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Abstract
A significant portion of rendering time in ray tracing consists of the traversal of an acceleration structure. While
methods designed to reduce traversal cost often target the top of the tree, we instead propose a method that targets
the lowest levels, by offsetting ray origins just before starting traversal. Our method moves ray origins out of nodes
deep in the tree, avoiding the scattered memory access associated with these rarely visited nodes. We propose a
precomputed set of hemispheres, placed on the surfaces, which is guaranteed not to contain any geometry, thus
allowing rays starting inside a hemisphere to be moved to the hemispheres boundary. Our method is compatible
with most acceleration structures and does not require access to the actual traversal implementation.

Keywords
Ray tracing, acceleration structures

1 INTRODUCTION
Ray tracing has wide applications. It is used in colli-
sion detection algorithms, simulations of physical phe-
nomena and graphics. Recent advances in ray tracing
hardware made real-time ray tracing accessible to the
masses. In the past year, the first video games that em-
ploy ray tracing for rendering were released.

To perform efficient intersection tests between rays
and a collection of objects, acceleration structures are
used. The two most common acceleration structures in
modern high-performance renderers, the kD-tree and
bounding volume hierarchy (BVH), aim to bring the
average case time complexity of tracing a single ray
down to near logarithmic.

In this paper, we propose a method that aims to im-
prove ray tracing performance by offsetting extension
rays just before starting traversal. This is based on the
observation that many rays visit the leaf node they origi-
nate from without finding an intersection. These unnec-
essary visits are relatively expensive, due to a scattered
memory access pattern. Our aim is to prevent these vis-
its by moving the ray origins along the ray direction.
This shortening will often move the rays out of the leaf
nodes.

In our method a set of hemispheres is placed on the sur-
face of the scene geometry. The radius of each hemi-
sphere is such that it does not to contain any geometry.
For each ray origin we fetch the nearest hemispheres,
which are then used to replace the ray origin by the in-
tersection of the ray and the hemispheres. If the ori-
gin is moved far enough, the ray is moved out of the
leaf node it originated from and potentially one or more
nodes higher in the acceleration structure. Our aim is

to outweigh the overhead of offset calculation by the
reduced traversal cost.

2 RELATED WORK
Accelerating the intersection of rays and scene geome-
try is achieved using various data structures and algo-
rithms. These methods can be put into roughly three
categories:

1. Acceleration structures. The most commonly used
acceleration structures, the kD-tree and BVH, aim
to bring the cost of tracing a single ray from linear
to near logarithmic time. They do this by recursively
partitioning space and objects, respectively.

2. Amortization of traversal cost. By grouping rays to-
gether in packets, the cost of fetching the accelera-
tion structure data can be amortized over many rays.

3. Efficient traversal of the acceleration structure.
These methods often make use of high-level knowl-
edge about rays, such as the difference between
nearest-hit and any-hit (occlusion) rays, or connec-
tivity between rays, to guide traversal towards parts
of the tree that are more likely to intersect the rays.

The above categorization will not cover all methods.
Some can be put into more than one category, whereas
others will defy all categorization. The following sec-
tions provide a brief summary of the main works in each
category, providing a context for the contributions in
this paper.
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2.1 Acceleration structures
Fujimoto et al. [FTI86] use a uniform grid to store scene
geometry. As a ray traverses the grid, it intersects the
objects in each cell it passes. Glassner [Gla84] uses an
adaptive scheme, placing objects in a recursively parti-
tioned octree. Cleary and Wyvill [CW88] provide an
analysis of the uniform grid, showing that it, at that
time, outperformed hierarchical methods.

Earlier, the kD-tree (or binary tree) was introduced by
Bentley [Ben75], although not in the context of ray trac-
ing. The kD-tree has found wide application. Gold-
smith and Salmon [GS87] introduce a simple heuristic
to guide the construction of spatial subdivision trees.
MacDonald and Booth [MB90] propose the refined sur-
face area heuristic (SAH) and show that it performs
much better than using a fixed split order.

Clark [Cla76] introduced the BVH, which partitions ob-
jects rather than space. Construction of the BVH is sim-
ilar to the kD-tree, and allows the use of e.g. the surface
area heuristic.

Havran [Hav00] provides an in-depth analysis of a
wide range of acceleration structures, including the
kD-tree and BVH, and concludes that the kD-tree
gives the best ray tracing performance. Wald [Wal07]
greatly improves the speed of BVH construction and
Stich [SFD09] solves the problem of scenes with
non-uniformly sized triangles. Together, this closes the
performance gap between the kD-tree and BVH. Today
the BVH is the most widely used acceleration structure
in renderers.

2.2 Amortization
Wald et al. [WSBW01] group several rays together in
a single packet. The size of this packet is generally
chosen to be the width of the vector registers on the
CPU. For SSE capable CPUs, packet traversal yields a
2-3x performance improvement when compared to sin-
gle ray traversal.

Reshetov et al. [RSH05] search for the first node in an
acceleration structure for which both subtrees contain a
leaf node that intersects a group of rays. Once the entry
point has been found, individual rays start traversal at
this point. The process is further optimized by Fowler et
al. [FCM09], who find deeper entry points, with fewer
traversal steps.

Overbeck et al. [ORM08] use large packets of up to
1024 rays and propose a traversal algorithm specifically
aimed at reflection and refraction rays. These rays suf-
fer from quickly degrading coherence as the number of
bounces for each path increases.

2.3 Improved traversal
Boulos and Haines [BH10] show that occlusion rays
often dominate the total rendering time. It is there-

Figure 1: Part of a BVH built on a circle. In shades
of green internal nodes. In orange leaf nodes. Note
that the distance required to move a ray starting on the
surface out of a leaf node is small.

fore worthwhile to devise specialised traversal strate-
gies for occlusion rays and nearest-hit rays. MacDon-
ald and Booth [MB90] were the first to propose an al-
ternative traversal algorithm. They add neighbor links
between the leaves of a kD-tree. Once a ray has been
traced, any extension ray originating at the intersec-
tion point can then be traced by following these links.
This traversal method prevents visiting many internal
nodes, at the cost of additional memory usage. Havran
et al. [HBZ98] show that ropes result in a 10-20% re-
duction of total rendering time, compared to standard
kD-tree traversal. The gains are later improved to up
to 35% by Havran and Bittner [HB07]. Hendrich et
al. [HPMB19] use convex frustum shafts to cull parts of
a BVH. Djeu et al. [Djeu09] reduce the traversal time of
occlusion rays, by marking leaf nodes contained by ge-
ometry as volumetric occluders and terminating traver-
sal in these nodes. Ize and Hansen [IH11] introduce
the Ray Termination Surface Area Heuristic (RTSAH),
which significantly reduces the number of visited nodes
for occlusion rays.

The work presented in this paper falls under the third
category. We build a set of hemispheres on top of the
acceleration structure that are guaranteed not to contain
any geometry. We use the hemispheres to calculate off-
sets for extension rays, skipping deep parts of the hier-
archy.

3 OFFSETTING RAYS
Testing a ray against a leaf node is more expensive than
testing against an internal node. This has two main
reasons. First, leaf nodes are visited less frequently
than the shallower internal nodes, and are therefore less
likely to be in the cache. The same holds for the prim-
itive data in the leaf node. Second, intersecting a leaf
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node involves intersecting the primitives it stores. Most
methods that aim to accelerate traversal focus on skip-
ping internal nodes or amortizing traversal costs over
multiple rays and quickly reaching the leaf nodes. We
argue that it could be beneficial to focus on skipping
leaf nodes, avoiding scattered memory access and prim-
itive intersection tests.

Consider rendering an opaque, tessellated sphere (Fig-
ure 1). After the primary rays have been traced, exten-
sion rays starting on the sphere’s surface will not hit any
geometry, as the sphere is a convex object and all rays
will travel away from its surface. Still, traversal will
first traverse down into the leaf node where the previ-
ous ray ended, since the new ray’s origin is contained
in the leaf’s bounds. Offsetting the ray origin along a
short distance could be enough to move it out of the leaf
node. A larger offset would then cull additional nodes
above and adjacent to the leaf node. While a sphere is
the best-case scenario due to its convexity, the idea of
offsetting ray origins extends to more complex scenes.

To calculate offsets we use an auxiliary data structure,
in the form of a set of hemispheres. In a preprocess-
ing step we place one or more hemispheres on each tri-
angle. At each hemisphere location, we determine the
nearest intersection on the positive side of the plane.
The distance to this intersection is then stored as the ra-
dius of the hemisphere. The volume of this hemisphere
is thus guaranteed to be empty. During rendering, for
each ray, we retrieve the hemispheres attached to the
triangle it originates from. The origin offset is then cal-
culated using a ray-sphere intersection test. If the ray
intersects multiple hemispheres, the greatest intersec-
tion distance is used. After offsetting the ray origin,
traversal is started. Note that our method is oblivious to
the chosen acceleration structure and the actual traver-
sal, and thus orthogonal to other optimizations.

We limit our discussion to polygonal scenes and re-
flected rays, although the concepts are potentially ap-
plicable to other scenes and transmitted rays.

In the next two subsections we will describe various
potential hemisphere placement strategies. Section 3.1
covers how the hemisphere locations can be chosen
such that they best achieve our goal: moving the rays
out of as many leaf nodes as possible. While the most
optimal solution is of course placing an infinite number
of hemispheres, to optimize execution time a balance
between traversal savings and overhead must be found.
Section 3.2 describes low-level optimizations to reduce
overhead, such as a carefully chosen memory layout,
caching behaviour and vectorization.

3.1 Hemisphere sets
The set of hemispheres must be chosen in such a way
that the average ray origin offset is maximal. At the
same time, we wish to limit the number of hemispheres,

Figure 2: A hemisphere (blue) placed in the center of
a triangle (green). The radius is limited by the triangle
(red) above it.

Figure 3: Visualization of the placement strategies. Top
row: center sphere set and vertex sphere set. Bottom
row: median sphere set and polygon sphere set.

to reduce query overhead. We investigate four place-
ment strategies that balance these factors. The strate-
gies are visualized in Figure 3.

Center Sphere Set. The simplest method is to store a
single hemisphere located at the center of each triangle
(Figure 2). At this location the hemisphere will in gen-
eral have the most potential for moving a ray out of the
triangle’s bounding box.

Vertex Sphere Set. Alternatively, we can place a hemi-
sphere on each triangle vertex. This method is more re-
sistant to occluding geometry at the center: if only one
area of the triangle is occluded there is still potential for
a large enough hemisphere being placed on one or more
of the vertices to offset nearby rays far enough to leave
the triangle bounds. There is an important downside: if
a vertex is part of a concave corner of the surface ge-
ometry the radius of the hemisphere will be 0.

Median Sphere Set. To solve the problem of concave
geometry we can move the hemispheres closer to the
triangle center. One option is to place the hemispheres
halfway between each vertex and the triangle center, the
medians, i.e. the line segments from the vertices to the
midpoint of the opposite edges. Together, these hemi-
spheres can cover a large area of the triangle.

Polygon Sphere Set. In some situations the center
sphere set could perform better with only a slight mod-
ification. Consider a scene with many groups of adja-
cent triangles lying in the same plane, essentially form-
ing (non-convex) polygons. A triangle in such a group

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

3

Vol.28, No.1-2, 2020



could make use of the hemisphere of one of its neigh-
bours. This neighbouring hemisphere might be much
larger if the triangle itself lies closer to an occluding
part of the scene than the neighbour. If the neighbour-
ing hemisphere covers a large part of the triangle, it can
offset many rays for much larger distances than the tri-
angle’s own hemisphere. Selecting the optimal hemi-
sphere from all neighbours is a hard optimization prob-
lem. A potentially good approximation would be to se-
lect the largest of all hemispheres and assigning this to
each triangle of the polygon.

3.2 Optimization
By placing a fixed number of hemispheres per trian-
gle, retrieval has constant time complexity. It also al-
lows keeping the querying code simple, minimizing the
strain on the instruction cache. Furthermore, it opens up
options for aligning the data to cache lines and efficient
vectorized intersection tests.

Center Sphere Set. The center sphere set has the low-
est storage requirements. A hemisphere record requires
16 bytes: 4 for the radius and 12 for the position, which
comfortably fits in a single cache line. Alternatively,
the hemisphere position can be deduced from the trian-
gle vertex positions. Although this limits storage to 4
bytes, this is only beneficial if the vertex data is in the
cache.

Vertex Sphere Set. This method uses 3 times more
memory than the center sphere set. This may still fit in a
single cache line, although padding to 64 bytes may be
necessary to avoid extra cache line accesses. Alterna-
tively, the hemisphere data can be stored with the vertex
data, adding only the hemisphere radius to each vertex
position. Obviously, this change will impact other parts
of the renderer. It could degrade performance for the
acceleration structure or might simply be impossible to
implement (e.g. when using indexed triangles, where
vertices can be shared by multiple triangles).

Median Sphere Set. The median sphere set can be used
with or without the center hemisphere. Also storing the
center hemisphere will not add much overhead. If the
medians are recalculated from the vertices, the first step
is calculating the center, and storing the 4th radius al-
lows aligning the data to 16 bytes. If the hemisphere
centers are stored, adding the extra hemisphere will in-
crease the per triangle data to 64 bytes, exactly a cache
line.

Polygon Sphere Set. The polygon sphere set can be
stored and queried in two distinct ways. First, using
the method for the center sphere set. In that case the
same optimizations can be applied. Second, using an
indexed lookup. Since hemispheres are used by mul-
tiple triangles, they need not be stored multiple times.
This can reduce memory overhead, if we assume that
we store the hemisphere centers as well as the radii.

Total memory usage would be one index per triangle to
fetch the hemisphere, and one hemisphere per polygon.
The number of polygons will depend on the nature of
the scene and how many triangles are in the same plane
as their neighbours.

Further optimization can be done using SIMD instruc-
tions. For example, using SSE allows querying the cen-
ter sphere set with 4 rays at once, amortizing memory
cost over the 4 rays.

4 RESULTS
The scenes used in our experiments are shown in Ta-
ble 1. For each of the scenes several viewpoints are
selected. Results are averaged over these viewpoints.
Three ray classes are tested to account for different be-
haviours: ambient occlusion (AO) rays, diffuse rays and
shadow rays. AO rays are rendered using several radii
set to a fixed percentage of the scene size. Each pri-
mary ray that finds an intersection is used to generate
exactly one AO ray. For the diffuse renders each path
is extended in a random direction until it finds a light,
leaves the scene or reaches a maximum recursion depth.
For the shadow rays a single point light is added to each
scene.

Two types of statistics are collected: the number of vis-
ited nodes per ray (split by internal nodes and leafs) and
runtimes. Note that for the diffuse renders the number
of nodes is calculated per ray rather than per path. Gen-
erating and tracing primary rays, writing to the image
buffer or any other steps are excluded from the mea-
surements.

All experiments were run single-threaded on a 2.60GHz
Intel i7-6700HQ with 8GB DDR4 RAM. For BVH con-
struction and intersection tests the Intel Embree ray
tracing library (version 3.5.2) was used [WWB∗14]. All
images were rendered at 4096x4096 pixels.

4.1 Traversal
Table 2 shows the number of visited nodes and leafs
for AO rays. The rays were given a length, or radius,
of a percentage of the scene size. The baseline column
shows the absolute number of visited internal nodes and
leaves. These numbers increase as the radius increases.
When using any of the hemisphere sets to offset the
rays, the average number of visited nodes and leaves
decreases, as shown by each column corresponding to
the respective hemisphere set.

