.  

It should be emphasized that the features, keypoints 

are determined on the monochrome image. Color 

information is discarded in the process of determining 

the features. Therefore, the image reconstruction is 

usually a monochromatic image. Color images can be 

obtained only in techniques based on the use of GANs 

and the quality of color images will depend on the size 

of the learning set. 

3. SIFT 
 

The Scale Invariant Feature Transform (SIFT) 

algorithm was published by David Lowe in 1999 

[Low04]. It is a carefully designed procedure with 

empirically determined pair-measures for determining 

invariant and characteristic features. 

A good definition of an image feature, is a point in an 

image showing detection stability under local and 

global perturbations in the image domain, including 

perspective transformations, changes in image scale, 

and illumination variations. 

A SIFT type detector is divided into two phases, a 

keypoint detection phase and a keypoint description 

phase. In the detection phase, we determine the 

extremes in scale space for potential significant points 

in the image and their parameters. A SIFT keypoint is 

a circular image region with an orientation. It is 

described by a geometric frame of four parameters: the 

keypoint center coordinates x and y, its scale/size (the 

radius of the region), and its orientation (an angle 

expressed in degrees) (Fig.1). In the description phase, 

we assign to significant points their  multidimensional 

descriptor. Descriptors contain only information about 

gradients - high frequency information in a small area 

around the keypoints.  

 

Fig.1. A SIFT keypoint. 

We decided to use only the first phase of the algorithm 

and use only keypoints without descriptors in this 

proposal. Image reconstruction based on keypoint 

information without accompanying information about 
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the neighborhood of points is very difficult. The 

application of generative modeling using Generative 

Adversarial Networks (GANs) is very promising in 

this aspect. In particular, a cross-domain translation 

using GANs is very interested. 

4. GENERATIVE ADVERSARIAL 

NETWORKS AND CycleGAN 
 

Generative adversarial GANs [Goo14, Goo16] are 

particular machine learning architectures, developed 

by Ian Goodfellow in 2014. GANs are composed of 

two neural networks, one of them is called Generator, 

whose task is to modify the random input noise into a 

synthetic image, then this image is sent to a second 

neural network prepared to compare two images, the 

original input and the one prepared by the generator, 

this network is called Discriminator.  

Supervision of learning is limited to keeping an eye on 

the quality and diversity in the training packet. The 

generator processes the noise in such a way as to 

"cheat" the Discriminator, whose task is to detect the 

original image. Then the network that lost the 

competition is modified. In this way the full process 

of machine learning in adversarial networks is carried 

out, it is important that these networks receive a large 

and diverse training set (input images) to avoid 

overfitting the network. 

Image-to-image translation involves the creation of a 

new synthetic image through the process of learning 

the mapping between the input image and the output 

image using a properly prepared training data set 

[Gat16, Iso17]. This process usually requires a very 

large dataset, which can be difficult or expensive to 

prepare, and sometimes impossible to prepare. Cycle 

Generative Adversarial Network (CycleGAN) is a 

technique involving automatic learning of image-to-

image translation models without labels or example 

pairs [Zhu20]. The models are trained in an 

unsupervised manner using two image databases that 

can be uncorrelated. The CycleGAN network 

architecture is based on two GANs having their own 

generator and discriminator. The task of the generators 

is to transform an image from their dataset into an 

image that will match the dataset of the other network. 

The job of the discriminators, on the other hand, is to 

compare the image generated by the generator from its 

own network and compare it to the data set of the other 

network. The cycle in CycleGAN is that the images 

generated by the generator of the first network are 

provided to the generator of the second network and 

similarly the images of the generator of the second 

network are provided to the generator of the first 

network. CycleGAN can be used in, among other 

things: transferring painting styles, generating images 

from images, changing individual objects to other 

objects. In this case, we want to use CycleGAN to 

translate the data of a domain representing SIFT 

keypoints into an image. 

 

5. PROPOSED METH|OD 
 

First of all, as a basic step, it was necessary to focus 

on the representation of keypoints that could be 

implemented as feature maps in the learning process 

of the CycleGAN network. We already know that we 

only want to use information about keypoints and not 

keypoint descriptors. So we need to develop an 

efficient representation of these points.  

In the first approach, the CycleGan network was 

learned with the position of keypoints only. 

Reconstructing the image as a generative image did 

not give satisfactory results. The neural network 

returned highly distorted images after about 14 hours 

of learning (Fig. 2). The reason for this is that too little 

information was transmitted through the feature map 

representing the keypoints.  

Note that the color representation of the reconstructed 

images is obtained as an additional effect of applying 

the GAN on the training set and results from the 

learning process on a limited set of objects. The goal 

is to obtain good representations in the shape and 

details of the objects. The color representation of the 

objects will not be evaluated. 

 

  

Fig. 2. Example of generated image [Epoch 1482]. 

 

Note that the SIFT keypoints are a collection of data. 

This makes it impossible to directly feed the keypoints 

into a CycleGAN network for training. In the first 

stage, we propose to rearrange the SIFT keypoints of 

an image as a set of feature maps, which can 

accommodate the input of the coarse image 

reconstruction component. Several approaches were 

tested. The best solution was to use three parameters 

to describe the keypoint. Proposed framework is 

presented on Fig. 3. For each keypoint with position 

𝑥,𝑦 we will use from the SIFT algorithm the strength 

of the technique's response to the presence of a corner, 

and the dominant orientation based on the distribution 

of quantize gradients of the point directions (SIFT 

additionally performs Gaussian filtering to reduce the 

influence of gradients from the boundary of the region 

of interest). So we have response, orientation, and size 

parameters.  
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Fig. 3. The proposed framework. 

 

This three parameters were selected to simplify the 

training process of CycleGAN network. Each set of 

keypoints along with the parameters were converted 

into an image form thus forming a set of training and 

test images. So the three feature maps representing 

response, orientation and size respectively were 

represented as three components forming a color 

image. Hence, to match the CycleGAN network 

requirements, the response values, originally 

represented by float value between 0 and 1, are 

multiplied by 255 and represented by integers in the 

range <0,255>. This will be the blue component of the 

image. The orientation parameter representing the 

angle from 0 to 360 degrees is first normalized to 1 

and then represented by an integer value in the range 

<0,255>. The size parameter is normalized to integer 

values in the range <0,255>. 

Attribute-based color parameterization appeared to 

indicate the largest values in the gradient orientation 

attribute (green). After visualizing the descriptors and 

comparing them with previous parameterization 

attempts, another attempt was made to reconstruct the 

image. For this attempt, a fully composited set of 

images was prepared aiming to maximize the quality 

of the results. 

 

Details of the experiments 
 

We used the following implementations and 

parameters in the experiments: the SIFT features were 

extracted using the SIFT feature detector/extractor 

from OpenCV version 4.3.0. and Python.   

The first step was to determine such parameters of 

SIFT keypoints in order to train the network to 

represent the shape of the object. It was ensured in the 

SIFT algorithm that all possible feature points would 

be determined. The number of layers in an octave was 

equal to 3. The threshold to eliminate feature points 

with poor contrast was set to 0.03. The larger the 

parameter, the fewer feature points will be determined. 

The threshold for eliminating feature points on edges 

was set based on experience and the need to recreate 

the outline of the object. We left the sigma parameter 

at the default value, i.e. 1.6, and the edge parameter at 

the smallest possible value. Of course, it was possible 

to choose these parameters so that we could get more 

keypoints and "more accurate" outline, but we 

resigned from that, because a larger number of 

characteristic points did not significantly affect the 

learning of the network. A larger number of keypoints, 

however, increased network learning time. 

The CycleGAN network implementation [Lin00] was 

used in this study, with the following parameters: 

unpaired datasets with 128x128 [px] resolution, three 

feature maps as input, number of filters in the first 

layer of G and D, 32 and 64 respectively, cycle-

consistency loss equal to 10, identity loss equal to 1, 

Adam optimizer algorithm used. Learning rate 

parameter equals to 0.0002 (also referred to as the 

learning rate or step size, the proportion that weights 

are updated). The exponential decay rate for the 1st 

moment estimates is 0.5 [Kin14, Sas19]. 

The research were conducted on a computing unit with 

the following characteristics: processor: Intel Core i5 

9300H 2.4Ghz, graphics card: Nvidia GeForce GTX 

1650 (mobile) 4GB GDDR5, RAM: 16GB DDR4. 

Software: system: Microsoft Windows 10 Education 

N 10.0.18363 version 1909, environment: PyCharm 

Community 2020.2.3, Nvidia Cuda 10.1, Nvidia 

cuDNN 7.6.4.38, Keras 2.4.3, TensorFlow 2.3.2, 

OpenCV 4.5.1. 

 

Training the adversarial network 
 

Earlier attempts at the learning process were 

conducted on pre-made ImageNet datasets. The time 

required to learn the network was very long, this was 

due to the wide variety of content contained within it. 

With respect to the generative images obtained during 

testing, created from the keypoint parameterization, 

the decision was made to create a custom controlled 

dataset. 

Preparation of the dataset assumed appropriate 

composition: uniform background, strongly outlined 

object edges, diverse perspective, resolution: 128x128 

[px]. The independent dataset contained 2000 images 
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of each objects, of which 7.5% were reused to extract 

keypoints and transform their parameters into maps of 

the features represented by the image. This resulted in 

two independent training sets, which, starting from the 

assumptions of the type of neural network used, were 

uncorrelated with each other. Three unique objects 

were represented, with increasing levels of complexity 

from the perspective of the neural network used, i.e. 

banana, apple and bauble (Fig.4). 

 

 

 

 

 

 

 

Fig. 4. Example images from natural object image 

collections and sets of extracted keypoints for these 

images. Due to the requirement of unpaired sets, 

keypoints represented images of other images of 

example objects. 

 

The object of least complexity is represented by the 

apple. Due to its symmetrical structure, simple texture, 

and nearly uniform color, it is an ideal test object, 

subjectively the simplest from a neural network 

perspective. The object - a banana presents a medium 

degree of complexity. Asymmetrical structure, 

irregular color, and varied shape depending on 

perspective. The most challenging, and subjectively 

most complex object from a neural network 

perspective, turned out to be the bauble. The 

complicated pattern, heterogeneous texture, different 

colors and lack of symmetry in the particular settings 

of the bauble, it is an ideal object for testing the limits 

of the reconstructive capabilities of the neural 

network.  

A loss plot was used as a measure of learning progress. 

The data in the graph indicate the differences between 

the expected value representing the image and the 

result obtained by the discriminator and generator, 

respectively (Fig. 5).  

 

 

 

Fig. 5. Discriminator loss graph (top), Generator loss 

graph (bottom). 

 

The discriminator losses are the mean squared errors 

between the output of the discriminator, given an 

image, and the target value, 0 or 1, depending on 

whether it should classify that image as fake or real. 

The Generator loss will include cycle consistency loss. 

This loss is a measure of how good a reconstructed 

image is when compared to an original image. 

Training was discontinued based on subjective 

performance assessment (Fig. 6). The results of the 

network were promising after 1000 epochs. When the 

learning process assuming 2000 epochs came to an 
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end, the results obtained were much more distorted 

than in the first phases of learning, numerous artifacts 

appeared and the network, every few epochs, seemed 

to return to the initial state of the generator and 

discriminator. Closer analysis of the resulting 

generative images indicated that an overfitting process 

was taking place. 

 

a) b)  

c) d)  

e) f)  

Fig. 6. Examples of consecutive generations of 

learning a) 0 epoch b) 100 epoch c) 300 epoch d) 800 

epoch e) 1200 epoch f) 2000 epoch. 

 

The problem of overfitting 
 

Of the many problems that can occur when training a 

neural network, one of the most common is the 

problem of overfitting. This problem, manifests itself 

in different ways depending on the type of network. In 

the case of networks designed to classify objects, it 

manifests itself in the classification of specific types 

of objects. In case of networks designed to learn 

features of an image and transfer them to another one, 

e.g. in case of CycleGAN network, the problem 

manifests itself in distortions resulting from focusing 

the learning process on insignificant or extremely 

isolated features of images. In the case of the prepared 

image database, the problem consisted in light 

reflections in the background of objects, which the 

learning process tried to follow, at the same time 

moving away from the main goal which was to 

represent the object well. In order to avoid this error, 

the object dataset was rebuilt. 

The generative images (Fig. 7) are an example of the 

overfitting problem. Neural network learning was 

successful in the right direction until about the 1000th 

epoch, when both the generator and discriminator loss 

values reached a minimum. After this point, both of 

the adversarial networks lost their ability to evaluate 

the image, and the output images were characterized 

by numerous distortions. 

 

 

Fig. 7. The effect of network overfitting using the 

bauble object as an example. 

 

6. QUALITY ASSESSMENT OF THE 

RESULTS 
 

In order to perform reliable tests on the quality of 

individual generative images obtained from the GAN 

network learning process, it was decided to perform a 

subjective evaluation study in two groups of 

independent subjects in the form of an environmental 

questionnaire.  

Unfortunately, there is no universal objective testing 

method for all types of adversarial neural network. We 

proposed to use the MPEG VCM group methodology 

for image quality assessment. For this purpose, 

generative image classification was evaluated using 

Detectron2 networks. 

 

Subjective evaluation study 
 

The assumptions of the survey were both questions 

about the degree of reality rendering of implicitly 

presented original and generative images, and 

questions explicitly indicating the origin of the image. 
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The survey culminated with a question testing whether 

the viewer could identify the real image from the 

generative images, along with the degree of 

confidence in the answer. 

Two groups of independent people were selected for 

the subjective evaluation. The first, closed group 

consisted of 45 people from the community who were 

partially familiar with the research topic or who were 

in contact with generative images. The second group 

contained 44 random people who were not experts in 

the technique. The individual questions in both groups 

are as follows: 

Question 1: Which image more closely looks like a 

real apple (scale from 1 to 10, where 1- definitely left, 

10- definitely right)?  

 

Fig. 8. The left image represented a real object, the 

right image is generated based on SIFT keypoints. 

 

Question 2: To what extent does the following picture 

represent reality (scale from 1 to 10 where 1 is 

completely unreal, 10 is completely real)?  

 

Fig. 9. From left, generative images created from the 

SIFT keypoints banana, apple, bauble, and the image 

representing the real object apple. 

Question 3: The image shows 6 photos, one of them is 

a real photo. Identify which one? With how much 

certainty would you state your answer (scale of 

certainty from 1 to 10, where 1-totally uncertain, 10-

totally certain)? 

 

Fig. 10. One of the images above shows a natural 

image. Image number 5 is a picture of a real apple. 

 

Fig. 11. Distribution of responses expressed in 

question 3 [%]. 

 

Table 1. Distribution of expressed responses  

in the question 1 [%]. 

Group 1 (45 person) mean value = 2.62, standard deviation = 1.9 In case we have a 

scale of answers, they have implicitly assigned weights (1, 2, 3... in order). The 

average in this case is calculated from the indexes of these responses, e.g. 1*x number 

of responses + 2*x responses + 3*x responses / number of responses given = mean 

value. 

37.8 15.6 26.7 6.7 4.4 4.4 0 2.2 2.2 0 

Group 2 (44 person) mean value = 3.32, standard deviation = 2.4 

31.8 9.1 20.5 18.2 4.5 2.3 4.5 4.5 2.3 2.3 

 

Table 2. Distribution of expressed responses  

in the question 2[%]. 

Group 1 mean value = 7.2, standard deviation = 1.9,  

Group 2 mean value = 7.66, standard deviation = 2.03. 

Group 1 (45 person) (1st object - banana)  

4.4 6.7 24.4 22.2 13.3 6.7 13.3 6.7 0 2.2 

Group 2 (44 person)  

2.3 2.3 15.9 20.5 9.1 20.5 11.4 13.6 2.3 2.3 

Group 1 (45 person) (2nd object - apple)  

0 0 2.2 11.1 6.7 13.3 17.8 15.6 26.7 6.7 

Group 2 (44 person) 

0 2.3 4.5 0 9.1 6.8 15.9 20.5 22.7 18.2 

Group 1 (45 person) (3rd object - bauble)  

8.9 6.7 17.8 17.8 11.1 13.3 6.7 11.1 4.4 2.2 

Group 2 (44 person) 

11.4 9.1 4.5 2.3 18.2 6.8 20.5 11.4 6.8 9.1 

Group 1 (45 person) (4th object – real apple) 

0 4.4 4.4 0 4.4 8.9 17.8 13.3 24.4 22.2 

Group 2 (44 person) 

0 2.3 4.5 4.5 4.5 2.3 11.4 18.2 18.2 34.1 

 

Table 3. Certainty of the question 3 answers [%]. 

Group 1 (45 person) mean value = 7.71, standard deviation = 2.19 

0 0 8.9 24.4 11.1 8.7 13.3 22.2 8.9 4.4 

Group 2 (44 person) mean value = 8.02, standard deviation = 2.23 

6.8 13.6 11.4 6.8 6.8 15.9 13.6 13.6 6.8 4.5 

 

After a preliminary analysis of the survey results, a 

divergence of responses can be observed in all 

questions. The distribution of the answers of question 

1 (Table 1) indicates that about 47% of the 

respondents of group one and about 61% of group two 

are not sure or almost sure (Indication 1 or 2) that the 
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image on the right is real (Fig. 8). Such a result can be 

considered satisfactory, due to the fact that the 

generative image created for the purpose of this paper 

proved to be authentic enough to introduce doubt. As 

expected, the image ratings of individual objects are 

proportional to the subjective complexity of these 

objects (Table 2). The evaluation of the generated 

image representing a banana (Fig. 9) indicates that in 

group one, almost 30% of the respondents indicated 

that the image was closer to the real one (ratings of at 

least 6), while in group two, 50% of the respondents 

indicated such a rating. The generated image showing 

apple (Fig. 9) is closer to the real one for 80% of the 

respondents of group one and 84% of group two. As 

expected, the subjectively unsatisfactory generated 

images depicting bauble were rated as closer to reality 

for 38% of the first group and 55% of the second group 

respondents. Surprisingly, despite expectations, the 

image depicting a banana object rather than a bauble 

was rated worst among respondents. A large majority 

of the respondents, even after seeing the actual image, 

responded uncertainly or doubted completely the 

authenticity of the image they saw. This is indicated 

by 53%, in the first group, and 47%, in the second 

group, of ratings that can be classified as unsure of 

authenticity (Ratings less than 9). The culmination of 

the survey was to find the real image among the group 

of generative images – question 3 (Fig. 10), and to 

indicate the certainty of the answer (Fig. 11). The 

image was correctly indicated by 51.1% of the 

respondents in group one and 43.2% in group two. 

This result is much higher than expected and at the 

same time very satisfactory, moreover the correct 

answer with confidence not less than 9 was declared 

by 11% of respondents in both groups. This result 

together with the above indicates that subjectively, the 

generative images generated in the study based on 

SIFT keypoints are close enough to reality that the 

results can be considered successful. 

Additionally, respondents were asked to identify any 

distortions, artifacts, and any unreal anomalies 

perceived in the images. In the banana object group, 

respondents most frequently identified an unnatural 

shape, an overly sharp bend in the banana, an 

unnatural texture, and an unreal shadow. In the group 

of objects representing an apple, many respondents 

indicated that the edges were unnaturally blurred. In 

the case of this object, there were also many opinions 

about there being nothing unreal in the image. The 

distortions mentioned above can be eliminated by 

increasing the training sets and longer network 

learning time. 

Evaluation of classification quality using 

Detectron2 networks 
The objective results have been obtained using COCO 

Evaluation Framework val. 2017 dataset [Lin14]. The 

methodology of experiment follows the 

recommendations described in Evaluation Framework 

for VCM document [Vcm20]. The evaluation have 

been done using the neural networks for object 

classification the Detectron2 R-CNN X101-FPN from 

Facebook Research Detectron2 project [Wu19]. 

The quality of the learning process was also verified 

by evaluating image classification using Detectron2 

network (Fig.12). 

 
Fig. 12. Confidence of generative object image 

recognition using Detectron2 network as a function of 

CycleGAN network learning process. 

 

The Detectron2 network along with the COCO test 

object set recognizes from the prepared test set real 

apple type objects with a confidence of 97.87% with a 

standard deviation of 1.27%, banana type objects with 

a confidence of 98.99% and a standard deviation of 

1.41%. The network classified objects from generative 

images as apples with a confidence of 97.19% with a 

standard deviation of 0.4%. For banana objects, this 

result was 98.7% with a deviation equal to 1.12%  

(Fig. 13). So the result is only slightly worse than for 

images representing real objects. Unfortunately the 

COCO database does not contain any bauble type 

objects. 

 

Fig. 13. An example of a result from the Detectron2 

network 

7. CONCLUSIONS 
 

This paper presents results of image reconstruction 

based on a set of SIFT keypoints using the learned 

CycleGAN network. Both objective results (obtained 

through the process of classifying generative images 

and comparing the results to those of real images using 

the Detectron2 network) and subjective results (in the 

form of questionnaires and a series of questions in two 
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target groups) confirm that cross-domain translation 

between SIFT keypoints and images is possible. 

Moreover, the results are satisfactory despite the lack 

of use (by assumption) of descriptors describing the 

local neighborhood of the keypoints. This is a good 

starting point for further research on how to represent 

keypoints in feature maps of the learning set of a 

generative network. 
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ABSTRACT
This paper presents a deep convolutional neural network (CNN) based method that automatically segments arc-
like structures of coronal loops from the intensity images of Sun’s corona. The method explores multiple U-Net
architecture variants which enable segmentation of coronal loop structures of active regions from NASA’s Solar
Dynamic Observatory (SDO) imagery. The effectiveness of the method is evaluated through experiments on both
synthetic and real images, and the results show that the method segments the coronal loop structures accurately.

Keywords
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1 INTRODUCTION
Feature segmentation has been studied in many sci-
entific and application domains (e.g., [bps05, cng09,
slh13, bbb18, lel18, zll19, zmo20]) as it supports new
findings for the feature of interests or other further im-
portant information discovery. For example, Cao et
al. [cng09] introduced a new randomized Hough trans-
form method that enabled segmentation of aurora struc-
tures which can help other geophysical studies. A med-
ical application (i.e., segmentation of brain tumor) of
random forest and level set methods was recently pre-
sented [lel18]. In this paper, we consider the automated
feature segmentation in the solar physics application.

The study of solar activities is of great importance for
understanding their effects on Earth. For example,
these activities can impact terrestrial communication
or geospace weather. The solar scientists gain insights
of these solar activities by examining the curvilinear
features that appear in the outermost layer of the Sun’s
atmosphere. These curvilinear features are called
the coronal loops. These are the traces of the solar
magnetic field that drives the Sun’s activities [lng06].
The solar scientists study the coronal loops from solar
imagery to analyze scientifically important phenom-
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the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: An example of solar image with a close up on
a coronal loop region. (We have added the close up part
of the image from NASA’s SDO solar image.)

ena, such as the controversial coronal heating [ssc02,
scb03], coronal mass ejections [pjh12], or solar
storms [gbm90]. Figure 1 shows an example of a
solar image with a close up on coronal loops. In the
figure, the white arching structures are the coronal
loops. Automated segmentation of these coronal loops
can greatly help the solar scientists enable an efficient
and consistent analysis of a large number of coronal
images. Nevertheless, automated coronal loop segmen-
tation is very challenging since the coronal loops have
irregular shapes, widths, and orientations, as well as
varying intensities without clear outer boundary. In
addition, the loops overlap and there are image noises.

In this paper, we present a deep convolutional neural
network-based method for the coronal loop segmenta-
tion. The method employs a U-Net architecture [rfb15]
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by considering different depths and widths in the arci-
tecture for its accurate segmentation of coronal loops.
To our knowledge, our method is the first attempt to
utilize deep learning for coronal loop segmentation.

This paper is organized as follows. In Section 2, the
related work is discussed. Section 3 describes our new
method of coronal loop segmentation. The experimen-
tal results of applying the new method to synthetic data
and real coronal images are presented in Section 4. Sec-
tion 5 concludes this paper and discusses future work.

2 RELATED WORK
Processing of satellite and observatory-collected im-
agery (e.g., [and99, kng04]), including coronal loop
segmentations, has been investigated by many studies.
In this section, the related work in convolutional neu-
ral networks and the prior efforts on automated coronal
loop segmentation are discussed.

2.1 Convolutional Neural Networks for
Image Segmentation

In the deep learning era, convolutional neural networks
(CNNs) have achieved state-of-the-art performance on
a wide variety of challenging tasks, such as classifi-
cation (e.g., [ksh12, kaz15, slj15]), object detection
(e.g., [gdd14, est14]), and object segmentation (e.g.,
[zjr15, bhc15]. Among them, image segmentation is
usually considered to be the most difficult one. Instead
of classifying one image-level label or a limited num-
ber of bounding boxes, image segmentation requires a
model to predict one label for each image pixel. In
other words, image segmentation is the process of par-
titioning an image into multiple segments (sets of pix-
els). In most cases, a segmentation model directly takes
an entire image as its input and outputs its segmenta-
tion result in the form of pixel mask(s). Specifically,
segmentation tasks can be further categorized into se-
mantic segmentation and instance segmentation. Se-
mantic segmentation involves predicting image pixels
to defined categories. That is to say, objects of the same
class are treated as a single entity. On the other hand,
instance segmentation predicts each pixel to belong to
distinct individual objects/instances. In this paper, we
focus on semantic segmentation– we aim to determine
whether each pixel is either coronal loop pixel or not.

Various deep CNN architectures have been proposed
for image segmentation, such as SegNet [bhc15]
(which is a deep encorder-decoder architecture),
Piecewise CRF-CNN [lsv16] (which exploits piece-
wise training based on fully convolutional neural
networks (FCNN) [lsd15]), efficient neural network
(ENet) [pck16] (which is a compact encoder-decorder
architecture), and MaskRCNN [hgd17] (which extends
Faster R-CNN by adding a branch for predicting
an object masks in parallel). These segmentation

networks are used in many fields such as medical
image analysis [kk16], real-time segmentation of
dash cam video using ENet [pck16], and satellite
image segmentation using SegNet [bhc15]. One of
the most widely used CNNs for segmentation is the
U-Net [rfb15]. It is usually used for medical image
segmentation, such as retina blood vessels detection in
retina fundus images [ru18] and brain tumor detection
in MRI images [dyl17].

2.2 Coronal Loop Segmentation
The methods by Lee et al. (i.e., Oriented Connectivity-
based Method (OCM) and Daynamic Aperture-
based Method (DAM)) [lng06a, lng06b] were the
very first two coronal loop segmentation methods.
OCM [lng06a] utilized external estimates of the
magnetic fields’ local orientation to enable a construc-
tive edge linking-based coronal loop segmentation.
DAM [lng06b] exploited the Gaussian-like shape of
loop’s cross-sectional intensity profiles. In particular,
DAM segments the loops via a search through the
image for regions whose intensity profiles are well
fitted by a Ruled Gaussian Surface (RGS). The method
joins (i.e., to construct loops) fitted RGSs only if
they have similar orientation, which is determined by
applying principal component analysis on the RGSs.
Aschwanden [asc10] presented the oriented-directivity
loop tracing method [asc10], which exploited direc-
tional information for guiding the tracing of the loops,
similar to the OCM, but makes use only of the local di-
rectivity and the curvature radius constraints in corona
loop tracing. The curvature radius constraint enabled
loop tracing by providing estimates of loop direction
range based on previously-traced loop segment.
There are other studies that included coronal loop
segmentation. Durak et al. [dns09, dns10] devel-
oped a solar loop mining system for coronal loop
segmentation, which included a block-by-block loop
segmentation to retrieve images with coronal loops
from a large number of solar image datasets. McAteer
et al.’s 2D Wavelet-Transform Modulus Maxima
Method [mka10] exploited the derivative of a 2D
Wavelet-based smoothing function as an edge detector
in segmenting coronal loop structures.
Other traditional computer vision-based method for
coronal loop segmentation included the Snake-based
approach [let11]. The approach used a greedy
minimization-based active contour models (snakes)
for coronal loop segmentation. Specifically, the
Gaussian-like shapes of the coronal loop’s cross-
sectional intensity profile were used to refine the
snake’s position.
Recently, Zhiming [zxz19] proposed a new coronal
loop segementation method. The method exploited a
clustering algorithm using approximated local direc-
tionality based on a match and image enhancing filters.
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3 DEEP CORONAL LOOP SEGMEN-
TATION

In this section, we introduce the new deep learning-
based coronal loop segmentation method.

Our method exploits variants of the U-Net [rfb15] to
segment coronal loop structures. The U-Net was de-
veloped by Ronneberger et al. for biomedical image
segmentation. There are some similarities between
solar images and biomedical images. For example,
both kinds of images usually contain complicated fine-
grained patterns of the imaged features (e.g., brain ves-
sels and solar loops). Specifically, we adopt U-Net like
architectures due to their following advantages for seg-
mentation:

• To segment delicate object patterns, the U-Net
makes use of skip-architectures which combine
deeper high-level features from decoding layers
with relatively low-level features from encoding
layers. At the same time, the location and con-
text information from the down-sampling and
up-sampling paths are better combined, which plays
a key role in predicting a good segmentation map.

• Since there are no dense layers, images of different
sizes can be used as input (unlike fully connected
layers, convolutional kernels are independent of in-
put image’s size).

• The U-Net architecture can lead to precise
segmentations with small numbers of training
images [rfb15].

In our method, variants of U-Net architecture were ex-
ploited. Specifically, different depths and widths in the
architecture layers were considered. This inspiration
was from [tl19] where the authors experimented with
model scaling on MobileNets and ResNets for image
classification tasks. They identified that carefully bal-
ancing network depth, width, and resolution can result
in improvement of classification accuracy. However, in
our method, the original resolution was kept in order
not to lose any image information nor to inject extra
(and usually unreliable) information through interpola-
tion.

To be more specific, our method utilized varying archi-
tectures of U-Net by using deeper or shallower variants,
which included more or fewer layers, respectively. In
addition, the width of the U-Net was varied by chang-
ing the number of filters in each convolutional layer.
The variation in network width and depth allowed the
network to better extract coronal loops while maintain-
ing high generalization ability (i.e., without suffering
from overfitting). Here, we note that the input image
size used in this study was 512×512.

Figure 2: U-Net A: variation in width showing a nar-
rower network. The dimensions of each layer and the
operations are shown.

Our first U-Net architecture is shown in Figure 2. We
denote this network the U-Net A. The down-sampling
path has five convolutional blocks. Every block has
two convolutional layers (stride of 1) before non-linear
rectifier activation. Over the first five blocks, while
the number of 3×3 filters (also the number of 2D fea-
ture maps) is increased from 32 to 512. For the down-
sampling, max pooling with a stride of 2×2 is applied
to the end of every block except for the last one, so
the size of feature maps decreases from 512×512 to
32×32. In the up-sampling path, every block starts with
a deconvolutional layer with filter size of 3×3 and stride
of 2×2, which doubles the size of feature maps in both
dimensions but reduces the number of feature maps by
two. Over the upsampling path, the size of feature maps
increases from 32×32 to 512×512. It is worth noting
that at the start of every up-sampling block, the fea-
ture maps from the last block are concatenated with
the feature maps produced by the corresponding encod-
ing block to form this block’s input. This operation is
shown as gray “concatenate” arrows in Figure 2. When
necessary, we used zero padding to keep the dimensions
of the 2D feature maps to be concatenated the same.
This is different from the original U-Net architecture.
Each of the following convolutional layers reduces the
number of feature maps by two. Finally, a 1×1 convo-
lutional layer is used to reduce the number of feature
maps to one, which corresponds to a binary map, one
for foreground and another for the background.

Our second U-Net architecture is shown in Fig-
ure 3. We denote this network the U-Net B. The
down-sampling path has four convolutional blocks.
Every block has two convolutional layers (filter size:
3×3, stride: 1) and a non-linear rectification. The
down-sampling path increases the number of feature
maps from 1 to 256. As in the down-sampling path
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Figure 3: U-Net B: variation in width showing a shal-
lower and narrower network. The dimensions of each
layer and the operations are shown.

Figure 4: U-Net C: variation in width showing a deeper
network. The dimensions of each layer and the opera-
tions are shown.

of the previous architecture, max pooling with a stride
of 2×2 is applied to the end of every block except
for the last one. As a result, the size of feature maps
decreases from 512×512 to 64×64. In the up-sampling
path, every block starts with a deconvolutional layer
with a filter size of 3×3 and a stride of 2×2. The
upsampled features are then concatenated with the
feature maps generated by the corresponding encoder
block. The concatenation process and later convolu-
tions are similar to the previous architecture. Each
up-sampling block doubles the dimension while halves
the number of feature maps. From the first decovo-
lution/upsampling block to the end, the dimension of
feature maps increases from 64×64 to 512×512.

Our third network is shown in Figure 4. We denote
this network the U-Net C. The down-sampling path has
six convolutional blocks. Every block has two convo-
lutional layers with a filter size of 3×3 and a stride
of 1, followed by non-linear rectification. The down-

Figure 5: U-Net D: variation in width showing a nar-
rower network. The dimensions of each layer and the
operations are shown.

sampling path increases the number of feature maps
from 1 to 1024. Similar to the previous architecture,
max pooling with stride 2×2 is applied at the end of
every down sampling block except for the last one.
Through the down-sampling path, the dimension of fea-
ture maps decreases from 512×512 to 16×16. In the
reverse up-sampling path, similar to previous architec-
tures, the dimension of feature maps increases from
16×16 back to 512×512.

Finally, our forth network architecture is shown in Fig-
ure 5. We denote this network the U-Net D. The down-
sampling path has five convolutional blocks. Every
block has two convolutional layers (with a filter size
of 3×3, stride of 1) and non-linear rectifier activation.
This can be considered as a skinnier version of U-Net
A. The convolutional layers in the first encoder block
have only 16 filters. The number of filters in each con-
volutional layer doubles every time we advance to the
next block. As a result, the up-sampling path increases
the number of feature maps to 256.

4 RESULTS

In this section, the results of our method are presented.
The experimental setup is discussed first followed by
the experimental results on synthetic data and real im-
ages with their analysis. Our experiments were tested
on a Windows OS PC with 2.6 GHz, Intel Core i7 CPU
and 16 GB RAM. We have test over 3,000 synthetic
images and over 150 real images in our experiments.
Specifically, we have used each 150 images as a set with
90% of the images for training/validation, and 10% of
testing.
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4.1 Experimental Setup
4.1.1 Training Details
The input images and their corresponding segmenta-
tion ground truth masks were used to train the network.
During the training process, the binary cross-entropy
was used as the cost function of the network since there
are only two classes (i.e., coronal loop and non-coronal
loop). The adaptive moment estimator (Adam) [kib14]
was used to minimize the cost function. In general,
Adam utilizes the first and second moments of gradi-
ents for updating and correcting moving average of the
current gradients. The parameters of our Adam opti-
mizer were set as: learning rate = 0.002 and the max-
imum number of epochs = 500. We used Keras call-
backs to implement learning rate decay and to reduce
it to 0.0002. Early stopping was implemented when
the validation loss did not improve for 5 consecutive
epochs. Only best weights were saved. We used a batch
size of 4 for training. (In our experiments, the training
took about 2 hours and about 5 hours for synthetic and
real images, respectively. Here, we note that we did not
utilize any GPUs in this work.)

4.1.2 Evaluation Metrics
The evaluation has been done using accuracy and recall.
Accuracy is the ratio of predictions our model predicted
correctly. Recall refers to the ratio of total relevant re-
sults correctly classified by our method.

4.1.3 Thresholding
After training, a network produces a value between 0
to 1 for each pixel. 0 represents non-loop pixel and
1 represents for coronal loop pixel. Upon examina-
tion of accuracy, recall, and precision on our synthetic
data, the sum of the standard deviation and the mean
of all predicted values was used as the threshold to de-
cide whether to classify a pixel as non-loop or coro-
nal loop pixel. (Figure 6 shows the effect of thresh-
olding on various segmentation metrics.) For real so-
lar images, since there exists a large variation in the
background and non-loop intensity, we adopted adap-
tive local thresholding [srs11] (also known as dynamic

Figure 6: Effect of threshold on various segmentation
metrics.

thresholding). It determines thresholds in regions with
a characteristic size “block size” surrounding each pixel
(i.e., local neighborhoods). Each threshold value is the
weighted mean of the local neighborhood minus an off-
set value. We used a block size of 21.

4.2 Synthetic Data Tests
For synthetic data tests, we have simulated the coronal
images using various combinations of image parame-
ters. In our data, randomly generated parabola curve
sets with (1) varying number of curves, (2) varying
curve widths, (3) varying combinnation of image noises
(i.e., Gaussian noise with different stanadard deviations
and salt & peper noise) were considered.

Figure 7 shows an example set of synthetic data seg-
mentation results. In the figure, segmentation results
with higher noise levels are shown from left column to
right and from top row to bottom (e.g., subfigure (a)
has the least amount of noise and subfigure (l) has the
highest amount of noise) and the U-Net segmentation
results are shown as the red overlays. As shown in the
figure, while some mislabel of loops pixels were shown
when the noise levels were high, our method segmented
the loops very accurately.

Figure 8 summarizes the performance metric evaluation
for image parameters. Figure 8 (a) shows the accuracy
and recall when different number of loops/curves were
used. While slightly lower performance was shown
when more number of loops were considered, the U-
Net still achieved very high accuracy and recall. Fig-
ure 8 (b) and (c) show the performance metric surfaces
for noise levels. As shown in the figures, the U-Net
achieved very high accuracy and recall. (Here, we note
that the false positives were about 0.014 on average
with its standard deviation of 0.002.)

Table 1 lists the performance metrics on synthetic data
for different numbers of layers and filters in the net-
work. As shown in the table, the U-Net achieved very
high accuracy and recall, and acceptable precision. The
performance was the highest when six layers and 32 fil-
ters were used in the U-Net.

Table 1: Accuracy (Acc.) & Recall (Re.c) & Precision
(Pre.) on Synthetic Data: U-Net B on First Row, U-Net
D on Second Row, U-Net A on Third Row, U-Net C on
Fifth Row

Data Layers Filters Acc. Rec. Pre.
4 32 0.97 0.85 0.81

Syn. 5 16 0.98 0.91 0.76
5 32 0.97 0.82 0.80

Data 5 64 0.97 0.80 0.79
6 32 0.98 0.96 0.81
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(a) G=1.0 & S&P=0.035 (b) G=1.0 & S&P=0.075 (c) G=1.0 & S&P=0.150 (d) G=1.0 & S&P=0.300

(e) G=2.0 & S&P=0.035 (f) G=2.0 & S&P=0.075 (g) G=2.0 & S&P=0.150 (h) G=2.0 & S&P=0.300

(i) G=3.0 & S&P=0.035 (j) G=3.0 & S&P=0.075 (k) G=3.0 & S&P=0.150 (l) G=3.0 & S&P=0.300

Figure 7: Results on synthetic data with varying noise levels: Gaussian (G) noise and Salt & Pepper (S&P) noise

4.3 Real Image Tests
For real image tests, we have used the coronal loop im-
ages from the NASA’s SDO satellite. Specifically, we
have cropped the Active Regions (i.e., where most coro-
nal loops appear) of size 512×512 from the SDO’s full
disk solar image of size 4096×4096. For the training
of network, we have used the manually-traced coro-
nal loops as the ground truth masks. (The use of the
manually-traced masks is typical when there is no true
ground truth in real images.) We have also found that
using unsharpmasked images, instead of raw images,
produced the better performance results.
Figure 9 shows the test results of two real coronal im-
ages. Subfigures (a) and (e) are the raw images, (b) and
(f) are the unsharpmasked images, (c) and (g) are the
U-Net segmented loops, and (d) and (h) are the images
with segmented result overlays in red, respectively. As
shown in the figure, the U-Net produced very accurate
segmentation results.
Table 2 lists the performance metrics on real coronal
image for different numbers of layers and filters in the
network. As shown in the table, the U-Net achieved

very high accuracy and reasonable recall. The perfor-
mance was the highest when six layers and 32 filters
were used in the U-Net.

Table 2: Accuracy & Recall on Real Images: U-Net B
on First Row, U-Net D on Second Row, U-Net A on
Third Row, U-Net C on Fifth Row

Data Layers Filters Accuracy Recall
4 32 0.86 0.53

Real 5 16 0.87 0.51
5 32 0.86 0.53

Images 5 64 0.87 0.51
6 32 0.90 0.55

5 CONCLUSION
In this paper, the U-Net-based deep convolutional neu-
ral network for solar coronal loop segmentation was
explored. Our method is the first attempt to utilize
a deep learning model in coronal loop segmentation.
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(a) Performance On # of Loops/Curves

(b) Accuracy on Noise (c) Recall on Noise

Figure 8: Analysis on Synthetic Data Tests

(a) Raw Coronal Image (b) Unsharpmasked Image (c) Segmented Loops (d) Results Overlaid

(e) Raw Coronal Image (f) Unsharpmasked Image (g) Segmented Loops (h) Results Overlaid

Figure 9: Results on real coronal image: (a, e) raw images, (d, f) unsharpmasked images, (c, g) segmented loops,
(d, h) segmented results overlaid in red on image
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The method explored the variants of the U-net architec-
ture to enable accurate segmentation of coronal loops.
Through evaluation of the method, we have shown that
the U-Net can provide consistent and accurate seg-
mentation results of the loops. On synthetic data, the
method achieved about 0.98 accuracy and 0.96 recall.
On real coronal images, the method achieved about 0.90
accuracy and 0.55 recall.

In the future, we plan to investigate ways to further
improve the performance, and perform effectiveness
comparisons with other coronal loop segmentations.
In addition, the method will be considered for high
performance computing (e.g., GPU processing). We
also hope to explore applications of our U-Net to other
scientifically-interesting features that exhibit similar
image characteristics.
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ABSTRACT
Surface reconstruction for particle-based fluid simulation is a computational challenge on par with the simula-
tion itself. In real-time applications, splatting-style rendering approaches based on forward rendering of particle
impostors are prevalent, but they suffer from noticeable artifacts.
In this paper, we present a technique that combines forward rendering simulated features with deep-learning image
manipulation to improve the rendering quality of splatting-style approaches to be perceptually similar to ray tracing
solutions, circumventing the cost, complexity, and limitations of exact fluid surface rendering by replacing it with
the flat cost of a neural network pass. Our solution is based on the idea of training generative deep neural networks
with image pairs consisting of cheap particle impostor renders and ground truth high quality ray-traced images.