The median hemisphere set consistently outperforms all
other sets. This is only by a small margin however, sug-
gesting that a larger number of hemispheres per triangle
has little added benefit. When comparing the results of
the vertex sphere set with the center sphere set, we see
that it performs better in some scenes, but worse in oth-
ers. This seems related to the nature of the geometry:

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

4

Vol.28, No.1-2, 2020



buddha bunny sibenik dragon hairball living rungholt sponza sponza
cathedral room crytek dragon

1.1M 144k 76K 871K 2.9M 581K 5.8M 262K 1.1M
16.6 2.2 1.1 13.3 43.9 8.9 88.7 4.0 17.3

Table 1: Overview of the scenes used in the experiments. For each scene we report the triangle count and the
memory cost (in MB) of the 16-byte center sphere set.

the architectural scenes that contain more concave ge-
ometry, such as the Cathedral, make the vertex sphere
set less useful. The polygon sphere set shows no im-
provement over the center sphere set, suggesting that
selecting the largest hemisphere is a poor optimization
strategy.
Scenes such as Buddha, Bunny and Dragon show a re-
duction of visited leaf nodes by up to 85% for short
rays. For longer rays reductions are not as large, al-
though still at least 30%. The strong reduction for short
rays is due to many rays receiving an offset that is larger
than their length, causing traversal to terminate in the
root node. Figure 4 shows this for the Dragon scene:
the fraction of rays for which the calculated offset (us-
ing the center sphere set) is larger than the ray length is
high for short radii and then drops quickly. For scenes
that do not contain both large open spaces and convex
geometry, this fraction drops much faster.
The Rungholt scene contains almost exclusively axis-
aligned geometry. Because of this, the majority of ex-
tension rays do not start inside the bounding box of the
leaf node the primary ray ended in, and there is lit-
tle improvement with offsets. Also shown in Table 2
are results for the Rungholt scene rotated by 15◦. The
baseline shows that the number of visited internal nodes
increases by about 20%, while the number of visited
leaves doubles. When using offsets, this increase is par-
tially undone.
The Sponza Dragon scene is the Sponza Crytek scene
with the dragon model added in its center. While the
Sponza Crytek scene shows negligible reduction for
long rays, with the dragon relative improvements be-
come larger, showing that the sphere sets adapt to vary-
ing geometry. The Sponza Dragon scene could be seen
as a common use case for e.g. games, where detailed
character models move through buildings.
Table 3 and Table 4 show the results for diffuse and
shadow rays. The overall behaviour for all scenes and
sphere sets is similar to that of the ambient occlusion
rays, with some slight differences. The scenes in which
the AO rays saw the largest reductions do not fare as
well. Conversely, some of the worst performers for long
AO rays (such as the Living Room and Sponza Crytek
scenes) do show more significant reductions.

Figure 4: Fraction of AO rays for which the offset is
larger than the radius (in the Dragon scene with the cen-
ter sphere set).

4.2 Runtimes
The traversal results have shown that the median sphere
set consistently outperforms all other methods. How-
ever, this is only by a small margin. The center sphere
set shows improvements within a range of several per-
cent. Because the center sphere set uses only a quarter
of the memory that is required by the median sphere set,
the results in this section only cover the center sphere
set. The implementations of the alternatives have not
been thoroughly optimized, and would probably not
perform better, as calculating the offsets is mostly mem-
ory bound. The center hemispheres were stored as a
simple array, retrievable using the triangle index. Each
hemisphere occupies 16 bytes: 3 floats for the center, 1
float for the radius.

Figure 5 shows the ambient occlusion ray trace times.
For short rays (1% of the scene size) the Dragon scene
is traced using only 73% (827ms vs 1132ms) of the
original time. As the ray length increases this differ-
ence becomes smaller, with 85% (1339ms vs 1576ms)
at 50% of the scene size. Rungholt is traced slower by
up to 3% at all ray lengths. For all but the shortest rays,
the same happens for the Cathedral and Sponza Crytek
scenes. In all cases, performance improvements are in
accordance with the traversal improvements reported in
the previous section: more saved traversal steps means
shorter trace times.
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scene radius baseline center vertex median polygon
buddha 1% 7.71 / 0.80 46% / 19% 43% / 17% 44% / 15% 45% / 19%
buddha 5% 8.45 / 0.94 61% / 34% 59% / 32% 59% / 31% 60% / 34%
buddha 10% 8.73 / 1.01 63% / 39% 61% / 38% 62% / 37% 63% / 40%
buddha 25% 8.90 / 1.06 64% / 43% 63% / 42% 63% / 41% 64% / 44%
bunny 1% 6.50 / 0.26 47% / 40% 38% / 32% 41% / 33% 45% / 39%
bunny 5% 7.10 / 0.33 63% / 54% 58% / 47% 59% / 48% 62% / 53%
bunny 10% 7.40 / 0.39 66% / 61% 62% / 55% 63% / 56% 66% / 60%
bunny 25% 7.55 / 0.52 71% / 72% 68% / 68% 69% / 68% 70% / 71%
cathedral 1% 5.78 / 0.12 68% / 84% 79% / 93% 57% / 73% 80% / 86%
cathedral 5% 6.16 / 0.18 85% / 90% 89% / 95% 81% / 83% 91% / 91%
cathedral 10% 6.60 / 0.26 89% / 94% 93% / 97% 86% / 89% 92% / 94%
cathedral 25% 7.51 / 0.62 93% / 98% 95% / 99% 90% / 96% 95% / 98%
dragon 1% 6.32 / 0.43 55% / 17% 49% / 15% 50% / 15% 54% / 17%
dragon 5% 7.08 / 0.57 66% / 40% 62% / 39% 62% / 39% 66% / 40%
dragon 10% 7.43 / 0.65 69% / 50% 66% / 49% 66% / 49% 69% / 50%
dragon 25% 7.41 / 0.66 71% / 53% 67% / 52% 68% / 52% 70% / 53%
hairball 1% 9.18 / 1.45 76% / 58% 71% / 64% 66% / 43% 73% / 58%
hairball 5% 12.12 / 2.74 93% / 81% 93% / 83% 91% / 74% 92% / 81%
hairball 10% 14.16 / 3.76 94% / 87% 94% / 89% 93% / 83% 94% / 87%
hairball 25% 16.08 / 4.66 96% / 90% 95% / 92% 94% / 87% 95% / 90%
livingroom 1% 5.17 / 0.10 60% / 70% 64% / 71% 49% / 64% 77% / 77%
livingroom 5% 5.62 / 0.18 84% / 85% 84% / 85% 77% / 82% 88% / 88%
livingroom 10% 5.92 / 0.24 90% / 89% 89% / 89% 86% / 87% 93% / 92%
livingroom 25% 6.39 / 0.35 92% / 93% 92% / 93% 90% / 92% 95% / 95%
rungholt 1% 6.55 / 0.22 83% / 99% 80% / 98% 81% / 98% 82% / 99%
rungholt 5% 7.59 / 0.44 93% / 100% 91% / 99% 92% / 99% 93% / 100%
rungholt 10% 8.07 / 0.54 94% / 100% 92% / 99% 93% / 99% 94% / 100%
rungholt 25% 8.18 / 0.59 95% / 100% 93% / 99% 94% / 99% 95% / 100%
rungholtrotated 1% 7.98 / 0.45 77% / 70% 73% / 65% 74% / 64% 78% / 82%
rungholtrotated 5% 9.15 / 0.74 88% / 84% 86% / 82% 86% / 81% 90% / 91%
rungholtrotated 10% 9.49 / 0.89 90% / 88% 88% / 86% 89% / 86% 92% / 93%
rungholtrotated 25% 9.66 / 0.95 91% / 90% 89% / 88% 90% / 88% 92% / 94%
sponzacrytek 1% 10.33 / 0.18 86% / 80% 90% / 79% 79% / 74% 90% / 82%
sponzacrytek 5% 11.05 / 0.28 95% / 89% 95% / 88% 92% / 86% 96% / 90%
sponzacrytek 10% 11.62 / 0.39 96% / 93% 96% / 92% 94% / 91% 96% / 93%
sponzacrytek 25% 9.16 / 0.60 98% / 98% 98% / 97% 98% / 97% 99% / 98%
sponzadragon 1% 10.96 / 0.26 86% / 71% 87% / 70% 82% / 67% 87% / 73%
sponzadragon 5% 12.50 / 0.43 93% / 85% 93% / 84% 92% / 83% 94% / 86%
sponzadragon 10% 13.66 / 0.60 95% / 91% 95% / 90% 94% / 89% 95% / 91%
sponzadragon 25% 11.60 / 0.74 97% / 95% 97% / 95% 96% / 95% 97% / 96%

Table 2: Ambient occlusion traversal. radius: ray length relative to scene size. baseline: #visited internal nodes /
#visited leaf nodes per ray without offset. sphere sets: visited nodes / leaves relative to baseline.

The diffuse trace times are displayed in Figure 6. The
results follow the same pattern as for the AO rays: a loss
of 3% for Rungholt and gains up to 20% for the Dragon.
The results for shadow rays, as shown in Figure 7, again
follow the same pattern.
When combining the observations about visited nodes
and trace times, we can draw an important conclusion
about the computational overhead of offset calculation:
this overhead is small. Consider the Rungholt scene,
where the reduction of visited leaf nodes is 1% or less
for all ray types, and trace times increase by only 3%.

5 CONCLUSION
We presented a simple auxiliary data structure to accel-
erate ray tracing. We precompute a set of hemispheres

located on the surface of the scene’s geometry that are
guaranteed not to contain any objects. When given an
extension ray, we retrieve the hemispheres that start on
the same geometric primitive and offset the ray origin.
With a large enough offset, the ray will be moved out of
the leaf node it started in, thus saving expensive inter-
section tests at the bottom of the tree during traversal.
Additional internal nodes may also be culled if the ray
is moved out of their bounding box.
Improvements vary between scenes. In the most opti-
mal case, the number of visited leaf nodes can be re-
duced by several factors. Additionally, there is a large
reduction of the number of visited internal nodes. How-
ever, this is only for short occlusion rays in scenes con-
taining large open spaces and convex geometry. On the
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scene baseline center vertex median polygon
buddha 9.93 / 2.38 68% / 32% 67% / 31% 67% / 29% 68% / 32%
bunny 8.12 / 2.24 74% / 45% 70% / 42% 71% / 40% 73% / 45%
cathedral 10.09 / 2.29 94% / 91% 96% / 97% 91% / 86% 96% / 93%
dragon 9.49 / 2.42 74% / 48% 71% / 42% 71% / 40% 74% / 49%
hairball 19.62 / 8.39 95% / 83% 95% / 87% 94% / 78% 95% / 84%
livingroom 9.21 / 2.18 92% / 87% 92% / 88% 90% / 82% 95% / 92%
rungholt 9.35 / 1.02 95% / 99% 93% / 97% 94% / 97% 95% / 99%
rungholtrotated 11.99 / 2.16 89% / 70% 87% / 66% 88% / 65% 92% / 85%
sponzacrytek 16.20 / 4.20 96% / 93% 96% / 94% 94% / 91% 97% / 94%
sponzadragon 18.77 / 4.87 95% / 91% 95% / 91% 94% / 89% 95% / 92%

Table 3: Diffuse traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset.
sphere sets: visited nodes / leaves relative to baseline.

scene baseline center vertex median polygon
buddha 10.18 / 0.40 72% / 47% 70% / 44% 71% / 44% 72% / 47%
bunny 10.42 / 0.15 81% / 64% 78% / 57% 79% / 58% 80% / 64%
cathedral 7.27 / 0.05 93% / 89% 94% / 94% 90% / 80% 96% / 90%
dragon 8.15 / 0.18 71% / 34% 69% / 32% 69% / 32% 70% / 34%
hairball 16.66 / 1.43 97% / 90% 97% / 91% 96% / 85% 96% / 89%
livingroom 6.38 / 0.05 91% / 77% 90% / 76% 88% / 70% 93% / 83%
rungholt 6.96 / 0.08 93% / 99% 91% / 97% 92% / 98% 92% / 99%
rungholtrotated 8.78 / 0.20 88% / 79% 86% / 72% 87% / 73% 87% / 82%
sponzacrytek 15.61 / 0.09 97% / 86% 96% / 83% 95% / 81% 97% / 87%
sponzadragon 17.71 / 0.14 96% / 78% 95% / 76% 95% / 74% 96% / 79%

Table 4: Shadow traversal. baseline: #visited internal nodes / #visited leaf nodes per ray without offset.
sphere sets: visited nodes / leaves relative to baseline.

Figure 5: Ambient occlusion ray trace times.

other end of the spectrum there are scenes for which
there is next to no reduction of visited nodes. Changes
in actual trace time range from speedups of up to 25%
to a loss of 3%. This last number indicates that the
overhead of offset calculation is low.

The memory overhead added by the hemisphere set is
linear in the scene size, requiring a fixed number of
bytes per triangle. The optimized hemisphere set used
in this paper uses 16 bytes per triangle. The hemisphere
set is also completely independent of the acceleration
structure, making it compatible with any form of traver-
sal of the BVH or even alternative acceleration struc-
tures.

6 FUTURE WORK
Only the center sphere set implementation was thor-
oughly optimized. While the alternatives offer little ex-
tra reduction of visited nodes at the cost of several times
more memory overhead, it might be worthwhile to in-
vestigate their performance when properly optimized.

The polygon sphere set could perform better than the
center sphere set with a better heuristic for selecting

Figure 6: Diffuse ray trace times.

Figure 7: Shadow ray trace times.

the optimal hemisphere. Taking into account additional
properties, such as the area of overlap between a hemi-
sphere and the triangles, might result in a higher quality
hemisphere set.
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Concave geometry has been shown to result in little re-
duction of visited nodes. This may be improved by us-
ing other methods to offset rays, such as other geomet-
ric primitives that better represent empty spaces in these
areas.
A deciding factor for the viability of hemisphere sets
is how they perform in a GPU renderer. Offset calcu-
lation will have a different overhead and the traversal
algorithms used on the GPU tend to be different.
Efficient construction of the hemisphere sets was not a
subject of this work. This will become especially rele-
vant for dynamic scenes, where quick reconstruction of
(parts of) the hemisphere set will be needed.
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ABSTRACT
Active grid cells in scalar volume data are typically identified by many isosurface rendering methods when ex-
tracting another representation of the data for rendering. However, the use of grid cells themselves as rendering
primitives is not extensively explored in the literature. In this paper, we propose a cluster-based data structure for
storing the data of active grid cells for fast cell rasterisation via billboard splatting. Compared to previous cell
rasterisation approaches, eight corner scalar values are stored with each active grid cell, so that the full volume
data is not required during rendering. The grid cells can be quickly extracted and use about 37 percent memory
compared to a typical efficient mesh-based representation, while supporting large grid sizes. We present further
improvements such as a visibility buffer for cluster culling and EWA-based interpolation of attributes such as nor-
mals. We also show that our data structure can be used for hybrid ray tracing or path tracing to compute global
illumination.

Keywords
Point-based rendering, Visibility, Ray tracing

1 INTRODUCTION
Isosurface rendering requires finding the intersections
of the isosurface for a particular isovalue in the data.
The scalar volume data, for example, a computed tomo-
graphy (CT) image, is typically sampled with tri-linear
interpolation when finding intersections and comput-
ing smooth normals for shading. If dynamic isovalue
is not required, indirect volume rendering techniques
generally provide fast rendering and good data reduc-
tion. Mesh-based methods such as Marching Cubes
(MC) [15] and dual contouring [11] find the active
grid cells (the grid cells containing isosurface intersec-
tions) of the data and extract a polygonal representa-
tion of the isosurface. Point-based methods such as
elliptical weighted-average (EWA)-based surface splat-
ting [22, 1] typically extract a point for each active grid
cell and render these points as small disks. Sparse stor-
age of larger voxel bricks and hierarchical data struc-
tures such as octrees can also be used to provide better
data reduction and faster traversal to direct volume ren-
dering techniques such as isosurface raycasting.

Compared to the previously mentioned techniques, the
use of grid cells themselves as rendering primitives is

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

not extensively explored in the literature. Parker et
al. [20] describe a method for analytically computing
ray-surface intersections for active grid cells during iso-
surface raycasting. Zhang et al. [21] propose storing
active edges instead of active grid cells, which are ren-
dered by disk splatting or expanded and rendered as
small point clouds. Cell rasterisation (CR) was pro-
posed by Liu et al. [13] as a fast method for rasteris-
ing the active grid cells of a volume. Active grid cells
are rasterised as point primitives via so-called billboard
splatting, and the original volume data is sampled in
the cells in the fragment shader to find intersections
and compute smooth normals. Compared to indirect
volume rendering techniques such as mesh- and point-
based methods, cell rasterisation provide the same iso-
surface as isosurface raycasting. Liu et al. also use a
data structure for fast sorting and traversal of the cells
in front-to-back order for proper transparency render-
ing. However, their method provide no data reduction,
since only grid positions are stored with the cells, and
therefore the original volume data needs to be available
in GPU memory for sampling during rendering.

In this paper, we propose a memory efficient data struc-
ture for storing the active grid cells of a volume. The
data structure is easy to implement, does not require
the original volume data to be available during render-
ing, and supports ray tracing in addition to rasterisation.
Our main contributions in the paper are:

• A clustered grid cell data structure (CGC) for storing
grid positions and corner scalar values of active grid
cells. The data structure supports large grid sizes
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Figure 1: Our proposed data structure for isosurface rendering: Left: 163 block volume with each block (blue
wireframe) storing a pointer to a list of clusters (pink wireframes) of active grid cells extracted from a voxelised
model; Middle-left: isosurface rasterised with cell rasterisation using scalar values stored with active grid cells
and visibility culling of individual clusters (indicated by colors); Middle-right: final shaded isosurface after EWA-
based normal interpolation and deferred normalized Blinn-Phong shading; Right: hybrid ray tracing using our data
structure with cell rasterisation for primary rays and path tracing with three bounces and an environment map for
secondary rays (after one frame, using 1 sample per pixel). Each cluster shown in the first two images consists of
up to 120 active grid cells and an axis-aligned bounding box. A lower resolution (2563 voxels) voxelisation of the
Buddha model was used to clearer show the clusters and the effect of the attribute interpolation.

(128K×128K×128K) and can be used for fast cell
rasterisation via billboard splatting.

• Improvements to the cell rasterisation including vis-
ibility culling of clusters and EWA-based interpo-
lation for smooth attribute interpolation of normals
and other attributes.

• Showing that the proposed data structure can be used
for hybrid ray tracing or path tracing to compute
global illumination.

2 RELATED WORK
For direct isosurface raycasting, larger bricks or tiles
are generally used instead of individual grid cells for
data reduction and empty space skipping, as in Had-
wiger et al. [7]. The voxel database (VDB) data struc-
ture by Museth [19] is commonly used in offline ren-
dering and uses a shallow tree of internal nodes and leaf
nodes to efficiently store volume data in tiles. Recently,
Hoetzlein [9] also introduced GVDB for real-time ren-
dering on the GPU. Our data structure shares some sim-
ilarities with the VDB data structure, but does not, for
example, provide random access to voxels, and is re-
stricted to isosurface rendering by using smaller tiles
grouped into clusters.
Sparse voxel octrees (SVOs) have been proposed for
storage and ray tracing of large voxel models [12]. The

SVO typically stores surface voxels in the leaf nodes of
the octree, and is traversed during ray tracing. Jablonski
et al. [10] propose an alternative method for rendering
SVOs via billboard splatting and a screen-space voxel
buffer. Large number of individual voxels can also
be efficiently rasterised as cubes via billboard splatting
and fast ray-box intersection tests [16]. However, for
high quality isosurface rendering, a drawback of tradi-
tional SVOs representing voxels as small cubes is the
limited contour information they provide, leading to a
blocky appearance unless each voxel is projected to less
than a few pixels. Efficient sparse voxel octrees (ES-
VOs) [12] improves this by storing additional contour
information in the octree and voxels. Heitz et al. [8]
use filtered signed distance fields and differential cone
tracing to render SVOs with accurate anti-aliased con-
tours. Marcus [17] proposes a SVO data structure stor-
ing scalar values (signed distances in their case) at the
corners of each voxel, which is similar to the corner val-
ues we store for cell rasterisation, but used during ray
tracing of the SVO.

Visibility culling can be important in rasterisation to
improve performance and reduce overdraw. Livnat et
al. [14] perform point-based view-dependent isosur-
face extraction from an octree, using a visibility frame-
buffer to prune non-visible regions. They further com-
pute surface normals in a post-processing step for far
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Figure 2: Overview of the clustered grid cell (CGC) data structure for storing active grid cells. Each block in
the block volume (blue) stores a pointer to metacells (red) extracted in the block. The metacells are grouped into
clusters of 16 metacells, with each metacell storing a pointer to the corner values of up to eight grid cells. The
last metacell in each cluster stores a cluster bound instead of a pointer. Blocks, metacells, and grid cell corners are
stored in separate buffers on the GPU. The memory layout for blocks and metacells is further described in Table 1.

points (minified surfaces), while using MC triangle nor-
mals for near points (magnified surfaces). For gen-
eral occlusion culling of clustered geometry, a hierar-
chical Z-buffer [5] is often used in combination with
pre-computed cluster bounds for conservative culling
of clusters. For back-face culling, a normal cone can
similarly be pre-computed and stored with each clus-
ter. In deferred splatting [6] and the method for cluster
culling we use in this paper based on a visibility buffer,
the visibility culling is not conservative but does not re-
quire generating a hierarchical Z-buffer or storing clus-
ter bounds or normal cones.

Rasterisation of small primitives (small triangles and
points) can further lead to bad GPU utilisation when
each primitive only occupies a few pixels. Evans [4]
presents a point-based method replacing the standard
rasterisation pipeline with stochastic splatting in a com-
pute shader. Splatting is performed using 64-bit atomic
instructions, thereby avoiding executing GPU threads
for non-covered fragments in 2×2 pixel quads or frag-
ments with zero alpha value. A drawback of this ap-
proach is that 64-bit atomic instructions are only avail-
able and exposed to the programmer on game con-
soles (PlayStation 4) and on certain NVIDIA GPUs
(Maxwell and later generations).

3 METHODS
In Section 3.1, we describe the proposed CGC data
structure for storing clusters of active grid cells, and
the isosurface extraction. In Sections 3.2–3.4, we de-
scribe cell rasterisation using billboard splatting, and
present further improvements such as a visibility buffer
for back-face and occlusion culling and EWA-based at-
tribute interpolation of attributes such as normals. In
the final Sections 3.5 and 3.6, we discuss memory us-
age and hybrid ray tracing.

Block data Size Metacell data Size
Metacell count 32 bit Grid position (XYZ) 48 bit
Metacell pointer 32 bit Cell mask 16 bit
Min value 32 bit Cell pointer 32 bit
Max value 32 bit
Total: 128 bit Total: 96 bit

Table 1: Memory layout for blocks and metacells.
Blocks and metacells are stored in separate GPU buffer
textures, using 16 bytes per block and 12 bytes per
metacell. Corner scalar values for active grid cells are
stored in a separate buffer texture.

3.1 Data Structure

An overview of our proposed data structure is shown
in Figures 1–2. We store extracted grid cells in a lin-
ear buffer on the GPU. Eight corner values per cell are
stored as two RGBA values, with the component type
matching the scalar precision of the volume data. To
avoid storing a grid position with each cell, we group
up to eight neighboring cells into a 2× 2× 2 meta-
cell storing a pointer, a cell mask, and a cell pointer.
The metacells are stored in a second linear buffer, with
each segment of 16 consecutive metacells representing
a cluster.

For the isosurface extraction, we divide the volume data
into 16×16×16 number of blocks, and extract the ac-
tive grid cells of each block in Morton order. To pre-
vent metacells of the same cluster from spilling over
into different volume blocks, we pad the last cluster of
each block with empty metacells such that its size be-
come 16. We also use the last metacell of each cluster
to store a cluster bound instead of cell metadata. We
perform the isosurface extraction on the CPU, and up-
load extracted metacells and grid cells to separate GPU
buffer textures.
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Figure 3: Cell rasterisation using billboard splatting:
for each fragment rasterised for the billboard (gray line
intersecting the cell), a ray-box intersection test is per-
formed with the cell, and interpolated samples (indi-
cated in colors) computed along the ray to determine the
isosurface intersection. In our implementation, three
samples per ray is used, which was found sufficient.

The memory layout for blocks and metacells is shown
in Table 1. In our current implementation, grid posi-
tions are stored with 16 bit per component, allowing a
maximum grid size of 128K× 128K× 128K voxels to
be represented.

3.2 Cell Rasterisation
The basic idea of cell rasterisation using billboard splat-
ting is illustrated in Figure 3. In the original cell ras-
terisation paper [13], a vertex shader is used to render
active cells as a point sprites (GL_POINTS primitives).
For each rasterised fragment of a point sprite billboard,
a ray-box intersection test is performed with the cell,
and the original volume data is sampled along the ray
with tri-linear interpolation to find isosurface intersec-
tions. When an intersection is found, a normal gradient
is also computed from the volume data for shading.

For efficient rendering of the clusters of grid cells in
our data structure, we replace the vertex shader of pre-
vious approaches with a tesselation shader taking a sin-
gle patch (GL_PATCHES primitive) per cluster as input
and expands it into points for the cells in the cluster.
Clusters that were culled in the last frame (Section 3.3)
are rendered at 1/8 rate (with at most on point per meta-
cell per frame) until they become visible. Stored corner
values are interpolated with manual tri-linear interpo-
lation in the fragment shader. For the ray-box inter-
section test, we use the efficient slab test mentioned in
Majercik et al. [16], which also can be used to rasterise
cells as cubic voxels. To allow smooth interpolation of
normals and other attributes for shading, we rasterise
cells to a geometry buffer (G-buffer) and compute de-
ferred normalized Blinn-Phong shading in a separate
pass after attribute interpolation (further described in
Section 3.4). A cell normal is computed in the tesse-
lation shader from the corner values, and further used
for back-face culling.

3.3 Visibility Buffer
To further improve the rasterisation performance, we
introduce a visibility buffer to avoid performing full cell
rasterisation of clusters that are fully occluded or back-
facing. The visibility buffer stores a bit per cluster indi-
cating the visibility after each frame. An RG32UI tex-
ture is used during the cell rasterisation pass to capture
cluster IDs visible cells. After the cell rasterisation, we
clear the current visibility buffer bits and update the vis-
ibility buffer from the ID texture in a separate compute
shader pass. Similar to the disk-based deferred splatting
approach by Guennebaud et al. [6], we render cells of
non-visible clusters as single pixel splats for updating
the visibility buffer. During fast camera movements,
non-visible clusters becoming visible might result in
flickering artifacts. We therefore introduce a second
visibility buffer to record of new clusters becoming vis-
ible, and perform full cell rasterisation for those clusters
in a second pass. During fast camera movements, there
might still be some flickering artifacts, which can be
seen in the accompanying video.

3.4 EWA-based Attribute Interpolation
Normals and other attributes should be smoothly in-
terpolated before computing shading. However, our
data structure does not allow random access to neigh-
boring grid cells. For smooth interpolation of normals
and other attributes, we introduce a second EWA-based
attribute splatting pass in which cells are rendered as
round splats with a weighted footprint, and attributes
accumulated to the G-buffer. The results of the EWA-
based interpolation is shown in Figure 4.

Laine et al. [12] propose performing interpolation as a
post-processing step (after ESVO ray tracing) by com-
puting a weighted average of neighboring pixels in a
Poisson disk centered around each target pixel. The in-
terpolation can use a large number of samples (up to
96) per pixel, which may be expensive on GPUs with
low memory bandwidth. Specular surfaces are also
not handled correctly because the interpolation is per-
formed after shading. Jablonski et al. [10] propose a
smaller 3× 3 Gaussian filter for interpolating G-buffer
normals before shading. We investigated replacing the
post-processing in [12] with a stochastic interpolation
scheme using temporal anti-aliasing (TAA) and fewer
samples per frame. However, our EWA-based inter-
polation provided smoother normals and was possible
to use without TAA. Another option would be storing
additional corner values (for example, 32 instead of 8)
with each grid cell, at the cost of significantly increased
memory usage.

3.5 Memory Usage
Average memory usage per grid cell in our data struc-
tures, when including storage for metacells and the
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(a) MC mesh (b) CR [13] (c) CGC (ours) (d) CGC+EWA (ours)

Figure 4: Isosurface comparison for voxelised Armadillo model: (a) MC mesh (without pre-computed normals);
(b) isosurface from cell rasterisation with sampling in the original volume data; (c)–(d) isosurface from cell raster-
isation of our CGC data structure, without and with EWA-based normal interpolation. For our method, the normal
gradient of each cell was computed in the vertex shader from the stored corner values. A lower resolution (2563

voxels) voxelisation of the Armadillo model was used to better show the effect of the normal interpolation.

block volume, is 11 bytes for 8-bit scalar data and 19
bytes for 16-bit scalar data. If 4-bit scalars provide suf-
ficient precision for the application, for example, when
scalars represent coverage values or truncated signed
distances such as in some sculpting applications, the av-
erage memory usage may be further reduced to 7 bytes
per cell. In addition to storage for the main data struc-
ture, we allocate 0.13 MB visibility buffers with capac-
ity for 1M unique clusters, which was found sufficient
even for the hairball dataset.

3.6 Hybrid Ray Tracing and Path Tracing
The data structure presented in this paper can also be
used directly for ray tracing or path tracing of the
extracted isosurface. Using the pre-computed cluster
bound stored in the last metacell of each cluster, inter-
sections with rays can be efficiently computed hierar-
chicaly by traversing and testing blocks, clusters, meta-
cells, and individual voxels with the same efficient slab
test used in the cell rasterisation. Shadow and ambi-
ent occlusion rays only need to fetch the metacell data,
whereas additional bounces for path tracing also need to
fetch grid cell data in order to compute a normal at each
intersection point. Primary rays can be either traced or
rasterised (hybrid ray tracing). Results from a path trac-
ing implementation using hybrid ray tracing are shown
in Figures 1 and 6.

4 EXPERIMENTS AND RESULTS
We implemented our method in OpenGL 4.5 and C++.
All experiments were performed on an AMD Ryzen 7
2700 with 32GB RAM and an NVIDIA GeForce GTX
1070, and on a separate laptop with an Intel Core i7-
6700HQ with 16GB RAM and an NVIDIA GeForce
GTX 965M to evaluate performance on a lower-end
GPU. Frame times were measured via OpenGL timer
queries (GL_ARB_timer_query) for the scenes in

Volume Resolution Type Size
(W ×H×D) (GB)

Dragon 512×512×512 8 bit 0.13
Plastic Skull 512×512×512 8 bit 0.13

Stag beetle CT 832×832×494 16 bit 0.68
Chameleon CT 1024×1024×1080 8 bit 1.13

Raptor 2048×1024×512 8 bit 1.07
Buddha 1024×2048×1024 8 bit 2.15
Hairball 1024×1024×1024 8 bit 1.07

Table 2: Volume datasets used for evaluation.

Figure 5 rendered at 1920×1080 resolution. To gener-
ate the non-CT volume datasets in Table 2 for the test
scenes, a CPU-based implementation of the slicemap-
based binary voxelisation method of Eisemann et al. [3]
was used. Each input mesh was voxelised to three times
a target resolution, followed by downsampling to gen-
erate a coverage representation.

A comparison of memory usage and extraction times
for our data structure (CGC) and a typical efficient
mesh-based representation extracted with MC is pre-
sented in Table 3. The size of the original volume data
is also presented in Table 2. For the MC implemen-
tation, we used the code from [2] after modifying it
to generate indexed meshes without duplicate vertices,
and store vertex positions in 16-bit signed normalized
format with a scaling factor. While the MC memory
usage could be further reduced using compression or
converting indexed meshes into triangle strips, such op-
timization would require further mesh processing and
increased extraction time. A performance comparison
of MC, original cell rasterisation (CR) [13] using sam-
pling in the original volume data, and our cell raster-
isation using the CGC data structure is presented in
Table 4. A corresponding isosurface comparison is also
shown in Figure 4.
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(a) Dragon 1 (b) Dragon 2 (c) Plastic skull 1 (d) Plastic skull 2

(e) Stag beetle 1 (f) Stag beetle 2 (g) Chameleon 1 (h) Chameleon 2

(i) Raptor 1 (j) Raptor 2 (k) Buddha 1 (l) Buddha 2

(m) Hairball 1 (n) Hairball 2

Figure 5: Test scenes for the datasets in Table 2.

5 DISCUSSION
In this paper, the clustered grid cell (CGC) data struc-
ture for isosurface rendering was proposed. We demon-
strated that this data structure can be used for fast cell
rasterisation via billboard splatting, as well as for hy-
brid ray tracing of isosurfaces extracted from large vol-
umes. The data structure does not require the original
volume data to be available during rendering, and uses

about 37% memory compared to a typical mesh-based
representation.

The cell rasterisation performance of our method was
comparable to mesh rendering, except for the larger
test scenes with high depth complexity, in which our
method was faster and benefited from the visibility
culling. Good use cases for our method would include
digital sculpting and visualization of data that need stor-
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Figure 6: Hybrid ray tracing: Plastic skull dataset (5123 voxels) and Stag beetle CT dataset (834× 834× 494
voxels) rendered with our data structure using cell rasterisation for primary rays and path tracing with three bounces
and an HDR environment map for secondary rays (using 1 sample per pixel). Both scenes are rendered at interactive
rate (less than 16 milliseconds per frame) at 1920×1080 resolution, with images showing result after 100 frames.