Keywords
Computer Graphics, Metaballs, Generative Neural Network, Surface Reconstruction

1 INTRODUCTION

Realistic and resource-efficient visualization of fluid
surfaces reconstructed with particle-based simulations
is an ongoing challenge in modern computer graphics.
The thousands of particles required to create plausible
fluid behavior significantly complicate the execution of
algorithms such as recursive ray tracing, which, due to
their complexity, can often only be used to display sim-
ulation results in real-time using accelerating methods.

Representing particles with metaballs is a widely
used and popular method for displaying the results of
particle-based simulations. The metaball construct,
introduced by Blinn [Bli82] and Nishimura [Nis85],
describes an implicit surface formed by interacting
objects. Each metaball has a radial density function
(or radial basis function, RBF) and the metaballs
together represent the isosurface of the density field.
Due to the temporal change in the simulation, it is
necessary to evaluate the isosurface in each frame,
which significantly limits its usability in real-time
applications. Since their inception, several publications

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

have been produced to speed up the visualization of
metaballs.
Grid-based solutions usually give faster results when
the grid resolution is low, but artifacts form on the liq-
uid surface. The disadvantage of solutions based on
on-surface tracer particles is the complexity of main-
taining a uniform coverage and the difficulty of avoid-
ing gaps that form on the fluid surface. The problem to
be solved in ray tracing-based methods is to speed up
the evaluation of the density function required for the
computation of the intersection between a ray and the
surface. All of these methods are useful when a larger
number of metaballs needs to be visualized, but real-
istic shading or global illumination requires additional
resources in a different order of magnitude.
Neural networks trained with input exemplar–expected
output image pairs have achieved significant success
in the field of image manipulation. This paper con-
tributes to the field of neural rendering by proposing
a hybrid rendering solution for particle-based fluid sim-
ulation, combining stochastic rendering and image-to-
image neural networks. This can be used in any context
where fast fluid surface rendering is needed, but certain
lighting effects require the environment to be fixed at
training time.
Metaballs with complex shading are achieved by in-
troducing image enhancement using a neural network,
trained with the method presented in our paper. The
question we investigate is how to generate the input im-
ages and the expected target images needed to train the
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network to obtain a satisfactory result. We also analyze
emerging artifacts to motivate further research.

The paper is organized as follows. Section 2 presents
previous work on metaball rendering (not using neural
networks), and the state of the art on neural rendering
in general. Section 3 describes the proposed method.
The results are summarized in Section 4, and finally, the
conclusion and further research directions are described
in Section 6 and Section 5.

2 PREVIOUS WORK
The first particle-based implicit surface was presented
by J.F. Blinn [Bli82], which involved displaying elec-
tron density maps of molecular structures.

Blinn used a linear combination of Gaussian radial ba-
sis functions (RBFs) and a constant term for construct-
ing the implicit equation of the surface. As Gaussian
RBFs do not have finite support, all objects must be
considered in order to determine the function value
at any point, which is a necessary operation in any
method extracting an isosurface. Therefore, its appli-
cation involves considerable computational effort. Re-
placing the Gaussian density function with a finite-
support function can reduce the computational effort
considerably, since to evaluate the total density func-
tion at a point it is sufficient to consider the contribu-
tion of the metaballs within the finite environment of
this spatial point. For our experiments in this paper,
we used the sixth-degree polynomial RBF proposed by
Wyvill [WMW86].

2.1 Metaball rendering techniques
The previous work on the representation of the surface
of metaballs can be divided into several groups. How-
ever, the aim of all the publications mentioned below is
to accelerate the evaluation of the density function. In
this section, we survey these methods to highlight the
fact that existing methods are either expensive or spe-
cialized with respect to the light transport phenomena
they support.

2.1.1 Grid-based solutions

A widely used method is the marching cubes algo-
rithm presented by Lorensen et al. [LC87]. The algo-
rithm generates a triangular mesh model approximating
an isosurface of volumetric density function. Such a
model can be ray-traced efficiently using conventional
methods. However, the quality of the generated surface
depends on the resolution of the grid used. If a low-
resolution grid is used, the algorithm is able to generate
the surface quickly, but the resolution of the surface is
low. When a high-resolution grid is used, the algorithm
generates a detailed surface, but at increased compu-
tational and memory costs. In particular, the density

function has to be evaluated at a high number of grid
nodes.

Krone et al. [KSES12] present a GPU-accelerated ver-
sion of the marching cubes approach. Even though they
work with Gaussian density kernels, they use a cutoff
radius to decrease complexity. Sorting into a 3D auxil-
iary grid is used for proximity searches.

The approach of Iwasaki et al. [IDYN06] makes use of
a grid, but it is constructed using a virtual camera, and
rendering metaballs, clustered into layers, into the grid.
The method is strongly oriented towards configurations
where most of the fluid forms a roughly horizontal sur-
face in a container, with very few layers of splashes
above. The isofurface is rendered using a splatting-
like method named surfels. Real-time performance is
achieved.

All grid based approaches are ill-suited for scenarios
where the fluid cannot be assumed to reside within a
finite container.

2.1.2 Screen-space visualization
Wladimir J. van der Laan et al. [vdLGS09] presented a
screen-space metaball visualization method, which re-
lies on rendering the metaballs as solid spheres, and ap-
plying image-space filtering to smooth the surface. The
method provides real-time performance with a config-
urable speed-quality preference, but it is only efficient
if the spheres provide a close approximation of the sur-
face indeed, i.e. if only a few particles affect a sur-
face point. Larger reconstruction kernels encompass-
ing higher number of particles cannot be reproduced,
and thus the fluid retains a somewhat viscous appear-
ance even with the best filtering, especially when the
balls appear large in image space.

Müller et al. [MGE07] also used metaballs for the vi-
sualization of a molecular dynamics simulation. They
propose two ideas. The vicinity texture is a precom-
puted lookup structure for metaball neighbors, which
is suitable for static geometries, but requires high tex-
ture bandwidth still. The walking depth plane approach
finds isosurface depth in pixels using iterative correc-
tion of an initial guess. This, however, requires the
metaballs to be rendered as billboards up to 100 times,
making the approach scale poorly both with respect to
the number of particles and to the target resolution.

Xu et al. [XW16] makes use of hardware multi-
sampling anti-aliasing and alpha-to-coverage to
perform four-layered depth peeling in a single pass.
Using multiple such passes, a polynomial approxima-
tion of the density function using the first few metaballs
can be obtained and solved explicitly. The approach
works fast and provides accurate results when only a
few metaballs contribute to individual surface points.
Despite the ingenuity and performance delivered, the
acceleration still only works for primary rays.
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Van Kooten et al. [KBT07] reconstruct the surface us-
ing on-surface tracer particles uniformly distributed on
the fluid surface. Repulsive forces, velocity constraints,
and particle densities are used to determine the position
of the particles, which are travelling on the surface fol-
lowing its motion. The expensive part of the method is
computing the forces, especially maintaining the data
structure to find near tracer particles. Where maintain-
ing uniform coverage fails, small gaps may appear on
the surface.

Kanamori et al. [KSN08] present a method based on
ray tracing. Using depth peeling to obtain boundaries
of effective spheres, polynomials for the density along
ray segments are obtained and solved using the Bezier
clipping root finding method. The method can produce
high quality images, but the root finding is somewhat
expensive.

Szécsi et al. [SI12] present a similar scheme based on
building per-pixel fragment lists. They render particles
as billboards, storing an entry, midpoint, and exit frag-
ment in a per-pixel list. By sorting these fragments, and
finding a cubic density approximation on ray segments
between them, they are able to perform ray-surface in-
tersection in a less expensive fashion. The drawback is
the high overhead of gathering the per-pixel list.

2.1.3 Ray-casting and ray-marching methods
All screen-space methods fail to obtain correct reflec-
tions and refractions efficiently, as they organize their
data structure around processing primary rays. An
environment mapping approximation, neglecting self-
reflections, multiple refractions, and media participa-
tion, is acceptable in some, but not all configurations.

Accurate visualization requires recursive ray tracing,
where the evaluation of the density function at arbitrary
points must be very efficient. Recently, Winchenbach
and Kolb [WK20] proposed a GPU-friendly data struc-
ture that offers exceptional performance. However, the
approach is still far from real-time.

2.2 Deep learning
The problem we investigate in this paper is a neural ren-
dering problem, in the sense that an image should be
produced from an RBF volume representation. As we
use conventional rendering combined with a neural net-
work, ours is not a pure neural rendering approach.

Pure text-to-image efforts are reviewed Frolov et
al. [FHR+21], and today they are capable of synthesiz-
ing images sampled from a space spanned by training
photo databases, but not from abstract geometrical
scene descriptions.

Tewari et al. [TFT+20] summarize and classify the
state-of-the-art neural rendering approaches that com-
bine classical computer graphics pipelines and neural

networks. Notably absent for the results are solutions
that would render deterministic specular effects like re-
flections or refractions.

Thomas and Forbes [TF17] managed to achieve fast
global illumination with deep neural networks, featur-
ing diffuse interreflections with detailed occlusion, but
without reflective or refractive materials.

Feygina et al. [FIM18] introduced CycleWGAN net-
works for enhancing global illumination rendering in
post-processing for computer games, showing that the
deep learning approach can be viable in real time.

Constantin and Bigand [CCB20] handle scenes with re-
flections and refractions, but they only use the neural
network to detect noise and thus direct sampling in a
path tracing algorithm.

Bui et al. [BLMD18] present a convolutional neural
network-based approach for rendering high-resolution
images from a point cloud.

Horvath [Hor19] uses a conditional GAN to generate
metaball images from a simplified set of input training
data. For the input, four-channel (rgb, depth) images
of circles are rendered, where every circle represents a
metaball. For output, it generates images of metaballs
consisting of a color buffer, a depth buffer, and a normal
buffer. No shadows, reflections, or refractions are pro-
duced. Our approach in this paper is going to be similar,
but our objective is rendering images with perceptively
acceptable reflections and reflections.

As we assume a volume representation based on RBFs,
it is of interest to mention RBFNNs, or Radial Basis
Function Neural Networks [BL88], and the more recent
deep-RBF neural networks [ZHS18]. These contain a
layer that outputs positions and weights for RBFs that
reconstruct the function whose samples were used as
training data. It has been used successfully in the func-
tion approximation and classification domains, but they
have not been applied to rendering so far. In our work,
the RBF representation of the fluid is considered an in-
put, not an output—it is created by conventional physi-
cal simulation, not by a neural network. The output, in
our case, is a rendered image. Therefore, our solution
may be used in conjunction with deep-RBF networks
producing 3D density representations.

Overall, high quality metaball rendering methods ca-
pable of rendering reflections, refractions, and media
participation, are not real-time for a reasonable num-
ber of particles. Fast methods rely on some kind of
screen space accumulation, and offer poor substitutes
for reflection and refraction rendering. Note that our
work is based on none of the above techniques. In-
stead, we aim to stylize an inexpensive render of par-
ticles into one featuring reflections and refractions us-
ing trained image-to-image transfer with a deep neural
network. In part, this is similar to the van der Laan
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approach [vdLGS09] of image space filtering, but us-
ing learned kernels instead of constructed ones. As
above methods using depth listing or depth peeling, we
also strive to gather information about multiple layers
of metaballs, but we exploit the idea of stochastic ren-
dering. In this, our solution is also different from Hor-
vath’s work [Hor19], and we also extend the approach
to rendering reflections and refractions.

Our solution is based on Pix2Pix [IZZE17] and Cycle-
GAN [ZPIE17]. Pix2Pix uses conditional adversarial
networks for image-to-image translation. Training is
done with input and expected output picture pairs. Cy-
cleGAN does not require the images to be paired. The
resulting generator network can be used for images that
are similar to the input training data, producing an out-
put that is similar to the set specified as expected.

3 OUR PROPOSAL IN DETAIL
Our goal is to accelerate particle-based fluid visualiza-
tion in applications where perceptual correctness is im-
portant. First, we render metaballs using an inexpensive
stochastic forward rendering solution. Then, we use
neural network processing to either reconstruct a sur-
face in image space, or render a scene with the recon-
structed fluid surface featuring reflections and refrac-
tions. The neural networks are image-to-image GAN
realizations (those of the Pix2Pix and CycleGAN net-
work in particular) trained on image pairs produced by
our stochastic renderer and our reference ray tracer.

3.1 Reference ray-casting and ray-tracing
In order to train the neural networks, we need expected
output images for given sets of metaball particles. We
created two types of such reference images: false-
colored surface reconstructions encoding the surface
normals (Figure 1, left), and recursively ray-traced fluid
surface rendering with a surrounding environment (Fig-
ure 1, right). In both cases, we used ray-marching to
find surface points intersected by primary or secondary
rays. For primary rays, we used a screen-space A-buffer
for accelerating the evaluation of the density field given
by the metaball particles, but we used brute force for
secondary rays. The rendering time of the reference
images is still negligible compared to the time require-
ments of training the neural networks. In the ray-traced
reference images, radiance along rays not hitting any
surface was taken from an environment texture. Thus,
the environment itself was encoded in the neural net-
work, meaning that for different environments, differ-
ent networks have to be trained — even if an existing
network of another environment provides a good start-
ing point for the training. This way, every pixel in the
reference image contains the contribution of all pos-
sible combinations of reflections and refractions along
the light paths.

Figure 1: Reconstructed surface target reference and
ray traced target reference.

3.2 Stochastic rendering
We need a method for the fast rendering of the fluid
particles that does not lose information about the par-
ticles occluded by other metaballs. This is particularly
important for those particles that contribute to the pri-
mary surface, but surfaces further back may also be
important, especially if refractions are also to be re-
constructed. Horvath [Hor19] renders particles as cir-
cles, which accomplishes these goals, but offers a start-
ing point for the neural network that is far from the
expected output. We propose to use stochastic ren-
dering, where we randomly discard fragments of bill-
boards representing metaballs, false-colored using the
camera-space sphere normals, and linear depth values.
As shown in Figure 2, the stochastic renders are per-
ceptually already quite close to the ray-cast reference,
but with noise that has to be filtered. Part of the pur-
pose of the neural network is to perform this filtering in
a learned way to produce a smooth surface.

Figure 2: Images created using stochastic rendering.
Images like these are inputs to both the training pro-
cess, and to the image enhancement network used in
real-time rendering.

3.3 Training datasets
To train the neural network, we render training sets con-
sisting of image pairs. The input image is created using
stochastic rendering, and the target image is rendered
using either ray-casting or recursive ray tracing. In-
put images encode normals in camera space in their red
and green channels, while camera-space linear depth is
stored in the blue channel. To achieve stochastic ren-
dering, we need to discard random fragments. For this
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purpose, we used Cerisano’s version [Cer15] of the gold
random GPU-friendly fast random number generator.
While this very simple code does not have high-quality
PRNG properties, it is visually convincing, and serves
our purpose of revealing occluded billboards.

In order to ensure realistic metaball configurations, we
implemented SPH fluid simulation. In addition to phys-
ical forces, the simulation is controlled by animated tri-
angle mesh models. In each simulation time step, parti-
cles are rendered with both the stochastic and the refer-
ence method to output images. The distance of the cam-
era from the simulation space and the position of the
camera changes randomly in each frame. Since cam-
era depth is encoded in the blue channel, the farther the
camera is from the metaball, the less blue there is in
the color. Figure 3 shows an example image pair of
the stochastically render input and the ray traced target
output.

Figure 3: Image pair from the training set.

3.4 Training
We used a Tensorflow implementation of
Pix2Pix [IZZE17] and a PyTorch implementation
of CycleGAN [ZPIE17] to train the generator network
with input and target image pairs. We do not give
results separately for the two networks, as results were
visually very similar, with CycleGAN performing
faster. On the network obtained as the result, we
ran the consecutive sequence of images saved from
the application. The animation includes rotation and
zooming around the simulation space.

3.5 Real-time rendering
The trained neural network can be used in a real-time
application to render fluid surfaces. The input of the
network is the stochastically rendered particle billboard
cloud, and the output is presented by texturing it on a
screen-filling quad.

If we use the surface reconstruction network, shading
has to be performed in every pixel of the reconstructed
surface. First, we decode the normal vector from the
texture, then transforming it back to the world. Figure 4
shows the network output image and its shaded version
using local illumination and environment mapping for
approximated reflections and refractions.

Figure 4: Surface reconstructed by the network and its
shading with local illumination and environment map-
ping.

If we use the network trained with recursively ray-
traced images, then further shading is not necessary.

4 RESULTS
We used a Tensorflow port of the Pix2Pix algorithm
to train a deep neural network. We performed three
trainings. First, we trained the network with 2078
image pairs, both of the pair in 512× 512 resolution,
showing incomplete and complete metaballs. The
second one trained with input set contains metaballs
shaded with surface reconstruction network and
metaballs with ray-casting. The third trained with
incomplete metaballs and metaballs with ray-casting.
They performed around 30-50 epochs encompassing
72000-120000 training steps, taking approximately
8−15 hours using an Nvidia Geforce RTX 2080 Super
GPU. The same results could be achieved using the
PyTorch implementation of CycleGAN in just 5 hours.

For testing we generated two test sets. One of them
contains images of our fluid in consecutive simulation
steps with changing camera setting. The other one con-
tains zoom-in zoom-out pictures. Figure 5 and Figure 6
show the result of the first neural network. Therefore
the environment not encoded in the neural network,
but additional render pass is needed to shade the sur-
face. Figure 7 shows the result of the second neural
network. The environment is encoded and the network
focus more on that part rather then the actual surface.
The Figure 7 shows the result of the third neural net-
work.

The Pix2Pix implementation proved to be inferior to
the CycleGAN implementation both in terms of train-
ing time and network evaluation time. CycleGAN can
be evaluated in 40ms, which would be fast enough for
actual real-time performance for full resolution targets.

5 LIMITATIONS AND FUTURE WORK
We plan to apply Wasserstein loss for the CycleGAN
network, which has been proven to be useful in similar
neural rendering applications [FIM18].
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Figure 5: Stochastically rendered inputs (left), recon-
structed surface images (middle), and target images
(right).

Training the ray-tracing network with a fixed environ-
ment means that the method cannot be used for dynamic
settings, including moving solid bodies mixed in the
fluid. Such a static environment is acceptable in appli-
cations like computer games, where the game levels and
rooms are designed in advance, and pre-training a fluid-
lighting network for every relevant location would be
reasonable. However, a solution using an environment
map or scene capture on-the-fly would certainly extend
the applicability of our approach. The most promising
avenue would be training a network to render fluids and
their lighting interactions with solid geometry and the
environment in a single run.
Currently, the ray-tracing network does not only learn
to shade the fluid surface, but also to create the back-
ground. This may diminish its ability to correctly ren-
der reflections and refractions. Modifying the train-
ing process to exclude backgrounds, and rendering the
background in a forward manner would be desirable.

6 CONCLUSIONS
We have described a solution for enhancing fast fluid
rendering with neural networks train in an adversarial
manner. Our results indicate that the approach is vi-
able, but further research is needed to extend the so-
lution to more dynamic use cases and further improve
performance.
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Figure 6: Final results of surface reconstruction with
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ABSTRACT
The world is experiencing an increasing boom in computer vision. This is more and more used in many domains
such as robotics, medicine, industry, security systems, etc. In this context, Deep Neural Networks (DNNs) have
great capabilities and are widely used. Convolutional Neural Networks (CNNs) present a particular class of DNNs
that is most commonly leveraged to analyzing visual imagery. However, CNN performances completely depend
on two main issues. The first issue is related to the quality of the images generated by capture cameras. All images
captured by remote sensors and modern imaging systems are practically noisy, which can prevent the image from
being correctly classified and identified by a CNN. The second issue is the throughput available for the transmission
of the large amount of data between capture sensors and units processing CNNs. A seamless transmission can be
ensured by compression techniques that help reducing the size of data, while affording the required quality for
computer vision algorithms. Since lossy compression of noise-free and noisy images differ from each other, this
work firstly raises the question of CNNs resilience to noisy images compression using the particular autoencoders.
We secondly propose a method that aims to improve this resilience so that CNNs can achieve better classification
performances. The compressed noisy images are passed, as a test set, along a model that is learnt from a noise
dataset. The subtraction of the so captured noise from the noisy images is then performed to extract the useful
signal to classify. This will be first work, where we learn the autoencoder from the noise sample, and not the noisy
sample, while denoising. Obtained results prove the efficiency of the proposed method.

Keywords
Autoencoder, noise, classification, noise dataset.

1 INTRODUCTION
Computer vision enhances the understanding of the in-
formation depicted by images. However, the capture
of the environment through sensors leads to various
kinds of voluminous images and videos. Being an un-
supervised feature extraction technique, AutoEncoders
(AE) can be particularly useful for computer vision al-
gorithms, as they can address the images compression
to reduce the transmission delay between sensors and
processing units. Further, their feature extraction asset
allows not to lose details that cannot be seen by hu-
man eye, but are picked up by CNNs. However, au-
toencoders are generally trained assuming that the input
images are artifact-free. This is not the case in real com-
puter vision application scenarios, where digital images

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

are subject to a wide range of noises. Here, we have to
note that autoencoders can be effectively used for noise
removal, if the desired output from decoder is fixed to
be similar to original images. But, this cannot be ex-
ploited if the noise is introduced during image acquisi-
tion. In this case, we do not have pristine, i.e., artifact-
free, images to use them as desired output of the au-
toencoder. The output is instead fixed to be similar to
noisy images. In this context, the contributions of this
paper are as follows :

• Study of the impact of the autoencoder-based noisy
images compression on the performance of image
classification using CNNs. We investigate in train-
ing both vanilla and deep autoencoders. In-depth
analyses of involving different noise types of low,
medium and high levels in the training process are
also provided.

• The inclusion of a signal processing autoencoder
in CNNs to get rid of the noise and preserve only
the high valued signal elements, which will conse-
quently improve the accuracy of noisy images clas-
sification and make the classifier more suitable. The
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proposed method operates with no ground truth im-
ages available and improves the generalization abil-
ity of existing deep denoisers to several real noise
models and image types.

The rest of this paper is organized in the following way.
Section 2 is dedicated to related work enumeration. In
Section 3, we detail the learning architecture used for
the image compression and classification. Discussions
of test results on pristine and noisy compressed images
are also presented. In Section 4, we propose a method
that aims to enhance the image classification perfor-
mance while extracting clearer objects to be detected
by CNNs. Evaluation of the proposed method perfor-
mances along with comparative results are presented in
Section 5. Finally, Section 6 concludes the paper.

2 CONTRIBUTIONS
Since classification presents the most common step of
almost all computer vision applications, our first aim
is to study the impact of noisy image compression us-
ing autoencoder on CNN classification performances.
This is particularly important as a handful of works,
e.g., [1] [2] [3], only study the impact of standard
compression techniques, e.g., JPEG and JPEG 2000.
However, artifacts of autoencoder-based compression
methods have different characteristics from distortions
caused by classical codecs [4], especially when im-
ages are noisy. Further, existing studies consider noise
and compression artifacts separately, whereas we aim
to jointly assess the impact of noisy images compres-
sion on the CNN performance. This aligns well with
the real-world computer vision applications where im-
ages are often both noisy and voluminous.

In order to remove the noise harmful impact on im-
age classification, several works have been proposed
ranging from common filters, e.g., Gaussian, Median
and Bilateral, to more elaborated efforts. The denois-
ing domain is ever evolving, and a recent addition in
this regard is the use of deep neural networks, based
on CNNs [6] [7], autoencoders [5] [8] or both [10].
Some of the referenced methods are non-blind [8] since
they learn on a separate training set and use the trained
model to denoise new test samples. This makes them
fail when the test images to denoise are not of the same
kind as the models learnt with. [5] [6] [7] are however
blind methods that overcome the shortcoming of the
non-blind ones, insofar as they learn the model adap-
tively from the signal at hand while denoising. The
main disadvantage of both blind and non-blind methods
is that, one never knows how good the learned autoen-
coder will generalize to unseen noises [5] [9]. Most of
them are good enough for some noises, such as Gaus-
sian and impulse, but generalize poorly to noisy im-
ages with more sophisticated noise. Further, some of

the aforesaid methods make use of noisy-clean image
pairs [7], whereas pristine images are not always avail-
able in real-world computer vision applications.

In this paper, we propose an autoencoder-based method
that extracts the signal relevant to the classifier from the
noisy compressed images. Actually, we are not really
proposing a denoiser where the reconstructed image is
recovered from its noisy version. We rather propose a
method that looks for the information that is useful to
improve the accuracy of the classification and injects
it to the CNN. We first make use of an autoencoder to
learn the noise features from a noise dataset which in-
cludes noise images, and not noisy ones. Second, the
compressed noisy images are passed, as a test set, along
the model that was obtained from the noise feature ex-
traction step. As the model is trained to distinguish the
noise features, it will obviously capture the noise that
exists in the compressed noisy images. It is sufficient
to subtract this captured noise from the noisy images to
extract the useful signal to classify. The key strength of
our work is five-fold :

• Unlike some existing methods where noise-free im-
ages are necessary for them to function, our method
does not require pristine images and is noiseless na-
tive images independent. This is more realistic as
images captured in real-world computer vision ap-
plications are often noisy and no ground truth im-
ages are available.

• The proposed work jointly considers the noise and
compression artifacts. Bearing in mind real life sce-
narios, it is usual for an image data to be noisy and
voluminous so that it requires noise processing and
compression together. To the best of our knowledge,
there are no methods that address these two issues
together.

• To reduce noise, our method excludes the necessity
to train the model for the noisy sample itself, i.e.,
blind methods, or for a noisy sample other than the
one to denoise, i.e., non-blind methods. Our model
is learnt from the noise dataset. Thus, the proposed
method performance would not be impacted by the
volume of the training noisy data, either they are
large or not.

• Being independent from noisy images, our method
does not fail to efficiently recover different types and
modalities of unseen images.

• Most of the existing methods, not to say all of them,
perform well only when the noise level and type,
present in the training and test noisy images, are
same or differ only a little. In our case, this is no
longer required. It is enough to prepare a noise
dataset that contains the desired noise levels and
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Figure 1: Steps of the learning architecture: MNIST as
an example of benchmark dataset.

types. This will be first work, where we learn the au-
toencoder from the noise sample, and not from the
noisy sample, while denoising.

3 CLASSIFICATION OF COM-
PRESSED NOISY IMAGES

3.1 Learning architecture
Fig. 1 depicts the steps of our learning architecture ap-
plied on different benchmark test datasets :

1. We construct the dataset DNoisy that includes the dis-
torted images by applying different common types
of noises to original images of the DOriginal dataset.

2. We construct the DNoisyCompressed dataset that in-
cludes the compressed images of the DNoisy dataset
using different autoencoder configurations.

3. We pass the images of the DNoisyCompressed dataset
along a state-of-the-art CNN in order to classify
them.

4. According to results of step 3, we analyze how
autoencoders can deal with the injected noises
whose undesirable effects, such as artifacts, unre-
alistic edges, unseen lines, corners, blurred objects
and disturbed background scenes, can impact the
classification accuracy of CNNs. We remember that
the autoencoder here is used for compression and
not as a denoiser. Indeed, the noise is introduced
during the capturing so that we do not hold pristine
images.

The learning architecture shown in Fig. 1 is evaluated
on three well-known DOriginal benchmark datasets,
namely Mixed National Institute of Standards and
Technology (MNIST), i.e., black and white images,

Fashion MNIST, i.e., grayscale images, and CIFAR-10,
i.e., color images. For each of the abovementioned
datasets, we construct the DNoisy training data by
injecting different types and levels of noise into the
pristine training DOriginal images. We are particularly
interested in 5 types of commonly encountered noises,
namely the Gaussian as an amplifier noise, Poisson as a
shot noise, Uniform as a quantization noise, Speckle as
a multiplicative noise and Salt & Pepper as an impulse
noise. All these noise types are fairly presented in
DNoisy dataset, i.e. each of them presents 20% of the
total samples. Furthermore, three levels, corresponding
to standard deviation (σ ) values of 10, 50, and 100, are
considered for each noise. This training on a mixture
of samples with multiple types of noises at different
levels, rather than a certain type and level, will provide
the deep neural networks models, autoencoder and
CNN in our case, with stronger generalizing ability.

3.2 Used autoencoders and CNNs
The so obtained DNoisy dataset is the entry of an autoen-
coder in order to generate the DNoisyCompressed dataset
of Fig. 1. For MNIST and Fashion MNIST, 60.000
and 10.000 of the noisy images are used for the train-
ing and test, respectively. For CIFAR-10, 50.000 and
10.000 are the number of images used for training and
test. Two different settings of the autoencoder are con-
sidered. The former presents a vanilla autoencoder with
a fully-connected code layer of size 32. The latter
presents a deeper autoencoder with 3 encoding fully-
connected layers of respective sizes equal to 128, 64
and 32. We note that a fully-connected layers based
autoencoder effectively operates for MNIST and Fash-
ion MNIST, but not for CIFAR-10. Thus, we opt for a
CNN-AE for this latter. Unlike simple handwritten dig-
its and clothing items, there are many more features and
details to extract from each CIFAR-10 image. To ensure
the abovementioned settings, we make use of CNN-
AEs with 1 and 3 encoding convolutional layers. These
two settings are trained using Adam optimizer with a
batch size 128 for 100 epochs. All our experiments use
the initial learning rate of 0.1 which decays for every
20 epochs with an exponential rate of 0.1. The Mean
Squared error (MSE) is used as loss function. Here, we
remind that the reconstructed images are aimed to be as
close as possible to noisy ones since as already men-
tioned no noise-free images are available.

The DNoisyCompressed dataset, output of the aforesaid au-
toencoder, is then provided as the input data to learn
the CNN model. We use 70% of the DNoisyCompressed
samples for each CNN training epoch. The remaining
30% are exploited for the test. To make the future com-
parisons fair, we look for the CNN model that fits each
benchmark dataset. If the same CNN would be used for
all datasets, this would produce unbiased results as the
CNN architecture is optimized for one dataset and not
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Table 1: Training strategies.
Strategies Training images Noise levels AE depth

1 Pristine - 1

2 Pristine - 3

3
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
10 1

4
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
10 3

5
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
50 1

6
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
50 3

7
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
100 1

8
Noisy

(Gaussian, Poisson, Uniform, Speckle and S&P)
100 3

for the other. Thus, we opt for three CNN models that
are optimized for each of our datasets MNIST, Fashion
MNIST, and CIFAR-10 and allow respective accuracies
of 99.8%, 93%, and 90%. These models are largely de-
tailed in [11], [12] and [13].

3.3 Results and discussion
Eight different training strategies are implemented to
evaluate the impact of the noisy compressed images on
one of the main computer vision applications : clas-
sification. All these strategies share the same archi-
tecture of Fig. 1, but present as depicted in Table 1
different combinations of training images, noise levels
and autoencoder depths. For each strategy, the classi-
fication performances will be then analyzed when the
CNNs in [11], [12] and [13] are trained on pristine and
compressed noisy images of MNIST, Fashion MNIST,
and CIFAR-10 datasets, respectively. As indicated in
section 3.2, the compression is carried out using the
two autoencoder settings, namely depth 1 and 3. As
a shorthand, we refer to these settings as AE_D1 and
AE_D3. Classification performances are evaluated in
Table 2 in terms of accuracy (%), and will serve as ref-
erence values in section 5 to assess our proposed noise
recovery method. We note that each cell in Table 2 is
composed of two lines that respectively correspond to
the autoencoder settings : the value in the first line is
related to AE_D1, whereas the value in the second line
corresponds to AE_D3. The numbers after the down ar-
row correspond to the difference between accuracy val-
ues obtained for noisy compressed images and pristine
compressed ones.

Results of Table 2 exhibit that training strategies with
AE_D1, i.e., 1, 3, 5 and 7 of Table 1, allow better clas-
sification performances than AE_D3, i.e., 2, 4, 6 and
8, on both pristine and noisy images. Furthermore, the
classification performances of the CNN model, trained
on noisy compressed images, decrease when the noise
level increases. Although expected, we could not mea-
sure how much this decay would be if we had not
carried out these experiments. Compared to pristine
images, the accuracy of CNN for compressed noisy

MNIST images decreases, at σ value of 10, by 9.27%
for AE_D1 and 7.90% for AE_D3. The decrease is
about 11% and 10.96% for σ value of 50, and 14%
and 14.41% for σ of 100. For Fashion MNIST, the
accuracy of the CNN for compressed noisy images de-
creases, when compared to pristine images at level 10,
by 9.60% and 8.68% for the respective AE_D1 and
AE_D3. Even with the σ value 50 where the noise is
still moderate, the accuracy drops almost 16.01% for
AE_D1 and 17.29% for AE_D3. The same observation
also stands for the CIFAR-10 dataset.

4 EFFICIENT CLASSIFICATION
SCHEME FOR AE-BASED COM-
PRESSED NOISY IMAGES

Following the study of the noisy image autoencoder-
based compression impact on classification, the pro-
posed method to enhance obtained results is presented
in this section. Compared to the flowchart of Fig. 1,
we include a new step as a part of the enhanced learn-
ing architecture. As shown in Fig. 2a, this step con-
sists in extracting the signal from the mixture of im-
age and noise. It is actually decomposed to three sec-
tions, namely noise features learning, noise extraction
then signal subtraction (cf. Fig. 2b) :

• Noise features learning : First, we construct a noise
dataset that includes noise, and not noisy, images.
Typically, they are images that contain noise without
any other content, e.g., objects, contours, and tex-
ture. The constructed dataset is consisted of 45000
images of the same size than the training dataset im-
ages. All the five noises as well as their three levels,
specified in section 3.1, are equally presented in the
dataset. Second, we train a vanilla autoencoder, as
defined in section 3.2, on our noise dataset to gener-
ate a model that captures the noise features.

• Noise extraction : The DNoisyCompressed dataset
is no more passed, as it is, along the CNN for
classification. A noise extraction step is added
in order to subtract the noise from the images
before their classification. We typically consider
the DNoisyCompressed as a test set for the model
that was obtained from the noise features learning
step. Since the model is trained on a noise dataset,
its parameters, namely weights and biases, are
adjusted in a way that they represent noise features.
Therefore, passing DNoisyCompressed dataset along
the noise model as a test set would generate images
that are similar to those of noise ones.

• Signal subtraction : The output images of the
noise extraction step are subtracted from the
DNoisyCompressed images in order to extract the signal
that is useful for the classification, i.e., the absolute
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Pristine images
Compressed noisy images

σ = 10 σ = 50 σ = 100

MNIST
99.57 90.30 ↓ 9.27 88.57 ↓ 11.00 85.57 ↓ 14.00

96.43 88.53 ↓ 7.90 85.47 ↓ 10.96 82.02 ↓ 14.41

Fashion MNIST
93.21 83.61 ↓ 9.60 77.20 ↓ 16.01 70.18 ↓ 23.03

91.51 82.83 ↓ 8.68 74.22 ↓ 17.29 68.03 ↓ 23.48

CIFAR-10
90.04 79.10 ↓ 10.94 73.26 ↓ 16.78 69.16 ↓ 20.88

86.69 75.28 ↓ 11.41 70.05 ↓ 16.64 67.72 ↓ 18.97

Table 2: Classification accuracy (%) of pristine and compressed noisy images for MNIST, Fashion MNIST,
and CIFAR-10 datasets. Each cell is composed of two lines that are respectively related to AE_D1 and AE_D3
settings.

value of the subtraction. Here, we note that our aim
is not the image denoising. We rather aim to take a
neat signal from the image, and subtract the noise
that can disrupt the CNN classification results. As
we can observe in the last rectangle of Fig. 2b,
the images backgrounds are also removed while
carrying out the subtraction. This aligns with what
we have just affirmed, the fact that the proposed
method is not aimed for denoising. It is for object
shape preservation to enhance classification results
of CNNs. The image background removal will
not affect the CNN performances since what is
important here is the object to be classified.

5 EXPERIMENTATIONS
5.1 Comparison with candidate methods
Performances of the proposed method are shown
through accuracy in Table 3 for classification of com-
pressed noisy images of MNIST, Fashion MNIST, and
CIFAR-10 datasets. Each cell of Table 3 is composed of
seven lines. The first line corresponds to classification
performances without noise processing (cf. Fig. 1) that
were obtained from experiments of section 3.3. The six
remaining lines are respectively related to classification
performances with noise processing using the proposed
method (cf. Fig. 2a), the 5× 5 median, gaussian and
bilateral filters, and Agostinelli et al. method [8]. For
our method, the AE_D1 setting has been considered as
autoencoder depth, as it considerably performs better
than the AE_D3 one according to results of Table 2.
Like our method, Agostinelli et al. [8] method is based
on autoencoders. As a non-blind approach, we train the
model in Agostinelli et al. [8] method on two separate
training data that are respectively different from and
more or less of similar content to test MNIST, Fashion
MNIST and CIFAR-10 samples.

We typically use ImageNet [14] and EMNIST [15]
whose images content respectively resembles the
CIFAR-10 dataset and MNIST variants. However,

(a)

(b)
Figure 2: (a) Steps of the enhanced learning architec-
ture : MNIST as an example of benchmark dataset, (b)
Flowchart of the proposed signal extraction.
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SARS-CoV-2 CT-scan dataset [16] is leveraged as
totally different kind of images from our benchmark
MNIST, Fashion MNIST, and CIFAR-10 test sam-
ples. Being one of the biggest COVID-19 datasets,
SARS-CoV-2 CT-scan includes 2482 Computerized
Tomography (CT) scans from 120 patients, with 1252
CT scans of 60 patients infected by COVID-19, and
1230 CT scan images of 60 non-infected patients by
COVID-19, but presenting other pulmonary diseases.
Improvements of the candidate methods over the clas-
sification without noise processing are indicated by the
values after the up arrows. We remind that the CNNs
in [11], [12] and [13] are used for the classification
of MNIST, Fashion MNIST and CIFAR-10 for all the
candidate methods.

Obtained results of Table 3 show that our method is
more robust than its candidates. It succeeds in clas-
sifying images with more confident level than filters
and Agostinelli et al. [8] method for all the evalua-
tion noise rates and benchmark datasets. For MNIST
dataset as example, the proposed method enables the
CNN to reach an accuracy of 96.74%, 93.68% and
90.83% for respective levels 10, 50 and 100, meaning
an enhancement of 6.44%, 5.11% and 5.26% in com-
parison with CNN used without any noise processing.
These enhancements are higher than those achieved by
the gaussian, median and bilateral filters, the most used
noise filters. Trained on EMNIST, Agostinelli et al.
[8] method (Agostinelli et al. [8]_EMNIST) achieves
lower classification accuracies than ours. Accuracies
are further lower when Agostinelli et al. [8] method is
trained on CT (Agostinelli et al. [8]_CT) that is not sim-
ilar to the MNIST test set. In fact, Agostinelli et al.
method [8] performances depend on the images it was
trained on. They are considerably decreased when the
test images to denoise, i.e., MNIST, Fashion MNIST
and CIFAR-10, are not of the same kind as the model
learnt with, i.e., CT.

5.2 Results per noise type
Until now, our evaluation considered all types of noise
together gathered in the test set. As already mentioned,
the noise types are fairly presented in DNoisy dataset,
where each of them presents 20% of the total sam-
ples. In this present section, we assess the CNN perfor-
mances of Fig. 2a while being trained on the mixture
of the noise types, but tested on each type of noise sep-
arately. Hence, we can study how damaging a specific
type of noise is when compressed by an autoencoder.
The obtained results are presented in Fig. 3 in terms of
accuracy for MNIST, Fashion MNIST, and CIFAR-10
at AE_D1. As can be observed, Gaussian and Uniform
are noises that mostly affect the classification perfor-
mances as they present the lowest accuracies for all the
test datasets and noise levels. In contrary, the Speckle
noise leads to the best results.
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Figure 3: Classification accuracy (%) of compressed
noisy images for MNIST (top), (b) Fashion MNIST
(middle), and (c) CIFAR-10 (bottom) per separate noise
type.