CGC (ours) MC [15]
Volume Active cells Metacells Memory Extraction Vertices Triangles Memory Extraction

(count) (count) (MB) (time, s) (count) (count) (MB) (time, s)
Dragon 668,804 182,400 7.5 0.8 668,860 1,337,714 20.1 1.5

Plastic skull 2,107,816 569,888 23.7 0.9 2,108,153 4,216,444 63.2 1.7
Stag beetle CT 3,140,758 769,536 59.5 2.6* 3,045,308 6,099,032 91.5 4.1*
Chameleon CT 3,492,569 911,088 38.9 11.4 3,430,406 6,861,504 102.9 12.4

Raptor 2,864,152 765,136 32.1 10.7 2,864,515 5,729,028 85.9 11.1
Buddha 8,464,696 2,264,208 94.9 17.6 8,464,912 16,929,714 253.9 24.3
Hairball 36,034,268 8,952,736 395.7 8.3 36,585,310 73,442,740 1,100.8 16.8

Table 3: Memory usage and isosurface extraction times for the datasets in Table 2, for our CGC data structure
using the cell format in Table 1, and with corresponding MC indexed triangle meshes extracted and shown for
comparison. For MC meshes, memory usage is without vertex normals and with indices stored using 4 bytes per
index and vertex positions stored in 16-bit signed normalized format (with scaling factor computed from mesh
bounds) using 6 bytes per vertex. The same normalized isovalue 0.5 was used for all datasets.

ing additional attributes per voxel or cell. A limitation
of our method is the need to use deferred rendering
for the EWA-splatting of normals and other attributes.
However, as we demonstrate, the data structure can also
be used for cell rasterisation with sampling in the orig-
inal volume data.

It could be interesting to explore approaches using
compute-based rasterisation for far grid cells and
traditional rasterisation for near grid cells. We also
aim to investigate if clusters could be more efficiently
rendered with mesh shaders that were recently intro-
duced with the NVIDIA Turing GPU architecture.
Other future work could be improving ray tracing
performance by re-arranging the clusters of min-max
blocks into bounding volume hierarchies.

The source code for our implementation is available
at https://bitbucket.org/FredrikNysjo/
grid_cells.
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MC [15] CR [13] CGC (ours)
Scene GTX 1070 GTX 965M GTX 1070 GTX 965M GTX 1070 GTX 965M

(time, ms) (time, ms) (time, ms) (time, ms) (time, ms) (time, ms)
Dragon 1 0.3 0.8 0.4 1.2 0.6 (0.4) 1.9 (1.1)
Dragon 2 0.3 0.9 0.6 1.7 0.7 (0.5) 2.2 (1.3)

Plastic skull 1 0.9 2.5 0.7 1.9 1.0 (0.6) 2.8 (1.7)
Plastic skull 2 1.0 3.0 1.2 3.3 1.5 (0.9) 4.0 (2.5)
Stag beetle 1 1.4 3.9 0.9 2.5 1.2 (0.9) 3.5 (2.5)
Stag beetle 2 1.8 6.5 1.5 4.4 1.6 (1.1) 4.9 (3.3)
Chameleon 1 1.5 4.3 1.4 3.5 2.0 (1.4) 5.2 (3.6)
Chameleon 2 1.5 3.6 1.3 3.6 1.6 (1.0) 4.9 (3.0)

Raptor 1 1.2 3.6 1.4 4.1 2.1 (1.5) 6.3 (4.4)
Raptor 2 1.2 3.0 1.0 2.8 1.5 (0.9) 4.5 (2.7)

Buddha 1 3.9 11.3 4.5 12.1 7.0 (4.9) 17.9 (12.4)
Buddha 2 4.0 9.2 1.7 4.5 2.5 (1.7) 7.0 (4.6)
Hairball 1 25.9 61.5 6.3 18.4 8.5 (6.2) 24.3 (18.4)
Hairball 2 26.5 66.4 6.2 18.0 6.7 (5.1) 19.3 (15.4)

Table 4: Performance comparison when rendering the scenes in Figure 5 at 1920×1080 pixels render target res-
olution on two different GPUs (GTX 1070 and GTX 965M), using Marching Cubes (MC), cell rasterisation with
sampling in the original volume data (CR [13]), and cell rasterisation of our data structure (CGC). For the CR
implementation, the visibility buffer and cluster sorting of our method is used instead of the original data structure.
The times show GPU timings in milliseconds of the rasterisation time (depth and G-buffer pass). Rasterisation
time for our method without EWA-splatting is also presented in the parentheses.
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ABSTRACT
Deformation of geographical maps is a powerful tool used in geospatial data exploration systems. Virtual lenses
help the user to retrieve local detail information without losing the global overview, while contiguous cartograms
exploit map deformation for representing statistical data as areas of regions. In most applications, the map defor-
mations should be smooth and computationally efficient. We propose a novel map deformation approach based on
integral images computed for 2D density distributions. Depending on the prescribed density function, the resulting
deformed map represents an approximation to a respective contiguous cartogram or may serve as a user-steered
virtual lens. Our technique is suitable for use in highly interactive geospatial data exploration systems due to its
algorithmic and computational efficiency. We test the proposed method on several artificial and real-world datasets
and discuss directions for future work.

Keywords
Contiguous cartogram, geospatial visualization, smooth map deformation, RadViz, generalized barycentric coor-
dinates projection, integral image

1 INTRODUCTION

Visual data representation becomes increasingly chal-
lenging with growing complexity of modern datasets.
The data complexity can be enhanced by including
more detailed information as well as due to inhomo-
geneity of data components. However, effective visu-
alizations should be simple, compact, and intuitive to
remain practical. Therefore, a thorough static represen-
tation of modern data on standard computer displays is
often impossible.

Advanced visualization systems solve the problem of
displaying complex data in real-time by allowing the
user to interact with the graphical data representations.
Then, dynamical changes of views steered by the user
disclose certain parts or aspects of the underlying data
on demand. Hiding irrelevant and highlighting impor-
tant information as well as a proper choice of the pre-
sented level of detail may significantly reduce visual
clutter and information overload. Thus, interactive sys-
tems make it possible for the user to navigate through,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

explore, transform, and analyze even very large and
complex datasets.

Geo-spatial data visualization is an example of an ap-
plication field with high demands on handling data at
different spatial scales. General interfaces used in the
interactive systems for working with multiple levels
of details include zooming, overview+detail, and fo-
cus+context [CKB09]. Zooming may easily lead to
either suppressing local information or to losing spa-
tial awareness and the global overview [BDW+08].
Overview+detail approaches integrate different degrees
of data granularity in one view at the cost of introducing
spatial discontinuities between the scales. Finally, the
focus+context metaphor is usually realized in the form
of a lens, which deforms spatial domain by expanding
a region of interest while compressing areas outside the
region of interest. In this case, finer details of the re-
gion of interest become locally visible, while the global
overview remains preserved by avoiding discontinuities
and displaying the entire context.

Cartograms are a graphical representation of statistical
data over geographical regions. E.g., scalar values can
be visually encoded as areas of the regions, to which
these values are assigned. Contiguous cartograms are
computed by continuous deformation of the original
map while conserving adjacencies (or neighborhoods)
of the map regions. Thus, such cartograms are topo-
logically accurate and therefore more intuitive for the
user. Cartograms are usually not aimed at representing
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additional data at different spatial scales as in the fo-
cus+context approach. However, formally, contiguous
cartograms can be considered as a simultaneous appli-
cation of lenses to all map regions according to their
scalar values that determine the regions’ magnification
factors.

The problem of contiguous cartogram construction can
be formulated as follows: For a given non-negative
scalar density function representing geospatial statis-
tical data, find a smooth transformation of the map
that equalizes the density distribution, i.e., integral den-
sity in any region becomes proportional to the region
area. In our work, we propose a novel globally smooth
map deformation method. The deformation parameters
are computed based on integral images computed for
a given density distribution. We allow the user to in-
teractively change the discrete density function, thus,
steering the local deformation of the map. The pro-
posed method is algorithmically and computationally
efficient. Thus, the method can be used in interactive
geospatial data exploration systems.

Our contributions include:

• We demonstrate how integral images can be used
for pseudo-cartogram construction and discover
algorithmic equivalence of existing methods for
pseudo-cartogram computation and the RadViz
(Generalized Barycentric Coordinates) visualization
algorithm.

• We improve the existing map deformation algorithm
by considering tilted integral images and sliding an-
chor points, which results in novel smooth non-
linear transformations.

• We modify the proposed map-deformation al-
gorithm to function as a magnification lens of
user-defined geometry in interactive geospatial data
exploration applications.

• We perform numerical tests examining properties
and efficiency of the proposed methods.

• We discuss possible application scenarios and future
work directions.

2 RELATED WORK
Virtual lenses in visualization may act not only as
pure magnification tools, but also to query detail
information and to filter or modify data representa-
tions in a region of interest. A taxonomy of virtual
interactive lenses according to the types of data and
user tasks was recently presented in an extensive
survey by Tominski et al. [TGK+17]. Fisheye views
proposed by Furnas [Fur86] are based on local degree
of interest and provide a smooth integration of two
levels of details. While classical lenses have regular

shape (circle or rectangular), JellyLenses proposed
by Pindat et al. [PPCP12] dynamically adapt their
geometry to the content in the focus. Haunert and
Sering [HS11] modified fish-eye projectiond applied
to road networks by reducing the distortion in dense
network regions. Wu et al. [WLLM13] developed a
technique for content-aware resizing task. The method
is based on an iterative optimization procedure to
compute a deformation map.

While virtual lenses are commonly an example of lo-
cal distortion-based visualizations, the construction of
contiguous cartograms usually requires a global map
deformation. The main idea of rubber-sheet algorithms
is a deformation of a mesh superimposed to the map.
Most grid-based methods are iterative and require a
number of parameters to be correctly set up by the
user. The Carto3F method by Sun [Sun13] is a rubber-
sheet algorithm that guarantees topological integrity
and computationally outperforms its predecessors when
implemented on the GPU. The diffusion-based density-
equalizing map by Gastner and Newman [GN04] is
topologically correct as well but potentially impairs
shape preservation of the map regions [Sun13].

Pseudo-cartograms proposed by Tobler [Tob86]
provide approximations to contiguous cartograms by
distorting a rectangular mesh along two coordinate
axes x and y independently. Pseudo-cartograms
may serve as an initial state for applying other it-
erative cartogram-construction algorithms. Keim et
al. [KPS+03] proposed a real-time HistoScale method
for computing pseudo-cartograms. The algorithm first
computes 1D histograms of geospatial data in two
Euclidian dimensions and then transforms the map by
a proper rescaling of map regions in each histogram
bin to fulfill the cartogram condition. RadialScale
and AngularScale density-equalizing approaches
developed by Bak et al. [BSS+09] distort a map in
radial and angular directions and, thus, can be seen as
an analogy of the pseudo-cartograms by Tobler in polar
coordinates.

The cartogram quality is characterized by its statisti-
cal accuracy, the topological accuracy of the geome-
try as well as the polygonal complexity of the result-
ing layout. Numerical measures for cartogram quality
were summarized by Alam et al. [AKV15]. A recent
overview of the state of the art in cartograms was pre-
sented by Nusrat and Kobourov [NK16]. Aesthetic ap-
pearance is an important but hardly numerically mea-
surable aspect of cartograms. Therefore, despite of ex-
istence of many fully automatic algorithms, there is a
need in graphical interactive systems providing man-
ual user control over cartogram creation. An example
of such a system was recently presented by Kronen-
feld [Kro18].
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User interactions with graphical views are very prac-
tical in multidimensional data exploration systems.
Recently, Sacha et al. [SZS+17] revealed seven com-
mon interaction scenarios of the user interactions with
visual encodings of dimensionality reduction algorithm
outcomes. RadViz proposed by Hoffman [HGM+97]
is a well-known projection method which maps mul-
tidimensional samples in a 2D domain according to
their values and the anchor points placed on a circle.
The multidimensional coefficients act as attracting
forces of the anchor nodes representing dimensions
for the projected samples. Cheng et al. [CXM17]
identified three types of errors in classical RadViz
layout and minimized the errors by properly placing
the anchor points. The authors also demonstrated
equivalence of RadViz to the Generalized Barycentric
Coordinates (GBC) interpolation method by Meyer et
al. [MBLD02]. Nam and Mueller [NM13] used GBC
for projecting multidimensional data describing geo-
graphical locations. The RadViz++ method proposed
by Pagliosa and Telea [PT19] addresses the scalability
issue of the RadViz metaphor.

Summed-area tables or Integral Images (InIm) were
originally introduced by Crow [Cro84] and applied
to object detection in image analysis by Viola and
Jones [VJ02]. Computation of InIm at arbitrary
angles was studied by Chin et al. [CGT08]. Ehsan et
al. [ECuRM15] addressed the problem of efficient par-
allel computation of InIm. Nowadays, many libraries
(e.g., OpenCV [Bra00] used in our work) provide
out-of-the-box functions for InIm computation.

We demonstrate how InIm can be used for pseudo-
cartogram construction. By doing so, we discover
algorithmic equivalence of existing methods for
pseudo-cartogram computation and the RadViz/GBC
algorithms. We improve these pseudo-cartogram
computation algorithms by using tilted InIm. Finally,
we show how to apply our method for virtual lenses
and contiguous cartogram applications.

3 BACKGROUND AND NOTATIONS
Let an object O , e.g., a continent or a country, be
represented on a geographical map as a union of
non-overlapping regions Ri, i = 1, . . . ,n, e.g, states or
provinces. Let ai > 0 be the area fractions of Ri in
O . There may also be a special region B representing
the background, i.e., the part of the map that does not
belong to O . Let {vi} be statistical data assigned to
all regions Ri. For cartograms, typical examples of vi
are population or voting results in Ri. Then, density
distribution ρ(x,y) is a scalar function, which satisfies
the relation∫

Ri

ρ(x,y)dxdy = vi, i = 1, . . . ,n. (1)

Note that the density functions used in our work are
defined up to a global positive constant factor, which
does not influence the results. A particular solution of
Equation (1) is a piecewise constant ρ(x,y) that in each
region Ri is equal to a value vi/ai for a constant ai. The
density values in background B can be arbitrary as long
as no data are assigned to the background region. We
discuss this aspect in Section 5.3.

In our work, we propose an efficient and simple algo-
rithm for a smooth deformation of a geographical map
given as a (one- or three-channel) 2D texture based on a
scalar-valued discrete 2D density function. For simplic-
ity of exposition, we assume that both map and density
textures have the same resolution. All computations are
performed in texture coordinates ranging between 0 and
1 in horizontal and vertical directions. The resolution of
the textures is arbitrary and can be chosen by the user.
Note that we use the same notations for both continuous
and discrete functions, e.g., density ρ(x,y), to simplify
the exposition, as to not lead to confusion.

Our algorithm extensively uses InIm computed for the
density texture and is defined as follows. The value of
InIm at any location (x,y) is the sum of values in all
the pixels that are both to the left and above location
(x,y) [ECuRM15], which we denote by α(x,y). In fact,
we need four integral values per pixel α(x,y), β (x,y),
γ(x,y), and δ (x,y) representing the sums of pixel values
in all four rectangular domains as shown in Figure 1a.
Whereas α(x,y) is the conventional InIm and can be
directly computed by a standard function call in many
image processing libraries, the other three values can be
easily expressed via α(x,y) by

β (x,y) = α(x,1)−α(x,y), (2)
γ(x,y) = α(1,1)−α(x,1)−α(1,y)+α(x,y), (3)
δ (x,y) = α(1,y)−α(x,y). (4)

Without loss of generality, we can assume that

α(x,y)+β (x,y)+ γ(x,y)+δ (x,y)≡ α(1,1) = 1, (5)

i.e., all integral coefficients sum up to unity, which can
be reached by a proper scaling of density ρ(x,y). In ad-
dition to the listed InIm values, we propose to use four
integral values αt(x,y), βt(x,y), γt(x,y), and δt(x,y) of
a tilted InIm, see Figure 1b. Again, αt(x,y) can be
computed using existing functionality (we use function
integral of OpenCV [Bra00] in our implementa-
tion). For computing the other three values, one may
call the same function for a tilted InIm of the density
texture rotated by 90◦, 180◦, and 270◦, correspondingly.
Obviously, tilted integral coefficients also sum up to
unity, i.e., an analog of Equation (5) holds for αt(x,y),
βt(x,y), γt(x,y), and δt(x,y):

αt(x,y)+βt(x,y)+ γt(x,y)+δt(x,y)≡ 1. (6)
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(a) integral coefficients at location (x,y)

(b) tilted integral coefficients at location (x,y)

Figure 1: InIm computations: (a) The four coeffi-
cients computed at location (x,y) stand for integrals of
a density function over respective rectangular regions.
(b) The four additional coefficients can be computed for
the same location as integrals over tilted regions.

4 EQUIVALENCE OF PSEUDO-
CARTOGRAM CONSTRUCTION
AND GBC PROJECTION

Contiguous cartogram construction algorithms aim at
equalizing a given density distribution by smoothly de-
forming the geographical map. The deformation has to
be smooth in order to preserve neighborhood relation of
the map region and avoid region overlapping, thus, sup-
porting readability of the result. Many cartogram meth-
ods iteratively deform a spatial mesh and then apply a
texture mapping technique for computing cartograms.

The pseudo-cartogram algorithm by Tobler [Tob86]
computes an exact cartogram for separable density
functions, i.e., when ρ(x,y) = f (x) · g(y) for some

functions f and g. In this particular case, Tobler
proposed a transformation (x,y) 7→ (x′,y′) given by

(x′, y′) =

 x∫
0

f (t)dt,

y∫
0

g(t)dt

 , (7)

which constructs a perfect cartogram. For a non-
separable density function, an approximate solution
can be obtained by [Tob86]

(x′, y′) =

 1∫
0

ρ(x,y)dy,
1∫

0

ρ(x,y)dx


= (α +β , α +δ ), (8)

when using the notations from Figure 1a.

Limitations of the method by Tobler come from the
fact that spatial dimensions are transformed separately.
Then, in particular, lines of a rectangular mesh remain
straight lines after transformation. The accuracy of
the pseudo-cartogram highly depends on how close the
given density function can be approximated by a sepa-
rable function. E.g., if ρ(x,y) is constant along a diag-
onal of the texture and vanishes elsewhere, the pseudo-
cartogram algorithm results in a trivial mapping, i.e.,
does not deform the map at all, see Figure 2a.

(a) Tobler’s pseudo-cartogram

(b) 4 sliding anchors (c) 8 sliding anchors

Figure 2: Synthetic dataset illustrating limitations of
Tobler’s approach. The density is set to 1 in the
green diagonal stripe and to 0 elsewhere. While To-
bler’s pseudo-cartogram (a) does not deform the artifi-
cial map, our map deformations using 4 (b) or 8 sliding
anchors (c) perform significantly better in enlarging the
populated region and contracting the empty background
area.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

21

Vol.28, No.1-2, 2020



Before proposing our cartogram method, we first
demonstrate that the mapping in Equation (8) is equiva-
lent to a RadViz or GBC projection of the texture pixels.
GBC maps a multidimensional sample (a1, . . . ,ak) to a
2D domain according to formula [CXM17]

z =
k

∑
j=1

a j

∑ai
·v j, (9)

where {v j} are anchor points in the projection domain
each representing a data dimension. The RadViz an-
chor points are usually placed in a circular layout. GBC
generalizes the projection formula for the arbitrary con-
figuration of the anchor-points distribution. Now, let a
pixel in the undistorted map be characterized by InIm
coefficients (α, β , γ, δ ) and let the anchor points be
v1 = (1, 1), v2 = (1, 0), v3 = (0, 1), and v4 = (0, 0).
Then, according to Equation (9) and when taking into
account that the ImIn coefficients sum up to unity, see
Equation (5), we obtain

z = α · (1, 1)+β · (1, 0)+ γ · (0, 1)+δ · (0, 0)
= (α +β , α +δ ), (10)

which is equal to the mapping in Equation (8) for
z≡ (x′,y′). Usually, the sample coefficients in GBC
are interpreted as attracting force magnitudes acting be-
tween the sample and the respective anchor points. In
our case, there are four forces, whose magnitudes are
the InIm coefficients and which pull the pixel towards
the respective texture corners. The resulting force in-
duces the pixel position in the deformed map.

5 PROPOSED METHOD
5.1 Deformation Formulae
In order to alleviate limitations of the pseudo-cartogram
method proposed by Tobler, we extend the deformation
map in Equation (10) by taking into account the tilted
InIm coefficients (αt , βt , γt , δt). We test two options
for assigning anchor nodes to the coefficients. First, in
analogy to the procedure above, the nodes can be fixed
and set to the midpoints of the boundary edges of the
texture, resulting in a mapping

(x′, y′) = αt(x, y) · (0.5, 1)+βt(x, y) · (1, 0.5)+
γt(x, y) · (0.5, 0)+δt(x, y) · (0, 0.5)

=

(
βt +

αt + γt

2
, αt +

βt +δt

2

)
. (11)

However, the resulting map is clearly suboptimal, see
Figure 3c, since the mapping in Equation (11) does not
cover the whole texture space, i.e., regions close to the
texture corners remain empty for any possible integral
coefficient. Thus, the transformation in Equation (11) is
impractical and we list it only for the sake of complete
exposition.

Instead, we propose to use anchor points which depend
on the coordinates of the mapped pixel, namely

(x′, y′) = αt(x, y) · (x, 1)+βt(x, y) · (1, y)+

γt(x, y) · (x, 0)+δt(x, y) · (0, y)

= (βt + x · (αt + γt), αt + y · (βt +δt)) . (12)

The new adaptive anchor points are the intersection
points of the dashed lines in Figure 1a with the sides of
the domain boundary. We refer to this transformation
as a four sliding anchor map. The mapping in Equa-
tion (12) is much more flexible when compared to To-
bler’s pseudo-cartogram. Note that the straight lines of
the mesh become curved after the transformation, see
Figure 2b.

Tobler’s pseudo-cartogram is by construction accurate
for separable density distributions but it may perform
poorly otherwise. Our transformation in Equation (12)
instead is not exact for separable ρ(x,y) but is more
flexible. We further extend our four sliding anchor
map by combining it with a flexible version of To-
bler’s psudo-catrogram. We propose to modify Tobler’s
method by using sliding anchors instead of the four
fixed texture corners used in Equation (9) and average
the resulting mapping with our transformation in Equa-
tion (12), such that each pixel is mapped using eight
sliding anchors. The proposed deformation formula has
then the form:

(x′, y′) =
1
2

(
α ·q1(x, y)+β ·q2(x, y)+

γ ·q3(x, y)+δ ·q4(x, y)+ (13)

(βt + x · (αt + γt), αt + y · (βt +δt))

)
,

where the new adaptive anchor points qi(x, y),
i = 1, . . . ,4, are the intersection points of the dashed
lines in Figure 1b with the sides of the domain bound-
ary. The anchors can be computed according to these
formulae:

if y < x : q1(x, y) = (1, 1+ y− x),

q3(x, y) = (x− y, 0);
if y≥ x : q1(x, y) = (1− y+ x, 1),

q3(x, y) = (0, y− x);
if x+ y < 1 : q2(x, y) = (x+ y, 0),

q4(x, y) = (0, x+ y);
if x+ y≥ 1 : q2(x, y) = (1, x+ y−1),

q4(x, y) = (x+ y−1, 1). (14)

The proposed deformation can be applied to every pixel
of the undistorted map. However, in our tests, we map
only nodes of a regular rectangular mesh according to
Equation (13) and then use texture mapping technique
for interpolating the map within the grid cells. For
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better understanding of the deformation outcome, the
sparse grid lines after transformation are shown in the
results in Figure 2c.

5.2 Algorithm
The complete proposed deformation algorithm includes
following five steps:

1. Prepare density texture ρ(x,y), i.e., based on geosta-
tistical data.

2. Compute textures containing integral coefficients.

3. Define a mesh over the geographical map, which
will be deformed.

4. Apply deformation formula (13) for computing the
new positions of the mesh’s vertices.

5. Interpolate the map within each deformed mesh cell.
This can be performed using a texture mapping tech-
nique.

Note that due to Equation (2), only one texture α(x, y)
is sufficient for computing β (x, y), γ(x, y), and δ (x, y).
Moreover, due to Equation (6), only three tilted InIms
are needed. Therefore, in total, only four textures with
InIms are required for computing the proposed defor-
mations (12) and (13).

5.3 User Interactions with Density Tex-
ture

The density value for background region B is typically
not defined. However, its choice may significantly af-
fect the resulting deformation map. If the assigned den-
sity value is high, object O (the non-background re-
gions) will generally be contracted by the transforma-
tion. If the background density is close to the average
density of object O , the size of object O will tend to
remain close to its original size. Also, its shape may
remain close, but the the internal borders of the regions
within O will change. Finally, vanishing density in B
will result in mappings minimizing the background size
while maximizing the total area of object O . Thus, such
a mapping can be interpreted as a global zooming trans-
formation, which aims at efficient usage of available
empty space in the map.

The map deformation algorithms proposed in the pre-
vious section can be executed at interactive rates, thus,
they can be used in interactive applications. One possi-
ble application scenario of the methods is a user-steered
magnification of an area of interest similar to a virtual
lens. Since the resulting mapping is global and smooth,
there is no need for a costly computation of the transi-
tion region between the magnified region and the rest of
the map.

6 RESULTS
For our experiments we used geospatial data in the form
of shape files provided at www.gadm.org. All maps
are given in a longitude-latitude coordinate system.

In our first numerical experiment, we compare the
different proposed deformation formulae for exploring
their character, best application cases, and limitations.
Figure 3a shows the original map of the states of Italy
and the resulting deformed maps. In all cases, the
density distribution is piecewise constant being equal to
1.0 for all states and equal to 0.0 for background. Thus,
ideally the cartogram would deform the map such that
the background area vanishes. With r being the ratio
of the background to country area, Tobler’s pseudo-
cartogram reduces the value of r from originally 3.18
to 1.44. The map for the tilted InIm approach with
fixed anchors in Figure 3c was already discussed
above. It does not make use of the whole texture space,
since the four fixed anchors are placed in the centers
of the texture sides. The deformation with four sliding
anchors computed according to Equation (12) reduces
the background area the most efficiently resulting in
r = 1.06. The combination of this transformation with
the flexible Tobler map (eight sliding anchors) gives
r = 1.22, see Figures 3d and 3e. The fact that the four
sliding anchors have a lower value r than the eight
sliding anchors can be understood, if one considers
that the shape of Italy is dominantly diagonal in the
longitude-latitude coordinates. The non-linear shape
of the deformed mesh lines is clearly visible in the
proposed maps.

In our second test, we examine how the density value
assigned to the background region affects the resulting
deformation. Figure 4a shows undistorted map of the
states of the Czech Republic. Constant density values
are assigned to each region according to population data
in 2011. The average density in the foreground regions
is equal to unity. We test the proposed algorithms with
four and eight sliding anchor nodes with background
density ρ0 = 1.0, 0.5, and 0.0. As ρ0 decreases, the
foreground regions occupy larger parts of the map, i.e.,
the background area diminishes. Note that in contrast
to diagonally spread map of Italy in our first test, the
Czech Republic map is horizontally elongated. Con-
sequently, the method with eight sliding anchor nodes
performs better in contracting the empty region, see
Figures 4g and 4h. In Tobler’s pseudo-cartogram in
Figure 4b the most dense region of Prague (pink area
in the north-west) leads to expansion the Praque region,
but also of other regions that share the same longitude
or latitude coordinates with Praque irrespective of their
real population density. The expansion of the Prague
region in our proposed methods instead has a more lo-
calized character as can be seen from the curved mesh
lines, e.g., in Figure 4g. Therefore, shapes of the re-
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(a) original map
r = 3.18

(b) Tobler’s pseudo-cartogram
r = 1.44

(c) tilted with fixed anchors
r = 2.57

(d) tilted with sliding anchors
r = 1.06

(e) combined deformation
r = 1.2

Figure 3: Comparison of different transformations of a
map of Italy. (a) Original map with an overlaid regular
mesh. Constant density values of 0.0 and 1.0 are as-
signed to the land and background regions, correspond-
ingly. (b) Tobler’s pseudo-cartogram. (c) Deformations
with fixed anchors according to Equation (11). (d) De-
formations with 4 sliding anchors according to Equa-
tion (12). (e) Deformations with 8 sliding anchors ac-
cording to Equation (13). Ratios of the background to
country area r are presented for all maps.

gions in our maps are better preserved when compared
to the Tobler map.

Next, we measured computational times required for
the main steps of the proposed algorithms. We found
that it takes, on average, 53ms for computing all eight
InIm textures of size 10242 and 6.5ms for mapping
1282 nodes of a regular mesh. The execution times
were measured by averaging 1,000 runs of the respec-
tive steps. Integral images are computed using the
OpenCV 3.3.1 library. The user interface is developed

(a) original map (b) Tobler, ρ0 = 0.0

(c) four sliding anchors,
ρ0 = 1.0

(d) eight sliding anchors,
ρ0 = 1.0

(e) four sliding anchors,
ρ0 = 0.5

(f) eight sliding anchors,
ρ0 = 0.5

(g) four sliding anchors,
ρ0 = 0.0

(h) eight sliding anchors,
ρ0 = 0.0

Figure 4: Dependence of the foreground region’s shape
preservation in the deformed map on the background
density value ρ0.

in Qt 5.11. All relevant computations are performed on
a PC with an i7-7700K 4.20GHz CPU. Texture map-
ping is executed using OpenGL 4.6.

Finally, we demonstrate how the proposed methods can
be used in interactive exploration systems as a virtual
lens. The user selections of regions of interest on a to-
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(a) user selection (b) eight sliding anchors,
ρ1 = 13.0

(c) user selection (d) four sliding anchors,
ρ1 = 13.0

Figure 5: Focus+context zooming of a user-selected region: (a,c) User selections on the original map. (b,d)
Transformed maps with density value ρ1 = 13.0 assigned to the selected regions, while the area outside the selected
region keeps density value 1.0.

pographical world map are shown Figure 5a and 5c, re-
spectively. The selections are performed interactively
using a lasso tool, i.e., the region does not need to
be predefined. Then, the user interactively increases
the constant density value assigned to the selected area
from an initial value of ρ1 = 1.0 to a new value of 13.0,
while the background density (everything outside the
selected region) remains equal to 1.0. The results of
the transformation for the two selections are shown in
Figures 5b and 5d. We observe that the selected regions
appear as being zoomed in, while the rest of the original
map is smoothly deformed.

In the accompanying video, we provide further test
cases, demonstrate a prototype of our geospatial data
exploration system, and explain possible user interac-
tions with the tool.

7 CONCLUSION AND FUTURE
WORK

In our work we showed how Tobler’s pseudo-
cartograms can be computed using InIm, i.e., an
InfoVis task is solved by a projection method (RadViz
or its generalization GBC) using an image processing
tool. We illustrated the limitation of the method by
constructing a simple synthetic dataset, for which
Tobler’s method is ineffective. We furthermore showed
the equivalence of the pseudo-cartogram construction
and the GBC projection method. Using tilted InIm,
we proposed new deformation algorithms with four
and eight sliding anchor nodes, correspondingly, which
result in non-linear non-separable globally smooth
mappings. Therefore, adjacency of the subregions
of the original map is perfectly preserved in the
transformed one, which is one of a desired properties
of contiguous cartograms. We showed how these
techniques can be used as virtual lenses for mapping
regions of arbitrary shapes. Algorithmic simplicity and
computational efficiency of the proposed algorithms
allow for using them in highly interactive applications.

Many existing map deformation algorithms are itera-
tive. Since the proposed mappings are explicit, disad-
vantages and limitations of iterative methods (i.e., need
in setup of non-intuitive parameters, preventing over-
lapping of subregions, and computational burden) are
avoided.

Future directions of our research include:

• Using InIm tilted by arbitrary angles (not only mul-
tiples of 45◦), we may arbitrarily increase the num-
ber of anchor nodes. The properties of the limiting
deformation map as the number of anchor increases
are of theoretical and practical interest.

• Since the positions of the anchor points are arbitrary,
it may be possible to construct deformations defined
for non-rectangular domains.

• All steps of the proposed algorithm allow for paral-
lel computing. Thus, despite the fact that our com-
putation times are already low and allow for inter-
active applications, computation times could further
be significantly reduced by implementing our meth-
ods on the GPU.

• Application of the proposed algorithm to regulariza-
tion of arbitrary distributed point clouds is techni-
cally possible. Certain adaptations for efficient com-
putation of the density function are necessary.
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ABSTRACT
Choosing effective strategies before playing against an opponent team is a laborious task and one of the main
challenges that American football coaches have to cope with. For this reason, we have developed an artificial
intelligent American football coach (AICO), a novel system which helps coaches to decide the best defensive
strategies to be used against an opponent. Similar to coaches who prepare a winning game plan based on their
vast experience and previously obtained opponents’ statistics, AICO uses power of machine learning and video
analysis. Tracking every player of the last recorded matches of the opponent team, AICO learns the strategies used
by them and then calculates how successfully their own defensive strategies will perform against them. We have
used 7350 videos in our experiments obtaining that AICO can recognize the opponent’s strategies with about 93%
accuracy and provides the successful rate of each strategy to be used against them with 94% accuracy.