6 CONCLUSION
Image classification is a non trivial visual task, espe-
cially when it faces the presence of real life inevitable
noise and compression artifacts. To address these is-
sues, several researches have been conducted utilizing
denoisers to restore original images, from noisy ones,
before using CNNs for classification. We rather aim
to extract, from noisy images, the pertinent signal use-
ful for classification. The noisy compressed images are
passed, as a test set, along a model that is trained on a
noise dataset. The so generated images are then sub-
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Compressed noisy images

σ = 10 σ = 50 σ = 100

MNIST

w/o Noise processing 90.30 88.57 85.57

Proposed method 96.74 ↑ 6.44 93.68 ↑ 5.11 90.83 ↑ 5.26

Gaussian 94.57 ↑ 4.27 92.91 ↑ 4.34 90.25 ↑ 4.68

Median 93.30 ↑ 3.00 91.28 ↑ 2.71 88.57 ↑ 3.00

Bilateral 93.53 ↑ 3.23 90.72 ↑ 2.15 88.63 ↑ 3.06

Agostinelli et al. [8]_EMNIST 94.10 ↑ 3.80 91.31 ↑ 2.74 90.02 ↑ 4.45

Agostinelli et al. [8]_CT 91.11 ↑ 0.81 89.05 ↑ 0.48 86.41 ↑ 0.84

Fashion MNIST

w/o Noise processing 83.61 77.20 70.18

Proposed method 90.33 ↑ 6.72 88.21 ↑ 11.01 85.37 ↑ 15.19

Gaussian 89.18 ↑ 5.57 86.92 ↓ 9.72 84.63 ↑ 14.45

Median 87.23 ↑ 3.62 85.78 ↓ 8.58 84.11 ↑ 13.93

Bilateral 88.01 ↑ 4.40 85.45 ↓ 8.25 82.29 ↑ 12.11

Agostinelli et al. [8]_EMNIST 89.30 ↑ 5.69 86.43 ↑ 9.23 84.14 ↑ 13.96

Agostinelli et al. [8]_CT 84.44 ↑ 0.83 80.04 ↑ 2.84 77.27 ↑ 7.09

CIFAR-10

w/o Noise processing 79.10 73.26 69.16

Proposed method 87.29 ↑ 8.19 82.89 ↑ 9.63 79.10 ↑ 9.94

Gaussian 85.81 ↑ 6.71 81.62 ↑ 8.36 77.06 ↑ 7.90

Median 84.79 ↑ 5.69 80.10 ↑ 6.84 76.83 ↑ 7.67

Bilateral 83.55 ↑ 4.45 79.66 ↑ 6.40 75.26 ↑ 6.10

Agostinelli et al. [8]_ImageNet 85.73 ↑ 6.63 79.55 ↑ 6.29 75.60 ↑ 6.44

Agostinelli et al. [8]_CT 81.81 ↑ 2.71 75.46 ↑ 2.20 72.11 ↑ 2.95

Table 3: Classification accuracy (%) of compressed noisy images for MNIST, Fashion MNIST, and CIFAR-10
datasets. Each cell is composed of seven lines that are respectively related to classification : without (w/o) noise
processing, and with noise processing using the proposed method, gaussian filter, median filter, bilateral filter, and
Agostinelli et al. [8] trained on datasets respectively similar to, i.e., EMNIST and ImageNet, and different from,
i.e., CT, test samples.

tracted from the input noisy compressed images, in or-
der to extract clearer versions that are likely to be cor-
rectly classified. Extensive experimental results on dif-
ferent benchmark datasets clearly demonstrate the su-
perior accuracy of our method over main state-of-the-
art methods. These promising results make the pro-
posed method potentially useful for computer vision
systems, where images are voluminous and highly ex-
posed to several noises. The per noise experiments
have been also conducted. It is concluded that the
classification performances are susceptible to all noise
types, albeit to varying degrees. Gaussian and Uniform,
which are amplifier and quantization noises, affect the
resilience of CNN when classifying compressed noisy
images more than Poisson, Speckle, and Salt & Pepper
ones, that are shot, multiplicative and impulse noises.
Several future research directions are opened from this
study. First, the simple autoencoder investigated in this
study is found efficient. Various autoencoders rather
than the simple counterparts can also be employed to

check whether the noise model training process im-
proves or not. Second, future researches can be con-
ducted by leveraging the super-resolution techniques in
order to retrieve details from noisy compressed images,
so that we get better CNN performance.
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ABSTRACT
The ability to create an accurate three-dimensional reconstruction of a captured scene draws attention to the prin-
ciples of light fields. This paper presents an approach for light field camera calibration and rectification, based
on pairwise pattern-based parameters extraction. It is followed by a correspondence-based algorithm for camera
parameters refinement from arbitrary scenes using the triangulation filter and nonlinear optimization. The effec-
tiveness of our approach is validated on both real and synthetic data.

Keywords
light field, camera calibration, camera rectification, calibration refinement

1 INTRODUCTION
Light field cameras [Ng05a] utilize a multi-view prin-
ciple, focusing incoming light on the image sensor over
a grid of lenses. It creates a set of proportionally
shifted images that can be used to reconstruct a three-
dimensional representation of the captured scene.

These are two types of light field cameras. As proposed
by Adelson and Wang in [Ade92a], a light field cam-
era can be created from an array of micro-lenses placed
in front of the camera sensor. An alternative way of
constructing the light field camera was presented by
Wilburn et al. in [Wil05a] and involves placing an array
of ordinary cameras with predetermined proportional
distances between them. A different principle, which
can be described as intermediate between the previous
two, is represented in [Ani19a]. There, the light field
camera is built on a single camera sensor with an array
of full-size lenses placed in front of it.

Among the various applications of light fields, the es-
timation of depth maps attracts particular attention, as
the large number of viewpoints increases the quality of
the reconstruction and the simple geometry of the light
fields simplifies the calculations. Due to the inaccura-
cies in the placement of light field camera components

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(micro-lens array or single-view cameras) the direct es-
timation of scene depth information will not be accu-
rate. Natural lens distortion also affects the quality of
the result. There are two ways to solve these problems.
For the reconstruction algorithm, either the exact lens
positions and geometry should be taken into considera-
tion, or the images from such a camera can be rectified
to assure constraints of images’ common rotation and
proportional placement.

One of the simplifications in reconstruction from
multi-view systems has to do with limiting the search
for matching correspondences to specific scan lines
instead of searching the entire image. Therefore, the
rectification-based way of lens placement compen-
sation should be used in the multi-view systems if
their view placement allows the rectification without
vanishing of significant image plane parts.

Camera calibration, or camera resectioning [Har03a],
is a process of retrieving camera intrinsic and extrinsic
parameters. Usually, the intrinsic parameters include
the focal length, coordinates of a principal point, axis
skew, and distortion coefficients. Extrinsic parameters
contain information about the pose of the view in the
form of rotation and translation w.r.t. the scene origin.

These parameters may change slightly under the me-
chanical or thermal influences during the operation of
the light field cameras. In general, the light field cam-
era must be recalibrated to cope with such changes, but
sometimes this is not possible due to camera operating
limitations or conditions. In such cases, the calibration
data can be checked and corrected using arbitrary scene
information.
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We present an approach for light field camera calibra-
tion and rectification, which is based on a well-known
pattern-based method from Zhengyou Zhang [Zha00a].
The results of the calibration are used to generate look-
up tables that are applied to the light field views for
their rectification. The key feature of the method is its
simplicity of implementation since this calibration re-
quires a checkerboard pattern that can be produced on
any conventional printer.

At the same time, designed a nonlinear optimization
model for estimating the compensation of changes in
the position of the light field camera lenses. This
method uses features extracted from an arbitrary scene.

To improve their accuracy, we introduce a
triangulation-based correspondences filtering method,
as well as a chaining method for tracking them in
different light field views.

Our algorithms were verified on a light field camera
with single full-size lenses in an array. It can be poten-
tially used in micro-lens-based cameras, however, the
potential misplacement of lenses in a manufactured ar-
ray is not as large as in cameras with full-size lenses.

The paper is structured as follows. An overview of pre-
vious work is given in Section 2, Sections 3 and 4 out-
line the proposed methods, and experimental results for
them are presented in Section 5, followed by a conclu-
sion in Section 6. To prevent the term "camera" from
being unambiguous, we use it in reference to a light-
field camera; and each image taken from a particular
lens is called a "view".

2 RELATED WORK
The first paper describing the principles of light field
calibration for camera arrays was proposed by Vaish et
al. in [Vai04a]. Using planar parallax, the authors re-
trieve the relative positions of the light field views and
use them for further processing.

Extension of stereo calibration and rectification princi-
ples for multi-view cameras is presented in the work
of Kang et al. [Kan08a]. In our work similar princi-
ples were used for defining the common values of rec-
tification parameters. Approach of Xu et al. [Xu15c]
optimizes all parameters of light field camera simulta-
neously by constrained bundle adjustment model.

Most of the approaches for light field calibration con-
sider usage of micro-lens-based cameras. They can’t be
applied directly to camera arrays due to the fact that the
shift of the lenses relative to each other in such cameras
is much higher than in the plenoptic cameras.

In the work of Bergamasco et al. [Ber15a] a parameter-
free camera model is used for the light field rays rep-
resentation for further triangulation-based calibration.
An approach of Jin et al. [Jin16a] estimates the centers
of sub-images, aligns all views in a grid, and performs

Figure 1: A pipeline of pattern-based calibration algo-
rithm

the rotation of all views to a common plane. Bok et al.
in [Bok16a] extracts lines from the raw-captured cali-
bration pattern and attempts to compensate for lens dis-
tortion and misplacement inaccuracies using these fea-
tures.

Likewise, Noury et al. in [Nou17a] employ the raw im-
ages; however, they use corners as the features for cali-
bration procedure along with nonlinear optimization of
the result. Method of O’Brien et al. [Obr18a] extracts
disc features instead of conventional corners for retriev-
ing the light field calibration data.

An approach by Sun et al. [Sun19a] works with three
calibration targets at different distances together with
gradient-based correspondences search. In the publica-
tion of Zhou et al. [Zho19b], the calibration problem is
solved by estimating the original homography solution
using a calibration scheme and its subsequent nonlinear
optimization. Ji and Wu in [Ji19c] propose a calibration
model for plenoptic cameras calibration with a conven-
tional calibration target.

3 CALIBRATION ALGORITHM
A calibration algorithm estimates the intrinsic and ex-
trinsic parameters of all light field views. This data
is further used for the views rectification, which cre-
ates constrains for simplification of the depth estima-
tion. The pipeline of this method is presented in Fig.
1.

3.1 Camera model
For a separated view of the light field a pinhole camera
model is used [Har03a]. The general relation of two-
dimensional (2D) image points and three-dimensional
(3D) scene points can be described as:x

y
1

=

 fx s cx
0 fy cy
0 0 1

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2




X
Y
Z
1

 (1)

P = K[R|t], m = PM (2)

where m corresponds to homogeneous image point, K –
camera calibration matrix, which consists of pixel focal
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lengths fx and fy, principal point coordinates cx and cy,
and axis skew s. R and t correspond to rotation matrix
and translation vector respectively. These components
are assembled into a projection matrix P. M stands for
homogeneous world point.

This representation does not take the lens distortions
into account. Therefore, in our model we compen-
sate the radial distortions up to their second order by
[Har03a]:

x = xc +(xn− xc)(1+ k1r2 + k2r4)

y = yc +(yn− yc)(1+ k1r2 + k2r4)

r2 = (xn− xc)
2 +(yn− yc)

2

(3)

where {x;y} are the undistorted points, {xn;yn} corre-
spond to original image points, (xc;yc) stands for radial
distortion center, r is the distance from this center to
the distorted image point, and k1 and k2 are the radial
distortion coefficients.

3.2 Pattern-Based Calibration
A method, which uses a planar calibration pattern, was
originally described by Zhengyou Zhang in [Zha00a].
The interest points of a calibration pattern should be
such that they can be easily found by a corner detec-
tion algorithm. A pattern with a known structure, such
as a checkerboard, is used. The measured physical size
of the pattern elements is required for solving a task
of view position determination with respect to the cal-
ibration target. It is used further to provide the correct
values of the focal length, with which the pattern was
captured.

First, the corners of the located checkerboard need to be
found. Due to the high contrast of the black-and-white
pattern, its elements can be easily segmented based on
histogram analysis. Corners’ position is determined by
the algorithm from [Suz85a]. A sub-pixel refinement
step, described in [Foe87a], is used for obtaining accu-
rate correspondences. This information is used to find
the optimal intrinsic parameters of each view.

Having a set of points {m}, which size corresponds to
the number of corners detected in the checkerboard, and
its 3-dimensional matches {M}, common for all im-
ages, the algorithm computes the intrinsic matrix K and
the distortion coefficients vector d in a way that these
values reduce the reprojection error between the orig-
inal and projected points with K and d, assuming that
images are taken with zero rotation and translation w.r.t.
scene origin.

By using Eq. 2 with estimated intrinsic matrix K, and
R = I, t = [0 0 0], where I stands for identity matrix of
size 3×3, the reprojections of 3D points can be found.
They are used afterward for estimating the root-mean-
square error between originally detected points and the
reprojected ones.

The 3D coordinates of pattern points {M} are assumed
to be known. Their placement is defined by physical
distances between real-world corners of the checker-
board, which can be expressed from the size of squares.

The algorithm results in the intrinsic values (focal
length, camera center) of each light field view to-
gether with the distortion coefficient per lens. In
order to reduce the reprojection error, the result is
further optimized using the Levenberg-Marquardt
algorithm [Mar63].

It has been empirically established that this method re-
quires dozens of images with different pattern positions
to accurately estimate the calibration parameters. The
order of magnitude of this number can be explained by
the need for the entire image space to be covered by the
sum of the pattern positions among all captured frames.

Results of single-camera calibration are further used for
estimation of the relative parameters of every view w.r.t.
the reference. During this step we fix extrinsic parame-
ters of the reference view, so that Rre f = I, tre f = [0 0 0],
and compute relative rotation and translation of every
other view {Ri; ti}, i = 1..N, where N is a total num-
ber of views in the camera, based on their position in
relation to scene center. It is possible since all views
capture the same pattern position in every image.

By having an assumption of known 3D points the
Perspective-n-Point (PnP) problem [Fis81a] is solved
for obtaining the rotation and translation of every view
w.r.t. reference. As before, the results are subject to
Levenberg-Marquardt optimization.

In the end, we obtain a set of original rotation and trans-
lation vectors {rO, tO}, which are used for the process-
ing in Section 4. Rotation vectors are obtained from
rotations matrices RO by applying the Rodrigues trans-
formation [Rod40a]. It is used for the simplicity of cal-
culations in the next steps.

3.3 Multi-View Rectification
The next step of the presented algorithm is the estima-
tion of optimal values of the intrinsic and extrinsic pa-
rameters for all views. It is necessary for the alignment
of all views on the same image plane with proportional
distances between every view.

First, all light field views should be rectified with a
common intrinsic matrix Kr, which is defined as the fol-
lowing:

f x
r =

∑
N
i=1 f x

i
N

; f y
r =

∑
N
i=1 f y

i
N

;

cx
r =

w
2

;cy
r =

h
2

;

Kr =

 f x
r 0 cx

r
0 f y

r cy
r

0 0 1

 ,

(4)
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(a) (b)
Figure 2: A subset of (a) original and (b) rectified light field after applying the algorithm from Section 3. The
corners of the checkerboard are properly aligned, which confirms the rectification

where N is the number of light field views, and w,h
correspond to width and height of every view.
Rotation and translation vectors {rO, tO} are used for
getting an optimal value of common rotation and trans-
lation vector, to which all views would be brought by
the rectification.
Common rotation vector rr is estimated as an average
of all rotation vectors as:

rr =
∑

N
i=1 rO

i
N−1

, (5)

and further converted to rotation matrix Rr by applying
Rodrigues transform.
Computations of common translation vector involve the
spatial information of every view. Since the translation
vectors are defined w.r.t. reference view, we estimate
the relative values by involving a and b as vertical and
horizontal spatial dimensions of light field, where a×
b = N.
For a specific light field view i = 1..N, the translation
vector tV

i is formed from per-axis components as tV
i =

[tVx
i tVy

i tVz
i ] and estimated as a mean of all components

not in the same row or column as:

ā = bi/ac; b̄ = i mod b;

tVx
i =

{
tOx
i /(b̂− b̄), b̂− b̄ 6= 0

0, b̂− b̄ = 0

tVy
i =

{
tOy
i /(â− ā), â− ā 6= 0

0, â− ā = 0

tVz
i = 0

, (6)

where â and b̂ stand for spatial coordinates of reference
view, defined in Section 3.2.

All translation vectors form a set tV . Common transla-
tion vector t̄r = [tx

r ty
r 0] is estimated as:

Stx =
N

∑
i=1

(1−δtVx
i ,0);Sty =

N

∑
i=1

(1−δ
t
Vy
i ,0

)

tx
r =

∑
N
i=1 tVx

i
Stx

; ty
r =

∑
N
i=1 tVy

i
Sty

, (7)

where Stx and Sty are numbers of particular non-zero
components in tV , found using Kronecker delta:

δx,y =

{
0,x 6= y
1,x = y

. (8)

This vector is a basis for the set of per-view translation
vectors t p:

t px
i = tx

r (b̂− b̄); t py
i = ty

r (â− ā); t pz
i = 0. (9)

Using the results from Eq. 4–9 we estimate the rectified
projection matrix Pr per every light field view i = 1..N
as [Har03a]:

R̄i = RrRO
i

T

t̄i = R̄it
p
i

Pr
i = Kr[R̄i|t̄i]

(10)

The resulting camera projection matrix represents the
ideal position of its corresponding light field view.

The further remapping of pixels to the proper position
is done by applying a look-up table, which stores per-
pixel coordinates of the rectified image and generated
using Pr

i , distortion coefficients and original intrinsic
and extrinsic values. Fig. 2 shows, how light field im-
ages changes after applying the described pipeline.
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Figure 3: A pipeline of auto-refinement algorithm

4 CALIBRATION AUTO-REFINEMENT
An auto-refinement algorithm uses the previously
found reference calibration (Section 3) and tries to
estimate, how the calibration parameters need to
be compensated for the current configuration of the
multi-view camera. It is needed in cases when the
placement of views was changed during the camera
exploitation, e.g. camera is mounted on the car and it is
a subject of shakes and other mechanical influences. A
pipeline of this method is presented in Fig. 3.

4.1 Correspondence Chain Matching
The important criteria for the selection of correspon-
dences detection algorithm were the robustness of fea-
tures in real-world images and the running time of the
algorithm. Among existing methods, the combination
of "Good features to track" method for features extrac-
tion [Shi94a] with Kanade-Lucas-Tomasi (KLT) fea-
ture tracker [Tom91a] were chosen.

Exploiting the multi-view nature of the light field, in
particular the fact that the projection of 3D points from
the scene can be seen in all views, the determined
features are tracked between different views in a chain
manner. Correspondences from the reference view
are verified in the neighboring view on the same axis,
tracked ones are searched in the next view, and on the
last view in one row features are matched in the upper
one. This principle is demonstrated in Fig. 4.

Such a method is needed for reducing the number of
possibly mismatched correspondences, which may oc-
cur especially in the small-baseline multi-view systems,
like the camera used in Section 5. This method also
helps for the verification of the correspondence inaccu-
racies, since the very strong matches have to be pre-
served in all views.

Additional filtration, based on the estimation of fun-
damental matrix between correspondences in adjacent
views, and exclusion of non-matched features is ap-
plied. Having a fundamental matrix F , estimated by
e.g. Random Sample Consensus method [Fis81a], the
points from neighboring view x1 and x2 are checked by
the value of xT

2 Fx1 being lower than a certain threshold.

There’s a small number of features, which were ex-
tracted more than once from the image. To remove the
possible influence of such correspondences, we prelim-
inary check the result of the feature detection algorithm

Figure 4: Visualization of views traversing in chain
manner

by searching of the nearby correspondences using the
Euclidean distance between points.

By empirically setting a certain threshold for these dis-
tances we can efficiently filter out the closely placed
features. For our experiments it was set to

√
2.

4.2 Triangulation Filter
Previously described methods of filtration can elim-
inate a big amount of wrongly estimated correspon-
dences. However, some false matches, especially the
ones placed close or on the textureless areas, can sur-
vive these checks. To eliminate such mismatches we
propose a filter, based on the re-projection of triangu-
lated points.

The filtered points are triangulated based on original
intrinsic values Ki and rotation and translation vectors
ROi, tOi, i = 1..N. A projection matrix PO

i is composed
as Ki[RO

i |tO
i ]. For every correspondence mi = [xi,yi],

matched in every view out of N, by taking a vector PrT
oi

for every row of the corresponding projection matrix
the matrix A is composed as follows [Har03a]:

A =



x1P3T
O1 −P1T

O1

y1P3T
O1 −P2T

O1
...

xNP3T
ON−P1T

ON

yNP3T
ON−P2T

ON


(11)

Singular Value Decomposition is applied to this matrix,
the triangulated points are extracted from the smallest
singular value of A. These points are used afterward for
the optimization result in Section 4.3.
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Figure 5: An example of checkerboard pattern, used for
light field camera calibration

Using the PO we project the triangulated points Mt to
2D space and estimate the Euclidean distance between
original and projected points:

mt = PMt

distt = ‖mt −mr‖,
(12)

where mr stands for an original correspondence from
reference view.

We find a median of all distances between each corre-
spondence and its projection, and filter out all matches,
for which the distance is bigger than the median value.

4.3 Bundle Adjustment
The bundle adjustment problem [Tri99a] is solved for
estimating the compensation intrinsic and extrinsic val-
ues. For every initially found point xik, k = 1..M, where
M is a total number of points, in all views i = 1..N we
try to minimize reprojection error as:

N

∑
i=1

M

∑
k=1
‖xik−Q(Xk,Ki,di,Ri, ti)‖ (13)

, where Q() projects the 3D points to 2D plane, involv-
ing Eq. 1 – 3.

5 EXPERIMENTS
5.1 Calibration algorithm
For the tests of pattern-based calibration algorithm we
used a light field camera from [Ani19a]. It composed
of 4x4 lenses, providing a 960x960 pixels RGB image
per view, which afterward converted to grayscale for
the sake of calculations simplicity. A 12x9 checker-
board pattern with 20x20 mm squares was used for the
calibration. An example of the calibration pattern is

Figure 6: Depth error for EPnP = 0.246 pixels

presented on Fig. 5. We captured 40 scenes with this
pattern for testing purposes.

To control the accuracy of the estimated intrinsic matrix
K and distortion coefficients d, the reprojection error is
computed as in Eq. 13 for every light field view. Sim-
ilar computations are done during the estimation of the
extrinsic values.

For the test dataset the average reprojection errors for
monocular calibration and PnP problem were Emono =
0.159 and EPnP = 0.246 pixels respectively.

A comparison of our method was done with the method
of Xu et al. [Xu15c]. For the same test dataset we
have obtained reprojection errors of Emono = 0.153 and
EPnP = 0.156 pixels.

We can state that optimization of all parameters to-
gether for the precisely estimated points make sense in
terms of accuracy. However, the potential drawback is
related to higher running time of the joined optimiza-
tion.

To verify influence of the reprojection error to the actual
depth reconstruction we found a depth error with com-
mon focal length values f = fx = fy = 850 pix and base-
line between the two most distant views on the same
axis b = 0.018 m as:

∆Z =
f b

d−Epnp
+

f b
d +Epnp

, (14)

, where d is the disparity value, i.e. displacement be-
tween pixels, which can be further converted to actual
depth value. This error is visualized on Fig. 6.

On a target range of the test camera, which is 0.5-2.0
m [Ani19a], the estimated reprojection introduces an
inaccuracy in the amount of 0.004-0.065 m, which is
lower then the depth accuracy on this specific distance
range.

5.2 Auto-refinement algorithm
A dataset of synthetic light fields was used for
verification of auto-refinement stability. The rec-
tified and undistorted images with known intrinsic
parameters were generated using Blender and the
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Figure 7: An example of synthetic scene for verifying
the auto-refinement algorithm

script from 4-dimensional Light Field Bench-
mark [4DLFB] [Hon16a]. 5x5 light fields of size
512x512 pixels per view with a baseline of 100 mm
between adjacent views were generated from a simple
scene with different overlapping objects, as demon-
strated in Fig. 7. A sequence of ten images was used
for the tests.

In average, 1/10 of originally detected points were fil-
tered by correspondence chain matching, out of which
half of the points survived the triangulation-based filtra-
tion. Processing of one frame takes around one second.

The difference between original and refined intrinsic
and extrinsic parameters was measured and considered
as non-informative, since no significant difference be-
tween original and refined values was found. It can be
explained by the quality of correspondences, which is
in general good for the synthetic data.

To check the accuracy of the auto-refinement algorithm,
we applied rotation and translation noise to the captured
frames and measured the average reprojection errors.
Results are demonstrated on Fig. 8.

In total both types of noise create acceptable level of
reprojection error. In a similar to pattern-based calibra-
tion manner we have evaluated the depth error for max-
imum reprojection error from the rotation noise, result
of which is presented on Fig. 9.

For the noise simulation of rotation was applied only
to Z-axis. Rotations on X and Y axes are the subject
of tangential distortion. It occurs when the lens array
is not parallel to the camera sensor plane. This type of
distortion is assumed to be zero in the applied camera
model.

Figure 8: Reprojection error of auto-refinement algo-
rithm dependently of the applied noise for synthetic im-
ages

5.3 Discussion
The pattern-based calibration method used gives ade-
quate results in terms of the resulting reprojection error.
Empirically, we have found that the overall calibration
quality depends largely on the quality of the calibration
target, especially its flatness.

For the proper calibration we have come to the number
of 25-30 pattern images in one sequence. All areas on
the light field views should be covered with pattern im-
ages in various positions to ensure correct estimation of
internal values.

One of the assumptions of the algorithms was the sim-
ilarity of the lens parameters for each view. For cases
with a significant shift (in terms of rotation or transla-
tion) of at least one of the views over the others, aver-
aging over extrinsic values cannot be used; it should be
replaced by nonlinear methods.

Experiments with the auto-refinement algorithm on
synthetic images show that the reprojection error
increases in proportion to the level of lens shift, while
changes in their rotation affect only up to some point
with a plateau thereafter.

During the auto-refinement experiments, we noticed
that optimizing all the parameters together leads to in-
correct results. This was the motivation for dividing the
optimization procedure into three steps applied to the
same model. First, only 3D points are optimized, while
intrinsic and extrinsic camera values are fixed. This
condition is relaxed in the second part, where the intrin-
sic values of all views are optimized. Finally, we opti-
mize all camera parameters together. All of the above
steps are repeated with new captured scenes. It can be
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Figure 9: Auto-refinement depth error

stopped either by using a certain number of iterations
or by reaching the desired reprojection error below a
threshold value.

Several limitations of the auto-refinement algorithm
were identified during the tests. It does not work well
with repeating textures and with small distances be-
tween detected matches, e.g. on keyboards. This prob-
lem can be solved either by applying additional filtering
measures or by changing the match detection algorithm.
In addition, the coverage of the image area by the cor-
respondence is important to obtain correct lens geome-
try, a similar requirement stands for pattern-based cali-
bration. Additional correspondence distribution checks
can be made to discard images without proper cover-
age. Because of this, the distortion coefficients cannot
be correctly corrected by our auto-rectification method
and remain locked during the optimization stage.

We have tested the auto-refinement algorithm with and
without triangulation filter. Without filtering the results
were totally incorrect, so they are not included in part
of the experiments.

5.4 Implementation
The algorithm was implemented in C++, uses only a
central processing unit (CPU), and requires additional
libraries such as OpenCV [OpenCV] for image-related
routines and Ceres Solver [Ceres] for solving nonlin-
ear optimization problems. The algorithm was tested
in Windows 7 with Intel Xeon CPU E3-1245 V2, addi-
tional tests were done on the NVIDIA Jetson TX2 and
AGX Xavier platforms. Memory requirements directly
depend on the size of the provided light field.

6 CONCLUSION
In this paper we presented the calibration and recti-
fication pipeline for light field cameras together with
the method for calibration parameters refinement from
the arbitrary scenes. Additional filtration measures like
triangulation filter and two-dimensional technics were
outlined. The algorithms were evaluated using syn-
thetic and real-world data, the results of the experiments
support the idea of algorithms’ utilization for real-world
light field calibration and its refinement. The presented

calibration and auto-refinement principles can be fur-
ther extended to other multi-view systems with pre-
served similarity of views alignment. To further our
research we plan to overcome the mentioned limita-
tions and conduct additional experiments on other sim-
ilar multi-view systems. For example, method from
[Ddv08a] can be adapted to deal with distortions from
arbitrary scene.
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ABSTRACT
With the ongoing improvement of digital cameras and smartphones, more and more people can acquire high-
resolution digital images. Due to their size and high performance requirements, such Gigapixel Images (GPIs) are
often challenging to process and explore compared to conventional low resolution images. To address this problem,
this paper presents a service-based approach for GPI processing in a device-independent way using cloud-based
processing. For it, the concept, design, and implementation of GPI processing functionality into service-based
architectures is presented and evaluated with respect to advantages, limitations, and runtime performance.

Keywords: Gigapixel Images, Image Processing, Web Technologies, Service-based Processing

1 INTRODUCTION
Nowadays, the acquisition of digital images is an es-
sential part of everyday life. With respect to this,
the acquisition technologies have been constantly im-
proving, resulting in an increase of spatial and tempo-
ral resolution and precision. Especially the increased
(spatial) resolution demands for efficient and scalable
approaches for their processing and display. Besides
desktop-publishing, advertising and marketing, high-
resolution images play an important role in the field
of cultural heritage [15], medical analysis [11], and
geospatial science [20].

1.1 Problem Statement
One example of such high-resolution images are GPIs,
which often comprise several billion pixels. Acquisi-
tion of such images is usually more complex and its
processing and exploration places high demands on a
system [8]. Standard consumer hardware is often not
sufficient to process and display GPIs due to the high
memory requirements. This is especially true for mo-
bile devices such as smartphones that are limited in pro-
cessing performance and memory.

To approach this problem, specific software is required
for managing and distributing performance-intensive

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Exemplary screenshot of our service-based
application for the exploration and processing of GPIs.
It shows the components of our web-based front-end
that displays the results of a color grading technique
that is applied to a GPI comprising approximately
30000 × 20000 pixels. The provisioning and process-
ing of the GPI was performed using back-end services.

processing tasks. Regarding this, advances in cloud-
computing technology and cloud-based microservices
represent a suitable alternative to monolithic on device
software systems.

In the context of this work, the technical challenges of
integrating a system for processing GPIs into a cloud-
based platform is addressed. For this purpose, the rep-
resentation and storage of GPI have to be addressed
first. Further, microservices architectures for image
processing are be extended to support GPI, e.g., using
a tile-based approach. Furthermore, interfaces are be
developed and implemented that enable the communi-
cation between front-end and back-end systems.
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1.2 Approach and Contributions
This paper describes how the exploration and process-
ing of GPIs can be integrated into to service-based ar-
chitectures (Figure 1). Therefore, it investigates how
such images can be stored and processed in the back-
end and accessed by a web-based front-end. It describes
the specifics of integrating point-based, neighborhood-
based, and global image processing techniques in such
a system.

The remainder of this paper is organized as follows.
Section 2 describes the concept of GPIs as well as pre-
vious and related work on the topic of service-based
image processing. Section 3 describes a microservice
architecture for processing GPIs. It covers the storage
of the images in the back-end, how they can be pro-
cessed by an image processor, and how the interaction
with a front-end is performed in order to display the im-
ages efficiently. Section 4 describes the implementation
of these concepts and how the processing of the images
for point-based, neighborhood-based, and global opera-
tions is enabled. Section 5 then evaluates the implemen-
tation in terms of runtime and discusses the advantages
and disadvantages of the implementation compared to
a traditional on-device monolithic approach. Finally,
Section 6 summarizes the paper and present future re-
search ideas.

2 RELATED WORK
2.1 Gigapixel Images
While smartphone cameras can capture images with
several million pixels, a specific camera setup and soft-
ware pipeline for automatic composition allows images
with several billion pixels to be captured, even with a
standard camera and lens [8, 3]. In this work, we refer
to the work of Kopf et al. [8], who describe how the
acquisition and display of GPIs can be implemented.
To integrate a GPI-viewer into a service-based archi-
tecture, three main requirements are considered: (1) a
lossless display to ensure that all information could be
extracted, (2) smooth panning & zooming, and (3) re-
sponsiveness for an efficient navigation in a GPI [14].

An image pyramid is suitable for storing and loading
the image content, whereby the layers are divided into
tiles of a smaller number of pixels (Figure 2) [1]. Tile-
based approaches enable memory-efficient viewing and
processing of GPIs [13]. A GPI viewer loads the tiles
closest to the current display first and stores them in a
cache. When the user interacts via panning or zoom-
ing, the required tiles are loaded from the cache and, if
necessary, additional tiles are loaded from the memory.
When the cache is full, the tiles furthest away from the
current view are removed from it again.

The tile-based approach enables further improvements
such as parallel processing of image tiles [4]. Such ap-

(a) (b)(a)(a) (b)(b)

Figure 2: Concept of image pyramid and tiled image:
(a) shows an image pyramid for a GPI. The highlighted
layer represents the current zoom level and is used for
display; (b) shows the subdivision of the image layer in
different tiles. The red bordered rectangle illustrates the
viewport and the visible portion of the GPI. Only the
tiles contained in the rectangle have to be processed.

proaches can also be used to implement image analysis
or image segmentation techniques for GPIs [7].

2.2 Technologies for GPIs
There are different software libraries available for
fetching and displaying GPIs, i.e., for handling such
in back-end as well as front-end. The open source
project OpenSeadragon [2] is based on the Deep
Zoom technology, which was originally developed by
Seadragon Software and later by Microsoft Live Labs
and Google [6]. It is developed in JavaScript (JS) and
can be integrated into an existing web application. It
supports multiple formats for zooming images and
offers various interaction options for users of desktop
and mobile devices, including zooming and panning.
We forked the project for adjustments required by our
microservice platform.

2.3 Microservice Infrastructures
In recent years, microservices have become increas-
ingly popular. Unlike monolithic systems, microser-
vices are autonomous modules that perform various
tasks with respect to the business logic. The advantages
of using microservices are (1) increased scalability of
the components, (2) easy deployment and maintainabil-
ity as well as, (3) the possibility to introduce various
technologies into one system [18].

For our work, we are extending a microservice platform
for cloud-based visual analysis and processing that was
first presented by Richter et al. [16]. Based on that,
Wegen et al. [19] present an approach for performing
service-based image processing using software render-
ing to balance cost-performance relation.
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3 CONCEPT

3.1 GPI Representation

Tile Size Overlap

0_0.jpg

Figure 3: Tiled image
as used in DZI format.

The presented service-based
application for image pro-
cessing is primarily used to
stylize photos. We chose the
Deep Zoom Image (DZI) for-
mat that uses an image pyra-
mid to generate a scale-space
of the image. If a user re-
quests to view the entire im-
age for overview, it must be
possible to display it on a
screen with resolution lower
than this of the GPI. A smaller version of the image is
better suited for this purpose, as it is also small enough
to be loaded into Random Access Memory (RAM). Us-
ing the DZI format, the reduction of the resolution per
layer is always halved until reaching a 1×1-pixel im-
age. The individual layers are further divided into tiles
using a given resolution and overlap (Figure 3). The re-
dundancy introduced by the overlap avoid errors during
processing and display.

Since GPIs have a high spatial resolution, the file size
tends to be usually large. With a lossy compression
method as used by Joint Picture Experts Group (JPEG)
file format, the file size can be kept small. For an image
with several Gigapixels (GPs), the file size is still in the
Gigabyte range [8]. For this reason, it is feasible not
to store these images in a local file system, but to store
them in a cloud-based storage solution such as Amazon
Web Services (AWS) or Firebase. For our implementa-
tion, we decided to use AWS. This allows us to provide
a system that is easily scalable and the required storage
can be made available as required.

A DZI consists of several files, which are organized and
stored in a well-defined structure. For this reason, and
to keep communication between different services to
a minimum, it makes sense to send these files in one
“package” if possible. Of course, additional operations
are necessary for a complete DZI, such as requesting
the complete DZI for an export functionality or delet-
ing it. Furthermore, we also need to be able to perform
operations on individual files of a DZI, such as request-
ing the definition file or individual tiles for display or
image processing. This is a difference to the saving of
normal images that we have to consider during the later
implementation (Section 4.2).

3.2 Service-based Architecture
To enable processing and exploration of cloud-stored
GPIs, a suitable infrastructure is required to enable
communication between the following components.

3.2.1 Resource Resolver Service (RRS)
Direct access to a third-party storage management sys-
tem with a vendor-specific Application Programming
Interface (API) is difficult to maintain and extend. To
approach this, the RRS service is responsible for man-
aging the files in a storage and abstracts from the ven-
dor specific APIs. It accepts and stores complete DZIs
encoded as archives (e.g., ZIP) to preserve the respec-
tive folder structure. Thus, a DZI can be transferred
with a single message to the service, which can then
unpack the archive and store the individual files in the
cloud. It also request all files from the storage, com-
press them into an archive, and deliver them to other
services within the system. Furthermore, the RRS can
deliver individual files from an archive or accept indi-
vidual files to add them for an archive export.

3.2.2 Resource Manager Service (RMS)
The RMS serves as an interface between data storage
and other services and manages access via user roles. It
acts as a gateway and regulates what can be requested
from and sent to the RRS service. Specific to GPIs, this
service ensures that only valid files are uploaded, i.e., it
supports the concept of multi-resolution images to de-
cide whether a request is valid or not. Further, it ensures
that only authorized users have access to individual files
or to the complete DZI. Finally, if both conditions are
met, the service forwards all requested Create, Read,
Update, Delete (CRUD) operations to the RRS.

3.2.3 Image Processor Service (IPS)
This service connects the services above and serves as
an interface to a front-end. It forwards data requests to
the RMS and sends processing requests to the Graph-
ics Processing Unit (GPU)-Processor. The processed
results are stored using the RMS and delivered to the
front-end for display. Furthermore, it can perform sim-
ple image transformations, such as cropping or resizing.
The IPS is also responsible for converting images into
the DZI format, compositing of DZI tiles, and exporting
a GPI.

3.2.4 GPU-Processor
The GPU-Processor is responsible for processing GPI
tiles with hardware-accelerated graphics APIs such as
OpenGL or Vulkan. For it, (1) tiles are loaded as tex-
tures into the Video Random Access Memory (VRAM),
(2) the processing operations defined as Visual Comput-
ing Assets (VCAs) are applied as shader programs [5],
and (3) the results are read back into RAM and returned
as a response.

3.3 Interactive Exploration of GPIs
A front-end for processing GPIs should support at least
the following functions: (1) selection and upload to the
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Figure 4: Proposed front-end for displaying and pro-
cessing GPIs with the following components: (1) Image
Canvas, (2) Operations View, (3) Options View, and (4)
Pipeline View.

cloud, (2) display and processing, (3) presentation of
options for export and download, as well as (4) options
to select, compose, and configure different processing
operations and their parameters. The following compo-
nents provide these functionality (Figure 4):

Image Canvas: To address functions 1 to 3, a GPI can
be selected and uploaded in a background task. Sub-
sequently, image tiles are requested and displayed
accordingly by supporting panning & zooming. For
it, the Image Canvas decides which tiles from which
image pyramid level should be displayed. Further-
more, actions such as downloading a DZI as an
archive, converting it into a normal image, replac-
ing the image, or displaying image metadata can be
performed. It also provides explicit control of the
zoom levels and full-screen display.

Operation View: To implement function 4, the Oper-
ation View depicts a list of processing operations
applicable to an GPI. Upon operation selection, it
is added to the processing pipeline and the Option
View is updated accordingly. Simultaneously, pro-
cessing is triggered and the result is displayed.

Option View: The Options View displays the various
parameters for a selected operation. The user can
adjust these as desired and trigger GPI processing
subsequently. For easy selection of visually appeal-
ing parameter values, presets can be selected.

Pipeline View: To allow more complex image trans-
formations, the system allows for combining differ-
ent operation within a pipeline. For it, the Pipeline
View can be used to add and select additional op-
erations from the Operation View. Further actions
include clearing the pipeline, and importing or ex-
porting the pipeline.

3.4 GPI Processing Workflow Overview
This section describes how the above components inter-
act to process GPIs (cf. Figure 5).

POST /image

validate DZI

convert to DZI

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

alt

[is a .zip file]

[is an image file and is greater than 130 MP]

POST /resource

POST /resource

store resource

success
resource ID

store resource metadata

resource ID
image ID

(a) DZI Uploading

POST /image/{id}/dzi

create new ZIP with DZI file

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

GET /resource/{id}/dzi

GET /resource/{id}/{name}/{name}.dzi
get DZI file

DZI file
DZI file

get DZI name from DB

DZI file

image ID

loop

[for every pipeline step]

POST /resource
POST /resource

store resource

success
resource ID

store resource metadata

resource ID

(b) GPI Preparation

POST /image/{id}/{tileUrl}/transform

save DZI tile in
local filesystem

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

GET /resource/{id}/{tileUrl}

GET /resource/{id}/{name}/{name}_files/{tileUrl}
get DZI tile

DZI tile
DZI tile

get DZI name from DB

DZI tile

tileUrl

loop

[for every pipeline step]

POST /resource/{target}

POST /resource/{target}
store tile in DZI

success
tileUrl

tileUrl

GPU-Processor

process DZI tile

success

GET /image/{id}/{tileUrl} GET /resource/{id}/{tileUrl}

GET /resource/{id}/{name}/{name}_files/{tileUrl}

get DZI name from DB

get DZI tile

DZI tile
DZI tile

DZI tile
DZI tile

(c) DZI Processing

Figure 5: Sequence diagrams for the data flow and com-
munication of the respective microservice components
for uploading a DZI (a), data preparation for processing
(b), and the actual DZI processing (c) (please zoom).

3.4.1 GPI Upload and Display
First, the user selects a GPI file via the Image Canvas.
The selected file is then sent to the IPS. If the image
is available as an archive, it is checked whether it is a
valid DZI by validating the definition file and ensuring
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that all required tiles are present. If the image has been
uploaded as a normal image, the IPS checks if it ex-
ceeds a certain number-of-pixels and converts it to the
DZI format if necessary. In our implementation, this
limit is 130 Megapixels, which is approx. 16K reso-
lution. The valid DZI is then transmitted to the RMS,
which forwards it to the RRS. The RRS provides the
DZI with an Identifier (ID) and unpacks all files from
the archive and stores them under this identifier in the
cloud storage.

The ID is sent back to the RMS, which then stores the
image in a database with metadata, such as name of the
image and ID of the owner. The image ID is then sent
back to the IPS, which sends it to the front-end (Fig-
ure 5a). Subsequently, the front-end requests the DZI
definition file using the ID. The definition file can then
be passed to the Seadragon viewer in the Image Can-
vas. Based on the information from the definition file,
the Seadragon viewer computes which image layers and
which tiles are available per layer. During interaction,
the viewer identifies the tiles to be displayed and re-
quest these accordingly. If all required tiles have been
requested, they are displayed to the user in the Sead-
ragon viewer as if they were a complete image.

3.4.2 GPI Data-Preparation

A user can create a processing pipeline comprising sev-
eral operations with different parameters to be applied
to the DZI in a non-destructive way. To keep the com-
putation effort low, the individual tiles are only pro-
cessed on demand. First, a copy of the DZI is created
by the IPS for each operation in the pipeline. For it,
the IPS requests the respective file from the cloud stor-
age and compresses it into a new archive. This is then
stored as a new DZI at the RMS and RRS, the resulting
ID is sent to the front-end and stored for the respec-
tive pipeline steps. In this way, processed tiles can be
written to the new DZIs. Since the original resolution
of the image, the tile resolution, and the overlap in the
processing steps do not change, the definition file is also
the same between all images in the pipeline (Figure 5b).