Keywords
Computer Vision, image and Video Processing, Pattern Recognition, Sport, AI

1 INTRODUCTION
Nowadays, the advancement of neural network applica-
tions has been a useful tool to develop automatic analy-
sis systems to help with sport analysis, being an active
research topic in the last years [Jia16, Fre19]. In this re-
search, we have created an artificial American football
coach to help the coaches to determine the best strate-
gies to be used against opponent teams. In order to as-
sist coaches with this laborious task, we have created
AICO, a novel video analysis recognition system which
works together with machine learning.

Recognition and tracking players in the field is made by
video analysis, which determines the strategies used by
both teams, offensive and defensive ones. To the best
of our knowledge, other research related to American
football is only focused on professional teams, not be-
ing easily accessible by other kind of teams, such as
small teams or amateurs. There are studies to detect
players in the field [Rie13, Dir18], track player’s move-
ment [Yam13], recognize offensive strategies [Atm13,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Sid09].However, all these investigations required pro-
fessional resources, such as, broadcast videos obtained
from TV [Ste17] or the utilization of specialized and
expensive devices to track players [Bur17].

For this reason, we have developed AICO, an inexpen-
sive and versatile system that can be used everywhere.
AICO is an artificial recognition system which can be
used by any type of American football team, since it
does not require any previous device installation on
players, stadium or field.

American football coaches spend a considerable time
studying American football videos from opponent
teams, trying to discern strengths and weakness and
use them for their own benefit. AICO is a novel
automatic system developed to help coaches in that
matter. AICO gathers the opponents movements and
strategies in order to discover the best strategies to be
used against that team, lightening the amount of work
made by the coaches involved in the analysis of the
opponent videos.

On the other hand, since during our research we could
not find any available American football video dataset
containing match plays, we have created an Ameri-
can football video dataset containing about 7350 plays
of different teams, making possible the use of this
dataset in further video recognition comparisons in fu-
ture projects.
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2 AMERICAN FOOTBALL BACK-
GROUND

In American football, there are two teams with 11 play-
ers who compete in four quarters of 15 minutes. In ev-
ery play, one of the teams is defined as the offensive
team, the one in possession of the ball, while the other
team is defined as the defensive team.
According to American football regulations [Goo18],
the offensive team needs to move the ball forward at
least 10 yards. This is why the field has clearly marked
yardage lines on it. The offensive team has 4 attempts,
called downs in American football, to either score or
gain 10 or more yards. If the ball is moved that far,
the count resets, and the team earns another set of four
downs to try go a further 10 yards. If the offensive
team does not reach 10 or more yards in the 4 downs,
the defensive team gains the possession of the ball and
changes its role to offensive team. In this paper, a play
is defined as a down of the offensive team.
To know if a strategy was successful or not, we are us-
ing the American football analytic made by Football
Outsider [Out19] which focuses on advanced statisti-
cal analysis of the NFL and is run by professional sport
journalists. An offensive strategy is defined as success-
ful by Football Outsiders if it gains at least 40% of the
yards-to-go on the first down, 60% of yards-to-go on
the second down and 100% of yards-to-go on third or
fourth down. Otherwise, the strategy is defined as un-
successful.
American football coaches have a playbook containing
all the offensive and defensive strategies their team can
play during a match. The offensive strategies are sep-
arated in passing strategies and running strategies. In
passing strategies, the quarterback attempts to pass the
ball to another player. On other hand, in running strate-
gies, the quarterback runs with the ball or gives the
ball to a closest player that makes the run. A team has
numerous passing and running strategies in their play-
book. The defensive strategies are divided depending
on the amount of players used in the front line. For our
experiments, the playbook used has about 100 offensive
strategies (60 passing and 40 running) and 100 defen-
sive strategies.
To determine the offensive strategies to be used against
an opponent team, coaches choose the best strategies
players performed in the previous games or training ses-
sions. However, for selecting defensive strategies is a
different story.
In sports, team coaches analyze the opponents teams
in order to find the best strategy to play against them.
American football is not an exception. Thanks to our
collaboration with Kosei Gakuen High School Ameri-
can football (KSS Lotus) team, we verified that coaches
visualize the last matches of the next rival, checking ev-
ery offensive play used by the opponent team. Figure 1

Figure 1: Flowchart showing how the coaches decide
their defensive strategies against an opponent

Figure 2: Preprocessing data to train AICO from a play
clip

shows a flowchart describing how coaches gather man-
ually the information about the opponent team. In every
play, coaches compare their offensive strategies in the
playbook to the opponent strategy used, trying to match
it with the most similar one in their playbook. They also
collect other relevant information, such as, how many
passes failed or who was the most relevant player of the
other team. After having collected all the information
from the opponent team, coaches sit together and dis-
cuss the best defensive formations and strategies to be
used against that team. This work is manually done by
coaches, however, in this paper, we propose an alter-
native system, AICO. A novel video analysis system
together with neural networks that can automatically
gather the relevant information of the opponent team
and determines the best defensive strategies to be used
against that team.

3 ALGORITHM
One of the two main goals pursued by AICO is the
creation of an automatic video analysis system. The
flowchart showed in Figure 1 represents how coaches
examine a specific opponent team using the opponent
match recordings. This procedure made by the coaches
is repeated for every opponent team. Similar to the
way coaches get information about their opponents, the
video analysis system implemented is responsible to
obtain the data from the recordings of the last oppo-
nent team matches. A strategy recognition algorithm
has been developed to analyze the last video matches of
the opponent team and detect strategies used in every
play. The algorithm detects the offensive strategies of
the team chosen as opponent, and also calculates how
successful were the defensive strategies of the other
team against them. From now on, this strategy recog-
nition process is going to be called preprocessing step,
whose overview chart can be found in Figure 2.
The second main goal of AICO uses the results obtained
in the preprocessing step to learn the strategies of a spe-
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cific adversary and provide the most reliable defensive
strategies to be used against this opponent team, calcu-
lating the percentage of success of every strategy pro-
vided by the coaches. As consequence, AICO is trained
independently for every opponent, obtaining different
AICOs for every team analyzed.

3.1 Field Location
AICO currently works only using one single-camera
and there are no restrictions on the camera used to
record the match as long as it is in a fixed position with
a tripod and has at least a quality of 720p.
After receiving the full match of an opponent team,
AICO uses an improved Chen’s algorithm [Che14],
with 92% of detection accuracy, in order to recognize
different sequences of plays. We have modified Chen’s
algorithm to detect the plays in any kind field, due to
the algorithm only work if the field has grass, but this
is not always the case. In the labeling step, AICO clas-
sifies every play depending on the actions the teams are
performing. AICO only keeps offensive and defensive
plays (downs), which are labeled as play clips, discard-
ing other kind of plays such as, field goal plays and
extra point plays.
For each play clip, AICO performs Direct Linear Trans-
form (DLT) [Har03] to detect what part of the field the
camera is recording. DLT algorithm is used to resolve
the homography matrix H between the first frame of the
play clip and a digital American football field model.
From now on, this digital American football field model
will be referred to as the football model. Since the sys-
tem works in homogeneous coordinates, a point (x,y)
from the real field and a point (x′,y′) from the football
model can be expressed as:

c

x′

y′

1

= H

x
y
1

 (1)

where c is any non-zero constant, and

H =

h1 h2 h3
h4 h5 h6
h7 h8 h9

 (2)

To resolve Equation 1, the first row is divided by the
third row:

−h1x−h2y−h3 +(h7x+h8y+h9)x′ = 0 (3)

and the second row is divided by the third row:

−h4x−h5y−h6 +(h7x+h8y+h9)y′ = 0 (4)

As consequence, Equation (3) and (4) can be expressed
in a matrix form:

Aih = 0 (5)

Figure 3: Hough transform lines are represented in red
while RANSAC lines are in green

where Ai =

[
−x −y −1 0 0 0 x′x x′y x′

0 0 0 −x −y −1 y′x y′y y′

]
and

h =
[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]T .

Since each correspondent point in the first frame (x,y)
and its relative (x′,y′) in the football model provides
2 equations, 4 correspondent points are enough to cal-
culate H [Ela08]. AICO requests the user to provide
2 matching reference points for the first frame and other
2 for the football model.

AICO uses the homography matrix H to localize the
field boundaries. Once it is obtained, AICO will only
focus on the players located inside the field, not consid-
ering anything or anyone out of it.

When all the play clips sent are obtained from the same
point of view, the homography calibration only needs
to be made once and can be used by all of them. Only
when a play clip is sent to AICO from a different per-
spective, it will be necessary to introduce the 4 match-
ing reference points to calculate H again.

To resolve this issue, AICO has an automatic algo-
rithm to detect if the play clip has a different per-
spective from the previous one. This algorithm uses
Hough transform [Bal87] to detect the lines in the first
frame. After these lines are obtained, the algorithm uses
RANSAC [Chu03] to join lines that are detecting the
same line. AICO stores these RANSAC lines together
with the 4 matching reference points.

Figure 3 shows an example of the lines obtained from
Hough transform (red lines) and the RANSAC lines
(green lines) obtained. AICO will store these RANSAC
lines or used them to compare with the RANSAC lines
of the previous play clip.

When a new play clip is analyzed, AICO compares all
RANSAC lines of the first frame of this play clip to
the all RANSAC lines obtained from the previous play
clip. When the location of the RANSAC lines of both
play clips coincide, with a difference of less than 10%,
AICO assumes that the location of the camera is the
same in both play clips. As consequence, the 4 refer-
ence points of the previous play clip are used for this
new play clip, and the user does not need to introduce
them again.
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Figure 4: Example of ball line detection and player de-
tection

3.2 Ball Detection
The American football regulation establishes that, at
the beginning of every play, the ball has to be on the
ground, and only the Center player from the offensive
team is allowed to touch the ball with one hand. This
Center player is the one who passes the ball to the quar-
terback at the beginning of each play. Team strategy
performances start right after the ball starts moving, so
this is the crucial moment for tracking players and de-
termining the strategies of both teams.

As consequence, to determine when the play starts, it
is necessary to track the ball and detect when the ball
is moved for first time. When the ball is moved, AICO
starts tracking players in order to determine the offen-
sive and defensive strategies used in that play clip.

AICO uses the Convolutional Neural Network (CNN)
Inception_v2 [Jof15] in the first frame of each play clip
to locate the ball. This CNN has been trained to detect
only American football balls.

Once the ball is detected, it is tracked via Sparse Collab-
orative appearance Model (SCM) [Zho14]. This tracker
algorithm has been demonstrated to be one of the best
state-of-the-art tracker models [Wy015]. AICO uses
Equation (1), where (x,y) are the ball tracker coordi-
nates, and H is the homography matrix calculated in
the field location step, to locate the ball in the football
model.

When the Center player passes the ball to the quarter-
back, the ball is not only moved in the real world, but
it is also moved in the football model. We have defined
that if the ball is moved 1 yard or more in the football
model, then the tracker following the ball is deleted and
the frame is frozen. This frame is used to detect all
players in the field in the player detection step.

Additionally, AICO draws an artificial line that crosses
the initial ball position and goes parallel to the closest
yard line in the field. This line, called ball line, is used
by the player detection step to determine if a player is
part of the offensive or defensive team. Figure 4 shows
an example of the ball line detection. AICO only uses
one line, however it has been represented by two lines
(black and white) in the figure to make it easy to see the
ball position.

3.3 Player Detection and Tracking
After the ball has been moved to the quarterback,
AICO freezes the frame and uses the CNN Incep-
tion_v4 [Sze17] to detect every player in the field.
This neural network has been trained to detect only
American football players. So referees are not included
in the detection.

Inception_v4 frames all the players detected in the field.
Once players are detected, AICO treats each player’s
frame separately. We have seen in our experiments that
tracking the whole body of the players results in lost
tracking of the player assigned. However, if the hel-
met is tracked instead of the body, the tracking accu-
racy obtained is very high (around 95%). For this rea-
son, another CNN (Inception_v2) is performed on each
player’s frame. This inception_v2 has been trained to
detect the players’ helmet in each player’s frame.

The helmet detected of the player is assigned to the
Siamrpn++ [Li19] tracker. As consequence, each
player has each on personal Siamrpn++ tracker.

However, the position calculated in the football model
using the helmet position does not allow AICO to lo-
calize the correct position of each player in the foot-
ball model. To obtain the correct position of the player
in the football model, it is necessary to use their feet.
Thus, for every helmet tracker, AICO also established a
location point. This location point is the lower point
of the line that goes from the middle of the helmet
tracker to the bottom of the player’s frame. The location
point follows the helmet tracker, so, wherever the hel-
met tracker moves, the location point is always defined
with the tracker. As consequence, the correct position
of the player in the football model is determined using
the location point together with the homography matrix
H calculated in the field location step (Equation (1)).

Figure 5 shows an example of the player detection pro-
cedure. In this example, Inception_v4 detects the player
and creates the green frame. Afterwards, Inception_v2
recognizes the helmet and defines the blue frame. It
is possible to create a vertical line (yellow line) be-
tween the middle width point of the helmet frame and
the player’s frame bottom. The intersection between
this yellow line and the player’s frame bottom is repre-
sented as a red dot. This red dot is the location point of
that player.

In addition, AICO can automatically determine if the
player is in the offensive or defensive team. Once every
player in the field is located at the beginning of the play,
AICO searches the Center player. This player is the
closest player to the ball and it is always part of the
offensive team. In Figure 4, the location point of the
Center player is marked by a green circle.

After having located the Center player, AICO uses the
ball line to determine if the offensive team is on the
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Figure 5: Player detection method

Figure 6: Tracking obtained after player detection step
is finished. Defensive tracking on the left and offensive
tracking on the right

Figure 7: Converted images of the offensive (right) and
defensive (left) tracking used to determine the strategies
of both teams

right or left side of the ball. Consequently, using the
ball line and the location player, AICO can define if
players are part of the defensive or offensive team.

Once all players are detected and tracked, AICO cre-
ates two images: one has the tracking of the offensive
players and the other contains the tracking of the defen-
sive players. Figure 6 shows an example of these two
images. As it is shown in Figure 7, these two images
are sent to an application that uses OpenCV [Kae16]
to clean, rotate and convert them in images that can be
used to determine the strategy used by both teams in the
strategy detection step.

Defensive strategies in coach playbooks do not include
players in the front line, since their main responsibility
is to stop the other team offensive front line and execute
always the same movement. Therefore, the OpenCV
application removes the defensive front line players in
the defensive converted image.

3.4 Strategy Detection
AICO compares the offensive and defensive strategies
obtained in player detection step to the coach playbook,
looking for the most similar strategies contained in the
playbook. To compare the images AICO uses OpenCV.

For this comparison, the strategies in the playbook are
converted in images and then compared to the converted
images obtained in the player detection step. AICO
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Figure 8: Example of strategy image conversion

uses Optical Character Recognition(OCR) to detect the
text contained in the playbook images.

Figure 8 shows the strategy conversion using the
OpenCV application (right) from the playbook (left).
All strategies in the playbook use the same tags to
define the players position, such as, CB for cornerback
player or H for running back player. These tags are
used by the OpenCV application to find the initial
position of each player, as well as they are used to
localize the closest line that determines where the
movement line of the player starts. Then, player tags
are replaced by dots and the remaining text is removed
from the final image converted. Additionally, the
player movement lines are converted in similar lines
that the ones AICO uses in the converted tracking
images of the players generated in the player detection
step. In the Figure 8, the defensive strategy called
Aegan has only 6 players, since the 5 players from the
defensive front line are not included because they are
not relevant to the strategy. The defensive front line
players are not relevant due to their only objective is to
go forward and tackle the quarterback independently
of the defensive strategy used.

The converted strategies are stored in a database that
can be used by AICO in the future, this conversion pro-
cess is executed only once per strategy. In this database
is store the original strategy, the name of the strategy
and the converted strategy. The coaches can use several
playbooks and increase the strategies that AICO con-
tains in its database. As consequence, AICO will have
more strategies to compare with, achieving a more pre-
cise detection of the strategy used by the teams. For our
experiments, AICO uses a strategy database of around
100 offensive and 100 defensive strategies.

AICO uses OpenCV to search the most similar strate-
gies from the playbook that matches the converted
tracking result images obtained in the player detection
step. SIFT algorithm [Low04] is used to compare
the tracking image of the offensive and defensive
teams against all the offensive and defensive strategies
contained in the playbook, respectively.
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The offensive and defensive strategies with the high-
est successful comparison percentage from the list are
identified as the strategies performed by the offensive
and defensive teams. This percentage is determined by
the confidence match of the converted tracking image
and the strategy image from the playbook. However, if
the highest percentage is lower than 65%, then AICO
assumes that the playbook does not contain the strategy
tracked. In this case, AICO sends an email to the coach
to inform that a new strategy has been detected. At this
point, the coaches can create a new strategy and send
this new strategy to AICO. Then AICO will compare
and match this new strategy in the play.