3.4.3 GPI Processing

Now the definition file of the last pipeline image, which
is the result image, can be requested. After reading the
definition file, the Seadragon viewer now requests the
required tiles that are currently not yet available in the
result DZI. For each tile of the requested tiles, the fol-
lowing steps are executed: For each pipeline step, the
ID of the previous pipeline image and the tile (level,
tile name) is sent to the IPS together with the opera-
tion specification (ID, parameters). In addition, the ID
of the current pipeline step is sent as the “target” to be
able to store the processed tile in the respective pipeline
DZI. The IPS now requests the tile from the RMS

(and the RMS from the RRS) and sends it to the GPU-
Processor together with the operation information. The
GPU-Processor applies the operation to the tile. The
IPS sends the result back to the RMS to save the tile
for the given “target” DZI. When all pipeline steps for
a tile have been completed according to this principle,
the result tile is finally requested from the IPS via RMS
and RRS and subsequently displayed by the Seadragon
viewer (Figure 5c).

4 IMPLEMENTATION DETAILS
This section covers development technology (Sec-
tion 4.1), Representational State Transfer (REST)
routes for communication between front- and back-
end (Section 4.2), as well as specifics of image
processing details (Section 4.3) of our prototypical
implementation.

4.1 Back-end & Front-end Technology
For the implementation of the service-based architec-
ture for processing GPIs, the following technologies
are used. The respective microservices are developed
using JS and executed by the JS runtime environment
NodeJS. It offers various modules for handling local
file systems or for executing programs as child pro-
cesses. Further, Express is used to define web service
APIs based on REST. The Axios library enables the
microservices to communicate over HyperText Trans-
fer Protocol (HTTP). The IPS service communicates
with the GPU-Processor via the WebSocket protocol.
For high-level image processing, such as reading image
metadata or converting images to DZI format, the Sharp
library is used [10]. For it, a C++ binding for the VIPS
image-processing library [12] provides an API that can
be used in NodeJS. As a low-level image processing
library, libvips implements more complex operations
such as converting a DZI into a normal image by merg-
ing the individual tiles. To implement the web applica-
tion front-end, the Angular framework (based on Type-
Script) is used in combination with an adapted fork of
the open source library OpenSeadragon.

4.2 Interfacing Front-end & Back-end
This section describes the REST-interface offered by
the IPS to handle GPIs using the following routes:

GET /image/:id This route returns a DZI ad-
dressed by a given ID as a ZIP archive. The IPS
service uses the ID to request the image from the
RMS. As a parameter, the ID must be specified as a
Universally Unique Identifier (UUID).

POST /image This route takes as parameter a file
which is either a normal image or an DZI archive.
In the case of a normal image, the size of the image
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is checked. If it exceeds a limit, the image is con-
verted to DZI format using the Sharp library, which
provides the tile() function for conversion. Then
the DZI is transferred to the RMS for cloud storage.
The resource ID, obtained by the RMS response, is
forwarded to the IPS as a request response.

GET /image/:id/dzi This route returns the defi-
nition file of a DZI using a given ID. This request is
forwarded directly to the RMS.

GET /image/:id/:level/:tile This route re-
turns a specific tile of a DZI using a given ID. The
name of the DZI is also added here by the RMS. Be-
side the ID of the DZI the tileUrl, which consists
of the level of the tile in the image pyramid and the
tile coordinates in the form x_y.format (where
format is element of {png,jpeg, . . .}), has to be
specified.

POST /image/:id/dzi This route copies a DZI
of a given ID and removes all files except the def-
inition file from the copy. For it, the IPS service
requests the definition file of the DZI with the ID
specified in the path, compresses this file into a new
archive, and uploads it back to the RMS for storage.
The resulting ID is forwarded as response.

PUT /image/:id/dzi Similar to the POST route,
all files except the definition file (i.e., all tiles) are
deleted from the DZI under the ID given in the path.

GET /image/:id/export This route exports the
DZI using the given ID to a normal image and de-
livers it as response. It is assumed that at least all
tiles of the maximum level of the image pyramid are
present. How the tiles are joined to form an image is
discussed in Section 4.3.3.

POST /image/:id/:level/:tile/transform
This route is used to process a tile in the GPU-
Processor. The tile with the given tileUrl is
requested from the DZI with the given ID at the
RMS. Further parameters are sent as FormData
object in the body of the request.

4.3 GPI Processing Operations
4.3.1 Operation Types
There are different types of operations that the GPU-
Processor can apply: point-based, neighborhood-based,
and global operations.

Point-based Operations: For point-based operations,
a pixel is only computed based on the original
pixel. An example of a point-based operation
is “Grayscale”. In a simple implementation, the
average of the Red, Green, and Blue (RGB) values

(a) Mean Blur operation (kernel of 4 pixels) applied to a DZI level.

(b) Vignette operation (with a radial size of 0.58 and a radial smooth-
ness of 0.21) applied to one level of a DZI without UV correction.

(c) Vignette operation (with a radial size of 0.58 and a radial smooth-
ness of 0.21) applied to one level of a DZI with UV correction.

Figure 6: Left column shows the original image, middle
column shows the operations applied to the single tiles,
and right column shows the results after compositing.

of the pixel is computed and assigned to all three
channels. Since point-based operations do only
operate on one pixel at a time, they can directly be
applied to tile-based processing without adjusting
the implementation.

Neighborhood-based Operations: These operations
use not only the values of a pixel, but also the values
of pixels that are in the neighborhood of that pixel.
The computation is based on a kernel that can be of
any size and weight to determine how the pixels in
the neighborhood are contributing. As an example
operation, we consider the “Mean Blur” filter. In
this operation, the average of all RGB values of the
pixels affected by the kernel is computed and set as
RGB value for the output pixel. For a larger kernel,
the effect is usually stronger, but the computation
also takes longer, because more pixels have to be
requested.

With tile-based processing, such operations cannot
be used as straightforward as for the point-based op-
erations. A pixel at the edge of a tile needs informa-
tion from the neighboring tile for correct computa-
tion because the kernel overlaps. To solve this prob-
lem, we can take advantage of the overlap option
in the DZI format. The overlap, which is set when
an image is converted to a DZI, appends a certain
number of overlap-pixels of the neighboring tile (cf.
Figure 3). This allows the kernel to access the neigh-
boring pixels for the edge of the tile if the overlap is
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Figure 7: Duration of operations in milliseconds.

greater than or equal to the kernel radius. Figure 6a
shows how to apply the Mean Blur filter to an image
consisting of four tiles.

Global Operations: A global operation considers
the entire image, e.g., tone-mapping or composit-
ing/blending. Operations that render a texture over
the input image use UV coordinates to determine
the size and position of the texture. Since the
UV coordinates must be in the interval [0,1], the
image size is needed to scale the absolute pixel
coordinates. Here the coordinate origin is in the
lower left corner of the image and in the upper right
corner is the point (1,1). An exemplary operation
for this category is the “Vignette”.

4.3.2 Tile-based Processing
If all tiles are processed individually and such an op-
eration is applied, it will only be computed in relation
to these tiles, because the UV coordinates will be de-
termined relative to the size of the tile. This leads to
unwanted results, as shown in Figure 6b. To approach
the problem, the UV coordinates are recomputed rela-
tive to the entire image prior to performing the opera-
tion. For it, we pass the original size of the image and
the absolute position of the tile to the GPU-Processor.

To compute the correct UV coordinates, two steps are
required: (1) the normalized coordinates in [0,1]2 must
be scaled relative to the tile resolution by the origi-
nal size and (2) the coordinates must be translated so
that they are relative to the tile in the complete image.
For efficiency, these computations are performed on the
GPU using vertex shader as follows. First, two quanti-
ties that do not depend on vertex coordinates are com-
puted and and represented as uniform variables: (1) the
relative tile resolution is obtained by dividing the abso-
lute tile resolution in pixels by the size of the original
image; (2) similar, absolute coordinates of the tile are
converted into relative coordinates. In the vertex shader,
these are used by uniform variables for texture sam-
pling, e.g., u_TileSize and u_TilePosition.

For it, first the tile position is flipped, because the origin
of the tiles is in the upper left corner, but the origin of
the UV coordinates is in the lower left corner. Subse-
quently, the UV coordinates are scaled to the tile using
u_TileSize and translated by a tile-offset. During
rasterization, the coordinates are passed to the fragment
shader(s) that perform the processing. Figure 6c shows
the result for the image of Figure 6b using the converted
UV coordinates.

4.3.3 Tile Compositing
The export route converts a DZI into a normal image
by using the NodeJS library Sharp in combination with
libvips. For it, (1) the number of tiles exist at the max-
imum level of the image pyramid is computed, (2) all
respective tiles are requested from the RMS, and (3)
stored in the local file system. Subsequently, a child
process is spawned for each tile, using libvips to re-
move the overlap from the tiles. Finally, all tiles are
joined to a single output image.

5 RESULTS & DISCUSSION
5.1 Runtime Performance Evaluation
In this section, the runtime performance of our imple-
mentation is evaluated regarding two aspects: (1) the
time consumed to process GPIs and (2) how the tim-
ings depends on different operations regarding the tile
resolution and overlap. For both test cases, we use a
dedicated GPU-server equipped with a Xeon E5-2637
v4, 3.50 GHz processor (8 cores), 64 GB RAM, and a
NVIDIA Quadro M6000 24 GB VRAM.

5.1.1 Test Case 1
Setup: For this test, we measure the runtime for the
following operations: (1) image conversion to DZI for-
mat, (2) processing of a single tile, (3) processing of
all tiles at the maximum level, (4) processing of all
tiles of the DZI, and (5) compositing and exporting the
tiles to a complete image. For processing, we use a
point-based operation, i.e., color adjustments via color
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Table 1: Input data for Test Case 1

Image 1 Image 2 Image 3 Image 4

Resolution (Pixels) 34561 × 15620 35690 × 28030 34861 × 44360 64172 × 45559

Gigapixel 0.54 GP 1.00 GP 1.55 GP 2.92 GP

Size (MB) 129.4 894.9 939.6 1601.6

look-up tables [17]. Table 1 shows the four test im-
ages and their metadata. The tile resolution is 512 pix-
els and the overlap is 2 pixels. The timings were de-
termined using the functions console.time() and
console.timeEnd(). Three consecutive measure-
ments were obtained for each operation and the average
was calculated subsequently.

Results: Figure 7a shows the duration of the oper-
ations in milliseconds. The operations “Convert to
DZI”, “Processing Maximum Tiles”, and “Processing
All Tiles” are linear with respect to the input size of the
image. The operation “Processing Single Tile” is con-
stant at about 500 ms. This also meets the expectation,
since the tiles are all the same size and should therefore
be processed at about the same speed. The “Compo-
sition” operation also appears to be linear in the size
of the images, but Image 2 is an outlier in this mea-
surement. The reason for this must be the file format,
which impacts gathering and transmission times. Even
if all images are in JPEG format, they can have differ-
ent compression rates, which can increase the file size
of the image and its complexity. The file size (Table 1)
also shows this: Although Image 2 has just under twice
as many pixels as Image 1, the file size is almost seven
times higher. Furthermore, Image 3 has about 50 %
more pixels than Image 2 and yet their file sizes are
almost the same. However, according to the measure-
ments, this difference does not play a role when con-
verting to the DZI format. This is probably due to the
fact that only small parts are removed from the image
and stored in a tile. Composition, on the other hand, is
the process of merging a large image from all the tiles,
which means that the actual saving of the image is more
time-consuming.

5.1.2 Test Case 2

Setup: For the second test case we used a GPI of 13206
× 6676 pixels (0.088 GP, 53.3 MB). For test purposes,
we decided to use an image with a smaller resolution.
We converted this image to the DZI format with differ-
ent parameters for tile resolution and overlap. The test
sizes are shown in Table 2. For these four variants, we

Table 2: Input resolution in pixels for Test Case 2.

Image 1 Image 2 Image 3 Image 4

Tile Resolution 256 256 512 512
Overlap 1 16 1 16

tested the same operations as in Test Case 1 and com-
puted the average from three subsequent measurements.

Results: Figure 7b shows the absolute duration of the
operations in ms, while Figure 8 shows the file sizes
of the four DZIs. The measurement results show that
the processing of a tile takes between approx. 300 ms
to 400 ms. A greater overlap has the consequence that
both the file size and the duration of the operations in-
crease. This is because a higher overlap increases the
redundancy of the pixels and therefore more has to be
stored and calculated. It is noticeable that converting to
a DZI was about one second faster with the 512 pixels
tiles than with the 256 pixels tiles. The other operations
– “Processing Maximum Tiles”, “Processing All Tiles”,
and “Composition” – were even over 60 % faster for the
512 pixels tiles than for the 256 pixels tiles. Because the
duration of the operations is directly proportional to the
number of tiles, the operations for Image 3 and 4 are
faster because there are fewer tiles due to the larger tile
resolution.

5.2 Discussion
5.2.1 Service-based vs. Monolithic Approach

In the following, we will briefly discuss the advan-
tages and disadvantages of our service-based imple-
mentation compared to a classic approach with only one
service. The described microservice infrastructure en-
abled the development of a modular system following
the Separation-of-Concerns pattern [9]. This allows to
multiply different parts of the system as required, thus
enabling parallel processing that increases performance
compared to a monolithic system. Through the con-
nection to the cloud storage service AWS, additional
storage is available that can be expanded on demand. A
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Figure 8: Test Case 2 – File size of converted images in
DZI format in Megabytes.
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disadvantage of the proposed approach, however, is that
GPIs are required to be sent through several services,
which increases the overall traffic and increases run-
time. In our test system all services run on one server
only, i.e., that this server is no less busy than a server
on which everything would run as one service anyway.
In other words, the potential of our implementation in
terms of performance only becomes apparent when the
services are used as a distributed system with several
servers.

5.2.2 Tile Resolution and Overlap

In our implementation of DZI format conversion, con-
stant values for tile resolution and overlap are used.
Changing these parameters later is time-consuming,
since the DZI would first have to be reassembled and
then converted back into the DZI format. This requires
to find suitable values for both parameters to process the
tiles as efficiently as possible and to avoid artifacts, e.g.,
due to kernel sizes of neighborhood operations larger
then the actual overlap. The tile resolution should not
be chosen too small, because this increases the number
of tiles and thus the effort when converting from and to
DZI format. However, the overlap should be as small as
possible because it only contains additional (redundant)
data.

The results of Test Case 2 show that choosing a higher
tile resolution can have a positive effect on runtime
and memory consumption. This is because the higher
tile resolution means that fewer tiles are created dur-
ing the conversion, and therefore fewer steps per oper-
ation have to be performed. However, with a difference
of less than 100 ms, the runtime for processing a 512
pixels tile is remarkably close to the runtime for a 256
pixels tile. This means that if the tile resolution is not
too large, the runtime can be reduced without having to
make major losses when processing a tile.

A higher value for the overlap increases runtime and file
size, since more pixels are stored redundantly. A key
factor in the choice of the overlap is the kernel size of
neighborhood-based operations. If a kernel requires n
neighboring pixels in each direction, the overlap should
be at least n, to process the edge pixels of the tile cor-
rectly.

5.2.3 Context-sensitive Global Operations

Using tile-based processing, our implementation allows
for the application of global operations to a DZI. The
approach converts the UV coordinates transparent to the
processing shaders. However, this approach does not
work for global operations that require random access
to all parts of an GPI, e.g., “Mirroring”. To approach
this problem, one could give the GPU-Processor more
image context about a DZI, so that it can request addi-
tional tiles if required.

6 CONCLUSIONS & FUTURE WORK
This paper describes how service-based architectures
for image processing can be extended to allow the pro-
cessing of GPI. It shows how the storage of GPIs in the
DZI format can be implemented with a cloud-based ap-
proach and microservices for transfer, preparation, and
tile-based processing. For it, the differences between
specific features of point-based, neighborhood-based,
and global operations are discussed. A runtime anal-
ysis shows that efficient processing and display of GPIs
is possible in a service-based infrastructure. This work
can serve as a basis for further research and develop-
ment in this area.

While the presented approach and prototypical imple-
mentation is sufficient for processing and exploration of
GPIs, the system can be extended further. To enable the
processing of high-resolution panoramic images, the
support of additional projection methods (e.g., equirect-
angular or stereographic) are required. A service-based
approach has the advantage that even less powerful de-
vices can process images using potentially complex op-
erations. However, this has the disadvantage that ad-
ditional network traffic is generated by the communi-
cation between the individual microservices, which can
result in waiting times for the user. Further, the service-
based architecture allows the various microservices to
be multiplied as required, thus enabling parallel pro-
cessing of requests. This can also be exploited for pro-
cessing GPIs, e.g., by processing different tiles in par-
allel. This however results in further challenges, e.g.,
how the tiles are transferred or how tile-access is man-
aged between different processors.
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ABSTRACT
Elevators, a vital means for urban transportation, are generally lacking proper emergency call systems besides
an emergency button. In the case of unconscious or otherwise incapacitated passengers this can lead to lethal
situations. A camera-based surveillance system with AI-based alerts utilizing an elevator state machine can help
passengers unable to initiate an emergency call. In this research work, the applicability of RGB-D images as
input for instance segmentation in the highly reflective environment of an elevator cabin is evaluated. For object
segmentation, a Region-based Convolution Neural Network (R-CNN) deep learning model is adapted to use depth
input data besides RGB by applying transfer learning, hyperparameter optimization and re-training on a newly
prepared elevator image dataset. Evaluations prove that with the chosen strategy, the accuracy of R-CNN instance
segmentation is applicable on RGB-D data, thereby resolving lack of image quality in the noise affected and
reflective elevator cabins. The mean average precision (mAP) of 0.753 is increased to 0.768 after the incorporation
of additional depth data and with additional FuseNet-FPN backbone on RGB-D the mAP is further increased to
0.794. With the proposed instance segmentation model, reliable elevator surveillance becomes feasible as first
prototypes and on-road tests proof.

Keywords
Instance Segmentation, RGB-D data, Transfer Learning, Reflective Environments

1 INTRODUCTION
Elevators are an essential part of modern urban life to
enable accessibility in buildings with multiple stories.
In Austria, public buildings with more than one story
require an integrated elevator system, equipped with an
emergency button to establish a call center voice con-
nection with minimal effort [Nat06a, Mos18a]. These
emergency buttons show a key drawback. When the
person in need of help is no longer able to push the but-
ton, e.g. an elderly person has fallen and can’t get up,
or a person has fallen unconscious. Thus, a viable de-
mand for camera-driven and preferably fully-automated
emergency detection arises.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In the context of an industry-oriented project, research
on the algorithmic and technological foundation for a
reliable and automated emergency system is being con-
ducted. With the camera systems mounted in corners of
the elevator cabin, unorthodox views on the passengers
arise. This point of view is rarely trained in current deep
learning (DL) models for instance segmentation. Fur-
thermore, the generally metallic and thus highly reflec-
tive nature of the elevator cabins presents a significant
challenge for the task of analysing RGB video feed.
The research questions are:

• Can depth information be used to improve the per-
formance of instance segmentation in highly reflec-
tive and noisy elevator environments?

• Does incorporation of depth data generally increase
the performance of instance segmentation?

• Can the use of a FuseNet-FPN as a backbone net-
work together with transfer learning and hyperpa-
rameter optimization improve the performance of
Mask R-CNN adapting to RGB-D?
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1.1 State of the Art
Instance segmentation, i.e. the detection of all pixels
belonging to a specific class instance, is a highly chal-
lenging and relevant task in computer vision that has
been a focus in research since the very first days of dig-
ital imaging. With the use of static camera systems, ob-
ject segmentation is achievable from background mod-
elling to calculate a difference image from the actual
frame [Wu10a] with local intensity variance, motion
and overlapping color spectrum hardening practical ap-
plicability. In the past, the focus was laid on semi-
automated single-feature approaches such as flood-fill
[Gon01a, Gom07a] incorporating the image intensities
or Live-Wire [Bar97a] contour tracing based on the im-
age edges. With Grab Cut a highly relevant tool for
instance segmentation on RGB images was introduced,
reducing the demand for user-interaction to zero in op-
timal scenarios [Rot04a, Tan15a].

Incorporating the expected object shape besides the
image characteristics, as proposed for active shape
[Gin02a] and active appearance models [Coo01a],
allowed advances e.g. in the field of face detection and
instance segmentation in general. Thus, knowing the
statistical shape of the target structure, segmentation
can be implicitly defined as registration problem
[Xia16a, All18a]. With registration strategies, deep
learning (DL) and frame-to-frame propagation, nowa-
days instance segmentation in RGB video sequences
become feasible as object-tracking tasks [Hou19a].

To date, with the evolution of hardware and availabil-
ity of machine learning frameworks, instance segmen-
tation is generally considered as a machine learning
topic. With more and more hidden layers introduced
and the availability of training datasets and pre-trained
models, convolutional neural networks became the gold
standard in segmentation and classification. A broad
range of published network types is available and ap-
plicable for various input data and application domains.
With the progression of recurrent networks [Rum87a]
allowing to construct a spatio-temporal memory of the
processed input sequence, cf. long-short-term-memory
(LSTM) [Hoc97a], significant advances in optical char-
acter recognition (OCR) and video processing in gen-
eral have been possible [Sab18a].

For the task of image instance segmentation on visual
input data, a broad range of different network types
have been published in the past. With larger network
structures increasing the number of hidden layers, ap-
plication of simple layer-wise back-propagation leads
to the so called vanishing gradient problem, i.e. up-
date influence becomes marginal for the lower layers.
This problem is counteracted by He et al. present-
ing the Residual Network (ResNet) [He16a] introduc-
ing bypassing of the updates and thus allowing an in-
creased depth of 100+ layers. The common principle of

filter pyramids for instance detection at varying scale
is proposed by Lin et al. with the Feature Pyramid
Networks (FPN) [Lin16a]. While FPN is practical for
detection and classification tasks, pyramid up-scaling
as introduced by Encoder/Decoder pattern of the U-net
[Ron15a] finally features instance segmentation tasks.
Besides using a filter pyramid for multi-resolution ob-
ject localization, the Region Proposal Network (RPN)
[Uij13a, Ren15a] detects objects invariant to translation
and scale together with their bounding box and an ob-
jectness score as confidence metric. The RPN is thereby
introduced by Ren et al. to speed up the R-CNN ini-
tially introduced by Graves et al. [Gra13a] then denoted
as the Faster R-CNN [Ren15a].

The Fully Convolutional Instance-aware Semantic Seg-
mentation (FCIS) introduced by Li et al. [Li16a] ex-
tends the Region-based Fully Convolutional Networks
(R-FCN) introduced by Dai et al. [Dai16a] to perform
instance segmentation besides object location. With the
Mask R-CNN as evolution introduced by He et al. in
2017 [He17a], Faster R-CNN is adapted for instance
segmentation, too. Instead of sliding windows, single-
shot approaches utilize a scale bipyramid as introduced
for TensorMask by Chen [Che19a]. Single-shot ap-
proaches are utilized for Single Shot MultiBox De-
tector (SSD) [Liu15a], RetinaNet [Lin17b] and YOLO
[Red15a] respectively in a similar way, too.

Nevertheless, these approaches for instance detection
and segmentation show high accuracy in case of good
image quality only. With reflections and a bad SNR,
even the sophisticated DL models for image process-
ing often fail [Ahm11a]. Thus, specific pre-processing
is necessitated, e.g. removing the shadows in traffic
surveillance videos [Kil92a] or removing mirror-based
reflections [Chi18a]. To overcome visual noise in im-
age data and to improve accuracy in general, incorpora-
tion of depth data with RGB-D images is an adaequate
strategy [Ye17a].

1.2 Related Work
With RGB-D data provided, Watershed transform
[Beu79a] is applicable onto the varying local depth
profiles leading to a first rough fragmentation of the
scene. These pre-segmented regions can be utilized
as input for semantic classifiers to detect humans and
classify the body pose. As machine learning classifiers,
Support Vectors [Cor95a], Random Forest [Ho95a] and
XGBoost [Che16a] are applied.

Although most of the DL models only consider 3-
channel RGB data as input, some CNNs incorporat-
ing depth data have already been published [Bo13a,
Cou13a]. Thus, to incorporate arbitrary DL models
for instance segmentation, transfer learning [Wei16a] or
hyperparameter optimization [Los16a] are applicable
to re-train the model with data augmentation or GAN
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Figure 1: Pixel-wise standard deviation in the depth im-
ages of a recording of a closed elevator. The frequency
is scaled logarithmically.

synthesis as a potential strategy in case of insufficient
amount of training data in medicine [Zwe20a]. For the
domain of elevator surveillance, lack of data generally
is immanent due to the uncommon perspective.
Depth perception data has already been successfully ap-
plied to detect the doors of an elevator, including the
difference between elevator and outside floor heights
with precision < 20mm and the opening state of the
door as an accurate and generic alternative to mechan-
ical sensor systems in the field of predictive mainte-
nance. This is important for emergencies as this can
mean that the elevator will not move to another floor if
the door is blocked, or that first response help is being
provided in case of a medical emergency [Ign99a].
An attempt has also been made to conduct classification
purely with RGB data, omitting depth information uti-
lizing different methods such as K-Nearest Neighbor,
Support Vector Machine, Random Forest and Neural
Networks. This has been shown to work at detection
success of 92% in non-reflective environments. The
noise introduced by reflections as well as movement of
the elevator, i.e. vibrations also apply to the camera and
greatly reduces the detection rate [Sti99a].

2 MATERIAL
To train the machine learning models we use two
datasets. Since there are no RGB-D datasets containing
samples recorded in highly reflective and noisy elevator
scenes, we introduce the Elevator RGB-D dataset. In
addition we use the SUN RGB-D dataset [Son15a].
The Elevator RGB-D dataset consists of 1138 samples,
where each of these samples is composed of a three-
channel RGB image, a one-channel depth image and
labels. Each label consists of one or more 2D polygons
with a corresponding class label.
The RGB and depth images are derived from 21
recorded RGB-D videos from scenes of humans and

objects in four different elevators. The RGB-D videos
are recorded using the Intel RealSense D-400 RGB-D
camera [Kes17a]. One sample per second of recorded
video is extracted. Samples without a label are removed
from the dataset. The noise in the depth images varies
between each elevator. The majority of the pixels in
a recording have a very minor standard deviation, as
seen in Figure 1. But some pixels in the recording have
a standard deviation of over one meter. This recording
contains RGB-D images of a closed elevator without
changes in lighting conditions.

The depth images are aligned with the RGB image, so
that the position of objects in the depth image corre-
sponds to the position of objects in the RGB image. The
depth image contains values from 0 to 65535, where the
value of a pixel represents the distance from an object
to the camera in millimeters.

The samples of the Elevator RGB-D dataset are
labeled to contain objects of nine different classes
{ human_standing, human_lying, human_sitting,
human_other, object, box, bag, chair, plant}, where
object can be any object that is not a box, bag, chair
or plant. Class human_other describes humans in any
pose different to standing/lying/sitting such as e.g.
crouching or indistinct/unknown poses. Furthermore,
human_standing also includes walking humans, as
long as they are in an upright pose. The number of
objects per class are not distributed evenly, as seen in
Figure 2. The object categories such as bag or box
are utilized to detect potential hazardous objects left
in the elevator cabin, too. Especially at airports static
objects need to be treated as a threat and thus triggering
an emergency. The label with the most occurrences
human_standing is thrice as common as the label with
the second most occurrences. Samples of this dataset
can be seen in Figure 3.

The Elevator RGB-D dataset is inherently biased,
since the RGB-D recordings only contained images
of 10 different male persons with light skin color
wearing various different outfits, also including beards
or glasses. This bias can prevent generalization of
image recognition models trained using this dataset
[Tor11a, Tom15a].

The samples have different sizes, therefore all RGB and
depth images are resized and zero-padded to a size of
512×512. The depth images are normalized to a range
of 0 to 255 using min-max normalization as described
by Patro and Sahu [Pat15a]. Furthermore, to allow pro-
cessing the Mask R-CNN, each of the polygons of the
n labels of a sample is converted to a binary mask per
label. The n masks of a sample are combined to an
n-channel image. Additionally, a n-dimensional vector
with an integer representation c of the class label is de-
rived from the labels with zero encoding background.
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Figure 2: Number of objects per class in the Ele-
vator RGB-D dataset, scaled logarithmically with hu-
man_lying and human_sitting theerby replicating med-
ical emergency situations.

Both the Elevator RGB-D dataset and the SUN RGB-
D dataset are randomly split into three different cate-
gories for training, validation and testing. The SUN
RGB-D dataset has 5285 training samples, 475 valida-
tion samples and 4575 test samples. The Elevator RGB-
D dataset has 797 training samples, 228 validation sam-
ples and 113 test samples, all randomly assigned.

Figure 3: Samples of the Elevator RGB-D dataset. Each
sample consists of an RGB image (left), a depth image
(middle) and labels (right).

3 METHODS
To answer the question, whether depth data can be
used to improve the performance of instance segmen-
tation in highly reflective and noisy elevator environ-
ments, three different approaches of the Mask R-CNN
model [He17a] are compared. The approach RGB uses
solely the three-channel RGB images as input of the
Mask R-CNN, the approach D3 uses the depth image
duplicated over three channels to achieve tensor con-
formity at the cost of redundancy, the approach RGBD
uses a four-channel image consisting of the three chan-
nels of the RGB image and one corresponding depth
channel. These three approaches use a ResNet-FPN
[He16a] as backbone network. In addition to these
three approaches the approach RGBD-F also uses a
four-channel RGB-D image as input, but also uses an
adapted FuseNet-FPN as a backbone network to answer
the question whether this usage can improve the perfor-
mance of Mask R-CNN with RGB-D images in highly
reflective noisy elevator environments.

The adapted FuseNet-FPN consists of the encoder part
of the FuseNet introduced by Hazirbas et al. [Haz16a]
and thus consists of five different stages. The filter ker-
nels have a size of 7× 7 in the first stage and 3× 3 in
the following stages. The ResNet and the FuseNet are
used as a feature pyramid networks (FPN) [Lin17a].

Usually transfer learning using weights of a ResNet-
101 or a ResNet-50 trained with the MS COCO dataset
[Lin14a] is applied to initialize the Mask R-CNN model
[He17a]. But since four different approaches with RGB
and depth information are used and the MS COCO
dataset only contains RGB information, initializing the
weights would undermine the comparability of these
approaches. Therefore, the training procedure consists
of the following three steps:

1. A hyperparameter optimization is performed using
the SUN RGB-D dataset.

2. The models are pre-trained using the optimized hy-
perparameters and the SUN RGB-D dataset.

3. Transfer learning performed by transferring the
weights learned training the models with the SUN
RGB-D dataset and further training the models with
the Elevator RGB-D dataset.

3.1 Hyperparameter Optimization
The approaches differ in input data and backbone ar-
chitecture. Thus, their hyperparameters are optimized
separately. The hyperparameter space consists of the
backbone architecture, the number of regions of inter-
est per image, the minimum detection confidence and
choice of the optimizer.

The backbone architecture determines the kind of CNN
that is used to extract features from the input image.
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The approaches RGB, D3 and RGBD can either use a
ResNet101 with a mini-batch size of 1, a ResNet50 with
a mini-batch size of 1 or a ResNet50 with a mini-batch
size of 2. The backbone architecture of the approach
RGBD-F is a FuseNet that is separated into five differ-
ent stages. The number of filters in each Conv layer for
the five stages ( f1, f2, f3, f4, f5) can be one of the three
different configurations:

( f1, f2, f3, f4, f5) ∈
{(32,32,64,128,256),
(64,64,128,256,512),

(128,128,256,512,1024)}.
(1)

The minimum detection confidence determines whether
regions of interest are considered to be a valid result.
Regions of interest with a class score below the min-
imum detection confidence are discarded. The em-
pirically chosen minimum detection confidence ranges
from 0.6 to 0.8. The maximum number of regions of
interest per image can either be 50, 100 or 200. As op-
timizer either a SGD [Kie52a] with mini-batches and
momentum or an ADAM optimizer [Kin14a] can be
used. In total, the hyperparameter space consists of 54
different configurations.

Tree-structured Parzen Estimators (TPE) [Ber11a]
is used to minimize the total number of evaluations
needed for a use-able result. TPE is a sequential
model-based optimization algorithm (SMBO) com-
monly used to optimize hyper parameters of machine
learning algorithms. TPE searches a minimum in a
surrogate model of the hyperparameter space, which it
evaluates by training a machine learning model with
said minimum as hyperparameter configuration. The
resulting score value is used to adapt the surrogate
model. The number of evaluations per approach is
chosen to be 10. To evaluate a hyperparameter con-
figuration a model is trained for 100 epochs, however
an epoch during hyperparameter optimization is set to
use only 500 samples. Afterwards the sample-wise F1
scores are calculated using all the validation samples.
The mean of these sample-wise F1 scores is used as
metric that the TPE algorithm has to maximize. F1
scores are calculated using the bounding boxes with an
intersection over union (IoU) threshold of 0.5.

3.2 Pre-training
In order to perform transfer learning, the models are
pre-trained using the SUN RGB-D dataset and the op-
timized hyperparameters. One model per approach is
trained for 50 epochs. One epoch during training using
the SUN RGB-D dataset consists of 2643 mini-batches.
After 25 epochs learning rate decay reduces the learn-
ing rate from 0.005 to 0.001. The Region Proposal Net-
work of the Mask R-CNN uses 15 anchor boxes that are
defined with scales s∈ {16,32,64,128,256} and aspect

ratios ar ∈ {0.5,1,2}. The approach RGBD-F uses a
dropout rate of 0.3.

Stochastic Gradient Descent (SGD) [Rob51a] and
Adaptive Moment Estimation (ADAM) [Kin14a] are
optimizers commonly used to train convolutional
neural networks. We used ADAM and SGD as choices
in the hyperparameter optimization. Although ADAM
optimizer produced the best results during the hyper-
parameter optimization, SGD with mini-batch and
momentum is used to train the models, since training
with the ADAM optimizer performs worse on the
validation samples. The ADAM optimizer initially has
a lower validation loss than the SGD optimizer. But the
validation loss of the ADAM optimizer stagnates over
the course of the training, whereas the validation loss
of the SGD optimizer drops, while both training losses
converge towards a minimum, indicating overfitting.

3.3 Transfer Learning and Training
The Elevator RGB-D dataset is only a tenth in size com-
pared to the SUN RGB-D dataset. Therefore, transfer
learning is applied, so that the pre-trained weights can
be reused and the models trained on the Elevator RGB-
D dataset converge towards a minimum faster and pro-
duce better results.

The model weights learned during the pre-training are
reused to initialize the models for the training. For each
approach a model is trained for another 50 epochs us-
ing the SGD optimizer. An epoch during training us-
ing the Elevator RGB-D dataset consists of 399 mini-
batches. Learning rate decay reduces the learning rate
from 0.005 to 0.0001 after 25 epochs.

3.4 Evaluation
The four approaches are evaluated after the training by
calculating the mean average precision, the mean re-
call and the mean F1 score. The mean average preci-
sion (mAP) is calculated as described by Padilla et al.
[Pad20a]. Similar to the mAP, the mean average recall
(mAR) is calculated by averaging the average of the re-
call for each class for each sample. The mean F1 score
is calculated by averaging the sample-wise F1 scores.
The sample-wise F1 score is calculated using the aver-
age precision and the average recall of a sample. Ad-
ditionally a precision-recall curve is calculated for each
approach as described by Padilla et al. [Pad20a]. To
derive these metrics the bounding boxes generated by
the Mask R-CNN, the ground-truth bounding boxes, an
IoU threshold of 0.5 and the test samples of the Elevator
RGB-D dataset are used.

3.5 Implementation Details
To annotate the Elevator RGB-D dataset with labels the
Label Studio software by Tkachenko et al. [Tka20a]
is used. OpenCV [Bradski00a] is used to implement
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RoIs DMC Backbone
RGB 100 0.6 ResNet50 - BS2
D3 200 0.7 ResNet50 - BS2
RGBD 50 0.8 ResNet50 - BS2
RGBD-F 50 0.8 [32,32,64,128,256]

Table 1: Optimal configurations for each of the four
approaches all utilizing ADAM optimizer.

Input Resolution PTE mAP mAR F1 score
256×256 50 0.031 0.272 0.129
512×512 50 0.131 0.219 0.268

Table 2: A comparison of models of the approach RGB
using input images of different resolution.

Approach mAP mAR F1 score
RGB 0.131 0.219 0.268
D3 0.155 0.241 0.312
RGBD 0.126 0.271 0.320
RGBD-F 0.156 0.258 0.331

Table 3: Mean average precision (mAP), their mean av-
erage recall (mAR) and F1 score for the approaches af-
ter pre-training.

Pre-trained on none SUN RGB-D MS COCO
Epochs 0 50 320
ResNet layers 50 50 101
mAP 0.661 0.753 0.862
mAR 0.569 0.560 0.585
F1 score 0.535 0.579 0.636

Table 4: A comparison of models of the approach RGB
using transfer learning and without transfer learning.

the preprocessing steps. The Matterport Mask R-CNN
implementation by Abdulla [Abd17a] is used to train
and evaluate a Mask R-CNN model. The Matterport
Mask R-CNN is altered to be compatible with Tensor-
Flow version 2.0 made by Abadi et al. [Aba15a]. To
perform the hyperparameter optimization using Tree-
structured Parzen Estimators, hyperopt by Bergstra et
al. [Ber13a] is used. Models are trained on a single
NVIDIA GeForce RTX 2070 with 8GB of memory.

4 RESULTS
Table 1 shows the optimal hyperparameters for each ap-
proach. In this table each configuration consists of the
maximum number of regions per image (RoIs), the min-
imum detection confidence (DMC), the backbone ar-
chitecture and the optimizer. The correlations between
the hyperparameters, as well as the F1 score and the
runtime of each evaluation run (time) for each approach
can be seen in Figure 4. These correlations are calcu-
lated using Pearson’s R [Pear96a].

Since the mini-batch size is limited by the GPU mem-
ory, only a mini-batch size of 2 is possible with 512×
512 sized input images. As seen in Table 2 reducing
the size of the images to 256×256 to increase the size

(a) RGB (b) D3

(c) RGBD (d) RGBD-F

Figure 4: The correlations between the hyperparame-
ters for the four approaches.

of the mini-batches to 8 worsens the results, at least for
the approach RGB. Table 2 shows models of the ap-
proach RGB using input images of different resolution,
with the number of epochs that they were pre-trained
(PTE), their mean average precision (mAP), their mean
average recall (mAR) and their F1 score after 50 epochs
of training using the SUN RGB-D dataset. The scores
mAP, mAR and F1 are calculated using the test data of
the SUN RGB-D dataset.
The approaches that use RGB-D images have better F1
scores than the approaches that solely rely on the RGB
image and the depth image. The depth images of the
SUN RGB-D dataset do not contain as many reflections
and noise as the depth images of the Elevator RGB-D
dataset. Therefore, one cannot conclude that the ap-
proaches RGBD and RGBD-F perform similarly well
on the Elevator RGB-D dataset, see Table 3.
Using transfer learning to initialize the models with
weights pre-trained with the SUN RGB-D dataset leads
to better results, as seen in Table 4. This table shows
models with and without pre-trained weights the dataset
that they were pre-trained on, the number of epochs
that they were pre-trained, their mean average preci-
sion (mAP), their mean average recall (mAR) and their
F1 score after 50 epochs of training using the Elevator
RGB-D dataset. mAP, mAR and F1 score are calculated
using the test data of the Elevator RGB-D dataset. As
seen in this table using transfer learning with weights
pre-trained on the MS COCO dataset, provided by Ab-
dulla [Abd17a], yields the best results after training for
additional 50 epochs, although, this validation is only
done for the approach RGB.
The RGB-D images utilizing a FuseNet-FPN backbone
network perform best on the Elevator RGB-D dataset
with a mean average precision of 0.794, a mean aver-
age recall of 0.565 and an mean F1 score of 0.599, see
Table 5. Whereas relying on solely the RGB images or
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Approach mAP mAR F1 Score
RGB 0.753 0.560 0.579
D3 0.707 0.558 0.569
RGBD 0.768 0.558 0.578
RGBD-F 0.794 0.565 0.599

Table 5: Approaches evaluated w.r.t. their mAP, mAR
and their mean F1 score.

the RGB images in combination with the depth image
but with a ResNet50-FPN backbone network leads to
similar results. Both are worse than the results of the
approach RGBD-F. The approach that solely uses the
depth images achieves the worst results. The precision-
recall curves, as seen in Figure 5, supports this obser-
vation.

Thus, one can conclude that using RGB and RGB-D
data for instance segmentation with Mask R-CNN in
an elevator environment leads to equal results, whereas
relying solely on depth images achieves worse results.
Therefore, depth information does not improve the per-
formance of instance segmentation with Mask R-CNN
in highly reflective and noisy elevator environments.
Furthermore, the usage of a FuseNet-FPN as a back-
bone network improves the resulting model in a highly
reflective elevator environment. Figure 6 shows images
segmented with these models.

5 CONCLUSION AND OUTLOOK
In this paper a comparison is done on whether instance
segmentation using the Mask R-CNN algorithm can be
improved by the usage of depth images. The images
are recorded in highly noisy and reflective elevator en-
vironments. To perform this comparison four different
approaches are compared. The four approaches use:

1. RGB image with a ResNet-FPN backbone

2. depth image duplicated on three channels with a
ResNet-FPN backbone network

3. RGB-D image with a ResNet-FPN backbone

Figure 5: Precision recall curves of the four approaches.

Figure 6: Samples of the Elevator RGB-D dataset
instance-wise segmented with the pre-trained models.
From left to right: ground truth, RGB, D3, RGBD,
RGBD-F. The colors correspond to instances.

4. RGB-D image with an adapted FuseNet-FPN back-
bone network.

For each of these four approaches first the hyperparam-
eters are optimized, pre-training is performed using the
SUN RGB-D dataset, which contains images from in-
door scenes and using transfer learning the pre-trained
weights are further trained using images from an eleva-
tor environment. This comparison is done to answer the
following research questions:

• Can depth information be used to improve the per-
formance of instance segmentation in highly reflec-
tive elevator environments which generally show a
bad signal-to-noise ratio (SNR)?

The approach using an RGB image produces com-
parable results to the approach using RGB-D im-
ages, when training the Mask R-CNN models using
a ResNet50-FPN as backbone network with a differ-
ence in the F1 score of 0.001. Solely relying on the
depth image produces worse results than these two
approaches.

• Does incorporation of depth data generally increase
the performance of instance segmentation?

After the pre-training using images from indoor
scenes, the approach using the RGB image leads
to the worst F1 score of all four approaches. The
approach using the depth image in addition to
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the RGB image results in a better F1 score. The
approach using solely the depth image leads to a F1
score between these two approaches.

• Can the use of a FuseNet-FPN as a backbone net-
work together with transfer learning and hyperpa-
rameter optimization improve the performance of
Mask R-CNN adapting to RGB-D images?

The approach using a FuseNet-FPN as a backbone
network and RGB-D images results in a better F1
score than the approach using a ResNet50-FPN and
RGB-D images using the images from an elevator
environment as well as images from an indoor scene.

5.1 Outlook
Hyperparameter optimization using an SMBO algo-
rithm can lead to configurations that tend to increase
overfitting, since only one score metric is optimized.
To improve the hyperparameter optimization, the eval-
uation runs during hyperparameter optimization can be
performed for as long as the pre-training. This negates
the necessity of the pre-training, since each iteration of
the SMBO algorithm produces the pre-trained weights.
Although this will also increase the time needed for the
hyperparameter optimization by the increase in the total
number of learned training data.

This problem that occurred during the hyperparame-
ter optimization lead to the switch from the ADAM
optimizer to the SGD optimizer, since the SGD opti-
mizer is less likely to converge towards a local min-
imum [Wu16a, Kes17a, Aki17a]. Alternatively, this
problem can be avoided by switching from ADAM to
SGD during training [Wu16a, Kes17a] or using an op-
timizer with this switching behavior [Luo19a].

Since the mini-batch size is limited by the GPU mem-
ory only a mini-batch size of 2 is possible with 512×
512 sized input images. The training process thus can
be further improved by using multiple GPUs in parallel.
He et al. used 8 GPUs in parallel to train the Mask R-
CNN on the MS COCO dataset [He17a]. Loshchilov et
al. use 30 GPUs in parallel to perform hyperparameter
optimization of CNNs [Los16a].

The models are each only trained for 50 epochs to pro-
vide a fair comparison between them. They can be
improved by increasing the number of epochs and use
early-stopping if overfitting occurs. Additionally, pre-
training can also be extended, which as shown in table
4 can improve the performance of the resulting model.
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ABSTRACT
This paper introduces a remote Photoplethysmography (rPPG), which is used to estimate human heart rate without
any physical contact, has been extensively applied in multiple fields like medical diagnosis, analysis of human
emotions, rehabilitation training programs, biometric, and fitness assessments. The rPPG signals are usually ex-
tracted from facial videos. However, it is still a challenging task due to several contributing factors, e.g., variation
in skin tone, lighting condition, and subject’s motion. Accordingly, in this work, a novel approach based on deep
learning skin detection method and the discrete wavelet transform (DWT) is employed to precisely estimate heart
rate from facial videos. In the proposed method, by implementing the DWT, the signal is decomposed into approx-
imations and details parts thereby it helps in analyzing it at different frequency bands with different resolutions.
The results derived from the experiments show that our proposed method outperforms the state-of-the-art methods
on the UBFC-RPPG database.

Keywords
rPPG, Heart rate estimation, facial video, Deep learning, Discrete wavelet transform, skin detection.

1 INTRODUCTION
In the recent years, remote heart rate estimation from
facial videos (rPPG) has been increasingly investigated.
Remote photoplethysmography (rPPG) traces the blood
volume pulse remotely by tracking changes in the skin
reflectance during the cardiac cycle by the means of a
digital camera, although these color changes are not no-
ticeable to the necked human eye. This color variation
helps to determine the required information to mea-
sure the heart rate. Heart Rate(HR) estimation is an
important component to determine the health state and
the well-being of an individual and it is usually eval-
uated as normal if it is between 60 to 100 beats per
minute (bpm) [1]. (HR) analysis has always been an
area of interest not only for the medical applications but
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also for other applications from a variety of other fields
such as include telemetry supervising of elderly peo-
ple/newborn babies [2], the athletes involved in sports
activities [3], emotional recognition [4], human authen-
tication [5], etc. Traditionally, we assure heart rate es-
timation with equipment, such as an electrocardiogram
(ECG) or conventional photoplethysmography (PPG),
however, it requires electrodes/sensors attached to the
skin surface, gel, and experienced nurses or doctors,
and usually causes skin discomfort. Hence, rPPG has
gained more and more interest because of its several
advantages as comfort, non-complicated, non-invasive
and inexpensive characteristics. Additionally, in some
cases, such as burns, severe infections, etc the employ
of a sensor is not always possible. Despite the diversity
of methods, the main challenge consists in performing
robustness to variation in skin tone, natural motion and
illumination variation that results in undesirable noise
and artifacts in the extracted heart rate. In this paper,
we present a novel approach to achieve heart rate de-
tection (HR) from facial videos. Our approach consists
of 6 following steps: the first step consists of perform-
ing face alignment and detecting the face with viola
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and jones algorithms. Since the PPG information is
more accurate in some part of the face like the cheek
and the forehead, we choose to focus the ROI on the
forehead. Accordingly, the second step was in detect-
ing the forehead in all the frames. In Step3, we apply
our algorithm of skin detection based on convolutional
neural networks which is detailed in [6]. In Step 4, the
rPPG waveform is obtained from the mean of the se-
quence green channeled video from the skin-region. In
the fifth step, the discrete wavelet transform (DWT) is
employed to precisely estimate heart rate from facial
videos. A novel spatiotemporal representation is intro-
duced by implementing the DWT, the signal is decom-
posed into approximations and details parts thereby it
helps in analyzing it at different frequency bands with
different resolutions. In the final step, we estimate the
heart rate by identifying the maximal frequency using
spectral representation.

2 RELATED WORK
Remote heart rate measurement based-video was the
first attempt by Verkruysse et al.[7]. Poh et al.[8] used
Blind Source Separation (BSS) technique to extract
PPG signal, which yields a dynamic combination of
color channels. Independent component analysis (ICA)
was applied to average spatially R, G, and B signals of
the facial image sequence. After that, the authors ex-
tend their work in [9] to refine the PPG signal by invok-
ing a series of temporal filtering. The extracted PPG
signal was more refined further by bandpass filtering.
Bandpass filters cover a predefined range of expected
HRs at the operational frequency of 0.75 to 4.5 Hz
[10]. A number of other methods such as the joint ap-
proximate diagonalization of eigenmatrices (JADE)[7]
or FastICA [11], and extensions like joint blind source
separation (JBSS)[12], Spatio-temporal ICA [13], con-
strained ICA [14], radical ICA [15], robust ICA [16],
Project ICA [17], and Principal Component Analysis
(PCA) [11] have been used to (rPPG) signal. Another
group of methods proposed a set of model-based meth-
ods regarding color vectors such as the chrominance
model (CHROM) [18], blood volume pulse signature
(PBV) model, spatial subspace rotation (S2R), and a
plane orthogonal to the skin (POS) model [19], POS
is conceived to extract the heart signal based on a skin
reflection model in normalized RGB space. As other
researchers [20] have found, the selection of ROI has
a major impact on the quality of the (rPPG) signal.
Haque and al. [21] have focused on extracting facial
landmark points by combining the trajectories of the
supervised descent method (SDM) and generating sta-
ble trajectories (GFT) method for heart rate estimation.
Other recent works have applied deep learning to ex-
tract heart rates directly from camera images. They
rely on the strength of deep networks to acquire knowl-
edge of which areas in the image correspond to heart

rate. HR-CNN [22] uses a two-step convolutional neu-
ral network. To estimate a heart rate from a sequence
of facial images. DeepPhys [23] propose an end-to-
end method to extract heart and breathing rate from
videos using a deep convolutional network. Rhythm-
Net [24] uses a spatial-temporal representation encod-
ing the HR signals to form the CNN, and they use Gated
Recurrent Unit (GRU) to consider the relationship of
adjacent HR measurements from video sequences. Au-
toHR [25] employs neural architecture search (NAS)
to discover temporal difference convolution (TDC) as
a strong backbone to capture intrinsic rPPG signal from
frames. Bousefsaf and al.[26] present a convolutional
3D networks, without any special frame processing,
and a particular training procedure which involves only
synthetic data is proposed. Hsu and al.[27] employed
Short-Time Fourier Transform (STFT) to transform the
signals to time-frequency representation, which is cas-
caded with Convolutional Neural Network (CNN). Lee
and al.[28] introduce meta-learning framework for re-
mote heart rate estimation which involves three mod-
ules: convolutional encoder, rPPG estimator and syn-
thetic gradient generator. The first module was used to
infer the rPPG signal but the two later were used during
transductive learning.

3 METHODOLOGY
This section explains the overall methodology applied
to estimate heart rate remotely using face videos; We
follow a six-step process from face detection from
video frames to heart rate estimation in this work. Fig.1
shows the flowchart of our proposed method, which is
described in the following subsections.

3.1 Face Detection and face alignment
The first step of the proposed method is face align-
ment. Normally head it is exposed to different motion
classified as internal such as (smiling/laughing, talking,
screaming, eating, etc), and external related to differ-
ent voluntary head motion. Thereby, we need to per-
form face alignment as seen in Fig.2, by using a sim-
ple method that focuses only on areas around the eyes.
Three basic affine transformations are carried out: ro-
tation, translation, and scaling. For eye detection, we
have used OpenCV Haar cascade configurations (eye
detection module). After that, we have calculated the
center of the detected eyes and then drawing 2 lines the
first connects the two central points of the eyes, the sec-
ond is a horizontal line that forms an angle. Our aim is
to rotate the image based on this angle. To calculate the
angle, we first need to determine the length of the two
legs of a right triangle. Then we can obtain the required
angle using the following formulas:{

∆x = x{right eye}− x{le f t eye}
∆y = y{right eye}− y{le f t eye}

(1)
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Figure 1: The flowchart of the proposed method.

θ = arctan
(

∆x

∆y

)
(2)

we have specified in which direction our image will ro-
tate. If the ordinate Y the left eye is bigger than the
ordinate Y of the right eye, rotation is in the clock-
wise direction. Else, the rotation will be in the counter-
clockwise direction. After rotation, we did the same
thing with all the other images that we are processing.
Finally, we scale our images based on that ratio. The
second step is face detection and cropping which is car-
ried out for each frame. The detection and tracking have
been implemented by using the Viola-Jones face detec-
tion method [31] ; This algorithm is extremely rapid
and achieves high detection rates.

Figure 2: An example from UBFC-RPPG dataset illus-
trating face alignement step

3.2 Heart Rate Estimation by Forehead
location

The chosen region for estimating heart rate is the fore-
head, the position of the forehead is determined by the
coordinates of the two eyes. We have used OpenCV
Haar cascade configurations (eye detection module) for
eye detection. After determining the coordinate of the
two eyes, we have searched for the center of both of
them, the orthogonal on the center of the left eye rep-
resents the left limit of the forehead rectangle, and the
orthogonal on the center of the right eye represents the
right side of the forehead rectangle. The outer limit of
the forehead is represented by the line of y-axis where
y = 0. The lower limit of the forehead rectangle is de-
termined by the line y = (height of the image/4).

3.3 Skin detection
Cardiac activity causes a subtle color variation only on
the facial skin during the cardiac cycle. It is, there-
fore, crucial to observe only the pixels that belong to the
skin while ignoring the others like background, clothes,
teeth, hair, and other unrelated parts. Consequently, it is
important to consider that skin detection is a very cru-
cial step in remote heart rate estimation. It improves
the quality of the PPG signal by increasing the Signal-
to-Noise Ratio SNR. In a previous work, we suggested
a novel approach based on a convolutional neural net-
work (CNN) for skin detection[6]. To reduce false posi-
tives, our training strategy consists of patch-based train-
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ing which is robust to background clutter and detects
skin pixels precisely. We proposed an efficient algo-
rithm to detect and extract skin pixels from the whole
RGB image after integrating the trained model. Our
purpose was in achieving a very precise human skin de-
tection. Despite the fact that skin detection represents a
challenging problem because it can vary dramatically in
its appearance due to many factors such as illumination
conditions, pose variations, race, aging, and complex
background. The proposed approach overcomes most
of the difficulties in skin detection. Table 1 illustrate the
architecture of the proposed skin detection CNN model.
The Processing algorithm overview is shown in Fig.3.

3.4 rPPG signal
The green channel the RGB space transcribes better the
PPG signal rather than the red and blue channels, and
it provides a good signal noise ratio SNR [7] because
the green light penetrates human skin better than blue
light and it is absorbed by hemoglobin better than red
light [29]. After performing the skin detection algo-
rithm, we were able to extract rPPG signal by calculat-
ing the mean green values of pixels inside each frame,
which concludes a temporal raw signal Ts:

Ts = [m1(g),m2(g),m3(g), ...,mn(g)] (3)

Where n denotes the index of frame and m(g) corre-
spond to the mean green value of pixels at each frame
of the video.

mi(g) =
(

∑(x,y)∈ROI Ig(x,y)

|(x,y)|

)
(4)

Where Ig(x,y) denotes the green channel intensity of
each pixel, and |(x,y)| represents the number of skin
pixels for each frame. The source signals were passed
by band-pass filtered (Hamming window filter with
low- and high-frequency in the range (0.75Hz-4.5Hz)
which corresponds to 45 bpm and 270 bpm respec-
tively).

3.5 rPPG Signal Multilevel decomposi-
tion and heart rate estimation

Even though Short-Time Fourier Transform (STFT) is
the most used tool for frequency analysis, but it is an
inappropriate choice for non-stationary signals. Natu-
rally, the physiological signals are non-stationary such
as rPPG, STFT which provide a constant resolution
at all frequencies and it loses time resolution in the
spectral domain. Additionally, the fixed-length win-
dow is an inconvenient factor since the frequency be-
havior is not known, to overcome this shortcoming and
to perform different resolutions analysis, we adopt the
wavelet technique.

The basic formula of wavelet transform can be written
as:

Wt(a,b) =
1√
a

∫ (+∞)

(−∞)
X(t)ψ∗(a,b)dt (5)

and the complex conjugate of the mother wavelet is de-
fined as:

ψ
∗(a,b) =

1√
a

ψ

(
t−b

a

)
(6)

where X(t) is the processed signal, a is the scaling pa-
rameter and b is the translation parameter. ψ∗ is the
mother wavelet, which plays the role of both a win-
dow and basis function, and is then scaled or shifted
by the parameter a to regulate window length. Narrow
windows ease detecting the presence of high-frequency
components and wide windows facilitate extracting low
frequencies components. In this work, we employed
Discrete wavelet transform (DWT) because it offers
a highly efficient wavelet representation. In Discrete
wavelet transform, scale is only modified in the power
of base 2 (a = 1, 2, 4, 8,), and translation is also done in
comparative relation to the scale. Furthermore, DWT is
not shift-invariant. The DWT can be defined as:

Wt( j,k) =
1√
2 j

∫ (+∞)

(−∞)
X(t)ψ∗( j,k)dt (7)

For the discretized mother wavelet eq.6 Can be rewrit-
ten as:

ψ
∗( j,k) =

1√
2 j

ψ

(
t− k2 j

2 j

)
(8)

Where the scale and the shift parameters are commonly
used as 2 j and k2 j. The signal is decomposed into ap-
proximation and detail coefficients in the first level. The
decomposition for the remaining levels is realized us-
ing only the approximation coefficients. At each level,
the decomposition is performed by using low-pass and
high-pass filters. The output coefficients are named ap-
proximation coefficient and detail coefficient. These
coefficients assure reconstruction of the original sig-
nal with a process called inverse discrete wavelet trans-
form (IDWT). In this paper, the Coiflet wavelet [32]
was chosen as the mother wavelet with a four levels de-
composition is performed. As illustrated in the wavelet
decomposition tree Fig.4. Coiflets were originally de-
rived from the Daubechies wavelet. Coiflets wavelet
family from 1st to 5th order, It uses many overlapping
windows. It is based on six scaling and wavelet func-
tion coefficients, The Coiflet wavelet also follows the
mirror technique. The signal decomposition was made
with (coif1) and the reconstruction was made with the
same wavelet (coif1) but we choose only the third and
the fourth detailed coefficient (D3 and D4). The re-
sult is shown in Fig.5. The multi-resolution represen-
tation with the discrete wavelet transforms is illustrated
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Table 1: The architecture of the proposed skin detection CNN model.

Layers No. Type Kernel size No. Kernels Stride Outupt shape

Layer 1 Conv 1 1 × 1 16 1 1 × 1 × 16
Layer 2 Conv 2 2 × 2 32 1 2 × 2 × 32
Layer 3 Conv 3 1 × 1 64 1 2 × 2 × 64
Layer 4 Max pooling 1 2 × 2 0 1 × 1 × 64
Layer 5 Flatten 1 64
Layer 6 Dense 1 128 128
Layer 7 Dense 2 64 64
Layer 8 Dense 3 1 1

Figure 3: Framework of the proposed skin detection algorithm. The skin map is constructed progressively and
displayed in steps 0-9. Each pixel of the image is predicted with the trained model.

Figure 4: Discrete Wavelet Transform Decomposition
Tree of four levels.

in spectrogram as seen in Fig.6. We can estimate

Figure 5: rPPG signal reconstruction with the third and
the fourth detailed coefficient using discrete wavelet
transform.

heart rate with peak detection. Peaks can then be simply
identified using a diversity of peak detection algorithms
but most of them require the selection of an appropriate
threshold value to avoid incorrect peak detection. Once
the peaks are detected the distance between the peaks
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Figure 6: Spectrogram illustrating the four level decom-
positions.

can be used for the calculation of heart rate from the
PPG signals using eq.9:

Heartbeatrate = 60× Fs
intsys

(9)

where Fs is the sampling rate and intsys corresponds
to the distance between the systolic peaks. Otherwise,
for this aim, using frequency analysis, the frequency
equivalent to the index with the highest spectral power
is selected as an estimate for the HR. In the Fig.7 we
see that the maximum power of the first detailed level
coefficient is at frequency bin 1.602. This, in turn, gives
HR 1.602×60 = 96.12 bpm.

Figure 7: Spectral representation of detailed coefficient
level 1

4 EXPERIMENTAL RESULTS
We conducted experiments to demonstrate the effec-
tiveness of the proposed method on UBFC-rPPG sig-
nal datasets [30], which is publicly available, and is
dedicated to rPPG algorithm evaluation. It is com-
posed of 43 uncompressed videos, where each video
is joined with Ground truth heart rate for evaluation.
Each video have a duration of 60 seconds and corre-
sponds to 30 frames per second (fps) with a resolu-
tion of 640 × 480 in 8-bits RGB format. Subjects
recorded while playing a stressful game. It is worth
noting that the rPPG signal is much noisier if we don’t
apply human skin detection and face alignment algo-
rithm to fix the subject’s voluntary movements. At
the next stage, the decomposition-reconstruction oper-
ation is performed by using the wavelet transformation
approach where coiflet wavelets gave a satisfying re-
sults. We generate different spectral representation at
different level as shown in Fig. from 8 to 11. The

Figure 8: Spectral representation of detailed coefficient
at level 1

Figure 9: Spectral representation of detailed coefficient
at level 2

Figure 10: Spectral representation of detailed coeffi-
cient at level 3

Figure 11: Spectral representation of detailed coeffi-
cient at level 4

performance of the proposed approach is compared to
the state-of-the-art methods on the experimental dataset
listed in Table 2. We have measured the accuracy in
terms of Mean Absolute Error (MAE)and mean squared
error (RMSE), our method generated the lower error,
which relavate a high accuracy. We report results with
two other metrics standard deviation of error (SD) and
Pearson correlation coefficient (R), From the results we
can determine that the proposed method showed consis-
tent performance although the data acquisition scenar-
ios (subject mouvement,closed eyes,luminosity varia-
tion). Lastly, the proposed Skindetection-DWT method
was not tested yet on the most challenging use case sce-
narios that imply a lot of motion. This is mostly due to
the fact that to the best of our knowledge there is no
datasets for the motion robustness publicly available.

Figure 12: rPPG signal full reconstruction using all co-
efficients
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Figure 13: rPPG signals extraction without skin detction step
Table 2: Performance comparison between the proposed method and the state of the art methods of heart rate
estimation on UBFC-rPPG dataset.

Method HR(bpm)
SD MAE RMSE R

GREEN[7] 20.2 10.2 20.6 -
ICA[8] 18.6 8.43 18.8 -

CHROM[18] 19.1 10.6 20.3 -
POS[19] 10.4 4.12 10.5 -
3D[26] 8.55 5.45 8.64 -

End-of-end(baseline)[28] 13.70 12.78 13.30 0.27
Meta-rPPG(inductive)[28] 14.17 13.23 14.63 0.35
Meta-rPPG(proto only)[28] 9.17 7.82 9.37 0.48
Meta-rPPG(synth only)[28] 11.92 9.11 11.55 0.42

Meta-rPPG(proto + synth)[28] 7.12 5.79 7.42 0.53
Ours 5.32 3.24 5.64 0.46

5 CONCLUSION

This paper discusses a novel approach for heart rate es-
timation using facial videos. The green channel yields
the most prominent cardiac cycles and it was extracted
from the forehead region. Since the most important
problem associated with rPPG signal was variation in

skin tone, lighting condition, and subject’s motion, the
presence of these three factors represents many inter-
ferences and noise on the resulting signal. Accord-
ingly, a previously proposed approach to skin detec-
tion is applied which relies on the strength of the con-
volutional neural network, also the face alignment al-
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gorithm improves the efficiency of the proposed sig-
nal, then we adopted the multi-resolution representation
with the discrete wavelet transform using spectrogram,
so it keeps equally the time and the frequency informa-
tion, and its facilities signal analysis. The signal de-
composition and reconstruction were made with coiflet
wavelet, the reconstruction of the signal was made only
with the two final detailed coefficients.
The choice was relying on the visualization of the re-
lation between the detailed coefficients of the wavelet
transform.
In the final step we evaluate our heart rate estimation
with the state of art methods on a public dataset UBFC-
RPPG.
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ABSTRACT
This paper presents a system to determine differences between 3D reconstructed interiors and their corresponding
3D planning data with the aim of correcting identified differences and updating the 3D planning data based on
these deviations. Therefore, a point-based comparison algorithm was developed with which deviations can be
recognized regardless of the topology of the data used. Usually, resolution and topology of a 3D reconstruction do
not match the CAD data. Here, our solution overcomes this problem by segmenting and extracting objects relevant
for comparison (e.g., doors, windows) from the reconstruction and planning data separately with a subsequent
analysis of the proximity of these objects to connected walls within the corresponding data set. Starting from the
connection points of a segmented object to its walls, adjacent spatial data is located for a correction of detected
differences to update the 3D planning data. The quality of the result of the developed process is shown in different
examples localizing doors and windows to find deviations. In addition, detected differences between the planning
and the measurement data are visualized and compared with the ground truth state of the building interior.

Keywords
3D Geometry Comparison, Geometry Deviation Feedback, Object Recognition, Computer Vision, Point Clouds,
Mobile Mixed Reality

1 INTRODUCTION
In many industrial and commercial areas, Mixed Re-
ality techniques are nowadays used in the planning or
production process as well as for construction monitor-
ing and quality control, e.g. to discover deviations that
arise during a construction process at an early stage. If
such deviations cannot be fixed, this could be a problem
for later maintenance. Thus, our approach allows an
update of the planning data respectively. Especially an
early detection of differences to the original blueprints,
like shifted windows, doors, or walls, can help to reduce
or avoid high follow-up costs and support adherence to
the schedules. This also involves a modernization or
redesign of existing buildings or interiors, for exam-
ple when doors are newly set or sealed. While other
systems for digital construction monitoring are often
limited to a visualization of the monitoring and docu-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

mentation progress [ZHK+14, GFPMS09] or a visual-
ization and comparison of detected differences between
measurement and planning data [Bos10, DFFW18], the
focus of the system presented in this paper, in addition
to detect, visualize, and compare differences [KER+17,
DGJ20], is to correct differences with a subsequent
feedback into the 3D planning data.
Acquiring the depth data for a 3D reconstruction can be
performed in various ways, such as by photogramme-
try (Structure from Motion), Time of Flight, or Struc-
tured Light [LJS+20]. Determined spatial data is repre-
sented in the form of 3D point clouds or a 3D model
is constructed from the point cloud in further post-
processing [GSC+07, NIH+11]. Various analytical,
region-based and geometric methods (model fitting) are
used for cluster analysis of point clouds, in particu-
lar for segmenting and extracting certain elements of a
scene [GMR17, SWL+16]. In addition, also more and
more approaches based on machine learning are applied
[ZLY19]. For a comparison of 3D data, Dobos̆ et al.
[DFFW18] described a method that recognizes differ-
ences between 3D models in the screen space based on
different data such as color, depth, normals and texture
coordinates and visualizes them for the user. Further-
more, Tuttas et al. [TBBS14, TSBB15, TBBS17] de-
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scribed an approach that compares point clouds from
real scenes with planning data in order to enable au-
tomated building documentation. The point clouds are
recorded by photogrammetry and Structure from Mo-
tion. The main contribution of this paper is an algorithm
that detects deviations from planning data compared to
scanning data from the real world either to correct the
deviations at the construction site or to use this informa-
tion to update the planning data. In the latter case the
differences found are used to adjust the original plan-
ning data respectively (e.g., for maintenance). There-
fore, differences between planning data and captured
real data are compared using a point-cloud-based data
representation and the resulting differences are used to
change the planning data on a geometry level.

2 PREPROCESSING
The first task of the whole system pipeline is to clean up
the captured data. In our case the capturing is carried
out using a Microsoft HoloLens, but our system is not
limited to it, so that other 3D scanners, for example
Occipital’s Structure Sensor1 for an Apple iPad, could
be used. During this preprocessing, the captured point
cloud is cleared of outliers and points that have arisen
due to a misinterpretation of the depth data, which for
example can occur due to highly reflective or transpar-
ent surfaces. After this preprocessing the identification,
localization, segmentation, and extraction of objects
relevant for comparison is carried out. The removal
of outliers that are not part of the interior of the 3D
reconstruction is achieved by using a mass histogram
and the determined amplitudes. First, the orthographic
projection of the point cloud is divided into individual
segments of fixed size along a unit axis. Localized
points within the boundary of a segment are added to a
subset determining the distribution of points along that
axis. Using both highest amplitudes in the histogram,
the point cloud can be freed from outliers, as illustrated
in figure 1 and shown in listing 1.

Step 1: Divide 2D coordinate plane XZ into
segments S of fixed size along x-axis

Step 2: Project centered and aligned cloud on
XZ coordinate plane

Step 3: For each S of XZ : count points
Step 4: Determine segment Sa and Sb
with first and second maximum as amplitudes

Step 5: Cut off points before Sa and after Sb
Result: Trimmed cloud along x-axis

Listing 1: Outlier removal using the mass histogramm
and both determined amplitudes along the x-axis. The
same process is also done for y- and z-axis.

During the reconstruction process, objects that are rel-
evant for comparison, such as windows or doors, may

1 Occipital Structure Sensor https://structure.io/

be occluded or have semi-transparent or partially inter-
mediate regions, which makes it more difficult or even
impossible to segment these objects later on for the pur-
pose of detecting differences. If available, spatial in-
formation about such objects, like fitted units, can be
obtained by the BIM (Building Information Modeling)
data of a building or have to be measured manually. An-
other solution could be using a CNN, which identifies
and locates even partwise occluded windows and doors
to provide metadata of the located objects. Within our
semi-automatic solution, the developed scanning soft-
ware allows marking occluded regions during the re-
construction process, which can help to remove out-
liers within these regions and to free up occluded ob-
jects. The left side of figure 2 illustrates the reconstruc-
tion from the user’s point of view including the regions
marked for a later clean up. Based on the corner points
of a marked region, a cuboid with twice the depth of
the width of a corresponding region (negative and pos-
itive depth along the plane’s normal) is used to remove
points within its boundarys, which is illustrated on the
right side of figure 2.
Regions marked are saved as metadata in a separate file
related to the 3D model of the 3D reconstruction. The
metadata contains a clear identification of the sliced
object, as well as the object type, which provides in-
formation on whether the cut out object is a door or a
window. Furthermore, the geometry type keeps infor-
mation about what shape the user used to cut out the
object, which he had previously selected from a range
of predefined shapes (circle, rectangle, polygon). The
anchor count contains the number of points used for the
geometry type and the anchor points are stored as lin-
ear vector that contains the actual spatial data. In addi-
tion, the surface normal of the cut out geometry and the
estimated unit normal are stored. Based on the anchor
points and the unit normal, the dimensions of the cuboid
are set up. Figure 3 contains a cut out from the meta-
data contained in the file, which represents the metadata
related to the window within the right side of figure 2.
Figure 4 shows the 3D reconstruction in form of the
raw point cloud (left) and the preprocessed point cloud
(right), in which all points within the regions previously
marked were removed, as well as a removal of out-
liers based on the mass histogram has been carried out
(see figure 1). Also mentionable is the variable depth
of cuboids using the determined width based on the
planes created from the metadata for freeing occluded
regions, which enables filtering doors or windows that
are opened to the interior, as it can be seen in the right
lower parts of figure 4.

3 DETECTING DIFFERENCES
To identify and locate differences between planning
and actual data, segmentation and extraction of objects
relevant for comparison is done individually for both
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Figure 1: Left: mass histogram and corresponding point cloud. Right: point cloud cleaned of outliers based on determined
amplitudes in the mass histogram along x-axis.

Figure 2: Creation of metadata during the 3D reconstruction process. The user marks regions that are interpreted as part of
the interior due to misinterpreted depth data or occluded regions (left). The metadata created is used to remove outliers and
points that have arisen due to misinterpreted depth data or that occlude objects relevant for a comparison (right).

Figure 3: Example of the created metadata, which is op-
tionally created during the reconstruction process and stored
separately for the related 3D model of the reconstruction.

datasets. For the planning data segmentation, the 2D
floor plan is converted into a planar point cloud and the
wall segments are localized and extracted by use of a
Euclidian Cluster Extraction (ECE)2. Each individual
wall segment is connected to its both nearest neigh-
bours and the located regions between two wall seg-

2 Euclidean Cluster Extraction https://pcl.readthedocs.io/en/
latest/cluster_extraction.html

ments identify windows or doors as illustrated in figure
5. The left part of the figure shows the extracted ground
segment. In the right part of the figure, walls, windows,
and doors were segmented and extracted from the pla-
nar point cloud of the converted floor plan. Within the
reconstructed point cloud, all wall faces are filtered and
extracted using the amplitudes found in the mass his-
togram, as illustrated on the left in figure 6. Subse-
quently, openings are localized in the planar point cloud
of the extracted wall side using α-shapes [TC98], as vi-
sualized on the right in figure 6. Figure 7 visualizes an
overlay of all segmented and extracted objects relevant
in the context of a difference detection in addition to
the planar point cloud of the floor plan and the prepro-
cessed point cloud of the reconstruction. Table 1 pro-
vides a comparison of the found differences between
the planning data and its reconstruction concerning the
width. As can be seen, differences between all extracted
objects have been detected but the difference calculated
for door 3 in table 1 is particularly noticeable compared
to the other results. The reason for the high deviation
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Figure 4: On the left side, the raw 3d reconstruction is visualized as point cloud. On the right, the preprocessed point cloud is
visualized, using the mass histogramm to remove outliers and the metadata to clean up occluded regions.

Figure 5: Planar point cloud of the floor plan split up into the
extracted ground segment (left) and the individual wall seg-
ment point clouds (right) using an ECE. Each interconnection
between two wall segments locates the start and end point of
a window or door object within the 2D planning data.

Figure 6: Localization of relevant objects for a comparison
of differences using α-shapes in the planar point cloud of the
extracted wall sides by the amplitudes of the mass histogram.

Door 1 Window 1 Door 2 Door 3

Target 0.89m 2.04m 1.26m 0.89m

Actual 0.93m 2.01m 1.29m 1.04m

Difference 0.04m 0.03m 0.03m 0.15m

Compare ±4.30% ±1.49% ±2.32% ±14.42%
Table 1: Comparison of differences detected between plan-
ning and actual data in context of width.

is misinterpreted depth data that occurred during the
scanning process, as can be seen from the mushroom-
shaped upper part in the right door within the right side
of figure 6. In addition, table 2 and table 3 are contain-
ing a comparison between the planning data, the real
state of the building interior (ground truth) and the re-
construction.

Figure 7: Overlay of the extracted regions from the planar
point cloud of the floor plan by ECE (blue lines), the extracted
wall segments from the floor plan point cloud (black rectan-
gles), the preprocessed point cloud of the reconstruction as
well as the extracted polygons from the segmented wall sides
using α-shapes (red).

Door 1 Window 1 Door 2 Door 3

Target 0.89m 2.04m 1.26m 0.89m

Real 0.91m 2.05m 1.25m 0.90m

Difference 0.02m 0.01m 0.01m 0.01m

Compare ±2.19% ±0.48% ±0.80% ±1.11%
Table 2: Comparison of differences between planning data
and real state in context of width.

Door 1 Window 1 Door 2 Door 3

Real 0.91m 2.05m 1.25m 0.90m

Actual 0.93m 2.01m 1.29m 1.04m

Difference 0.02m 0.04m 0.04m 0.14m

Compare ±2.15% ±1.99% ±3.10% ±13.46%
Table 3: Comparison of differences between real state and
actual data in context of width.
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4 UPDATING 3D PLANNING DATA

To be able to feed back detected differences into the
3D planning data, the corresponding points of a wall
segment are localized for which a difference of the
counterpart from the 3D reconstruction was found.
Since differences are initially detected based on the
determined deviations between doors and windows,
these differences between two corresponding objects
are used to manipulate the wall segments in the 3D
planning data. If, for example, a discrepancy between
a door from the planning data and the associated
door from the spatial data of the reconstruction has
been determined, points of the wall segments from
the 3D planning data that are connected to this door
are manipulated. For this purpose, all points of a
wall segment that are related to a correction of the
detected difference are first to be localized. This is
made possible by using the adjacent properties of the
individual wall segments and the connection points
of two wall segments that are connected by the door
or window in between. Starting from a connection
point, points that are relevant for the manipulation can
be localized by performing a collision detection for
corner points that are located near to the location of the
connection point with an intersection shape (e.g., circle
or rectangle) on the planar point cloud of the planning
data. Figure 8 illustrates the process.
As intersection shape a rectangular shape was used to
determine the points that belong to a wall segment and
are being part of the edge of this wall segment. The
width and height for a rectangle is in correlation to the
thickness of a wall segment and the detected difference
to this location. For a better visualization, a fixed width
and height was used to illustrate the localization of
points relevant for a correction.
Relevant points for a correction of the determined dif-
ferences were localized using the procedure described
in the previous section. In the next step, the differences
determined in section 3 can be fed back automatically
and persistently into the 3D planning data. For this
purpose, all points determined on one side of a wall seg-
ment are transformed according to the difference found.
Figure 9 shows the correction of the spatial data deter-
mined based on the regions in figure 8 by an overlay of
the 3D planning data before and after the correction of
differences. Listing 2 shows the procedure in summary.
Step 1: Set up intersection shape located

at connection point of window or door
Step 2: Localize vertices of original

planning data within intersection shape
Step 3: Manipulate vertices based on

determined deviations
Step 4: Save CAD file
Result: Updated CAD file

Listing 2: Correction of original CAD data based on
detected differences.

Figure 8: 2D planning data and the determined points of
the 3D planning data for a correction of deviations. Points
within an intersection shape belong to the wall segment that
is connected to its neighboring wall segments by the window
or door object in between and its starting point (green points
within the green intersection shapes) and end point (red points
within red intersection shapes). Purple points are not relevant
for a correction of deviations.

Figure 9: Overlay of the 3D planning data as 3D models
before (grey) and after (yellow) the correction of differences.
The view represents the 3D model of the planning data equiv-
alent to the 2D and 3D planning data illustrated in figure 8.

5 CONCLUSION AND OUTLOOK
In this paper, we have presented a system, which al-
lows an automated detection and visualization of dif-
ferences between a 3D reconstruction of interiors and
their corresponding planning data. Our proposed sys-
tem is also capable of feeding back detected differences
persistently into the 3D planning data. Furthermore,
the preprocessing including the removal of outliers has
been improved by using the metadata created during the
reconstruction process with the Microsoft HoloLens to
free occluded regions from points, which are not part of
the object’s structure.
For future work, we would firstly like to incorporate
more complex types of geometries. Due to the sys-
tem’s actual limitation to detect and correct differences
within manhattan world environments, next steps could
focus on the possibility to handle more complex shaped
rooms, which, for example, could be made possible by
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using the floor plan point cloud for an outlier removal.
In addition, further optimization and comparisons con-
cerning the accuracy are possible. Secondly, we’d like
to focus on visualization aspects, where a meta file for-
mat similar to the metadata created during the recon-
struction process can be used that provides all necces-
sary data for a visualization of detected differences on
the HoloLens and other Augmented or Mixed Reality
devices. Moreover, such an AR-based difference visu-
alization, maybe even annotated with further informa-
tion about the corresponding problem, would greatly
enhance on-site discussions during the building phase
as well as later maintainance tasks.
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ABSTRACT
The paper describes a method for measuring the similarity and symmetry of an image annotated with bounding
boxes indicating image objects. The latter representation became popular recently due to the rapid development of
fast and efficient deep-learning-based object-detection methods. The proposed approach allows for comparing sets
of bounding boxes to estimate the degree of similarity of their underlying images. It is based on the fuzzy approach
that uses the fuzzy mutual position (FMP) matrix to describe spatial composition and relations between bounding
boxes within an image. A method of computing the similarity of two images described by their FMP matrices is
proposed and the algorithm of its computation. It outputs the single scalar value describing the degree of content-
based image similarity. By modifying the method’s parameters, instead of similarity, the reflectional symmetry of
object composition may also be measured. The proposed approach allows for measuring differences in objects’
composition of various intensities. It is also invariant to translation and scaling and – in case of symmetry detection
– position and orientation of the symmetry axis. A couple of examples illustrate the method.

Keywords
image similarity, symmetry detection, object detection, fuzzy logic

1 INTRODUCTION
In the paper, the method of content-based image simi-
larity and symmetry measure is proposed1. The subject
of comparison is the composition of elements of the vi-
sual scene. It follows the way a human compares two
images. For example, one may say that two images are
close to another because on both, "there is a bicycle, a
car, and a dog, the dog is below the bike, shifted to the
left and a car is near the bike shifted above-left".

The images under study have annotated data where the
image pixel array is supplemented by the set of bound-
ing boxes encasing the image objects. Such type of data
is a typical result of, e.g., the object detection process.
The method is focusing on the analysis of the mutual
position of those objects. It applies fuzzy logic to de-
scribe the position of image objects’ bounding boxes.
The fuzzy estimation is based on the fuzzy mutual po-
sition (FMP) matrix that contains the fuzzy 2-D fuzzy
position descriptors of every object pair [Iwa21]. Such
descriptor is computed for a given object in reference
to all other ones. It consists of a fuzzy set that refers to

1 The authors conducted this research within the frames of the
grant entitled "Powiedz mi, co widzisz" ("Tell me, what you
see") of the POB SzIR of the Warsaw University of Technol-
ogy.

spatial relation with other ones and the value of appro-
priate membership function.
Two FMP matrices, computed separately for all ob-
jects on both images, gather the information on the
composition of two scenes. In the paper, a metric is
proposed that considers the separately two aspects of
the fuzzy relations between objects expressed by fuzzy
2-D descriptors, which is used to measure the simi-
larity/symmetry of the composition of objects on both
scenes. The first aspect refers to non-directional prop-
erties of the position, i.e., how far is one object from
another, is inside or outside, and is called locus descrip-
tor. The second aspect refers to the orientation and is
called orientation descriptor. The comparison of im-
ages is performed by matching the composition of ob-
jects’ pairs on both images and measuring the pairwise
similarity using matching matrices. The accumulated
pairwise similarity is finally normalized to get the out-
put similarity of complete images. Thanks to the sepa-
ration of the orientation aspect of the 2-D descriptor, it
is possible to find the symmetric orientations for each
type of 2-D descriptor. Consequently, one may evalu-
ate the reflectional symmetry within the composition of
image objects.
The principal contribution of the research described in
this paper is a method, allowing for applying the FMP
matrix to estimating the level of similarity and symme-

1
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tries of the composition of visual scenes. The similarity
and symmetry of images are considered here not – as
most of the known method does – as direct similarity
of the image content but in terms of the composition
of objects detected on both images using, e.g., popular
deep-learning-bases object detection algorithms.

The paper is organized as follows. Section 2 contains
the short survey of related papers. In section 3, the pro-
cess of obtaining the FMP matrix is recalled. Section
4 is the core one, including describing the proposed ap-
proach to comparing images and estimating their degree
of symmetry. Section 5 is devoted to the presentation
and discussion on example results. Finally, section 6
concludes the paper.

2 RELATED WORKS
Image comparison methods are used in many fields of
image processing and analysis. They perform compar-
isons at various levels, starting from the lowest, where
they are used to compute accumulated pixel-wise differ-
ences of images. At the highest level, image compari-
son methods are used for content-based image retrieval.
More sophisticated image comparison methods work
by building descriptors from image features at different
levels and comparing them with various metrics and al-
gorithms. Low-level features may consist of color, tex-
ture, shape, or spatial location information. They can
be extracted both locally or globally, at the image level.
These features may be compared using distance in color
space, histogram similarity measures, Minkowski, co-
sine, and Earth mover’s distance distances, or non-
parametric chi-square test [Rod00; Liu07]. Some ap-
proaches like SSIM produce image similarity scores
by comparing luminance, contrast, and structural fea-
tures [Wan04; Wan03]. At a higher level, region seg-
mentation algorithms, like k-means, JSEG [Den01],
may utilize low-level features to extract and match sim-
ilar areas in the images.