The output of this strategy detection step are two strat-
egy images from the playbook, offensive and defensive,
which match the converted tracking images obtained in
the player detection step.

3.5 Strategy Result Detection
At this point, AICO can detect and track players, and
determine the strategy used by both teams in a play.
However, AICO does not know yet if the strategies used
by each team were successful or not. For this purpose,
AICO needs to count the downs of the offensive team
and calculate how many yards the offensive team has
gain/lose in each down.

Regarding the count of downs, AICO needs to identify
if the team continue being the same in the next play,
if that is the case, the down counter of that team is in-
creased. If it is not the same team, the possession of the
ball has changed, so the down counter needs to be set
to 1 and the ball position is stored as initial ball posi-
tion. This initial ball position is used at the end of this
step to determine which strategy is successful in each
down.

To detect the team, AICO uses the helmet color of
the Center player detected in the player detection step.
AICO stores the color of the helmet and compares it to
the helmet color of the Center player in the previous
clip play. In case the color is the same, then the of-
fensive team has not changed and the down counter is
increased by 1. Otherwise, the offensive and defensive
team has switched roles.

To determine the yards gain by a team, AICO checks
the ball position of the play clip and compares how
many yards has moved from the previous play clip.
AICO uses the orientation of the offensive team to de-
termine if the yards gained were positive or negative
from the previous play clip.

AICO uses the yards calculation obtained by the offen-
sive team, the down counters and the initial ball posi-
tion to determine if the strategy used in the play clip
was successful or not. Therefore, according to Foot-
ball Outsiders, AICO defines an offensive strategy as
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Figure 9: The CNN structure of AICO

successful if it gains at least 4 yards (40%) for the first
down, 6 yards (60%) for the second down and 10 yards
(100%) for third or fourth down compared to the initial
ball position. Otherwise, the offensive strategy is de-
fined as unsuccessful. Regarding the defensive strategy
used in that play clip, it is consider unsuccessful when
the offensive strategy is labeled as successful and vice
versa.

After all the play clips of a whole match have been an-
alyzed, AICO asks the coaches to give the names of
both teams that participated in the match. AICO identi-
fies both teams using the color of the player’s helmets.
Lists of all the offensive strategies used by each team
are stored. There is one list per team. These offen-
sive strategy lists are used later by the coaches to select
the offensive strategy that they want AICO to compare
against their defensive strategy.

3.6 AICO
AICO adopts the CNN structure shown in Figure 9
which has 12 deep neural network layers: one image
input layer, four pairs of convolutional and max pool-
ing layers, two fully connected layers and one softmax
layer.

The filter size and the number of filters of each con-
volutional, ReLU and Max Pooling layers are set by
parameter fine-tuning, shown below them in the figure.
For example, the first convolutional layer has a 40 filter
of 7x7 size. Both fully connected (FC) layers multiply
the input by a weight matrix and then adds a bias vec-
tor. The first FC layer uses a weight matrix of 50x1280
numbers and a bias vector of 50 numbers. The second
FC layer uses a weight matrix of 18x50 and a bias vec-
tor of 18 numbers. The last layer is a softmax layer that
uses the softmax function, also known as the multiclass
generalization of logistic regression [Gho18]. Last but
not least, AICO CNN structure output is the success
rate of the strategy input against the other team.

The dataset utilized for training this CNN contains in-
formation gathered in the preprocessing step from sev-
eral play clips of the target team, containing only of-
fensive play clips of that team. Every dataset entrance
contains the offensive strategy image used by the target
team in a play clip, the defensive strategy image used
against the target team in the same play clip, and a la-
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bel confirming if the offensive strategy was successful
or not.

Since AICO needs to be trained individually for each
opponent team, there will be a specific AICO per ev-
ery opponent team. For instance, if the coaches want
information from 3 teams, there will be three different
AICOs trained using different datasets related to each
team.

After AICO has finished its training and now it can be
used by the coaches. AICO provides a list of offen-
sive strategies used by a team and the neural network
trained for that specific team. This neural network has
two inputs: an offensive strategy and a defensive strat-
egy image with a size of 256x256 matrix. As conse-
quence, both images will be resized before they are in-
put in the CNN. The offensive strategy image is an im-
age selected previously by the coaches from the offen-
sive strategy list of the target team. The defensive strat-
egy image is an image of a defensive strategy provided
by the coaches.

In summary, AICO examines the defensive strategies
received from the American football coaches against
the offensive strategy of the target team, and returns
the effectiveness of using this defensive strategy against
that offensive strategy of the opponent team.

4 EXPERIMENTS
AICO performance has been tested using real-world
American football videos. Since we could not find
available public datasets, we requested to KSS Lotus
team to provide us American football video matches
from diverse teams.

KSS Lotus team has supplied videos from 5 differ-
ent teams, which are considered as opponents, playing
against other teams. There is a total of 10 matches per
opponent team. These 10 matches are used as a ground
truth due to we know in advance the strategies used in
each play by each team. A total of 5 additional matches
where KSS Lotus team played against that 5 teams, one
match per team, together with the respective strategies,
has been provided as well.

The 50 matches of the opponent teams together with
the strategies used by both teams in each play clip were
used to train AICO. The matches of KSS Lotus team
are used to verify AICO’s strategy prediction accuracy.
All of these 55 matches has been recorded using a Sony
FDR-AX60 video camera with a quality of 720p.

KSS Lotus coaches segmented the 55 match videos into
play clips, and we grouped them in a dataset. In to-
tal, the dataset contains about 7350 play clips, where
6700 are play clips from the 5 opponent teams and
650 are the play clips where KSS Lotus team is play-
ing against one of the 5 opponent teams. Based on
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Figure 10: Tracking accuracy comparison using differ-
ent parts of the player’s body

the video matches used in the experiments, an Amer-
ican football team performs around 65 offensive and
70 defensive plays per match. This number can vary
if one of the teams is stronger than the other team in the
match. As a result, the dataset created contains about
650 offensive and 700 defensive plays of each oppo-
nent team, no counting the match against KSS Lotus
team. The 6700 play clips are used to examine AICO
performance on all the experiments together with the
playbook strategies, however, the 650 play clips where
KSS Lotus team played as well as the playbook are used
to verify the defensive strategy selection effectiveness.
This dataset containing all the play clips will be made
publicly available in future projects.

4.1 Tracking Accuracy
Due to the movement of the players, a tracker can jump
from one player to another, since one player is over-
lapped by another player in the video. As a conse-
quence, one player may have two trackers, having lost
the other player his tracker. It makes difficult to deter-
mine the strategy used by the teams since the tracker is
not following the correct player. For this reason, it is
necessary to achieve a high tracking accuracy.

In this experiment, we have used 100 play clips where
we manually defined the position of each player as a
ground truth. After having these ground truth videos,
we have tested the following trackers from the seventh
visual object tracking vot2019 challenge [Kri19]:
ATOM, DIMP, SiamRPN++, GradNet and ASRCF.
Each of this trackers has been trained to track Ameri-
can football players using the datasets created for the
players detection. We have tested as well the CSRT
tracker [Luk17] provided by OpenCV. Additionally,
these trackers has been tested using different parts of
the players body: helmet, body, feet, upper-body and
low-body.

Figure 10 shows the tracking accuracy of the track-
ers tested using different parts of the player’s body.
This tracking accuracy is obtained by comparing the
ground truth movement of a player together with his
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tracked movement. As we can see in the results, the
player’s helmet is the part of the body that obtained
the highest tracking accuracy, and the best tracker is
SiamRPN++ achieving around 96.075% accuracy. For
this reason, AICO tracks the helmet of each player us-
ing SiamRPN++.

4.2 Neural Networks
In this research, the neural networks utilized are
required to achieve a high accuracy performance. We
compared the performance of the following CNN
classifiers: Inception [Iof15], Resnet [Kai16] and
Mobilenet [How17]. Regarding Inception models,
they have been tested using the four versions currently
available (Inception_v1, Inception_v2, Inception_v3,
Inception_v4), and Inception-ResNet-v2 which is a
hybrid inception module using Resnet and has a similar
computational cost than Inception_v4. Additionally,
the following deep residual networks(ResNets) are also
tested: Resnet_v1_50, Resnet_v1_101, Resnet_v1_152,
Resnet_v2_50, Resnet_v2_101, Resnet_v2_152 and
Resnet_v2_200. Last but not least, diverse config-
urations of Mobilenet with 224 as input resolution
have been added to the experiments: Mobilenet_v1,
Mobilenet_v1_075, Mobilenet_v1_050 and Mo-
bilenet_v1_025. All these models are built upon
TensorFlow GPU.

To the best of our knowledge, there are not any datasets
available to detect American football balls, player’s
helmet or the players in the field. For this reason,
we have created 3 different datasets using images and
videos provided by KSS Lotus team from season 2013
to 2018. These datasets are composed of 2000, 15000
and 20000 images of balls, helmet and players, respec-
tively, and they will be publicly available for everyone
in the future. For the experiments, these datasets have
been used to train each CNN classifier.

Figure 11 shows the average accuracy of detecting the
ball, the helmet and the player using different neural
networks. Inception_v4 achieves the highest accuracy
(92.41%) on detecting the players in the field compared
to the other CNN classifiers. Regarding the ball and hel-
met detection, the best option for both is Inception_v2
since it always detects them and has the fastest infer-
ence time, compared to other CNN that achieves the
same accuracy. Since the ball is always detected, AICO
can always define the goal line that is utilized to deter-
mine if the offensive strategy was successful or not.

As a result, AICO uses two Inception_v2 to detect the
helmet and the ball, and one Inception_v4 to detect the
players in the field.

4.3 Strategy Selection Accuracy
In the experiments, AICO has used the KSS Lotus play-
book to detect the most similar strategies performed by
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Figure 11: Average accuracy of detecting the ball, the
helmet and the players using different CNN classifiers

each team in a play clip. This detection mechanism is
similar as the coaches made in real life (Figure 1). After
comparing the strategies selected by AICO to the strate-
gies selected by KSS Lotus coaches in each play clip,
we have verified that the 8% missing recognition of the
players in the field made by Inception_v4 does not af-
fect the detection of the correct strategy. As a result,
about 95.65% and 90.58% of the times AICO recog-
nizes the same defensive and offensive strategies as the
coaches, respectively. Regarding the offensive strate-
gies, 88.58% and 92.58% are achieved for running and
passing offensive strategies, respectively.

4.4 Strategy Prediction Effectiveness
For this evaluation, the process is divided in three steps.
First, AICO is trained using different amounts of an
opponent match videos. In the second step, we ex-
amine the KSS Lotus team match against this oppo-
nent. In this analysis, we obtain the defensive strategies
used by KSS Lotus team together with the successful
rate of each defensive strategy used per offensive strat-
egy used by the opponent team. For example, if KSS
Lotus team performs the defensive strategy A 4 times
against the offensive strategy B of the opponent team,
being 3 times successfully defended, then strategy A has
achieved 75% of successful rate.

In the third step, we input to AICO the strategy image
of A together with the strategy image of B, and then
AICO returns the successful rate of using A against B.
For the experiment results, it is compared the success-
ful rate of A against B obtained by AICO to the one
obtained in the second step.

Figure 12 shows a successful rate example of using
a some defensive strategy, such as Zombie, against to
an offensive strategy like Crunch_Read. In blue it is
represented the successful rate obtained by KSS in the

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

34

Vol.28, No.1-2, 2020



0
10
20
30
40
50
60
70
80
90

100

Zo
mbie v

s C
runch

_R
ead

Zo
mbie v

s K
ing

Zo
mbie v

s A
lex-R

ead

Se
lec

t v
s C

run
ch

_R
ea

d

Se
lec

t v
s K

ing

Se
lec

t v
s A

lex
-Rea

d

Berr
y v

s C
runch_

Read

Berr
y v

s A
lex

-Read

Hot 
vs 

Gato

Hot 
vs 

Sp
in

﻿De
fe

ns
iv

e 
st

ra
te

gy
 s

uc
ce

ss
fu

l r
at

e 
(%

)

KSS rate AICO predicted rate

Figure 12: Example of some defensive strategy suc-
cessful rate accuracy against offensive strategies

0

1

2

3

4

5

6

7

8

9

10

KSS vs OKL KSS vs KIY KSS vs MIN KSS vs MGR KSS vs ODB Average

﻿Su
cc

es
sf

ul
 p

re
di

ct
io

n 
av

er
ag

e 
er

ro
r (

%
) 

Figure 13: Successful prediction average error made by
AICO using the 5 matches where KSS is playing

match, and in orange the successful rate predicted by
AICO.

As we can see, AICO’s successful rate matching up
with that of KSS indicates the high performance level
of AICO to predict how well a defensive strategy will
perform in the real world.

Figure 13 shows the average error of predicting the suc-
cessful rate using 5 matches of KSS playing against
different opponents. AICO achieves 6.11% of error
prediction, confirming that AICO can help the coaches
to predict how successful will be a defensive strategy
against to a particular offensive strategy

5 CONCLUSIONS
This paper presents a novel video recognition system
working together with a neural network structure,
AICO, which has been developed to analyze the
opponent team strategies to successfully obtain the best
defensive strategies to use against that adversary. Video
analysis task made by American football coaches may
become easier and more precise thanks to AICO.

In addition, during this research, we have created a
dataset that contains about 7350 play clips based on
different American football teams which will become
publicly available in future projects.

This video analysis recognition system can work with
any type of recording, even if only a single camera has

been used, and it can easily be used by any American
football team at any field, since it does not require pre-
vious installation in the stadium, field or players.

AICO achieves a 93.12% of accuracy in strategy de-
tection of both teams in a play compared to the coaches
judgment. Furthermore, AICO obtains a successful rate
prediction with around 94% of accuracy determining
the successful rate of a defensive strategy against an
offensive strategy of an opponent team. As a result,
AICO becomes a reliable artificial coach advisor to help
coaches in their opponent strategy analysis.
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ABSTRACT 
With the steady progress of Deep Learning (DL), powerful tools are now present for sophisticated segmentation 

tasks. Nevertheless, the generally very high demand for training data and precise reference segmentations often 

cannot be met in medical domains when processing small and individual studies or acquisition protocols. As 

common strategies, reinforcement learning or transfer learning are applicable but coherent with immense effort 

due to domain-specific adjustment. In this work the applicability of a U-net cascade for training on a very low 

amount of abdominal MRI datasets of the parenchyma is evaluated and strategies to compensate for the lack of 

training data are discussed. Although the model accuracy when training on 13 MRI volumes with achievable 

JI=89.41 is rather low, results are still good enough for manual post-processing utilizing a Graph cut (GC) 

approach with medium demand for user interaction. This way, the DL models are retrained, when additional test 

data sets become available to subsequently improve the classification accuracy. With only 2 additional GC post-

processed datasets, the accuracy after model re-training is increased to JI= 89.87. Besides, the applicability of 

Generative Adversial Networks (GAN) in the medical domain is evaluated discussing to synthesize axial CT 

slices together with perfect ground truth reference segmentations. It is shown for abdominal CT slices of the 

parenchyma, that in case of lack of training data, synthesized slices, that can be derived at arbitrary number, help 

to significantly improve the DL training process when only an insufficient amount of data is available. While 

training on 2,200 real images only leads to accuracy JI=88.75, the enrichment with 2,200 additional images 

synthesized from a GAN trained on 5,000 datasets only leads to an increase up to JI=92.02. Even if the DL 

model is exclusively trained on 4,400 computer-generated images, the classification accuracy on real-world data 

is notable with JI=90.81.       

Keywords 
Medical Image Segmentation, Deep Learning, Generative Adversial Networks, Graph cut. 

1. INTRODUCTION 
The research and development on preferably 

automated, generic and precise segmentation 

strategies for processing medical image datasets has 

been of high importance since the very first 

computed tomographic image acquisition devices in 

the early 1970s. Since then many semi-automatic 

segmentation concepts have been proposed, but most 

of them conserve the medical diagnostician and its 

experience-based evaluation as central criterion for 

the final decision. While there are some few off-the- 

shelf applications available for specific diagnostic 

domains [Chr18], in general computer-aided 

diagnostics is still achieved in a user-centric process 

utilizing tools and frameworks for semi-automated 

image processing [Str15].  

1.1 Field of Medical Application  
Whenever quantitative evaluation is required for 

computer-based planning of a surgery, evaluating the 

success of the therapy or progress of a degenerative 

disease in a follow up study [Agg11], a precise 

segmentation of the target structures is inevitable. 