Detecting symmetry in the image is a vital part of image
understanding and can be used, e.g., for object detec-
tion and data compression. Symmetry can be divided
into bilateral symmetry, rotational symmetry, and curve
symmetry [Xia07]. In [Sco03] a two-stage algorithm
has been proposed that locates visually salient features
of the image by computing local energy function and
then applies a Gaussian filter to extract the symmetry
axis. An approach based on gradient orientation his-
togram and Fourier transform was proposed in [Sun99].
The method described in [Loy06] makes use of rotation
invariant feature descriptors. The eigenvector decom-
position of the covariance matrix to find bilateral sym-
metry hyperplanes was used in [OMa96].

Thanks to the rapid development of the deep-learning
methods [LeC15], various techniques for detecting and
identifying the content of the digital image have been

proposed. One of the most popular, primarily due to
relatively high computational efficiency, is the object
detection methods [Gir15; Red16; Ren17] that result in
a handy set of bounding boxes encasing the image ob-
jects. The object detection methods are fast and – in
many cases – able to process images in real-time. Their
output may be further processed to get more sophisti-
cated information on the higher-level properties of the
visual scene.

Describing the position of objects located within the
image is another field of extensive study. Thanks to
its ability to deal with the uncertainty that always ac-
companies a visual scene’s interpretation, fuzzy logic
has been often used as a principal tool in this field.
In [Zha93; Miy94] different fuzzy methods of scene
representation, recognition, and description of an im-
age with detected semantically consistent image re-
gions. The latter paper introduced the histogram of
orientations that was further investigated in many pa-
pers [Mat01; Kel00]. Detailed surveys of this field have
been done in [Sme00; Coh01; Blo05].

3 EXTRACTING THE FUZZY MU-
TUAL POSITIONS MATRIX

The notion of fuzzy mutual position (FMP) matrix that
has recently been proposed in [Iwa21] describe the con-
tent of the visual scene consisting of objects annotated
by their bounding boxes. It is a data structure consist-
ing of fuzzy membership function values for all pairs
of image objects. Membership function values refer to
fuzzy 2D position descriptors defined as fuzzy sets as-
sociated with particular spatial relations between two
objects, e.g.," [one object] is located inside to the right
[of the second one]". The details are this concept are
recalled in following subsections.

3.1 Fuzzification of bounding box cor-
ners’ coordinates

Let focus at the beginning on the two-object case, let
B = {(xB,yB),(x′B,y

′
B)} be a given bounding box de-

fined by the position of its upper-left (xB,yB) and lower-
right (x′B,y

′
B) corner. Let R = {(xR,yR),(x′R,y

′
R)} be the

second bounding box – the reference one. At first, the
position of B will be expressed relative to R using the
fuzzy position descriptor of its corner coordinates.

The relative position of any given image point (x,y) in
reference to R is defined as:

x = 2 · x− xR

x′R− xR
−1 ; y = 2 · y− yR

y′R− yR
−1. (1)

Using the above equation, the coordinates of corners of
the bounding box B are transformed into relative ones:

BR = {(xB→R,yB→R),(x′B→R,y
′
B→R)}, (2)
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where xB→R stands for the relative coordinate of the
given corner of the bounding box B with bounding box
R used as the reference one.

The relative position (x,y) is next fuzzyfied [Zad65]
separately for each axis into one of 5 fuzzy sets asso-
ciated with the relative position of a point in relation to
the reference bounding box R. They are described us-
ing trapezoidal membership functions. The following
fuzzy sets are taken into account: inside (i), edge (e),
close (c), near (n), and far (f). The fuzzy values de-
scribe the distance zone counted starting from the cen-
troid of R. In order to fully describe the position, in
addition, the direction in which the point is located is
coded using one of four values: left (l), right (r), above
(a), and below (b). Fuzzification is performed for each
axis separately, so finally there are two sets of fuzzy de-
scriptors of corners of B, describing position along the
x-axis: D0x = { f l,nl,cl,el, il, ir,er,cr,nr, f r} and along
y-axis: D0y = { f a,na,ca,ea, ia, ib,eb,cb,nb, f b}. As
a result of the fuzzification process, each corner of the
bounding box B relative to R along each of axes is de-
scribed using one or two linguistic variables referring
to point position descriptors associated with fuzzy sets
and appropriate membership function values. These
variables are fuzzy descriptors of a point (corner) rel-
ative to reference object R.

3.2 Determining the 2-D fuzzy bounding
box position

In the second step, starting from the corners’ fuzzy
descriptors, the next level descriptors are computed –
fuzzy descriptors of edges of B relative to R. They
are further referred to as 1-D descriptors as they re-
flect a bounding box’s positions along single axes of
the image coordinate system. Each bounding box is de-
fined by four groups of corner descriptors (two for x-
coordinates, two for y-coordinates, each of which con-
sists of 1 or 2 descriptors), from which two groups of
edge ones are derived. Depending on the position of
an edge relative to the equivalent edge of the reference
bounding box, the 1-D descriptor belongs to the follow-
ing groups:

1. outside position – edge of B is located outside the
edge of R without any intersection. There are three
such descriptors, depending on how far B is from
R: far (FA), near (NE), close (CL). In addition, the
list of outside positions contain one additional case,
when the edge of R is included in the edge of B:
descriptor longer (LO)

2. crossing position – edge of B intersects the edge of
R: possibly – touching (TO) and actually – crossing
(CR),

fl nl cl el il ir er cr

fl FA/L NE/L CL/L TO/L CR/L CR/L CR/L LO/H
nl — NE/L CL/L TO/L CR/L CR/L CR/L LO/H
cl — — CL/L TO/L CR/L CR/L CR/L LO/H
el — — — TO/L IN/L IN/L SA/H CR/R
il — — — — IN/L SH/H IN/R CR/R
ir — — — — — IN/R IN/R CR/R
er — — — — — — TO/R TO/R

Table 1: A part of FAM1 for estimating the 1-D
fuzzy position descriptors, for horizontal axis (reduced
due to space limitations, for complete 10x10 version
see [Iwa21]).

3. inside position – edge of B is entirely included in
the edge of R: close to one of boundaries – inside
(IN) or around the center of R – shorter(SH).

The above descriptors are used along with orientation
indicators that reflect the direction of a given property
(one of 9 above listed). There are 4 indicators that fol-
lows the principal directions: left (L)–right (R), for the
x-axis (set of all 1-D descriptors along this axis will be
denoted as D1x) and above (A)–below (B) for the y-axis
(D1y). There exist, however, some cases when exact
direction cannot be determined. In these cases, the sim-
plified indicators are used: horizontal (H) or vertical
(V). They are accompanying descriptors SH, SA, LO.

The 1-D descriptors are computed based on fuzzyfied
coordinates of bounding box corners – upper left and
lower right (eq. 2), which also depict the position of
edges of the bounding box. They are ordered: xB→R ≤
x′B→R and yB→R≤ y′B→R, which implies that not all com-
binations of fuzzy descriptors of corners have to be con-
sidered (e.g. the left edge can only be located on the left
side of the right edge – cannot be located on the right
side of the latter). Since the number of corner descrip-
tors equal |D0x| = |D0y| = 10, the total number of pos-
sible combinations equals ∑

10
i=1 i = 55. Based on those

combinations, the values of particular 1-D (edge) de-
scriptors are computed using the fuzzy associative ma-
trix (FAM), which allows for finding the appropriate
1-D descriptor for each pair of edge descriptors. In this
case, it is a 10x10 matrix with 55 relevant values.

Relations between two point descriptors of the horizon-
tal direction (x-axis) in the bounding box B (xB→R and
x′B→R) and 1-D position descriptor of the edge stretched
between xB→R and x′B→R in relation to the horizontal
edge of R are shown partially in Table 1. It exhibits the
fuzzy associative matrix FAM1, rows of which refer to
the fuzzy position of x, columns to the fuzzy position
of x′. Elements of this matrix contain the fuzzy 1-D de-
scriptor of the edge. Similar matrix for vertical axis is
obtained by replacing orientation indicators: l ↔ a, r
↔ b, L↔ A, R↔ B, H↔ V.

The FAM1 is used to compute membership functions
to fuzzy sets related to particular 1-D descriptors. This
computation is performed using Mamdani fuzzy rea-
soning (min-max principle):
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Figure 1: Illustration of the process of generating the
2-D fuzzy descriptors of example bounding box B rel-
ative to the reference R consisting of tranformation of
coordinates, fuzzification of bounding-boxes’ corners,
1st reasoning resulting in estimated fuzzy 1-D position
of edges and 2nd reasoning resulting in final 2-D de-
scriptors.

µd(p,p′) = max
{

min(µd1

(
p),µd2(p

′)} , (3)

where max{} is computed for all d1,d2 such that
FAM1(d1,d2) = d. In the case of x-axis p ≡ xB→R,
p′ ≡ x′B→R, d1,d2 ∈ D0x, and d ∈ D1x. In the case of
y-axis p≡ yB→R, p′ ≡ y′B→R, d1,d2 ∈D0y, and d ∈D1y.

In the third and last stage of processing, the final 2-D
set of descriptors of B relative to R is computed starting
from two 1-D descriptors using another fuzzy associa-
tive matrix FAM2. The 2-D descriptor contains the in-
formation on the complete bounding-box 2-D position
B relative to R. 2-D descriptors express two types of
spatial properties of the object B relative to R: locus-
based and orientation-based. Locus-based properties
indicate where an object is located relative to the ref-
erence one and/or position without considering the di-
rection. Some of them follow the concept of particular
1-D descriptors: far (FA), near (NE), close (CL), touch-
ing (TO), crossing (CR), inside (IN). The next two also
follow the 1-D descriptors but do not express any di-
rectional properties: same (SA), and larger (LG). The
latter is equivalent to 1-D descriptor longer (LO), but
its name fits better to the 2-D position. The last de-
scriptor – split (SP) refers to the case when the given
object splits the reference one into two parts, which do
not have a 1-D equivalent.

The orientation-based descriptors indicate a direction
in which the given locus-based descriptor property is
fulfilled. There is a total number of 11 orientation-
based descriptors. Eight of them indicate the primary
directions: left (LE), left-above (LA), above (AB),
right-above (RA), right (RI), right-below (RB), below
(BE) and left-below (LB) and are used together with
locus-based descriptors: FA, NE, CL, TO, CR, and IN.

CL/L TO/L CR/L IN/L SH/H SA/H LO/H

FA/A FA/LA FA/AB FA/AB FA/AB FA/AB FA/AB FA/AB
NE/A NE/LA NE/LA NE/AB NE/AB NE/AB NE/AB NE/AB
CL/A CL/LA CL/LA CL/AB CL/AB CL/AB CL/AB CL/AB
TO/A CL/LA TO/LA TO/LA TO/AB TO/AB TO/AB TO/AB
CR/A CL/LE TO/LA CR/LA CR/AB CR/AB CR/AB CR/AB
IN/A CL/LE TO/LE CR/LE IN/LA IN/AB IN/AB SP/AB
SH/V CL/LE TO/LE CR/LE IN/LE IN/CE SP/HO SP/HO
SA/V CL/LE TO/LE CR/LE IN/LE SP/VE SA/CE LG/HO
LO/V CL/LE TO/LE CR/LE SP/LE SP/VE LG/VE LG/CE

Table 2: A part of FAM2 for estimating the 2-D fuzzy
position descriptors (reduced due to space limitations,
for complete 15x15 version see [Iwa21]).

Moreover, descriptors LE, RI, AB, and BE are used
with the SP locus-descriptor to indicate splitting the
reference object close to the particular edge. The first
of the remaining three descriptors reflect the configura-
tion when given bounding box have the same position
of the centroid and same proportions: centered (CE)
and is used together with locus-descriptors IN, SA,
and LG. The last two direction descriptors horizontal
(HO) and vertical (VE) are used only in combination
with SP locus-descriptor to express the case of splitting
of the reference bounding boxes in the middle of its
either height or width. Considering all the above, the
total number of 2-D descriptors – combinations of
locus-based and orientation-based – equals |D2| = 57.
Considering the fact that |D1x| = |D1y| = 15, the size
of FAM2 is 15x15 – it contain all combinations of 1-D
descriptors along x- and y-axis. A part of FAM2 matrix
is shown in Table 2.

Simmarily to the 1-D case, the 2-D descriptor is ob-
tained using the Mamdani reasoning, this time using
FAM2 matrix. For the bounding box B defined by the
Eq. 2, the membership function value of a 2-D descrip-
tor d is equal to:

µd(BR)=max{min(µdx(xB→R,x′B→R),µdy(yB→R,y′B→R)},
(4)

where max{} is computed for all dx ∈ D1x and dy ∈
D1y such that FAM2(dx,dy) = d. The fuzzy relation
d belongs to the set of all 2-D fuzzy relations D2. The
complete process of obtaining the 2-D fuzzy descriptors
for an example object is shown in Fig. 1

With the usage of two FAM matrices, which are the loo-
up-table ones, the calculations of fuzzy descriptors are
fast. Nevertheless, one may speed it up even more by
joining both matrices into a single 4-dimensional data
structure, indexed by fuzzified corner coordinates (two
along the x-axis and two along the y-axis).

3.3 Scene description using FMP matrix
Considerations in the previous section concern the case
of relations between two objects. To get the description
of the complete scene that consists of multiple objects,
a matrix of one-to-one relations has been introduced,
called the fuzzy mutual position (FMP) matrix. It con-
sists of relative position descriptors for all combinations
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of bounding boxes. Let S =
{

B(1),B(2), ...,B(n)
}

be the
visual scene – the set of n bounding boxes of the image.
The FMP matrix is defined in n×n×|D2| as:

FMPc,r,d(S) = µd

(
B(c)

B(r)

)
1≤ c,r ≤ n;d ∈ D2, (5)

where c and r stands for objects’ indexes: current and
reference, respectively, and d stands for the fuzzy 2-
D descriptor2. The c-th row consists of 2-D fuzzy de-
scriptors of c-th object computed relative to all other
objects considered as reference ones. The element of
index (c,r) contains a vector of descriptors of B(c) rela-
tive to B(r), and will be further referred to as FMPc,r(S).

4 SIMILARITY AND SYMMETRY DE-
TECTION

The FMP matrix describes the visual scene using the
object’s fuzzy descriptors of objects concerning other
ones. One can say that two objects are in a similar po-
sition if their fuzzy 2-D descriptors are compliant. Let
B(i) and B( j), be two object present on the first image
(i, j are their indexes). They are also present on the sec-
ond image (to be compared with the first one); let us
call them B′(i) and B′( j). They may be located on both
images in different places (their bounding boxes may
have completely different image coordinates). We can
then say that their compositions are similar if the fuzzy
2-D descriptors on both images (stored in the FMP ma-
trices) are close one to another i.e. B(i)

B( j) ≈ B′(i)
B′( j) and

B( j)
B(i) ≈ B′( j)

B′(i)
. If we can draw the same conclusion from

all other pairs i, j (or, at least, for the vast majority of
them), then the composition of objects on both images
may be considered similar. The ratio of matched bound-
ing boxes to all bounding boxes present within images
may be proportional to the overall composition similar-
ity.

The above considerations may also be used to measure
the symmetry of the image objects’ composition. How-
ever, this time, the 2-D descriptor should be considered
as composed two of two parts: locus-descriptor and ori-
entation descriptor. The locus descriptor reflects an ob-
ject’s position relative to the reference one in terms of
the fuzzy estimation of the relative distance to the ref-
erence object. It tells us whether the object is far, near,
border-crossing, inside, etc. These properties are in-
variant to symmetry. There is, however, also the second
part of the 2-D descriptor – the orientation descriptor.
This one, in turn, strongly depends on image symme-
try because it describes the direction in which one may
find the given object looking from the reference one. In

2 Due to the fact that, in general, fuzzy position descriptor is not
symmetric i.e. B(i)

B( j) 6= B( j)
B(i) , FMP is not symmetric neither.

the symmetrical composition of object bounding boxes,
these descriptors should be compared to their symmet-
rical counterparts. For example, we can say that the
composition of some B(i) and B( j) is symmetric along
x-axis, if B(i) is close to B( j) on both images but on the
first it is located on the left, while on the second, on the
right-hand side.

The detailed description of the proposed approach to
detecting similarity and symmetry is in the following
subsections.

4.1 Similarity detection
Let S be the first scene (set of bounding boxes of
the first image), where the total number of bounding
boxes equals n1. Let S′ be the second scene – the
set of n2 bounding boxes of the second image. Let,
id(B) be a function that returns the bounding box’s ID-
number. ID-numbers are unique numbers that identify
the bounding boxes. We will use them to establish cor-
respondences between objects. Each bounding box B
on the first image has its counterpart B′ on the sec-
ond image iff id(B) = id(B′). Let assume that some
number n0 > 0 of bounding boxes from S and S′ are
matched, i.e., have the same ID number3 The total num-
ber of different objects on both images equals thus to
n = n1 + n2− n0. In the first step, objects present on
both images are extracted to unified sets C and C′ that,
comparing to the original sets, are trimmed to the same
length n0 and ordered so that the bounding boxes of the
same index have the same ID.

In order to estimate the total similarity of two images,
in the beginning, the pairwise similarity between ob-
jects that are present on both images is evaluated by
considering the appropriate elements of the mutual po-
sition matrices of both images. We thus reduce the
problem of comparing two scenes to the process of in-
vestigating pairs of relations between sets of objects on
two images. The FMP matrix contains values of mem-
bership functions to all possible fuzzy 2-D descriptors
fuzzy sets. For a given pair of objects, only a few
(usually one or two) values are greater than 0. These
descriptors indicate the possible relations between ob-
jects. Because membership functions’ values indicate
the strengths of those relations, the membership func-
tion values are thresholded, so the weakest relations are
rejected. To compare a pair of relations between bound-
ing boxes, one compares fuzzy descriptors of member-
ship function values greater than a given threshold t.
In order, in turn, to compare descriptors, each of two

3 In case n0 = 0 we will not be able to estimate the similarity
at all – two images would be completely different, consisting
of disjoint sets of objects. To estimate the similarity, at least
two objects with fuzzy 2-D descriptors of their mutual relation
must be present on both images with pairwise the same ID’s.
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FA NE CL TO CR IN LG SP SA

FA 1 vh vl 0 0 0 0 0 0
NE vh 1 vh vl 0 0 0 0 0
CL vl vh 1 vh vl 0 0 0 0
TO 0 vl vh 1 vh vl 0 0 0
CR 0 0 vl vh 1 vh 0 0 0
IN 0 0 0 vl vh 1 0 vl vl
LG 0 0 0 0 0 0 1 vl vl
SP 0 0 0 0 0 vl vl 1 vl
SA 0 0 0 0 0 vl vl vl 1

Table 3: Matching matrix for locus descriptors MMloc,
intermediary values are equal to vh = 0.5 and vl = 0.25.

parts of the descriptors, locus and orientation, are in-
vestigated separately. For each part, one has to consider
three cases. The first case refers to the equality of de-
scriptor, i.e., the locus descriptor is equal to the same
value on both images, e.g., "far". It is a clear case – the
distance is in the same range on both images, the locus-
based similarity is complete. The second case refers to
the situation when descriptor values are not equal but
semantically close one to another, e.g., its value on the
first image equals ’far’ while on the second one – to
"near". In this case, a particular (lower) degree of sim-
ilarity can also be assigned. Finally, there exists the
third case. It refers to values that are semantically far
from another (e.g. ’inside’ vs. ’far’). In such a case, the
similarity equals 0.

The same is true for orientation descriptors. Here one
also should differentiate similarity degrees for cases of
full (e.g. ’right’ or both images), partial (e.g. ’right’ on
the first image, and ’right-above’ on the second), and
null (e.g. ’right’ vs. ’above’) accordance of descriptor
values.

To properly and efficiently process the possible com-
binations of various descriptors’ values, the matching
matrices MM are used. There are two such matri-
ces, one per each descriptor part (locus and orienta-
tion). Rows and columns of those matrices refer to
descriptors’ values to be matched. Their elements are
real numbers between 0 and 1 which are weighting
coefficients applied to evaluate a given combination’s
weight. Matching matrix for locus descriptor MMloc
is presented in Table 3. In the further considerations
notation MMloc(d,d′) is referring to the element of lo-
cus matching matrix for locus parts of descriptors d and
d′. Similarly, values in Table 4 are orientation matching
values, further referred to as MMor(d,d′).

The matching matrices are used as a kind of look-up-
tables to compute the similarity between objects’ rela-
tive positions on both images. The final similarity mea-
sure is computed as normalized accumulated pairwise
similarity. The complete workflow of the method of its
computing is presented as Algorithm 1.

LE LA AB RA RI RB BE LB CE HO VE

1, LE 1 vh 0 0 0 0 0 h 0 vl 0
2, LA hi 1 vh 0 0 0 0 0 0 vl vl
3, AB 0 vh 1 vh 0 0 0 0 0 0 vl
4, RA 0 0 vh 1 vh 0 0 0 0 vl vl
5, RI 0 0 0 vh 1 vh 0 0 0 vl 0

6, RB 0 0 0 0 vh 1 vh 0 0 vl vl
7, BE 0 0 0 0 0 vh 1 vh 0 0 vl
8, LB hi 0 0 0 0 0 vl 1 0 vl vl
9, CE 0 0 0 0 0 0 0 0 1 vl vl

10, HO vl vl 0 vl vl vl 0 vl vl 1 0
11, VE 0 vl vl vl 0 vl vl vl vl 0 1

Table 4: Matching matrix for orientation descriptors
MMor, intermediary values are equal to vh = 0.5 and
vl = 0.25.

Algorithm 1 – computation of accumulated
pairwise similarity
input data: S,S′ sets of bb’s of two images
input parameter: t threshold
output: sacc accumulated pairwise similarity

1 compute C, C′, n and n0 based on S and S′
2 compute FMP(C) and FMP(C′)
3 sacc← 0
4 for i← 1, ...,n0:
5 for j← 1, ...,n0:
6 s← 0
7 for d← 1, ..., |D2|:
8 for d′← 1, ..., |D2|:
9 if FMPi, j,d(C)> t ∧FMPi, j,d′(C′)> t:
10 sloc = MMloc(d,d′)
11 sor = MMor(d,d′)
12 s = max(s,sloc · sor)
13 sacc← sacc + s

Two external loops of the algorithm (lines 4-5 up to 13)
iterate all pairs of objects. For each pair of objects,
their mutual position on both images is taken from their
FMP matrices to compute pairwise similarity measure
– stored in variable s (initialized in line 6). These com-
putations are performed in two internal loops (lines 7-8
up to 12). They iterate all combinations of 2-D descrip-
tors of the current two objects to find all pairs of de-
scriptors with membership function values greater than
the given threshold t (line 9). Each such finding means
that there exists a pair of meaningful descriptors for
which the pairwise similarity is computed as a prod-
uct (line 12) of two values being the elements of two
matching matrices. The first one reflects the pairwise
similarity between loci (line 10, Table 3), while the sec-
ond – between orientations (line 11, Table 4). The final
value of pairwise similarity is the highest value of all
the above findings (line 12). The similarity values for
all object pairs are summed up and finally returned as
the accumulated pairwise similarity (stored in variable
sacc initialized in line 3 and updated in line 13).

The value of accumulated pairwise similarity, being the
result of Algorithm 1, is used to finally compute the
similarity measure of images (represented by sets of
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their proper bounding boxes) S and S′ using the fol-
lowing normalization:

sim(S,S′) =
sacc

n ·n0
(6)

This expression represents the average value of pair-
wise similarity ( sacc

n2
0

) multiplied by a factor n0
n that is

the ratio of matched objects. If all objects are matched,
i.e., each object of one image has a counterpart on the
second (n = n0), this factor equals 1. The final simi-
larity measure is an average pairwise similarity. How-
ever, if some objects are present on only one image, the
similarity factor is reduced accordingly. It follows the
common-sense observation that the higher, among the
total number of image objects, is the number of objects
visible exclusively on one image, the lower is the im-
ages’ similarity.

4.2 Reflectional symmetry detection
Thanks to the separation of locus and orientation de-
scriptors, the information on mutual relation directions
can be analyzed independently on the locus informa-
tion. In particular, one may observe very interesting
results when analyzing the relation of the orientation
descriptors and their relations to the composition of ob-
jects on both images being the subject of comparison.

Let us imagine two similar visual scenes such that one
is mirrored about another. The composition of objects
in terms of their loci (how far are objects one from an-
other, inside or outside others, etc.) is the same – lo-
cus descriptors may have similar values. However, in
orientation-descriptors, the relations on one image con-
vert themselves to their counterparts on the other. The
left-hand side moves to the right-hand side and vice-
versa. Thus, the opposite ones replace all the orienta-
tion descriptors: left become right and reversely.

The above properties can be encoded in the matching
matrix MMor. To get its version that measures symme-
try, some of its rows must be interchanged (permuted)
so that the best match is not with the same orientation
descriptor on the second image but with its symmetric
reflection. In case of classic mirroring, symmetry along
x-axis, best match should be for the left↔ right corre-
spondence. In the case of y-axis symmetry, the replace-
ment should refer to above ↔ below correspondence
and in the case of diagonal symmetry – to both.

Let perm(MM, [a1,a2, ...]) be the operation that per-
mutes rows of the MM matrix so that the vector indi-
cates their order in resulting matrix is the second argu-
ment, where a1,a2, ..., are indexes of the original ma-
trix: the first row of the permuted matrix is the a1-th
row of the original, the second row is the a2-th, etc.
The matching orientation matrices for three principal
symmetries are the following (x-axis, y-axis, xy-axis,
respectively):

Figure 2: Set of 9 artificial test images with 6 object
classes: circle, square, triangle, pentagon, arrow, and
star.

MMx
or = perm(MMor, [5,4,3,2,1,8,7,6,9,10,11])

MMy
or = perm(MMor, [1,8,7,6,5,4,3,2,9,10,11)

MMxy
or = perm(MMor, [5,6,7,8,1,2,3,4,9,11,10]

(7)

By replacing, in the Algorithm 1, the original MMor
by one of the above variants, the measure obtained is
proportional not to similarity of objects compositions,
but to the given type of reflectional symmetry.

5 RESULTS
The method has been tested on both artificially created
images and images being the results of the object detec-
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Figure 3: Set of 6 real images processed using object
detector (4 object classes detected on each image: lap-
top, apple, mouse, cup).

A B C D E F G H I J
1.00 0.97 0.76 0.53 0.44 0.44 0.33 0.17 0.39 0.72 A

- 1.00 0.76 0.50 0.44 0.44 0.33 0.17 0.39 0.75 B
- - 1.00 0.71 0.47 0.53 0.28 0.19 0.51 0.57 C
- - - 1.00 0.36 0.42 0.21 0.22 0.47 0.38 D
- - - - 1.00 0.89 0.41 0.39 0.28 0.33 E
- - - - - 1.00 0.44 0.33 0.26 0.33 F
- - - - - - 1.00 0.39 0.17 0.25 G
- - - - - - - 1.00 0.33 0.13 H
- - - - - - - - 1.00 0.29 I
- - - - - - - - - 1.00 J

Table 5: Similarity measures of pairs of images from
the test set 1 shown in Fig. 2.

A B C D E F
1.00 1.00 0.38 0.49 0.62 0.49 A

- 1.00 0.38 0.50 0.56 0.50 B
- - 1.00 0.31 0.25 0.34 C
- - - 1.00 0.73 1.00 D
- - - - 1.00 0.73 E
- - - - - 1.00 F

Table 6: Measures of similarity of image pairs (test set
2 shown in Fig. 3)

tion algorithm. The first set of scenes, shown in Fig. 2
consist of 10 images consisting of 6 or 8 objects in dif-
ferent mutual positions. The differences are of various
kind: modifications of absolute position without chang-
ing their mutual positions considerably (see image A
vs. B or E vs. F), two object replacement (see A vs.
C, C vs. D), more replacements (e.g., B vs. D), x-
symmetry (e.g., A vs. G), y-symmetry (A vs. I), dif-
ferent number of objects (B vs. J). The similarity and
symmetry measures for all pairs of images are given in
Tables 5, 7, 8, 9.

The second example scenes are real images presenting
the same vision scene consisting of four objects: lap-
top, apple, mouse, cup automatically annotated using
object detection method (see Fig. 3). Here also various
configurations of objects are present. We can observe a
variation of scale (see image A vs. B), the various posi-
tion of objects (A and B vs. C, D, E), as well as mirror

A B C D E F G H I J
0.33 0.33 0.28 0.21 0.41 0.42 0.85 0.39 0.17 0.25 A

- 0.33 0.28 0.21 0.41 0.42 0.89 0.39 0.17 0.25 B
- - 0.33 0.27 0.55 0.58 0.65 0.50 0.21 0.21 C
- - - 0.39 0.49 0.51 0.42 0.46 0.24 0.16 D
- - - - 0.33 0.33 0.40 0.28 0.39 0.31 E
- - - - - 0.39 0.43 0.25 0.35 0.21 F
- - - - - - 0.33 0.17 0.33 0.67 G
- - - - - - - 0.33 1.00 0.29 H
- - - - - - - - 0.33 0.13 I
- - - - - - - - - 0.25 J

Table 7: Measures of symmetry (x-axis) of image pairs
(test set 1 shown in Fig. 2).

A B C D E F G H I J
0.39 0.38 0.48 0.43 0.24 0.27 0.17 0.29 0.88 0.27 A

- 0.39 0.51 0.48 0.25 0.28 0.17 0.29 0.89 0.29 B
- - 0.39 0.36 0.21 0.21 0.22 0.26 0.65 0.39 C
- - - 0.39 0.17 0.17 0.24 0.21 0.49 0.36 D
- - - - 0.39 0.39 0.38 0.37 0.44 0.19 E
- - - - - 0.39 0.40 0.38 0.44 0.21 F
- - - - - - 0.44 0.86 0.32 0.13 G
- - - - - - - 0.39 0.17 0.22 H
- - - - - - - - 0.39 0.67 I
- - - - - - - - - 0.29 J

Table 8: Measures of symmetry (y-axis) of image pairs
(test set 1 shown in Fig. 2).

A B C D E F G H I J
0.17 0.17 0.22 0.24 0.33 0.33 0.35 0.85 0.31 0.13 A

- 0.17 0.22 0.25 0.35 0.35 0.39 0.89 0.31 0.13 B
- - 0.17 0.18 0.25 0.25 0.44 0.64 0.26 0.17 C
- - - 0.17 0.26 0.26 0.42 0.49 0.21 0.19 D
- - - - 0.17 0.17 0.21 0.44 0.37 0.26 E
- - - - - 0.17 0.23 0.44 0.38 0.27 F
- - - - - - 0.17 0.31 0.80 0.29 G
- - - - - - - 0.17 0.39 0.67 H
- - - - - - - - 0.17 0.23 I
- - - - - - - - - 0.13 J

Table 9: Measures of symmetry (x- and y-axis) of im-
age pairs (test set 1 shown in Fig. 2).

A B C D E F
0.38 0.38 0.55 0.34 0.30 0.34 A

- 0.38 0.52 0.34 0.30 0.34 B
- - 0.38 0.86 0.67 0.83 C
- - - 0.25 0.25 0.28 D
- - - - 0.25 0.25 E
- - - - - 0.31 F

Table 10: Measures of symmetry (x-axis) of image
pairs (test set 2 shown in Fig. 3)

symmetry (x-axis, see C vs. F). The only symmetry ob-
served here is mirroring, so the matrix presenting the
x-axis symmetry is presented (see Table 10) along with
the similarity measures array (see Table 6).
The discussion of the results is covered in following
items pointing out properties of the proposed approach:

• Translation and scale invariance Thanks to the
very first step of processing – conversion of im-
age coordinates to relative ones, the method is scale
and translation invariant. Both those transformation
does not change the values of 2-D descriptors as
long as the composition of objects within their group
is the same. Examples confirming this property are
the following4: 1A vs.1B Tab. 5 sim = 0.97; 2A
vs.2B Tab. 6 sim= 1.00; 2D vs.2F Tab. 6 sim= 1.00.

• Proportionality to the scale of changes. The
measure decreases when the number of objects

4 To simplify explanation, in the references we will use short-
cuts. For example, „1A vs.1B Tab. 5 sim = 0.97” means that
image from the test scenes 1 (shown in Fig.3) „A” should be
compared with an image shown on the position „B”, the rel-
evant measures are in Table 5, the similarity measure in this
case is equal to 0.97. Images from the second set of scenes
(shown in Fig.4) will be referred to as 2A, 2B, etc.
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method B,A C,A D,A E,A F,A G,A H,A I,A J,A
ours 0.97 0.76 0.53 0.44 0.44 0.33 0.17 0.39 0.72
MSE 0.08 0.04 0.07 0.12 0.1 0.11 0.11 0.12 0.08
PSNR 10.78 14.01 11.87 9.16 9.88 9.42 9.41 9.38 10.78
SSIM 0.73 0.88 0.78 0.62 0.66 0.65 0.63 0.63 0.73

M-SSIM 0.62 0.85 0.71 0.5 0.54 0.54 0.52 0.52 0.62

Table 11: Results of the proposed method ("ours") and
standard similarity measures, similarity measures of
image A with all other (test set 1 shown in Fig. 2)

method B,A C,A D,A E,A F,A
ours 1 0.38 0.49 0.62 0.49
MSE 0.15 0.07 0.04 0.13 0.07
PSNR 8.36 11.77 14.05 8.88 11.56
SSIM 0.24 0.48 0.51 0.3 0.45

M-SSIM 0.16 0.47 0.56 0.2 0.39

Table 12: Results of the proposed method ("ours") and
standard similarity measures, similarity measures of
image A with all other (test set 2 shown in Fig. 3)

that changed their positions grows. The lower
is thus the visual similarity (judged by a human
observer), the lower is also the computed measure.
Examples: 1A vs.1C (one replacement of objects)
Tab. 5 sim = 0.76; 1A vs.1D (two replacements)
Tab. 5 sim = 0.53; 1A vs.1H (completely different
composition) Tab. 5 sim = 0.17; 2A vs. 2E (one
shift) Tab. 6 sim = 0.62; 2A vs.2C (three shifts)
Tab. 6 sim = 0.38.

• Penalizing non-matched object Thanks to the last
step of processing, the normalization of accumu-
lated pairwise similarity, the presence of objects on
only one image reduces the similarity measure. Ex-
ample: 1A vs.1J (two objects added, the remainder
in the same composition) Tab. 5 sim = 0.72, to com-
pare with 1A vs.1B.

• Ability to detect symmetries When choosing the
appropriate matching matrices, the method is able
to detect three reflectional symmetries. Examples,
x-axis: 1A vs.1G Tab. 7 sim = 0.85; 1I vs.1H Tab. 7
sim = 1; 2C vs.2D Tab. 10 sim = 0.86; y-axis: 1A
vs.1I Tab. 8 sim = 0.88; 1B vs.1I Tab. 8 sim = 0.89;
xy-axis: 1A vs.1H Tab. 9 sim=0.85; 1B vs.1H Tab. 9
sim = 0.89; 1I vs.1G Tab. 9 sim = 0.80.

• Axis of symmetry position’s invariant symmetry
measuring Thanks to the relative way of describing
the position of objects, the method is able to detect
symmetries no matter where the symmetry axis is
located. Example for x-axis: 1A vs.1G Tab. 7 sim =
0.85; 1B vs.1G Tab. 7 sim = 0.89.

The proposed approach was also experimentally com-
pared to classic similarity measures: mean square er-
ror (MSE), peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM) [Zha93], and its multi-
scale variant (M-SSIM) [Wan03]. Results are shown
in Figs. 11 and 12. They show the values of measures
computed with scene 1 and scene 2. In each case, the
first scene (A) is compared with all others (B, C,...).
Contrary to the proposed approach (first row), values

of the remainder of measures do not follow the varia-
tions of the complexity of the composition of objects
(bounding boxes). When looking for the visual similar-
ity sensed by a human, one may introduce the following
order of scenes starting from the most similar to scene
A: for the set 1: B (scale), C (one replacement), J (two
objects added), D (two replacements), E, F (four objects
in the same mutual position), I (two groups of objects
in similar mutual position), G, H (completely different
composition) and for the scene 2: B (scale), E (one ob-
ject shifted to the other side), D, F (in both one shifted
to the other side, one shifted closed to the central one),
C (two objects shifted). The proposed measure follows
this order, while none of the classic ones does. What
is more, considering the above ordering based on hu-
man perception, the ordering implied by classic mea-
sures seems to besomehow random.

6 CONCLUSIONS
The paper describes a novel method for measuring the
similarity and symmetry of the annotated images’ con-
tent consisting of objects defined by their bounding
boxes. It allows comparing sets of bounding boxes to
estimate the degree of similarity of their underlying im-
ages. It is based on the fuzzy approach that uses the
fuzzy mutual positions matrix to describe spatial com-
position and relations between bounding boxes within a
single image. In the paper, a method and algorithm for
comparing such matrices computed for two images are
proposed. It allows measuring the similarity of two im-
ages and outputs the single scalar value describing the
degree of similarity. Modification of matching matrices
used to establish correspondence between 2-D scene
descriptors allows for applying the method to estimate
the reflectional symmetries in the composition of the
objects of the visual scenes.

The method has several valuable properties. It is trans-
lation and scale-invariant. The resulting measure is pro-
portional to the degree of differences between images.
It can detect symmetries no matter where the symmetry
axis is located. It also has few parameters that allow its
adjusting to particular purposes.

Moreover, it may be easily extended to get extra func-
tionalities like, e.g., the ability to find the symmet-
ric subsets of image objects. Last but not least, the
method is fast and ready to use in real-time applica-
tions. It is due to the fact that it consists of simple op-
erations: arithmetic operations, min/max, performed in
nested loops but iterated with a relatively small num-
ber of times. It may be used in content-based image
retrieval, semantic image analysis, and other computer
vision fields.
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ABSTRACT
Object tracking is a key task in many applications using video analytics. While there is a huge number of algo-
rithms to track objects, there is still a need for new methods to solve the correspondence problem under certain
circumstances. In our article, we assume a very typical but still open scenario: a still image object detector has
already identified the objects to be tracked; thus, we have object labels, confidence values, and bounding boxes in
each video frame captured at a low sampling rate. That is, optical flow methods difficult to be applied (also due
to bad lighting conditions, cluttered or homogeneous areas and strong ego-motion), and moreover, many objects
look similar (having the same category labels). Our proposed approach is based on the Hungarian method and
incorporates the above information into the cost function evaluating the possible pairings of objects. To consider
the uncertainty of the detector, the elements of the confusion matrix also contribute to the cost of pairs, as well
as the probability of spatial translations based on prior observations. As a use case, we apply the algorithm to a
data-set, where images were captured from onboard cameras and traffic signs were detected by RetinaNet. We
analyze the performance with different parameter settings.

Keywords
Object tracking, object detection, Hungarian method, RetinaNet

1 INTRODUCTION

While the goal of all object tracking algorithms is to
estimate the trajectory of moving objects, there are sig-
nificant differences between their nature, considering
their prerequisites and tolerance against the different
visual condition. For example, while many algorithms
heavily rely on the optical flow or velocity and find
the corresponding areas using the analysis of image
features of candidate regions (e.g. [Bewley2016],
[Ma2019]), others try to involve texture-based object
detection more deeply (for example [Ning2017] and
[Wang2019]). When the camera is moving in a 3D
space, and the image features of the relevant objects
to be tracked are similar, multiple object tracking
becomes very difficult and even can require efforts
to neutralize camera motion [Czúni2012]. That is
a reason that under such circumstances, the second
approach seems much more appealing.
In our article, we process outdoor videos captured
from onboard cameras, and different objects, mostly
traffic signs, are to be detected and tracked. Besides
the problems encountered from various factors, such
as the cluttered environment, possible occlusions,
scale variation, image noise, and low contrast, the
temporal sampling rate may be too low in the case of
high-speed ego-motion. Moreover, the same object

classes often have multiple appearances; thus, optical
flow methods (e.g. CAMShift, Kanade-Lucas-Tomasi,
Horn-Schunck, etc.) can not be applied efficiently. Fig.
1 illustrates when the car is turning, and the optical
flow (generated by [Farneback2003]) looks turbulent
due to the rotational and translational motion of the
camera, the complicated structure of the 3D scene,
low contrast regions, and camera independent object
motion.

We assume a very typical but still open processing
pipeline scenario for object tracking: a still image
object detector has already identified the objects to
be tracked; thus, we have object labels, confidence
values, and bounding boxes in each video frame
captured at a given sampling rate. The task is to find
the correspondence between the bounding boxes (or
declare there is no such match).
Our proposed approach is based on the Hungarian
method [Kuhn1955] and incorporates the above infor-
mation into the cost function evaluating the possible
pairings of objects. To consider the uncertainty of the
detection, the elements of the confusion matrix (error
matrix) of the detector also contribute to the cost of
pairs, as well as the probability of spatial translations
based on prior observations.
In the next section, we overview related papers, then
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Figure 1: Optical flow computed by [Farneback2003]
when the car is turning.

in Section 3 we describe the data-set and the object
detection method. Section 4 contains the theoretic
details of our proposal, while in Section 5 we analyze
the performance with different parameter settings.

2 ABOUT TRACKING METHODS
There are many aspects to categorize the large number
of approaches such as stereo or monocular, model-
based or model-free, multiple target or single-target,
casual or bi-directional, and long-term or short-term
trackers.
Since there is a larger variety and number of tracking
algorithms, we can not give a comprehensive overview
in our short article. We focus on those found the
most similar or the recent ones lacking optical flow
calculations but using neural networks.
[Huang2008] describes a three-level hierarchical
tracking method for multiple objects: at low-level,
short tracks are generated for further analysis; at the
middle-level, these tracks are further processed to form
longer trajectories based on the Hungarian method;
while at the highest level, a scene structure model
(including three maps for entries, exits and scene
occluders) is created. This high-level step implements
scene knowledge-based reasoning to reduce trajectory
fragmentation and prevent possible identity switches.
The method only uses colour histograms, position and
size, no other information from the detector itself.
[Henriques2011] also applies the Hungarian method
but focuses on the ability to model multiple objects that
are merged into a single measurement and track them
as a group. The solution is based on a graph structure
that encodes these multiple-match events. Since object
identities are lost when objects merge, the problem of
tracking individual objects across groups is posed as a
standard optimal assignment problem.
A good recent example to combine different

modalities in the tracking-by-detection domain is
[Karunasekera2019], where a dissimilarity measure
based on object motion, appearance (colour histogram),
structure (Local Binary Pattern), and size was used;
assignment is solved by the Hungarian method.
In contrast to [Karunasekera2019], in [Bewley2016]
an efficient, while relatively simple and lightweight
tracker, for multiple objects with constant velocity, was
described using variations of Faster Region CNNs, and
the plain old Kalman-filter and the Hungarian method.
The main idea was to use the very efficient CNNs for
the detection of objects, instead of using hand-crafted
visual features of classical appearance-based trackers.
Not surprisingly, it was found that the detection quality
had a significant impact on tracking performance. Our
proposal is also a simple tracker, but we incorporate the
properties of detected objects (namely the confidence
and the probability of confusions) into the solution
of the correspondence problem. Moreover, since our
tracker handles velocity in a probabilistic manner,
linear or constant motion is not assumed.
There are approaches where both the spatial and
temporal domains of tracking are fused by deep
neural networks. For example [Ning2017] proposes
a method to extend the deep neural network learning
and analysis into the spatio-temporal domain by
combining Yolo and LSTM networks. The spatially
and temporally deep method applies regression and
can effectively tackle problems of occlusions and
motion blur. [Jiang2018] also applies Yolo and LSTMs
but in a very different way. Each object has its own
tracker, regarded as an agent, trained by utilizing deep
reinforcement learning, where LSTM is used to predict
parameters (motion and scale) of the observed object.
Data association between the output of Yolo and the
trackers is also done by an LSTM. The drawback
of this technique is that besides Yolo the LSTMs
should also be trained according to the environments.
[Wang2019] introduces SiamMask performing both
real-time visual object tracking and semi-supervised
video object segmentation. Once trained, it relies on a
single bounding box initialization and operates online,
and can produce object segmentation masks and rotated
bounding boxes at high-speed. Unfortunately, both
methods can handle only a single object at a time.
While most approaches follow a sequential strategy
as detection then tracking, some new DNNs try to
fuse the two steps. For example in [WangZ2019]
a Feature Pyramid Network is used to find objects
with their bounding boxes with a constraint that the
distance between observations of the same identity in
consecutive frames should be smaller than the distance
between different identities. Unfortunately, this does
not hold in many cases for our videos.
For readers with more interest to overview this field
we propose to check earlier papers [Cannons2008],
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[Smeulders2013] or [Fiaz2019] published more re-
cently.
Our proposed solution will be a monocular, model-free,
multiple target, causal, and short-term tracker. What is
more important that we are not applying optical flow
(only accumulated statistics about the motion of the
camera), can utilize any object detection mechanism,
which produces bounding boxes and confidence values,
making our algorithm well-suited, as a post processing
step, in many image processing pipelines.

3 THE BENCHMARK DATA-SET
Automotive applications require fast and accurate
detection of street objects, traffic signs are among the
key elements. While the detection and classification of
traffic signs on some existing data-sets can reach good
performance [Lim2017], there are many circumstances
where results are still poor [Temel2019]. Also the
number of classes is not really limited since there are
many composite objects or unique designs which make
existing methods easily fail.

3.1 The Hun158 and Hun169 Data-sets
The Hun158 benchmark data-set contains 158 different
classes of Hungarian road traffic signs and some
typical street objects (e.g. bus stops, dust-bins, etc.). It
comprises pixel-wise segmented objects on 3440 image
frames of size 1280×720 and 1920×1080 resolutions.
The number of annotated objects is 13300, each has at
least 20 appearances. The Hun169 data-set contains 20
videos of 37462 frames with 61274 annotated objects
from 168 classes. In Hun169 objects are denoted by
bounding boxes, videos were recorded at 15 and 30
FPS. There is no overlapping between Hun158 and
Hun169.

3.2 Object Detection
On all the frames of Hun158 we computed the bounding
boxes and trained the RetinaNet [Lin2017]. See Fig. 2
for the illustration of two subsequent frames with de-
tected objects.

RetinaNet [Lin2017], as a popular dense detector
network, is one of the best single-stage object detection
model that has been proven to work efficiently with
dense and small scale objects. The main new features
of RetinaNet were the application of Feature Pyramid
Networks and Focal Loss. By these enhancements it
could reach the performance of previous single-stage
detectors (e.g. Yolo, SSD) while it exceeds the accu-
racy of the existing state-of-the-art two-stage detectors

Figure 2: Typical results of the detection on two con-
secutive frames.

(R-CNN variants). Beside the Feature Pyramid Net-
work it has two subnetworks: one for regression of the
precise allocation of the bounding boxes, and the other
one for classification (labeling). We used VGG19 as
the backbone of RetinaNet.
Testing on the Hun169 we could reach about 0.805mAP
(considering only objects of size larger than 10 pixels
in any dimension). Most of the errors came from small
objects and detections of such traffic signs which were
missing from the trained classes (appearing as FP -
false positives).
On Fig. 3 our large sized confusion (158×158) matrix
(CM) with a magnified part can be seen to allow
visualization of the performance of the detector. Each
column of the matrix represents the instances in an
actual class (for identifying the traffic road signs) while
each row represents the instances in a predicted class
by detectors. Black colors denote values zero or near
to zero, while lighter colors in the main diagonal of
matrix denote a large number of instances. The values
are the averaged values of the aggregated matrix which
was generated from 18 confusion matrices and derived
from testing of the 18 videos.

3.3 Data-set for Tracking
For multi-object tracking purposes we used 20 videos
from Hun169; Table 1 summarizes information about
the training and testing parts (objects larger than 10
pixels were filtered out). During training of the tracking
algorithm, statistical information was gathered about
the size and position of the objects in the Ground Truth
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(GT annotation) data and the probabilities of possible
confusions of the detector ran antecedently.

Videos (@15 or 30 FPS) training testing
Number of videos 18 2
Names of videos HUN_ V01 - V18 V19, V20
Length of video (min:sec) 22:59 6:30
Number of frames 20703 11741
Number of objects 728 361
Number of bounding boxes 31455 20416

Table 1: Training and testing data-set for tracking.

Figure 3: Illustration of the confusion matrix of the ap-
plied object detector at confidence threshold level 0.5
based on 18 videos of the Hun158 data-set.

4 TRACKING OF BOUNDING BOXES
We employ the Hungarian method to find the optimal
correspondence between detected objects of two frames
using the following cost function. Let us define the cost
of pairing detections i and j from frame k and k+1:

(1)

Ci, j = α(1−CM(L (dk,i),L (dk+1, j)))

+ β
φ∆A(∆A)
max(φ∆A)

+ γ
φ∆y(∆y)

max(φ∆y)

+ δ (1− pi p j) ,

where L (dk,i) is the class label of the ith detection on
the kth frame, CM is the confusion matrix (for illustra-
tion see Fig. 3), ∆A and ∆y are the differences between
bounding boxes’ area and y coordinates in consecutive
frames, φ∆A and φ∆y are the corresponding probability
density function assuming normal distributions, and pi
is the confidence value of the ith detection. All terms are

between 0 and 1, grid-search is used to find their opti-
mal settings, resulting in the best MOTA (Multiple Ob-
ject Tracking Accuracy) [Stiefelhagen2006] value. The
algorithm used for multiple object tracking is given in
Algorithm 1.

Algorithm 1: Multiple Bounding Box Tracking
algorithm
Input: D = {D0,D1, · · · , DF−1}
Initialize: AT = ø,FT = ø
for f = 0 to F−1 do

while at ∈ AT do
t = atlast
d = Hun_Method(ATlast ,D f , t),d ∈ D f
if d < T h then

push d to at
remove d from D f

else
add at to FT
remove at from AT

while d ∈ D f do
start new track list with d and insert into
AT

while at ∈ AT do
add at to FT

Result: FT

The proposed algorithm requires a training phase to de-
termine its main parameters, however, these parameters
are easy to obtain (and are based on a larger set of image
sequences as given in the next section). Since no mo-
tion flow is computed between the consecutive frames,
we can rely purely on information given by the detector
(coordinates of bounding boxes, labels, confusion ma-
trix, and the detection’s confidence values). The pro-
posed algorithm has the following parameters:

• F : the number of frames in the sequence,
• D f : list of detections on the frame f , 0≤ f < F ,
• D: list of Di, 0≤ i < F ,
• AT : active tracks; at ∈ AT ,
• atlast : last element of AT ,
• FT : finished tracks,
• T h: threshold of the costs.

5 EXPERIMENTS
Demonstrating the usability of our algorithm, we used
the benchmark data-set described in Section 3.3. Nor-
malized histograms of the area changes and y-direction
displacements of the 37163 bounding boxes of the 18
training videos (see Table 1) were computed to fit the
normal distributions, as shown in Fig. 4, and in Table 2.

To measure the accuracy we use MOTA
[Stiefelhagen2006], which is a widely used met-
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Figure 4: Normal distributions and their parameters fit-
ted to the ∆A’s and ∆y’s normalized histograms, mea-
sured on 18 training videos.

ric to evaluate the performance of multiple object
tracking algorithms. It combines three sources of errors
as FP (false positive), FN (false negative), and IDSW
(identity switch):

MOTA = 1− ∑k(FNk +FPk + IDSWk)

∑k GTk
, (2)

where GTk denotes the number of Ground Truth objects
at frame k. The grid-based parameter search range is
from 0 to 1 for all four parameters, using a step size of
0.2. The average MOTA value of the test videos was
maximal at parameter values α = 1, β = 0.6, γ = 0.6,
and δ = 0.2. The evaluation of tracking on videos
shows that changes in parameters influence tracking
outcomes, but the standard deviation is relatively small

φ∆A φ∆y
mean 2.5363 3.6472
standard deviation 4.88180 8.00638
max 0.2953 0.4168

Table 2: Parameters estimated on the 18 training se-
quences.

as seen in Table 3 above. The standard deviation is cal-
culated at the parameters for the best MOTA values per
video over the entire grid. Analyzing the diagrams in
Fig. 5, we note that δ should be set to a relatively low
value to reach high MOTA, thus the confidence value
of detection should not be given much weight. The
method is less sensitive to changes in α, β and γ .

Figure 5: Parameter tests for MOTA with three fixed
values. (α = 1, β = 0.6γ = 0.6, δ = 0.2)

6 CONCLUSIONS AND FUTURE
WORK

In our article we described a tracking-by-detection
method based on the outputs of an arbitrary object
detector. Instead of using explicit textural features we
rely on the confusion matrix of the detector to involve
the possible similarity in appearance (which is very
common for traffic signs). Motion is represented by
the distribution of the vertical motion component of
the detected bounding boxes accumulated in a training
phase, thus no optical flow is needed, and there can
be large changes in coordinates. This fits well to
situations, where there is non-constant, often large
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Video Recall Precision F-measure mAP MOTA Std. dev.
(MOTA)

HUN_V01 0.8339 0.6658 0.7404 0.854 0.6728 0.0921
HUN_V02 0.6950 0.8487 0.7642 0.714 0.6595 0.1345
HUN_V03 0.7120 0.6758 0.6935 0.705 0.6754 0.0905
HUN_V04 0.8683 0.7694 0.8158 0.885 0.6133 0.1421
HUN_V05 0.7460 0.6396 0.6887 0.772 0.5956 0.0920
HUN_V06 0.9075 0.7762 0.8367 0.906 0.7223 0.0555
HUN_V07 0.7465 0.8419 0.7913 0.833 0.5440 0.0571
HUN_V08 0.7615 0.8022 0.7813 0.812 0.5922 0.1261
HUN_V09 0.8403 0.7368 0.7852 0.817 0.7248 0.1103
HUN_V10 0.9845 0.7737 0.8665 0.992 0.6155 0.0975
HUN_V11 0.4876 0.7269 0.5837 0.547 0.4201 0.0494
HUN_V12 0.7500 0.6970 0.7225 0.792 0.6624 0.1082
HUN_V13 0.5902 0.7451 0.6586 0.704 0.5561 0.0979
HUN_V14 0.7456 0.8200 0.7810 0.826 0.5481 0.1234
HUN_V15 0.7594 0.7988 0.7786 0.818 0.5465 0.0823
HUN_V16 0.6550 0.7042 0.6787 0.690 0.4671 0.1587
HUN_V17 0.9502 0.7744 0.8534 0.952 0.7778 0.1041
HUN_V18 0.8441 0.8169 0.8303 0.885 0.6032 0.1928
HUN_V19 0.4483 0.6274 0.5229 0.651 0.4143 0.1472
HUN_V20 0.4553 0.7078 0.5541 0.617 0.4404 0.0616

Table 3: The results of detection (at threshold 0.5) and tracking for 18 training and 2 test videos (α = 1, β =
0.6, γ = 0.6, δ = 0.2).

velocity and the camera has strong ego-motion (e.g.
on-board car cameras).
We tested the proposed approach on a data-set of
large number of object classes, sometimes with strong
similarity. RetinaNet is a good candidate detector
for such tasks. The complexity of tracking is very
low, since the proposed cost function contains simple
functions of pre-computed variables.
As future work we plan to compare it to other methods
for speed and accuracy.
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Abstract
Depth-Image-Based Rendering (DIBR) can synthesize a virtual view image from a set of multiview images and
corresponding depth maps. However, this requires an accurate depth map estimation that incurs a high compu-
tational cost over several minutes per frame in DERS (MPEG-I’s Depth Estimation Reference Software) even by
using a high-class computer. LiDAR cameras can thus be an alternative solution to DERS in real-time DIBR ap-
plications. We compare the quality of a low-cost LiDAR camera, the Intel Realsense LiDAR L515 calibrated and
configured adequately, with DERS using MPEG-I’s Reference View Synthesizer (RVS). In IV-PSNR, the LiDAR
camera reaches 32.2dB view synthesis quality with a 15cm camera baseline and 40.3dB with a 2cm baseline.
Though DERS outperforms the LiDAR camera with 4.2dB, the latter provides a better quality-performance trade-
off. However, visual inspection demonstrates that LiDAR’s virtual views have even slightly higher quality than
with DERS in most tested low-texture scene areas, except for object borders. Overall, we highly recommend using
LiDAR cameras over advanced depth estimation methods (like DERS) in real-time DIBR applications. Neverthe-
less, this requires delicate calibration with multiple tools further exposed in the paper.

Keywords
View Synthesis, Depth Estimation, LiDAR, Camera Calibration, DERS, DIBR, RVS

1 INTRODUCTION

Depth-image-Based-Rendering (DIBR) technology [7]
is widely used in end-to-end immersive autostere-
oscopy, promoting the continuous progress of 3D
computer vision applications [13] [14]. It uses multi-
views and their associated depth maps to synthesize a
realistic virtual view. MPEG-I (The Moving Picture
Expert Group Immersive) has specially introduced its
DIBR-based Reference View Synthesizer (RVS) [11],
which can support view synthesis in real-time with
a large baseline. However, as DIBR-based, RVS
performance is highly dependent on its input depth
maps quality.

DERS [15] can estimate high accuracy depth maps but
with a high computational cost due the complexity of its
algorithm, which remains a significant challenge for the
real-time application purpose. Additionally, low tex-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ture regions of the image significantly reduce the algo-
rithm’s performance.

LiDAR-based RGB-D cameras currently play a signif-
icant role in the research field of computer vision [17].
Their high accuracy of depth map acquiring with the
low computational cost promotes the development of
real-time 3D applications [5]. Hence, using an RGB-D
camera, such as the Intel Realsense LiDAR L515 (here-
after LiDAR), can be considered an alternative solution
to DERS in real-time view synthesis applications.

Nonetheless, LiDAR’s depth maps are difficult to eval-
uate due to the depth sensor’s limitations to capture
non-reflective colors, absorbing materials, and objects
with light deflecting shapes [9]. Moreover, camera cal-
ibration and depth registration are required because the
captured depth map and its associated color image have
different resolutions and misalignment due to different
sensors’ (RGB and Depth) positions.

This paper proposes a method to evaluate the LiDAR
camera’s performance. Instead of assessing its depth
maps accuracy directly, we evaluate the quality of the
virtual view synthesized by RVS with depth maps and
their corresponding color images of the LiDAR, which
is precisely calibrated. We compare the quality of vir-
tual views, synthesized using the depth maps of LiDAR,
and the estimated one by DERS, respectively. In this
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Figure 1: Processing pipeline

comparison, we used the IV-PSNR virtual reality qual-
ity assessment metrics to evaluate their performance
gap. Based on the evaluation results, we has observed
the substantial trade-off between view synthesis perfor-
mance using RVS, given the depth map acquired by Li-
DAR and estimated depth map by DERS. The process-
ing pipeline is illustrated in Figure 1, which details are
explained in section 2 and 3.

2 OVERVIEW OF THE PROCESSING
PIPELINE

This section explains the processing pipeline illustrated
in Figure 1. We also give a brief introduction to DERS,
RVS, and our assessment measure IV-PSNR. The mo-
tivation and detailed procedure for camera calibration
and depth registration are provided separately in sec-
tion 3.

Figure 2: Acquisition system and 2D multiview config-
uration.

Acquisition
Before acquiring the test sequence for our evaluation of
depth map quality by DERS and LiDAR for view syn-
thesis, we have conducted a precise camera calibration,
which is one of the contributions to this paper (section
3). Once the LiDAR was calibrated, we have mounted
it on our acquisition robot to acquire a 2D dataset of
30x3 multiview color images and simultaneously reg-
istered their depth maps in real-time (Figure 2). The
color images are used in DERS for estimation of depth
maps and RVS for view synthesis.

Depth Estimation Reference Software
(DERS)
DERS is one of the state of art high quality depth esti-
mation software that have been promoted as reference
software in MPEG-I. The latest version is 9.0 [12]. The
main process of DERS is to estimate one depth map
from a sparse setup of multiple reference color images.
The algorithm includes two fundamentals steps.

Figure 3: Estimation of depth map using five reference
views.

(a) Calculate matching cost cube: DERS works in
depth or disparity estimation mode. For the sake of sim-
plicity, we consider the procedure to estimate dispari-
ties. The disparities can then be transformed into depth
maps using [1]. Disparity estimation is performed using
pair of images: The reference and the evaluation im-
age. Both images are registered in a preprocessing step.
Each pixel of the reference image corresponds to only
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an unknown pixel in the evaluation image. DERS per-
forms a Sum of Absolute Differences (SAD) between
a patch around the pixel in the reference image and all
the patches centered on the corresponding epipolar line
in the evaluation image to find matching candidates.

This procedure gives rise for each pixel of the refer-
ence image to a cost function on all the possible dis-
parities along the epipolar line. Each cost function
per pixel is then stored in a cost cube with dimensions
width× height× cost. With the cost value varying be-
tween the minimum disparity and the maximum dispar-
ity. This procedure is performed between all images
and the reference image, and the resulting cost volumes
are merged and stored in a matching cost cube.

(b) Graph cut global optimisation: Selecting the best
cost for each pixel in the cost cube results in noisy depth
maps. Therefore, DERS performs a global optimization
technique known as Graph-cut [3] [4] to obtain the cost
cube’s optimal values. Furthermore, a smoothing map
is used to increase or decrease the cost of a cut between
the image’s pixels to consider if two pixels are on the
same object. This increases the optimization quality by
forcing close-by pixels to have similar depth values.

Figure 3 demonstrates one example of the DERS depth
map, which is estimated by using five reference (includ-
ing the target one in the center) color images. Subjec-
tively, the depth map’s quality is clean and sharp with-
out outliers. However, it is not accurate to conclude
before evaluating the quality of the virtual view synthe-
sized by RVS using the estimated depth map.

Reference View Synthesizer (RVS)
RVS and it’s real time extension RaVIS [2] is a DIBR-
based software developed in the context of MPEG-I
standardization activities. It has been designed to take
any number of reference images, with corresponding
depth maps, in any configuration and renders outputs
by interpolation and extrapolation. Using several refer-
ence images makes it more resistant to DIBR artifacts
such as ghosting (due to poor calibration) and disocclu-
sions (due to missing information in the input images).

IV-PSNR
For evaluating quality metrics of RVS output, we have
used IV-PSNR [6] which is a PSNR-based quality met-
ric, which defined by equation (1) and (2). IV-PSNR
takes YUV [16] (Y defines the luma component and
two chrominance components U-blue projection and V-
red projection) file as its input. On YUV images, the
IV-PSNR is the weighted mean on each component:,
where MAX is the maximum possible pixel value. Sim-
ilarly to the MSE, IV MSE is the mean of the squared
error IV E for each pixel p of the virtual view, where D

is a correction term taking into account the global color
difference between the virtual and reference image.

IV PSNRyuv = 10× log
(

MAX2

IV MSE

)
(1)

IV MSE =
H

∑
y=0

W

∑
x=0

MinpR(x,y)∈Ω

(pV (x,y)− pR (x,y)+D)

WH
(2)

Unlike classic PNSR, IV-PSNR considers a patch of ad-
jacent pixel quality metric evaluation instead of each
single pixel. In this respect, it less considers the corre-
sponding pixel shift in the objects’ edges and is insensi-
tive to the global color’s difference between the ground
truth and virtual view, which is suitable for immersive
video quality metric evaluation. Please refer to the ref-
erence [6] for more details.

3 LIDAR CALIBRATION AND REGIS-
TRATION

This section presents one of this paper’s main contribu-
tions to explain how to use LiDAR correctly. Multiple
camera calibration is requisite for adequately using the
LiDAR camera to capture test sequence or view synthe-
sis. The depth maps need to be aligned to their corre-
sponding color image since they are captured separately
from two sensors Figure 4.

The performance of such registration relies on the sen-
sor’s intrinsic and extrinsic parameters accuracy. How-
ever, the default parameters provided by the Intel SDK
are too coarse to conform RVS’s particular requirement.
Hence, we have used Kalibr [8] [10] to calibrate the
LiDAR camera for getting more robust parameters of
sensors.

Calibration: Kalibr is a conventional calibration soft-
ware that supports multiple camera calibration with a
non-global field of view (do not restrict entire calibra-
tion target captured in each sensor). Its implementation
is relatively straightforward and outputs a detailed cal-
ibration statement to help users understand the calibra-
tion accuracy.

Figure 4: Intel L515 camera layout
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(a) (b)

Figure 5: Calibration accuracy: (a) Distribution of de-
tected pixel of the depth sensor and the interval of its
related reprojection error.(b) Distribution of detected
pixel of the color sensor and the interval of its related
reprojection error.

We use a calibration pattern that is attached on a flat
glass. This is important to achieve the high accuracy
of calibration. According to the Kalibr’s output Fig-
ure 5 (a and b), the LiDAR’s depth sensor reprojec-
tion error is reduced to under ±0.5 pixel for the color
sensor and ±1 pixel for the depth sensor. Compared
with the uncalibrated registered depth maps (hereafter
LiDAR-UCRD), the calibrated registered depth maps
(hereafter LiDAR-CRD) have significantly impacted
the view synthesis’s quality (detailed discussion are in
section 4).

Depth Map Registration: We have performed the
depth registration process based on all calibration pa-
rameters. Nevertheless, it still has inevitable imper-
fections (Figure 6) even though camera calibration was
sufficiently precise.

Figure 6: LiDAR registered depth map. (a) Error area
above the cube. (b) Error area at the top of bear’s head

In Figure 6 (a), the black pixels are the typical artifacts
in registered depths. Depth sensor has a lower reso-

lution than the color sensor, which cause some miss-
ing pixels in calibrated and registered LiDAR (LiDAR-
CRD). Moreover, the color depth is located on top of
the depth sensor. When projecting back depth map cor-
responding 3D points to the color sensor, some pixels
information are missing since these specific pixels oc-
cluded in the depth sensor view.

In Figure 6 (b), the blank depth area in front of the
bear’s hat comes from the material’s absorption of the
light. LiDAR does not receive any reflected of a light
ray in this area, which leads to invalid depth informa-
tion.

Having LiDAR calibrated and registered, we can use its
depth map to synthesize virtual views by RVS.

4 EXPERIMENTS
We have used two different RVS (Figure 7 and Table
1). Figure 7(a) demonstrates using the four reference
images plus corresponding depth maps from 4 corners
(i.e., Mr(1,1), Mr(30,1), Mr(1,3), Mr(30,3)) of the
dataset to synthesize 15 different intermediate virtual
views (i.e., Mv(1,2) to Mv(15,2)) by RVS with a large
baseline-15cm. As illustrated in Figure 7(b),we used

(a)

(b)

Figure 7: Experimental configuration using RVS

Table 1: Experimental configuration using RVS

RVS setup DERS/LiDAR Camera
No. of input (image+depth) 4

Color image resolution 1920x1080
Depth resolution 1920x1080
Large baseline 15cm
Small baseline 2cm
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RVS to synthesize the same virtual views but with a
small baseline of 2cm with the inputs selected orderly
from four adjacent reference images plus correspond-
ing depth maps. This process accordingly was repeated
with different depth maps DERS, LiDAR-UCRD, and
LiDAR-CRD. In our evaluation, we have combined ob-
jective evaluation by IV-PSNR and subjective evalua-
tion by examining the virtual views’ quality.

Objective Evaluation
LiDAR-UCRD vs. LiDAR-CRD: Figure 8 (a) and (b)
show the performance evaluation of the virtual view
quality with LiDAR CRD and LiDAR UCRD in IV-
PSNR, based on different baseline setup to RVS (Figure
7). The 15 virtual views (M(1−>15,2)) performance with
LiDAR-CRD (blue line) is slightly higher than with
LiDAR-UCRD (red line). Nevertheless, these gaps are
nearly negligible since IV-PSNR less sensible to pixel
shifting, and this can not show the quality improve-
ment by precise camera calibration. Therefore, we have
used subjective evaluation to approve the benefits of im-
proving virtual view quality with LiDAR-CRD, demon-
strated in the following subsection (Subjective Evalua-
tion).
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(a) Position of virtual view
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(b) Position of virtual view

LiDAR-CRD
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Figure 8: IV-PSNR (virtual view), LiDAR-UCRD vs.
LiDAR-CRD. (a) Virtual views M((1−>15,2) (15cm BL);
(b) Virtual views M(1−>15,2) (2cm BL)

LiDAR-CRD vs. DERS: According to Figure 9 (a)
and (b) the virtual view synthesis using LiDAR CRD
M(1−>15,2) maintain at least 32.2dB with a large 15cm
baseline or 40dB with a small 2cm baseline in IV-PSNR
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LiDAR-CRD
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Figure 9: IV-PSNR (virtual view), LiDAR-CRD vs.
DERS. (a): Virtual views M(1−>15,2) (15cm BL); (b):
Virtual views M(1−>15,2) (2cm BL)

are acceptable values. Compared with the DERS-based
(green line) virtual views, the latter outperforms about
4dB.
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Figure 10: IV-PSNR (virtual view), LiDAR-CRD vs.
DERS: For viewpoint M(8,2), when the baseline dis-
tance among reference views varies

Figure 10 shows the virtual views’ with DERS and
LiDAR-CRD given a viewpoint at M(8,2), while the
baseline distance for the references images are var-
ied. For one dedicated intermediate virtual view M(8,2),
DERS-based virtual view has a constant superiority in
IV-PSNR than LiDAR-based virtual view.

Subjective Evaluation
Referring to the objective measures presented above,
we cannot fully conclude precisely. To have a bet-
ter understanding of the advantages and disadvantages
of LiDAR vs. DERS, in the following, we compare
them subjectively and report their computational per-
formances.

Figure 11(1th row) demonstrates one of ground-truth
(original image) and outputs of RVS based on three dif-
ferent depth maps of DERS, LiDAR UCRD, LiDAR
CRD. We have used the error map Figure 11(3rd row) to
better demonstrate the differences between each virtual
view and the ground truth. In the error map, brighter
pixel color means a more significant error; and vice
versa.

LiDAR-UCRD vs. LiDAR-CRD: Fig, 11(c), (d)
and (4th row) show that the virtual view quality with
LiDAR CRD significantly better than with LiDAR-
UCRD. Thanks to the precise calibration and the
accurate depth registration, the virtual view has fewer
pixels shifting in the objects.

LiDAR-CRD vs. DERS: The error map of Figure
11(3rd row) shows the main reason for higher IV-
PSNR in DERS compared to LiDAR-CRD. LiDAR
camera suffers from the typical weakness in boundary
scanning. The LiDAR CRD-based view virtual has
some objects with border shrinking according to Figure
11((b), (d), in the first two columns of 4th row). Fol-
lowing three reasons can explain these differences: 1)
The excessive incident Angle of the laser: Too wide
intersection angle between the incident and reflected
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(a) (b) (c) (d)

Figure 11: Subjective evaluation: (a) Ground-Truth, for column (b), (c) and (d), the first-row is DERS-based
virtual view, second-row is LiDAR-UCRD-based virtual view, third-row is LiDAR-UCRD-based virtual view and
the other rows are magnified regions and corresponding error maps.

ray that hampers LiDAR camera to get receiving
echoes properly. 2) Registered depth map occlusion:
The occlusion problem of depth registration, which is
vertically shifted in this LiDAR. 3) Laser interference:
The superfluousness of depth scanning among complex
structural scenes, echoes interfere with each other at
the high multi-reflection area. This interference brings
some errors into depth information measurement.

However, DERS also has its vulnerability. Its perfor-
mance is usually worse in low texture areas because its
cost matching step relies on changing pixel value inten-
sity. Low texture areas make cost matching difficult that
prominently affects DERS output accuracy. Due to this
flaw, the DERS-based view has some objects with pix-
els shifting. In contrast, LiDAR cameras do not suffer
from getting wrong depth information in low texture ar-
eas as they benefit from its active acquisition attribute.
The differences shown in Figure 11((b), (d), 5th row)

Last but no least, we compare the computation perfor-
mance required for acquiring depth by LiDAR and esti-

Table 2: Comparison of the computation costs between
DERS and LiDAR

PC Configuration i9-10900X, 64GB Ram
DERS LIDAR

CPU usage 90% 6% ∼ 30%
Ram usage 12GB 250Mb

Processing time 4.1 mins Real time (30fps)

mating by DERS. DERS requires extremely high com-
putational resources than the LiDAR according to the
Table 2. The run time easily reaches around 4minutes
to estimate one depth map with a high-class PC. There-
fore, it is generally not possible to use DERS for a real-
time DIBR system purpose.

5 CONCLUSION
Using the accurately calibrated and precisely registered
depth maps of the Intel Realsense LiDAR camera can
output sufficiently good virtual views by RVS. When
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compared with the DERS-based virtual views, the lat-
ter outperforms the former objectively in IV-PSNR.
We have subjectively observed that DERS only outper-
forms LiDAR in border areas. LiDAR camera’s depth
maps have better performance than DERS in low tex-
ture with no border area. Both DERS and the LiDAR
camera’s depth maps have a similar performance in
high texture with no border area. Therefore, overall,
the LiDAR camera’s depth maps showed a substantial
trade-off to DERS in virtual view quality subjectively.
Moreover, DERS requires remarkably high computa-
tional resources, and its processing run time is relatively
long, up to several minutes per depth map estimation.
In contrast, using the LiDAR camera, without any com-
putational cost, can achieve an acceptable trade-off in
subjective quality in comparison with DERS. There-
fore, we recommend the RGB-D camera such as Li-
DAR for real-time DIBR application purposes.
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ABSTRACT
Real-time physically based rendering has long been looked at as the holy grail in Computer Graphics. With the
introduction of Nvidia RTX-enabled GPUs family, light transport simulations under real-time constraint started
to look like a reality. This paper presents Lift, an educational framework written in C++ that explores the RTX
hardware pipeline by using the low-level Vulkan API and its Ray Tracing extension, recently made available by
Khronos Group. Furthermore, to accomplish low variance rendered images, we integrated the AI-based denoiser
available from the Nvidia´s OptiX framework. Lift’s development arose primarily in the context of the graduate
3D Programming course taught at Instituto Superior Técnico and Master Theses focused on Real-Time Ray Trac-
ing and provides the foundations for laboratory assignments and projects development. The platform aims to make
easier students to learn and to develop, by programming the shaders of the RT pipeline, their physically-based ren-
dering approaches and to compare them with the built-in progressive unidirectional and bidirectional path tracers.
The GUI allows a user to specify camera settings and navigation speed, to select the input scene as well as the
rendering method, to define the number of samples per pixel and the path length as well as to denoise the generated
image either every frame or just the final frame. Statistics related with the timings, image resolution and total
number of accumulated samples are provided too. Such platform will teach that nowadays physically-accurate
images can be rendered in real-time under different lighting conditions and how well a denoiser can reconstruct
images rendered with just one sample per pixel.

Keywords
Educational Ray Tracing framework, Nvidia RTX , Vulkan, Path Tracing, AI-accelerated Denoiser

1 INTRODUCTION
1.1 Motivation
For a long time, Real-Time Ray Tracing has been con-
sidered a far to reach dream where physically-based
rendering would be calculated fast enough so that we
would be able to interact with the scene and perceive
the changes in real-time. Now that Nvidia RTX tech-
nology (Burgess, 2020) is available, the dream has be-
come feasible more than ever before. Typical produc-
tion renderers deal with offline image synthesis by us-
ing a large number of samples per pixel to render the
best-looking image possible. Under time constraint,
even the fastest ray tracers can only trace few rays per
pixel at 1080p and 30Hz. While this number increases

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

every few years, the trend is partially countered by the
move towards higher resolution displays and higher re-
fresh rates. It therefore seems likely that a realistic
sampling budget for real-time applications will remain
on the order of a low number of short paths per pixel
which implies that the usage of Monte Carlo integra-
tion of indirect illumination leads to images containing
very high levels of variance. To bridge this gap, recent
research was able to design real-time reconstruction fil-
ters to remove the noise (denoise) from extremely low
sample count images, thus allowing to synthesize noise-
free images at real-time refresh rates (30Hz). These
state-of-the-art denoisers often resort to machine learn-
ing methods like the works of (Chaitanya et al., 2017)
and (Vicini et al., 2019). Over the years, multiple ray-
tracing algorithms have been proposed to physically
simulate the light transport and the interactions with
materials of a scene under different lighting conditions.
Now that it is possible to make these simulations at rates
never seen before, it seems relevant to develop an edu-
cational framework that helps Master students to imple-
ment such algorithms by exploiting the RTX technol-
ogy and by adding a denoising step, and then perform
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a comparison between them to assess both the perfor-
mance and the perceptual image quality.

1.2 Objectives
This paper describes the implementation of the Lift sys-
tem which aims to provide an educational platform that
makes easier students to learn and to program new light
transport algorithms into a Vulkan RT-based working
pipeline. Lift additionally provides a set of settings
and statistics in order to facilitate the comparison of
the students’ programs with the built-in Monte Carlo al-
gorithms, namely Path Tracing (PT) and Bidirectional
Path Tracing (BDPT). The implementation of these two
algorithms was leveraged on the graphics card RTX ca-
pabilities through the use of the Ray Tracing extension
for the low-level Vulkan API (Daniel Koch Tobias Hec-
tor and Werness, 2020), recently made available by
Khronos Group.

Furthermore, we integrated an AI-accelerated denoiser
to be used together with both PT and BDPT algo-
rithms.This denoiser is available in Optix (Parker et al.,
2010), a programmable general-purpose ray tracing
framework. The purpose was to create a platform that
allows not only to achieve, in real-time, high-quality
images with just one sample per pixel but also to
check whether it is worth investing in more complex
raytracing algorithms, like the BDPT algorithm,
when compared to the unidirectional path tracer with
denoiser.

Since OptiX’s denoiser was our choice, we could
use this API also to develop the internal RT working
pipeline. However, one of the requisites of the 3D
Programming Master course at Instituto Superior
Técnico (IST) is to teach the Vulkan low level API and
since its RTX extension was made available this year
we decided to use Vulkan in the Lift framework. The
development of the prototype was technically challeng-
ing because we had to build the Vulkan interoperability
with the OptiX framework.

Summarizing, Lift is an educational framework that
will help advanced students to learn and to tackle the
following state-of-the-art questions:

• Can Ray Tracing algorithms render in real-time
physically-accurate images, under different lighting
conditions?

• How well a denoiser behaves in reconstructing im-
ages rendered with one sample per pixel?

• Is it worth investing on complex light transport algo-
rithms over the simple path tracer with denoising?

In order to check if Lift was robust enough to address
properly the above questions, we gathered data from

Figure 1: Lift: the graphical interface

Figure 2: Tool’s GUI zoom in

multiple scenes rendered with both algorithms, PT and
BDPT, with image denoising feature enabled and dis-
abled. Then, we compared both performance and im-
age quality results. This evaluation is described in the
paper too.

2 LIFT IMPLEMENTATION
2.1 Overview
The prototype was designed around a rendering ar-
chitecture with progressive refinement that allows the
choice of one of the two light transport techniques, the
selection of the input scene and the enabling of a fea-
ture to denoise the generated image either every frame
or just the final frame. Concerning the final frame of
the progressive rendering, the platform’s GUI allows
the user to set either a target number of accumulated
samples or a desired rendering’s elapsed time. Statis-
tics related with the timings, image resolution and total
number of accumulated samples are provided too. Fig-
ures 1 and 2 show the tool’s graphical interface with the
following configuration settings: path tracer selected,
denoiser disabled, 1 sample per pixel (spp), 32 bounces
for the maximum path length and the rendering target
defined as 30 seconds elapsed time.

The denoising step is performed by the graphics card
CUDA cores exposed via the Optix framework. Op-
tiX provides a function that takes as input noisy images
generated by light transport algorithms with a small
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Figure 3: Architecture of the recurrent auto-encoder
used in the OptiX denoiser (Chaitanya et al., 2017)

Figure 4: Vulkan’s Ray Tracing Pipeline

number of samples and displays images with much
higher quality, resembling images generated with many
more samples.The denoiser is based on the work of
(Chaitanya et al., 2017) which uses a variation of a deep
convolutional network, namely the Recurrent Neural
Network represented in Figure 3. The network archi-
tecture includes distinct encoder and decoder stages
that operate on decreasing and increasing spatial res-
olutions, respectively. A recurrent block is placed at
every encoding stage. Each recurrent block consists of
three convolution layers with a 3 × 3-pixel spatial sup-
port. One layer processes the input features from the
previous layer of the encoder. It then concatenates the
results with the features from the previous hidden state,
and passes it through two remaining convolution layers.
The result becomes both the new hidden state and the
output of the recurrent block.

2.2 Vulkan ray tracing pipeline
In order to render images by using Vulkan’s Ray Trac-
ing Pipeline, firstly it is necessary to setup up the way
the Acceleration Structures (AS) are laid out in the De-
vice Memory. Secondly, these structures should be
loaded with the geometry of the scene. Finally, it would
be also needed to perform their update configuration in
order to support dynamic scenes which is not our case.
The pipeline behaviour depends on the GLSL coding of
a set of shaders: Ray Generation, Intersection, Hit, and
Miss shaders. The relationship between these shaders
(green blocks) is depicted in Figure 4.

Ray Generation shaders are the entry point of the ray
tracing process: they are executed for each pixel on a
multi-threaded 2D grid. This shader typically initializes
a ray starting at the location of the camera and in a di-
rection given by evaluating the camera lens model at the
pixel location. It will then cast the rays into the scene.
Other shaders below it will process further events, and
return their result to the Ray Generation shader through
the ray payload record. Finally, it will write the algo-
rithm’s output to memory, e.g., the screen or a texture.
Two Ray Generation shaders were coded regarding both
PT and BDPT algorithms. These two shaders are de-
tailed in the next subsection.

Intersection shaders are used to implement ray-
primitive intersection algorithms, other than ray-
triangle intersections which have built-in support.This
provides flexibility by allowing scenes with custom
primitives like hair or spheres. An Intersection shader
was programmed to support the classical optimized
sphere-ray intersection algorithm (Akenine-Moller
et al., 2018).

There are two types of Hit shaders in Vulkan: one is op-
tional and is named Any Hit, the other is called Closest
Hit. An Any Hit shader is run every time any inter-
section is found. The Closest Hit shader is called only
for the closest intersection. A typical usage for an Any
Hit shader is related with alpha testing: if the ray hits a
transparent point then the intersection will be discarded
and the traversal continues with that ray.

We didn’t use the Any Hit shaders and our Closest Hit
shaders are just responsible for creating the ray payload
record which stores both the geometry and material in-
formation of the intersected primitive. This record is
then sent back to the Ray Generation shader.

Miss shaders are called when a ray fails to intersect with
any geometry in the scene. These shaders typically re-
turn the scene’s background color or a texel from an
environment map.

2.3 Ray Generation shaders
Two Ray Generation shaders were GLSL coded regard-
ing both PT and BDPT algorithms and are described
below.

2.3.1 Path Tracing

With Path Tracing the color of a pixel is computed by
the averaged sum of all the paths starting from that pixel
and eventually hit an emissive object. The number of
paths per pixel is defined by the number of samples per
pixel (spp). Progressive refinement allows the user to
start rendering and to watch the image as its quality
improves and stop the process once satisfied. To ac-
complish progressive refinement on the displayed im-
age frame, each current pixel color is accumulated with
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the contribution from previous frames and then submit-
ted to post-processing effects, like exposure, tone map-
ping, and gamma correction before to be stored in a tex-
ture. The PT Ray Generation shader can be represented
by the following pseudo-code:

void main() {
vec3 pixel_color = vec3(0);
for(int s = 0; s < number_of_samples; s++)
{

origin = pixel + random_offset();
pixel_color += traceEyePath(origin,direction);

}
pixel_color /= number_of_samples;
accumulateWithPreviousFrames(pixel_color);
applyPostProcessing(pixel_color);
storePixel(pixel_color);

}

The contribution of a path is calculated by the function
traceEyePath, which starts a path based on both origin
and direction data inputs. Importance sampling, Next
Event Estimation (NEE) and Russian Roulette tech-
niques were deployed in its implementation. At the
closest intersection, it’s firstly checked if the material
is emissive resulting, in that case, the termination of the
path and the return of the emissive color. Otherwise, the
Bidirectional Scattering Distribution Function (BSDF)
of the material is importance sampled in order to calcu-
late the direction of the path’s next bounce. Then, the
NEE is implemented by shooting a shadow ray from
the current intersection towards an importance sampled
point in a luminary or emissive object. In terms of
luminaries, area lights are supported in our prototype.
If there is no intersection, it means that the hit point
is directly illuminated and therefore a contribution is
added to that path. This contribution is weighted by
the reciprocal of the probability density function (pdf)
of the chosen luminary importance sampling operation.
Finally, further extending of the current path is deter-
mined by the Russian Roulette Termination method.
Russian roulette allows us to randomly stop comput-
ing terms in a sum as long as we reweight the terms
that are not terminated. This implies the definition of a
termination probability q based on the path throughput
weight.Thus, the contributions of the surviving bounces
will be increased by a factor 1/q in order to compen-
sate the terminated bounces. The code of the function
traceEyePath is listed below:

vec3 traceEyePath(vec3 origin, vec3 direction) {
vec3 color = vec3(0);
for(int bounce=0;bounce < path_length;bounce++){

traceRay(scene, origin, direction);
if (Hit is Emissive)

return color * emissive;
sampleBSDF();
if (Ray missed) return env_color;

//Next event estimation
bool in_shadow = traceShadowRay();
if (not in_shadow)

color += material_clr / pdf;
russian_roulette_termination();

}
return color;

}

2.3.2 Bidirectional Path Tracing
When compared to the Path Tracing algorithm, BDPT
traces paths from the luminaries in addition to paths
from the camera and connects the paths with shadow
rays. The BDPT Ray Generation shader is similar to
the PT one. The main difference consists of tracing,
in first place, the light paths from the luminaries and
performing a random walk into the scene. At each in-
tersection, it is recorded the vertex position, the mate-
rial as well as the pdf associated with the sampling of
the material’s BSDF function to determine the direc-
tion of the light path’s next bounce. Next step consists
of tracing the camera paths. And finally, at each ver-
tex of a camera path, we connect it to all the vertices
of a light path by using shadow rays: if no object is
occluding the two vertices, the weight of this edge is
properly computed with Multiple Importance Sampling
(MIS) technique by using the balance heuristic estima-
tor from (Veach and Guibas, 1995), and divided by the
corresponding pdf. The pseudo-code for the BDPT Ray
Generation shader is listed below.

void main() {
vec3 pixel_color = vec3(0);
for(int s = 0; s < number_of_samples; s++)
{

origin = pixel + random_offset();
buildLightPath();
pixel_color += traceEyePath(origin,direction);

}
pixel_color /= number_of_samples;
accumulateWithPreviousFrames(pixel_color);
applyPostProcessing(pixel_color);
storePixel(pixel_color);

}

The function buildLightpath builds the light paths from
the luminaries which will be used in the traceEyePath
function to combine with the eye paths, as listed below:

vec3 traceEyePath(vec3 origin, vec3 direction) {
vec3 color = vec3(0);
for(int bounce=0;bounce < path_length;bounce++){

traceRay(scene, origin, direction);
if (Hit is Emissive)

return color * emissive;
sampleBSDF();
if (Ray missed) return env_color;
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for (int l = 0; l < LIGHTPATHLENGTH; l++) {
bool in_shadow=traceShadowRay(light_paths[l]);
if (not in_shadow)

color += material_clr / pdf / MIS weight;
}
russian_roulette_termination();

}
return color;

}

2.4 OptiX - Vulkan interoperability
The denoiser uses Cuda and rendering is done with
Vulkan. The OptiX – Vulkan interoperability was built
through image sharing buffers with semaphore synchro-
nization.

The OptiX denoiser is using Cuda, so the rendered im-
age will need to be shared between Vulkan and Cuda.
The denoiser actually requires linear images, which are
not available to Vulkan. So instead of directly sharing
the images, we create buffers which are shared between
Vulkan and Cuda and we copy the images to the buffers,
converting them to linear images.

A semaphore strategy was used to tackle the problem
of synchronization between denoising and rendering
tasks. We use a Vulkan timeline semaphore to sig-
nal when the ray traced image is rendered and trans-
ferred to the buffer and a Cuda wait semaphore to hold
the execution of the denoiser on the GPU. We add
the inverse process at the end of the denoiser with a
Cuda semaphore signaling the image is denoised and
on Vulkan a wait semaphore to copy the buffer back to
an image, tonemap it and display.

3 EVALUATION AND RESULTS
3.1 Testing Methodology
The evaluation of Lift tool was performed by using a
set of scenes with different types of BSDFs in different
lighting conditions in order to encompass a diversity of
optical effects simulation like specular and glossy re-
flections/refractions, color bleeding or caustics reflec-
tions. The used scenes are illustrated in Figures 5, 6, 7
and 8 which were rendered in our prototype.

The Teapot Cornell Box is a simple scene with few
primitives, featuring the classic Cornell Box with a
teapot and showcasing different types of materials such
as diffuse, glass, and colored metal.This way, optical
effects like color bleeding, glossy reflection and refrac-
tion as well as caustics can be tested. The Covered
Dragon scene includes the same classic Cornell Box
too but we added a rectangular area to cover the ceiling
luminary in order to make it difficult to reach. To raise
the scene’s geometric complexity, the known Standford
Dragon, with approximately 5,500,000 triangles and

Figure 5: Teapot Cornell Box

Figure 6: Covered Dragon

Figure 7: Breakfast Room (Bitterli, 2016)

Figure 8: Japanese Classroom (Bitterli, 2016)
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a sphere were added. The Breakfast Room (Bitterli,
2016) scene features multiple different geometries and
includes a lightsource placed outside the room which is
illuminated through a window with blinders. Finally,
we chose the Japanese Classroom (Bitterli, 2016), a
commonly used scene to benchmark ray tracing appli-
cations and denoisers.

Both qualitative and quantitative metrics were used
to benchmark the PT and BDPT algorithms. Regard-
ing the qualitative metric to make the final image
quality assessment, Structural Similarity Index Metric
(SSIM) (Zhou Wang et al., 2004) is the preferred
method for Monte Carlo rendered images (Whit-
tle et al., 2017). We used a tool that computes
(dis)similarity (DSSIM) between two or more PNG
images using the SSIM algorithm at multiple weighed
resolutions (Kornelski, 2020). The returned value is
1/SSIM−1, where 0 value means identical image, and
> 0 (unbounded) represents the amount of difference.

The rendering experiments in both ray tracing algo-
rithms were conducted with progressive refinement by
tracing into the scene, in each frame, a single random
walk per pixel (1 spp) with a maximum path length of
32 bounces. The ground truth images used in the per-
ceptual image quality assessment (Figures 5, 6, 7 and
8) were generated with the above settings and addition-
ally with the target rendering´s elapsed time set to 90
minutes.

The specifications of the testing computer machine
were a AMD Ryzen 7 2700 8-Core CPU with a base
clock frequency of 3.2GHz and 16GB of DDR4 RAM,
and an NVIDIA GeForce RTX 2070 GPU with 8GB of
GDDR6.

3.2 RESULTS
3.2.1 Performance

The performance of both ray tracing algorithms, PT and
BDPT, was measured. The chart depicted in Figure 9
exhibits the average frames per second (fps) reached by
each algorithm taking into account the time to render a
frame. Consult Table 1 for more figures at different res-
olutions. At 1920x1080 resolution, Path tracing easily
accomplished real-time rates in every benchmark scene.
As far as it concerns to the BDPT, despite of its algorith-
mic complexity and consequently lower performance
figures, it was also capable to sustain real-time fram-
erates on the testing scenes. The worst performance
scenario occurred with the Japanese Classroom scene
where BDPT only performed at 19 fps.

The Table 2 exhibits the time spent on denoising a sin-
gle frame. We verified that the duration of the denois-
ing operation is independent of both the scene and the
ray tracing algorithm being only affected by the im-
age resolution. Mostly important, real-time framerates

Figure 9: Average Frame Rate on 1920x1080 Resolution

Frame Duration [ms]
PT BDPT

Teapot Cornell Box
1280x720 2.3 9.6

Covered Dragon
1280x720 4.6 11.3

Breakfast Room
1280x720 2.9 8.5

Japanese Classroom
1280x720 9.3 22.2

Teapot Cornell Box
1920x1080 4.8 20.8

Covered Dragon
1920x1080 9.5 24.4

Breakfast Room
1920x1080 6.3 18.6

Japanese Classroom
1920x1080 20.2 52.4

Table 1: Frame Rendering times

were always accomplished by using the denoiser with
PT algorithm and sometimes with the BDPT approach.
For instance, consulting Table 1, the worst performance
of PT algorithm occurred with the Japanese Classroom
scene where the rendering of a 1920x1080 frame reso-
lution took 20.2 milliseconds. By enabling the denoiser
every frame we got 29 fps which is consistent with the
duration of 14.5 milliseconds for the denoising step.

The downloaded supplemental material includes a
video sequence with an animation of the movement of
the camera in several scenes.

Image Resolution 1280x720 1920x1080
Denoiser Duration [ms] 7.5 14.5

Table 2: Denoiser working times

It is worth mentioning that we were able to run in Lift
platform both light transport algorithms exceeding real-
time rates at 1920x1080 resolution, as long as we kept
a single random walk per pixel every frame. For in-
stance, in the Japanese Classroom scene, by running
PT algorithm with 16 spp and keeping 32 as the max
path length, we achieved only 0.5 fps.
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Figure 10: "Covered Dragon" image rendering after
5 seconds - Left: PT with 601 accumulated frames;
Right: BDPT with 210 accumulated frames

3.2.2 Perceptual Image Quality Assessment

Visual inspection and convergence rates analysis were
the main strategies to benchmark the perceptual qual-
ity. The progressive refinement feature allows the user
to watch the image rendering as its quality improves
and converges to the corresponding ground truth im-
age. Thus, the temporal evolution of the DSSIM metric
defines the convergence rate.

Firstly, we used visual inspection to compare both
BDPT and PT algorithms without denoising. As
expected, due to its algorithmic complexity, for the
same rendering elapsed time, we got higher noisy
BDPT rendered images than with PT for all scenes
except for the Covered Dragon scene. As explained
before, indirect illumination predominates in this scene
since the luminary is covered. Thus, BDPT excels
due to the combination of eye paths with light paths.
Figure 10 depicts the rendered image after 5 seconds
for both algorithms. We can notice that BDPT even
with a lower number of accumulated samples per pixel
(210 versus 601) performed better than PT algorithm.

Secondly, we analyzed how the application of the re-
construction (denoising) step affects the image qual-
ity for both light transport algorithms. This class of
experiments was performed by setting the target ren-
dering´s elapsed time to 16 milliseconds. The Fig-
ure 11 exhibits the final image frame after rendering
the Japanese Classroom scene with PT algorithm dur-
ing 16ms. This image rendering implied the accumu-
lation of 8 frames, meaning that every pixel just re-
ceived a contribution of 8 paths with a maximum of 32
bounces length each. Due to this low sample count, a
significant amount of variance can be perceived in the
image. Then, we repeated the experiment but now with
the BDPT algorithm and the result is represented in Fig-
ure 12. It’s noticeable the higher variance in the im-
age due to the fact that, with 16ms elapsed rendering
time, only 4 samples were accumulated for every pixel.
Lastly, we ran again the PT algorithm but now with the
denoiser set to remove the noise just in the final frame.
This image frame is illustrated in Figure 13 and the very
low level of variance is immediately evident when com-

Figure 11: "Japanese Classroom" image rendering with
PT algorithm after 16 milliseconds: 8 accumulated
samples per pixel

Figure 12: "Japanese Classroom" image rendering with
BDPT algorithm after 16 milliseconds: 4 accumulated
samples per pixel

Figure 13: "Japanese Classroom" image rendering with
PT w/Denoiser after 30.5 milliseconds - 8 accumulated
samples per pixel

pared with the previously performed experiments. As
already mentioned before, enabling the denoising step
to clean the final frame implied to extend the elapsed
rendering time of 14.5 milliseconds. Figure 14 reveals
a side by side comparison of these images.

And finally we analyzed the convergence rates. The
charts depicted in Figures 15, 16 and 17 exhibit the
temporal evolution of the DSSIM metric for the Cov-
ered Dragon, Breakfast Room and Japanese Classroom
benchmark scenes, i.e. how the rendered image quality
progressively increases by accumulating samples per
pixel. To conduct these experiments, we set 16384 for
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Figure 14: "Japanese Classroom" - Side by Side compar-
ison rendered in 16 milliseconds. Path Tracing (Top-
Left), Bidirectional Path Tracing (Top-Right), Path
Tracing Denoised (Bottom)

Figure 15: "Covered Dragon" - Top: DSSIM temporal
evolution when accumulating 16384 frames; Bottom:
Zoom in for the first 3s

the total number of accumulated frames as the render-
ing target.

As first observation, regardless of whether denoising
operation is enabled, both light transport approaches
converged to the ground truth images. This is confirmed
by the decreasing trajectory of DSSIM metric over time
until it gets close to 0.

A second observation, with the denoiser disabled, con-
cerns the worst performance of BDPT algorithm com-
pared to the unidirectional path tracer except for the
Covered Dragon scene which confirmed the previous
assessment done in Figure 10 with visual inspection.
Looking at Figure 15 we verify that BDPT performs
slightly better that PT algorithm.

As final observation, these charts clearly demonstrate
that, with the denoiser enabled, the unidirectional path
tracer, in all scenes, converged much faster to the corre-
sponding reference images. Still with the denoiser on,

Figure 16: "Breakfast Room" - Top: DSSIM temporal
evolution when accumulating 16384 frames; Bottom:
Zoom in for the first 3s

Figure 17: "Japanese Classroom" - Top: DSSIM tem-
poral evolution when accumulating 16384 frames; Bot-
tom: Zoom in for the first 3s

we verified that BDPT, in general, performed equally or
slightly worse than PT technique.

Regarding the usage of the AI-accelerated OptiX de-
noiser in animation, we can notice in the video se-
quence, included in the supplemental material, the ex-
istence of flicker artifacts when the denoising opera-
tion occurs while the camera is moving. Several ex-
periments lead us to conclude that this denoiser can be
used for animation. However it still requires high sam-
ple counts for good results. With low sample counts,
low frequency (blurry) noise can be visible in animation
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frames, even if it not becomes immediately apparent in
still images.

Thus, the evaluation of the two light transport algo-
rithms in both metrics, performance and image qual-
ity, seems to indicate that, with this type of benchmark
scenes, it is not worth investing in the more complex
BDPT approach, because we are able to get better or
similar results by using the unidirectional path tracer
with denoiser.

4 TEACHING WITH LIFT
The need to develop Lift, an educational RT platform
with an AI-Accelerated Denoiser, arose primarily in the
context of the 3D Programming course taught at In-
stituto Superior Técnico (IST) and Master Theses fo-
cused on physically-based rendering. Developing a de-
cent code base for the student projects or theses with
Vulkan that could be quickly picked up was really a
problem; students typically come from slightly differ-
ent undergraduate studies and one could not expect the
same level of competence in a programming language
like C++, let alone delve into the details of the currently
available ray tracing Vulkan API.

4.1 3D Programming Course
In our graduate course, 3D Programming, we supple-
ment the theoretical lectures with 12 weekly one and
half-hour laboratory sessions. Eight lab sessions are
devoted to the Ray Tracing topic and include the use of
Lift platform to solve the required exercises. The last
four sessions regard the use of Unity3D for application
development.

In the respective 8 lab classes, the students use Lift
pipeline to develop two assignments which will be eval-
uated. In the first assignment the students should imple-
ment the Distribution ray tracer with support for glossy
reflections/refractions, motion-blur and depth-of-field
effects. In the second one, the students extend their
ray-tracer from the previous assignment to get a Path
Tracer and integrate it with the denoiser provided by
Lift. Then, by using a set of benchmark scenes as
well as their own scenes, the students should perform
a comparison of their solutions with the built-in PT and
BDPT, to assess both the performance and the percep-
tual image quality. In the end, the students will learn
that nowadays physically-accurate images can be ren-
dered in real-time under different lighting conditions
and how well a denoiser can reconstruct images ren-
dered with just one sample per pixel.

4.2 Master Theses
The preliminary results accomplished with Lift plat-
form seem to favour PT with AI-accelerated Denoiser
over BDPT as the best approach to obtain the highest

image quality in the shortest amount of time. How-
ever, other complex ray tracing algorithms may still be
able to outperform the path tracer under challenging
lighting scenarios. With the Lift tool, students doing
their Theses around physically-based rendering have
all the programming foundations to fully answer to the
question if is it worth investing on more complex al-
gorithms, namely to perform further testing with other
candidates like photon mapping-based techniques. Ver-
tex Connection and Merging (VCM) and Unified Path
Sampling (UPS) are effectively identical techniques in-
dependently developed by (Georgiev et al., 2012) and
(Hachisuka et al., 2012), respectively. VCM/UPS com-
bines bidirectional path tracing and progressive photon
mapping, and is particularly advantageous for specular-
diffuse paths and specular-diffuse-specular paths (i.e.
caustics and specular reflections of caustics). We have
currently four master students implementing over Lift
platform the UPBP (unified points, beams, and paths)
algorithm by (Křivánek et al., 2014) which is a general-
ization of VCM to volumes. It is particularly suitable
for rendering volume caustics and reflections of vol-
ume caustics. Their method uses both point and beam
lookups, and combines the results with Multiple Impor-
tance Sampling (MIS).

The Metropolis Light Transport-based approaches,
originally proposed by (Veach and Guibas, 1997),
would initially be off our radar because, in general
terms, they can be seen as an extension of the bidi-
rectional path tracer: instead of constantly creating
new paths from scratch, paths are mutated into new
ones. Anyway, two students are currently finalizing the
evaluation of a MLT implementation over Lift and the
preliminary results seem to indicate a slightly better
behaviour when compared with BDPT.

5 CONCLUSIONS
In order to allow Master students, in the context of the
3D Programming course or their Theses, to address the
current Real Time Ray Tracing questions formulated in
section 1.2, the main objective was to build successfully
an educational RT platform with an AI-Accelerated De-
noiser. With Lift, we have shown to be able to ac-
complish interactive low-variance stochastic ray trac-
ing. By using our prototype, the students will learn that
nowadays physically-accurate images can be rendered
in real-time under different lighting conditions and how
well a denoiser can reconstruct images rendered with
just one sample per pixel. In fact, with Lift they are able
to run both light transport algorithms, PT and BDPT, in
different lighting conditions exceeding real-time rates
at 1920x1080 resolution, as long as we kept a single
random walk per pixel every frame. We verified that
the denoiser penalized the algorithms’ performance by
introducing a fixed reduction factor but it did not pre-
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vent to achieve real-time framerates. Anyhow, this is-
sue was largely compensated by the huge image qual-
ity improvements provided by the reconstruction filter.
The OptiX denoiser revealed to own a remarkable be-
havior in reconstructing images rendered with just one
sample per pixel. Its main drawback was the observa-
tion of flicker artifacts when the denoising operation oc-
curs while the camera is moving. This means, that for
animations, the filter is not spatio-temporal stable and
our future roadmap includes its replacement by (Vicini
et al., 2019) approach.

Resources: The source code repository on github is
available at (Soares, 2020). The downloaded supple-
mental material includes a video sequence with an
animation of the movement of the camera in several
scenes.
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ABSTRACT 

Creating manual annotations in a large number of images is a tedious bottleneck that limits deep learning use in 

many applications. Here, we present a study in which we used the output of a classical image analysis pipeline as 

labels when training a convolutional neural network (CNN). This may not only reduce the time experts spend 

annotating images but it may also lead to an improvement of results when compared to the output from the classical 

pipeline used in training. In our application, i.e., cell nuclei segmentation, we generated the annotations using 

CellProfiler (a tool for developing classical image analysis pipelines for biomedical applications) and trained on 

them a U-Net-based CNN model. The best model achieved a 0.96 dice-coefficient of the segmented Nuclei and a 

0.84 object-wise Jaccard index which was better than the classical method used for generating the annotations by 

0.02 and 0.34, respectively. Our experimental results show that in this application, not only such training is feasible 

but also that the deep learning segmentations are a clear improvement compared to the output from the classical 

pipeline used for generating the annotations. 

Keywords 
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1. INTRODUCTION 

Neural network-based image segmentation and 

classification have made huge progress in the last 

decade. However, the ground truth creation is still a 

major bottleneck for training deep learning models in 

many applications [Lec15a, Xin17a, Gup19a]. Here, 

we propose a simple and efficient way to 

automatically generate training labels for the 

segmentation of cell nuclei – with minimal manual 

interaction. Of course, some data still has to be 

manually annotated to evaluate the automatic label 

generation and the network’s performance. However, 

our approach limits this only to the images in the test 

set as the network is trained entirely on the 

automatically generated labels. Moreover, our deep 

learning (DL) model has shown to substantially 

improve the results compared to the classical image 

analysis pipeline that was used for generating its 

training labels.  

 In Sect. 2, we describe the proposed method and 

neural network design, as well as the dataset that has 

been used for evaluation. In Sect. 3, we describe the 

metrics used for evaluation and present the results of 

the experiment. 

2. METHOD 

2.1 Dataset 

As the application for demonstrating the proposed 

method, we have selected the task of cell nuclei 

segmentation. We used the BBBC039v1 dataset, 

available from the Broad Bioimage Benchmark 

Collection [Cai19a, Ljo12a]. This dataset has a 

manually created ground truth (GT), here only used 

for evaluating the results and not for training. The 

images are 690x520 pixels, and the nuclei typically 

have a diameter between 10 and 50 pixels. An 

example of an image from this dataset is shown in Fig. 

1. For practical reasons, each image was tiled into four 

overlapping tiles of size 512x512 pixels. The tiles 

from the same image were always kept in the same Fig. 1. Raw input image. 
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data partition: training, validation, or test data subset, 

respectively. The initial dataset had 200 images with a 

recommended fixed split of 100-50-50, which resulted 

in 400 image tiles for training, 200 for validation, and 

200 for the test. Before feeding the image tiles to the 

network, we first augmented them with all 

combinations of flipping and multiple 90 degrees 

rotations (this resulted in 8 image tiles from 1; it was 

done only with the training and validation sets and not 

the test set) and then normalized them by subtracting 

the corresponding mean intensity value from each 

augmented image tile and dividing it by the standard 

deviation, which is a standard procedure in deep 

learning.  

2.2 Automatic generation of training 

labels 
We used segmentation results of classical image 

analysis methods as the labels for training our neural 

network model. The segmentations were created using 

the CellProfiler [Mcq18a] module IdentifyPrimary-

Objects with the threshold method ‘Minimum cross-

entropy’ and the default Threshold smoothing 

scale=1.3488 to detect the objects [Sez04a], ‘Shape’ 

as the Method to distinguish clumped objects, and 

‘Intensity’ as the Method to draw dividing lines. The 

object separation in CellProfiler is done using the 

Watershed algorithm [Vin91a]. The difference 

between ‘Shape’ and ‘Intensity’ when distinguishing 

clumped objects is that ‘Shape’ uses the local maxima 

of the distance transform [Bor86a] of the binary 

objects as seeds, whereas ‘Intensity’ uses the local 

maxima of the input image intensities as seeds. The 

separation lines are drawn by the Watershed algorithm 

for the previously defined seeds, based on the distance 

transform for ‘Shape’ or the input image intensities for 

‘Intensity’.  

 We also tried the three other segmentation 

configurations: Shape/Shape, Intensity/Shape, and 

Intensity/Intensity. However, the selected 

Shape/Intensity configuration gave the best results by 

a great margin. In all configurations, we used the same 

10 to 50 pixels interval for the allowed object size 

(diameter). Finally, we tried the consensus between 

different segmentations: a combination of the three 

best segmentation configurations obtained by masking 

out (so that they are ignored during the training of the 

neural network) those cell clusters that did not get the 

same number of objects after the separation. The main 

idea behind it was to purify the training data by 

excluding difficult cases that were most likely 

erroneously labeled. However, this did not improve 

the results with respect to using only the best of the 

segmentation settings (Shape/Intensity), as shown in 

Section 3. 

2.3 Neural network design 
We used a modified U-Net [Ron15a], a fully 

convolutional neural network presented in Fig. 2. 

Following [Mat19a], we reduced the number of 

feature maps in each layer with respect to the original 

U-Net and increased it in the last convolutional block. 

We kept the same depth of the architecture as the 

original U-Net, i.e., 4. However, we added dropout 

layers [Sri14a] after each max-pooling with increasing 

rates: 0.2, 0.25, 0.3, and 0.35, respectively. We used 

zero padding and selu [Kla17a] as the activation 

function in all convolutional layers except the last one 

in which we used softmax. We also used L2 weights 

regularization with l=0.0001 in all convolutional 

layers except the output layer. We optimized the 

models using Adam [Kin14a] with the default 

hyperparameters except for the learning rate which 

was set to 0.00001. To make the training reproducible 

and to reduce the stochastic factors in our comparisons 

of training with different labels, we used the same 

Fig. 2. The U-Net-based deep learning architecture. 
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network architecture and hyper-parameters in all 

models. Moreover, we fixed the random initialization 

seeds of the network weights (we used Glorot normal 

initialization [Glo10a]) in all models as well. As a 

consequence, all models started with the same values 

in the corresponding network weights.  

 We trained the network to assign each pixel in the 

input image to one of the three classes: background 

(BG), nucleus (N), or nuclei separation lines (SL). We 

used a custom loss function λD: the class-weighted 

sum of the log Dice coefficient losses [Mat19a] 

defined by:  

𝜆𝐷(𝒚, �̂�) = −(0.2 log 𝛿𝐵𝐺 + 0.4 log 𝛿𝑁 + 0.4 log 𝛿𝑆𝐿), (1) 

 𝛿𝐶 =
2 ∑ 𝑦𝑖𝑦�̂� + 1

∑ 𝑦𝑖+∑ 𝑦�̂� + 1
, (2) 

where 𝑦 is the ground truth, �̂�  is the segmentation of 

class 𝐶, and δC is the pixel-wise Dice coefficient for 

that class. We trained each model for 50 epochs and 

selected the version with the smallest loss on the 

validation set annotated in the same way as the 

corresponding training set.  

2.4 Post-processing 
To ensure that the resulting division lines separate the 

clumped nuclei, we dilated them with a 3x3 pixel 

square structuring element, merged them with the 

background, and then skeletonized, followed by 

dilating the skeleton by 1 pixel. Finally, we subtracted 

the new divisions from the nuclei mask. Nuclei 

touching the edges of the images were also excluded, 

both in the ground truth and in the segmentations. See 

Fig. 3. 

3. RESULTS 

3.1 Metrics 
As the metrics for comparing our results, we used two 

types of accuracy: 1) the pixel-wise Dice coefficient 

for the nuclei and separation lines before the post-

processing; and 2) the object-wise Jaccard index 𝐽 of 

the segmented nuclei after the post-processing:  

 𝐽 =
|𝑀|

|𝐺|+|𝑅|−|𝑀|
, (3) 

where |𝐺| is the number of nuclei in the ground truth 

(GT), |𝑅| is the number of nuclei in the result, and |𝑀| 
is the number of 1-to-1-matched nuclei between the 

results and the GT. There is a results-GT nucleus 

match if a segmented nucleus has a spatial overlap 

with exactly one nucleus in the GT, and that 

corresponding GT nucleus overlaps with exactly one 

nucleus in the segmentation results. The overlaps were 

computed between eroded (with a 3x3 pixels square 

structuring element) masks to avoid confusion of 

objects near the separation lines. The advantage of this 

metric is that it penalizes the wrong number of objects, 

but tolerates minor pixel differences. On the other 

hand, the Dice score coefficient penalizes wrong 

object boundaries but does not evaluate the number of 

segmented objects. Some applications require 

accurate nuclei counting while others need their 

precise boundary segmentation. As the proposed 

approach is not bound to any particular application, we 

report and compare our results with both metrics.  

3.2 Results 
Tables 1 and 2 present the results of the proposed 

methods evaluated on the test set with the GT (the 

manual annotations of the dataset). We can clearly see 

that adding the DL improved the results compared to 

the classical segmentations that had been used as input 

for its training. The DL results when trained on the 

best of the classical segmentation configurations 

(Shape/Intensity) are not far behind the results when 

training the same network (and with the same hyper-

parameters) on the manual GT. Therefore, we can 

conclude that training on the output of a classical 

segmentation method is a good way to avoid the 

tedious work of creating manual labels for training and 

validation sets. However, the test set still has to be 

fully annotated to allow a proper assessment of the DL 

performance.  

 We can also observe that, contrary to our initial 

expectations, the segmentation consensus gave worse 

results in training DL than the best segmentation 

configuration alone. One possible explanation is that a 

noticeable part of the training data was masked out, 

and thus, the network had to learn how to perform 

segmentation on a smaller number of cells. A smaller, 

less representative training dataset usually leads to 

poorer generalization; and that is what we believe 

happened here. This may lead to the conclusion that it 

is better to include noisy or imprecise annotations 

rather than removing them from the training dataset. 

However, this hypothesis has to be tested in a much 

larger study with multiple datasets, various types, and 

levels of data corruption, and hence, it is outside the 

scope of this paper. 

3.3 Processing Time 
The initial segmentation and the post-processing were 

done in CellProfiler 3.1.9 on a laptop computer (64 

GB RAM, 2.90 GHz Intel® Core™ i7-6920HQ CPU, 

Fig. 3. Post-processing. From left to right: 1) raw 

input image, 2) segmentation results, 3) the cell 

separation lines are dilated and merged with the 

background; the resulting image is then 

skeletonized and dilated, 4) new separation lines 

are subtracted from the nuclei segmentation 

results; the objects touching the image edges are 

removed. 
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Windows 10 64 bit). The initial segmentation took 

about 5s/image and the post-processing took about 

9s/image. These values are if run non-parallel, and 

only including the actual image processing – not 

saving, etc. However, in practice, this is automatically 

parallelized in CellProfiler. The neural network 

training and inference were done on a stationary 

computer (32 GB RAM, 3.30 GHz Intel® Core™ i9-

7900X CPU, NVIDIA GeForce RTX 2060 SUPER 8 

GB GPU, Windows 10 64 bit). Training time: ~ 

43ms/update step, 140s/epoch (3200 image tiles), 

inference time: ~ 12ms/image tile, 2s/test set (200 

image tiles). 

4. CONCLUSION 

We have demonstrated how classical image analysis 

methods can be combined with deep learning not only 

to reduce the tedious work of annotating images but 

also to improve the results offered by the classical 

pipelines. Our results show that it is possible to train a 

successful neural network without using any manually 

annotated ground truth; by using the output of a 

classical segmentation pipeline as training labels 

instead. Moreover, this approach gave a clear 

performance improvement compared to the classical 

methods that were used in generating the training data. 
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Method Nuclei Separations 

DL trained on GT 0.964 0.492 

DL trained on Shape/Intensity 0.958 0.355 

DL trained on Consensus 0.948 0.257 

Classical Shape/Intensity 0.939 0.29 

Table 1. Pixel-wise Dice coefficient before post-

processing. 

Method Jaccard index 

DL trained on GT 0.892 

DL trained on Shape/Intensity 0.838 

DL trained on Consensus 0.805 

Classical Shape/Intensity 0.504 

Classical Intensity/Shape 0.481 

Classical Shape/Shape 0.464 

Classical Intensity/Intensity 0.251 

Table 2. Object-wise Jaccard index after post-

processing. 
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Abstract
In recent years, a bag with image and video compression formats has been torn. However, most of them are focused
on lossy compression and only marginally support the lossless mode. In this paper, I will focus on lossless formats
and the critical question: "Which one is the most efficient?" It turned out that FLIF is currently the most efficient
format for lossless image compression. This finding is in contrast to that FLIF developers stopped its development
in favor of JPEG XL.
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1 INTRODUCTION

This paper compares the compression performance of
state-of-the-art formats for lossless image compression.
It deals with the essential formats from old PNG (1992)
to modern JPEG XL (2020). The comparison is per-
formed on three datasets. The first one represents high-
resolution photos. The second one consists of artificial
images (illustrations). And the third one is made up of
scanned pages of books. The motivation for our compar-
ison is to answer the question of which format is most
efficient in terms of bits per pixel.

For comparison, we use tools that find the most suit-
able parameterization of the given compression formats.
As far as we know, this makes us different from most
published comparisons. Under these conditions, it turns
out that the most efficient format for all three datasets
is FLIF, closely followed by JPEG XL. This situation is
specifically quite interesting because the FLIF develop-
ment has stopped as JPEG XL supersedes it.

This paper consists of four sections. The Introduction
section opens this paper. The Background section dis-
cusses the formats and datasets used. The Method and
Results section presents our measurements. Finally, the
Conclusions section closes the paper.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

2 BACKGROUND
This section describes the individual lossless image for-
mats in our comparison. We dealt with the following
formats: PNG, JPEG-LS, JPEG 2000, JPEG XR, WebP,
WebP 2, H.265, FLIF, AVIF, and JPEG XL.

Lossless algorithms [7] usually work on the principle of
pixel prediction, the error of which is subject to entropic
coding, or a dictionary compression method followed by
an entropic encoder. Some formats use a transformation
instead of an explicit predictor to decorrelate pixels.
Then we talk about residue coding instead of prediction
error. However, the principle is the same. The entropic
encoder can be a simple (Golomb-Rice encoder) as well
as a very specialized arithmetic encoder coupled with
context modeling. The paragraphs below describe the
individual lossless compression methods in detail.

PNG (1995) [11, 12] is a purely lossless format ini-
tially intended to replace the GIF format. It is based
on a predictor followed by the dictionary compression
method DEFLATE (a combination of LZ77 and Huff-
man coding), which is usually implemented by the zlib
library. Several tools can test different predictors and
different parameterizations of the DEFLATE method.
This will achieve an even better compression ratio than
the zlib at the cost of several orders of magnitude
slower compression. The zopflipng tool is used in our
comparison with the parameters -iterations=500
-filters=01234mepb.

JPEG-LS (1998) [17] is a lossless image format created
as a replacement for the lossless JPEG mode, which is
inefficient. This compression method consists of a pre-
dictor and a subsequent context entropic coder (Golomb-
Rice coder). The coder can also encode a sequence of
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Figure 1: Three datasets used in our comparison. From top: Photos (14 images), Illustrations (10 images), and
Books (7 images).

the same pixels by a variant of the RLE method. We
use the libjpeg 1.58 library from Thomas Richter for
compression with parameters -ls 0 -c.

JPEG 2000 [16] is a format based on a discrete wavelet
transform [8] followed by a context arithmetic coder.
This makes it different from most other lossless com-
pression methods, which are based on prediction error
coding. The format allows the choice of lossless or lossy
compression paths. Compression is incomparably faster
than PNG. There are several implementations of this
format, of which we consider the Kakadu commercial
library to be the best. Kakadu version 8.0.5 is used
for compression with parameters Cblk={64,64}
Stiles={8192,8192} Creversible=yes
Clayers=1 Clevels=5.

JPEG XR (HD Photo) [4] is a 2009 format developed
by Microsoft. The format offers a lossless compression
mode based on hierarchical discrete cosine transform
(DCT) and Huffman coding. As with JPEG 2000, the
processing steps are the same for both lossless and lossy
coding. Reference software 1.41 with default parameters
is used for compression.

WebP [5] is a 2010 compression format developed by
Google. The format allows the choice of lossy or lossless
compression. The lossless variant is based on a predictor
followed by a combination of LZ77 and Huffman coding.

The cwebp reference tool with the -lossless param-
eter is used for compression. WebP 2 is the successor of
the WebP image format, currently in development. The
cwp2 reference tool with the -effort 9 -q 100
parameters is used in our comparison.

H.265 (also HEVC) [15] is a 2013 video compression
format that supports lossless compression. This format
is again based on spatial prediction (without the use of
DCT). The format is a classic representative of hybrid
video compression. HEIC and BPG image formats are
based on their Intra profile. We use the x265 library
version 3.4 for compression through the FFmpeg frame-
work with parameters -c:v libx265 -preset
placebo -x265-params lossless=1.

FLIF [13, 14] is a lossless image format from 2015,
strongly inspired by the FFV1 format. The format is
based on a predictor and a sophisticated arithmetic en-
coder MANIAC. As with PNG, the compression ratio
can be improved by searching for various parameters.
We use the flifcrush tool for this. FLIF development has
stopped since FLIF is superseded by JPEG XL.

AVIF is based on the AV1 [6] video format from 2018.
Also, this format is a classic representative of hybrid
video compression. The format offers both lossy and
lossless compression. The format uses a predictive-
transform coding scheme for lossless mode, where the
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prediction comes from intra-frame reference pixels. The
residuals undergo a 2D transform, and then they are
entropy coded using arithmetic coding. In comparison,
the libavif version 0.8.3 library with the -l -c aom
parameters (libaom 2.0.0) was used.

JPEG XL (2020) [1, 2] is a new image format that sup-
ports both lossy and lossless compression. ISO/IEC
standard is still under development. Its basic building
blocks include transform, prediction, context modeling,
and entropy coding (ANS [3] or Huffman coding). We
use a reference software version 0.3.3 with -q 100
-s 9 parameters.

A dataset of 14 high-resolution photographic images
[10] in RGB24 format was used for comparison. Thus,
the uncompressed image has a bit rate of 24 bpp (bits
per pixel). The individual images are shown in Figure 1.
The dataset occupies a total of 157 megapixels. We will
refer this dataset to it as Photos. We also tested the com-
pression performance on illustrations (artificial images,
still 24 bpp). This dataset occupies 10 megapixels. This
dataset was composed of images found on Google. We
will refer to it as Illustrations. The last dataset used in
our paper consists of seven scanned book’s pages in 24
bpp and comprises 27 megapixels. The scans were ob-
tained from the collection of the Digital Library of the
National Library of the CR. This dataset will be called
Books.

3 METHOD AND RESULTS
We use two quantities to evaluate the compression ef-
ficiency: a bitrate and compression ratio. The bitrate
is defined as the number of bits per single image pixel.
The compression ratio is defined as the ratio between
the uncompressed and compressed file size. The results
are shown in Tables 1, 2, and 3.

We evaluated the compression performance of all men-
tioned image formats on all three datasets. It turned out
that the clear winner is the FLIF format. It is even more
efficient than the newer JPEG XL. Even though the de-
velopment of FLIF was stopped in favor of JPEG XL.
It is worth noting that an exhaustive search found the
FLIF format parameters. JPEG XL has proven to be the
second-best choice. WebP 2 is also relatively efficient.

The victory of the FLIF format is also in line with recent
results of Rahman et al. In their paper [9], the authors
compared the compression performance of the lossless
JPEG, JPEG 2000, PNG, JPEG-LS, JPEG XR, CALIC,
HEIC, AVIF, WebP, and FLIF formats. They concluded
that the FLIF is optimal for all types of 24 bpp images,
which they evaluated.

Interestingly, all algorithms achieve a compression ratio
about three times higher on the Illustrations dataset than
on Photos and about two times higher than on Books. It

Format Bitrate [bpp] Compression
Ratio

PNG 11.461131 2.094034 : 1
JPEG-LS 10.588847 2.266535 : 1
JPEG 2000 10.620645 2.259749 : 1
JPEG XR 11.575239 2.073391 : 1
WebP 10.619910 2.259906 : 1
H.265 12.460111 1.926146 : 1
FLIF 9.318886 2.575415 : 1
AVIF 12.039541 1.993431 : 1
WebP 2 10.007292 2.398251 : 1
JPEG XL 9.433458 2.544135 : 1

Table 1: Compression performance on the Photos
dataset. The best result in bold.

Format Bitrate [bpp] Compression
Ratio

PNG 4.628656 5.185090 : 1
JPEG-LS 6.994191 3.431419 : 1
JPEG 2000 6.094012 3.938292 : 1
JPEG XR 8.097638 2.963827 : 1
WebP 4.294325 5.588771 : 1
H.265 7.158238 3.352780 : 1
FLIF 3.394439 7.070387 : 1
AVIF 8.198868 2.927233 : 1
WebP 2 3.621495 6.627097 : 1
JPEG XL 3.473148 6.910157 : 1

Table 2: Compression performance on the Illustrations
dataset. The best result in bold.

Format Bitrate [bpp] Compression
Ratio

PNG 8.694597 2.760334 : 1
JPEG-LS 8.394430 2.859038 : 1
JPEG 2000 7.303011 3.286315 : 1
JPEG XR 8.989639 2.669740 : 1
WebP 7.451733 3.220727 : 1
H.265 10.326125 2.324201 : 1
FLIF 6.084763 3.944278 : 1
AVIF 10.398287 2.308072 : 1
WebP 2 6.890983 3.482812 : 1
JPEG XL 6.216347 3.860788 : 1

Table 3: Compression performance on the Books dataset.
The best result in bold.

also says that the Photos dataset is the hardest to com-
press for lossless algorithms, whereas the Illustrations
are the easiest task.

We thought even compare the computing needs of the
individual formats. However, such a comparison would
not be fair for two reasons. Firstly, for some formats,
we use an exhaustive search for suitable parameters;
for others, we do not. Secondly, compression and de-
compression ran in parallel on different machines with
different hardware.
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4 CONCLUSIONS
We compared the compression efficiency of state-of-
the-art formats for lossless image compression. The
comparison was performed on three different datasets.
It has been found that the most efficient lossless com-
pression method is the FLIF format. And this despite
the fact that its development has stopped since JPEG
XL supersedes FLIF. Furthermore, it turned out that the
JPEG XL has proven to be the second-best choice. The
third in line is the WebP 2 format. It should be noted
that some formats are still under development.
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