With emerging progress in 3D visualization with 

respect to the mixed reality continuum and the 3D 

print of anatomical structures as 3D models for 

surgery planning, training and education [Squ18] the 

Permission to make digital or hard copies of all or part of 
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profit or commercial advantage and that copies bear this 

notice and the full citation on the first page. To copy 
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redistribute to lists, requires prior specific permission 
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fields of application for medical image processing are 

steadily growing.  

A broad range of semi-automated image processing 

tools is available for user-centric processing in 

particular diagnostic domains. Nevertheless, 

evaluation of datasets with these tools requires a high 

level of experience in both, the medical and the 

technical domain to prevent from misapplication, 

errors and subjective bias of the results. To close this 

gap, the application of standardized image processing 

chains for processing medical tomographic datasets 

is recommended in radiographer training [Zwe13]. 

1.2 State of the Art 
Since the beginnings of computer-based medical 

image analysis, besides semi-automatic and user-

oriented methods such as Region Growing, Graph cut 

or Live-Wire [Son13], shape-modeling approaches 

have been a strategy for automation of the 

segmentation process in specific medical domains. 

Rudimental a priori knowledge regarding shape is 

incorporated for deformable models [McI96] or 

Level Set segmentation [Set99] while statistical 

shape models [Coo92] are trained on a large dataset 

of reference shapes representing the expected 

anatomical variability. While statistical shape models 

lead to a domain-specific compact representation of 

shape due to PCA, the generic use is still hard to 

achieve as extraction of corresponding landmarks is 

very domain-specific and difficult for non-prominent 

structure shapes. Incorporating the expected intensity 

profile besides shape makes Active Appearance 

Models [Coo98] relevant in several diagnostic 

domains but their most significant field of application 

is still human face recognition.  

Advances in available GPU hardware and machine 

learning frameworks such as Tensorflow/Keras lead 

to an immense boost in Deep Learning (DL) 

applications, facilitating practical use of formerly 

only theoretically specified concepts. Conventional 

Feed Forward networks, already applied in medical 

domains such as multi-modal image fusion [Zha11] 

are steadily enriched by an increasing number of 

hidden layers thus increasing the overall number of 

trainable parameters. All common Deep Learning 

Concepts found their way and application in specific 

medical domain. For instance self-organizing maps 

neural networks [Koh97] that are due to their 

grid/graph nature good for complex clustering tasks, 

were successfully applied for classification of renal 

diseases too [Van98]. Advanced semantic 

interpretation of input signals is of high relevance in 

natural langue, optical character or audio processing 

and was significantly boosted by recurrent neural 

networks introduced as long/short-term-memories 

(LSTM) [Hoc97] allowing incorporation of historical 

contextual aspects for an increased classification 

accuracy. A key trigger for the technological 

progress of Deep Learning is the development of 

convolutional neural networks (CNN). Instead of 

expert or machine driven feature selection in the 

machine learning domain, with convolutional 

networks the search for domain-specific and 

adequate features is now handled within the training 

process. The possible multi-resolution convolution 

pyramids and depth of 1200 layer for some CNN 

structures thereby significantly outperform classic 

convolution approaches such as Haar Cascades 

[Vio01] of sequentially applied weak classifiers. 

Another key development in Deep Learning is 

generative adversial networks (GAN) [Goo14] 

opening up totally new domains of application. 

GANs thereby are composed of a classification 

(discriminator) and a convolution network 

(generator) both alternatingly trained. While the 

generator tries mimicking the given reference 

samples with synthesized data, the discriminators 

loss indicates if the fake and real data are 

differentiable. As fields of application, the synthesis 

of handwritings, paintings, and medical data [Yi19] 

or general enrichment of the training data to prevent 

from over-fitting [Fri18] are of relevance.      

1.3 Related Work 
With few datasets available, i.e. around 10-20 

volumes only, common Deep Learning models 

generally cannot be trained to highest accuracy. 

Applying drop-out and data augmentation strategies, 

the risk for over-fitting can be significantly reduced 

[Gao19]. Besides data augmentation, the generation 

of synthesized data is another strategy for enriching 

the reference database as successfully shown for liver 

segmentation [Yan17]. Nevertheless, due to the 

black-box nature of Deep Learning models, dealing 

with results below required accuracy is difficult.  

A marker-based U-net model was proposed in 

[Sak19] that is simultaneously trained on both, the 

automatic classification of the target anatomical 

structure and to thereby obey markers optionally 

placed by the user for a post-processing classification 

run. While training a correction mechanism together 

with the net unmasks much of accept as is nature of 

Deep learning models, the problem of insufficient 

data for proper training still remains. 

Another approach to incorporate the human expert in 

the computer-based diagnostics is to interpret the DL 

computer outcome as a “third eye” [Fou19], i.e. using 

deep learning recognition algorithms to solely 

improve visual diagnostics in medicine.      

1.4 Training Deep Learning Models on 

Small Training Datasets 
In this work the applicability of Graph cuts, a 

segmentation concept known since two decades, is 

evaluated in a totally different context, namely as 

post-processing for segmentations of an insufficiently 
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trained Deep Learning model. That way, the black 

box nature of DL models is overcome and adequate 

correction of the results by experts becomes possible 

in a semi-automated way. The test data 

classifications significantly improved and validated 

that way by human experts in image processing are 

then used to enrich the data basis for model 

retraining. Thereby, a generic strategy for allowing 

expert-centered post-processing of DL models is 

introduced allowing to correct the seldom cases 

where obvious segmentation errors are introduced.  

Furthermore, a strategy for synthesizing artificial 

medical image datasets together with highly 

correlating reference segmentations is evaluated. The 

medical fake images are mixed with real data at 

different mixing ratios and used for training a U-net 

cascade. As GANs generally require a huge amount 

of input data for training, a chicken-egg problem 

would arise. Thus, in this work it is shown that even 

GANs trained on a low amount of reference images 

can synthesize images that help to train DL models.   

2. MATERIAL 
As diagnostic domain in this research work, the 

parenchyma from CT and MRI imaging modality is 

chosen. The 131 CT datasets from the Medical 

Segmentation Decathlon [Sim19] with provided 

ground truth expert reference segmentations are used 

for training a GAN as well as for evaluations of real 

and synthesized data on the training process of a U-

net cascade [Zwe20] with the class liver and tumor 

being merged. Graph cut based post-processing of 

classification results from a weakly trained U-net 

cascade are evaluated on 20 parenchyma MRI 

datasets in axial CAIPIRINHA non-contrast, breath-

holding fat-suppressed AX CAIPI VIBE FS protocol 

[Mor15]. From the MRI datasets, 10 are without and 

10 with Hepatocellular Liver Lesions (HCC). In case 

of a lesion, this class is merged with the parenchyma 

region leading to a binary classification problem. The 

MRI datasets are segmented using spline tracing 

(live-wire) and auto-tracing (region growing) 

available from Analyze software [Rob98].   

2.1 Data Preparation and Pre-processing  
For both, CT and MRI datasets, the same pre-

processing strategies are applied. To balance the 

varying slice thicknesses, the z-spacing is adjusted to 

the x/y inter-slice spacing using cubic interpolation 

for the intensity dataset and binary shape 

interpolation [Raj03] for the reference segmentations. 

To limit the extent of the input slices, an area of 

352×288 pixels, referring to an average axial width-

to-height aspect-ratio, is extracted based on the 

segmentation ROI. To allow for data augmentation 

during the training process, a safety margin of 10px 

along the borders is applied, leading to original slice 

extent of 372×308 pixels.   

  

  

Figure 1. Slice Pre-processing for CT (top row) 

and MRI (bottom row). 

To normalize the intensity profile w.r.t the target 

anatomical structure, µliver and σliver are evaluated per 

dataset based on the segmentation mask. An intensity 

transform similar to windowing is applied to shift the 

mean object intensity to 127.0 per dataset applying a 

scale factor �	 � ���
�∙σ	
��
	, see Eqn. 1.  

T���� � � ����127 � |�� � μ���� | ∙ �, 0� �� # μ���� 
�$%�127 & |�� � μ���� | ∙ �, 255� �� ( μ����          (1) 

Preprocessing on slice #100 for the first CT and MRI 

volume respectively with size restriction to 372×308 

pixel and intensity transformation is shown in Fig. 1. 

3. METHODOLOGY 
The Deep Learning Network to be used in this paper 

for validation on low or synthesized data is a U-net 

[Ron15] applied as cascade with combining axial, 

sagittal and coronal views [Zwe20], see section 3.1. 

Although the Deep Learning model processes the 

input in a 2D slice-wise manner, results of Jaccard 

Index JI=.9529 and Dice Coefficient DC=.9759 are 

achievable with slice-mini-batch optimization and 

training on solid 22,000 images from 100 volumes.  

3.1 U-net Cascade for Liver Segmentation 
The input axial images are transformed to sagittal 

and coronal view with the 2D slices then each 

classified by a separately trained U-net, see Fig. 2.  

 

Figure 2. Slice-wise processing in axial, sagittal 

and coronal view with final results as average. 
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Figure 3. U-net adapted from [Ron15] with 

exemplary kernel output per hierarchy level. 

The U-nets thereby expect an unsigned char single 

channel 352×288 image as input and incorporate 

176×144, 88×72, 44×36 and 22×18 resolution 

hierarchies for the classic encoder/decoder pattern, 

see Fig. 3. For matter of illustration, in Fig. 1 kernel 

output feature images are visualized at different 

levels of hierarchy.  

For training, an Adam Optimizer [Kin14] with 

learning rate 	
 � 5 ∙ 10)* using cross-entropy as 

loss is utilized to train the model at a +�,-ℎ/
0� �
32 and 2�,
�3-� � 12 up to 200 epochs. 

3.2 Data Augmentation 
A general key strategy for training is application of 

data augmentation, thereby slightly varying the input 

data. With data augmentation over-fitting can be 

reduced not only if training on small datasets but in 

general. For this research work, the following 

geometric and intensity transformations are applied 

on the input data at random scale:  

 transX and transY: translation in x-direction 

and y-direction of the current slice  

 rot: rotation around the image center 

 intMul: linear scale of the image intensities 

leading to brighter or darker pixel values  

 intAdd: additive manipulation of the 

intensities within the window, leading to a 

uniform shift for full scalar range  

For training of the U-net cascade as delineated in 

section 3.1 and [Zwe20], the augmentation scale is 

randomly varied within range [16, 16, 10, .1, 30] for 

transX, transY, rot, intMul and intAdd respectively. 

3.3 GAN for Medical Image Synthesis 
A GAN architecture with Generator as convolutional 

neural network fed by random input and a 

Discriminator as binary classificatory (fake or real) is 

chosen.  

 

Figure 4. Adapted GAN architecture [Ker17]. 

The GAN is trained in a progressive way using 7 

levels of resolution from 4×4 to 256×256, see Fig. 4 

for illustrated levels 1 (4×4), 4 (32×32) and 7 

(256×256). For training, an AdamOptimizer with a 

learning rate of 0.00015 and an iteration count iter 

increasing with the hierarchy level l as 
,�
 �
20,000 & 	 ∗ 32,000 & 	9 ∗ 3,200 is chosen, thus 

leading to iterations between [55.200;400.800]. As 

input for the Discriminator 5,000 CT slices non-

overlapping with the test-set are randomly arranged 

in batches of size 2 with data augmentation applied. 

To resample the input size between 256×256 used for 

the GAN and 352×288 used for the U-net cascade, 

bilinear interpolation is applied. An important aspect 

is the synthesis of an accurate ground-truth reference 

mask besides the fake medical images. Thus, the 

single-channel input tensor of size 2×256×256×1 

with values in [0.0;1.0] is extended to 2×256×256×2 

with the associated reference mask as additional 

channel.  

3.4 Graph cut Post-Processing 
To allow for user-guided post-processing of the DL 

results, a fitness function for N4 Graph cut processing 

combining both, original image properties and DL 

segmentation results is required, namely: 

 ORIG: horizontal (H) and vertical (V) edges 

of the original intensity profile after 

applying intensity shift, c.f. Equ. 1. 

 EXP: ORIG damped / amplified by a 

difference image from the expected intensity 

level after smoothing (median 
 � 1 and 

Gauss 
 � 5, : � 2.5). 

 S1 and S4: H/V edges from the binary 

segmentation results from axial, sagittal, 

coronal and combined with 1 and 4 hits per 

voxel respectively.  

Besides S1 and S4, the 2- and 3-hit cases are omitted 

due to lack in entropy. The cumulated fitness 

function is composed by applying Equ. 2 with 

function s() scaling to [0; ;�] and the weights 

optimized via Evolution Strategy. 
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max	?��@A$BC , ;D�, ��E�FC , ;��,
��/1C , ;9�, ��/4C , ;�� H              (2)                 (2) 

For Evolution Strategy optimization of the weights, 

recombination (μ/ρ+, λ) with epochs=100, 

batchSize=8, populationSize=8, children λ=32, 

mutationChance=0.4, mutationRate=0.25 dropping 

by 4% each epoch is applied.  

To reduce the required user-interaction to a 

minimum, the FG and BG seeds are derived from the 

combined DL segmentation via skeleton calculation.  

4. IMPLEMENTATION 
Model training and testing is implemented in Python 

version 3.7.3 using Tensorflow 2.0 beta together with 

Keras. The Python image processing is built upon 

OpenCV and numpy for fast matrix operations. To 

provide the model with training data, a 

DataGenerator class is derived from Sequence 

base class providing data augmentation functionality. 

5. RESULTS 
For evaluation, the Sørensen-Dice coefficient (DSC) 

and the Jaccard index (JI) are calculated from 

reference mask R and result foreground region S of 

image I with A ⊆ $,	/ ⊆ $ and pixel �J, K� ∈ 	A ∪ /. 

Additionally, the normalized surface distance (NSD) 

[Lap19] evaluates the FP and FN error based on the 

3D distance-map based proximity to the next correct 

border position, see Equ. 3-5.   

N/O�A, /� � 2 ⋅ |A ∩ /|
|A| & |/|  (3) 

%/N�A, $� � 1 � ∑ STU,VWXU,VY∙Z�T�U,VU,V
∑ Z�T�U,VU,V

	, 
 		N[,\�A� � ]
�,^_`��a
b�A�� 

(4) 

c$�A, /� � |A ∩ /|
|A| & |/| � |A ∩ /| (5) 

The process steps discussed in this paper, namely 

data preparation, pre-processing, GAN and U-net 

cascade model training and validation/test are 

performed on a Colfax SX9600 GPU Rack with 

2×Intel Xeon Gold 6148 2.4GHZ processors and 

768GB of DDR4 memory with 2667MHZ clock 

frequency split into 24 partitions of 32GB each. The 

system runs CentosOS 7.6 operating system and 

provides for fast tensor calculation 8 GPU cores, 

namely 4× NVIDIA Volta Titan V 12G and 4× 

NVIDIA Tesla V100 32G. For training and 

evaluation, parallelization was omitted and only one 

single Tesla core used in a sequential manner.   

5.1 GAN Synthesis of Medical Images 
Utilizing the GAN structure trained on 5,000 CT 

slices, 10,000 synthesized images are generated that 

meet the range criterion for cumulated discriminator 

and generator loss as |N�dee| & |B�dee| # 160.0, see 

Fig. 5 for images 10 (upper left), 20 (upper right), 30 

(lower left) and 40 (lower right).  

  

  

Figure 5. Synthesized Images with Reference. 

The synthesized images show a slightly different 

intensity profile with µreal=68.268 [26.52;106.70] and 

σreal=16.420 for the 640 real and µfake=69.341 

[26.827;104.022] and σfake=15.872 for the 640 fake 

images according to HYBRID_T in Tab. 1. The 

generated binary regions are of average size 

µsizeRefREAL=3,836,278 [6,156;7,809,799] and 

µsizeRefFAKE=3,678,637 [0;8.235,480] respectively. It 

seems that the loss-check for the data synthesis leads 

to an increase in caudal and cranial slices with 

smaller parenchyma cross-sections, areas that 

generally are weaker in axial U-nets and necessitate 

for additional training [Zwe20].  

5.1.1 GAN Synthesis 
For testing the applicability of GAN-synthesized data 

on training the U-net cascade, real and fake CT slices 

of the parenchyma are utilized for training and test as 

enlisted in Tab. 1. Training and validation of the U-

net utilizes different real CT slices (#9000-15000) as 

used for the GAN training (first 5000) while then for 

test, the CT slices #22500-27000 are used for 

extraction of 640 slices. With respect to the generated 

fake data, the synthesized slices for U-net training 

and test are separated datasets too.   

It is further evaluated, how different the images 

synthesized for FAKE_T according to Tab. 1 and the 

ones used for training are, i.e. that the random 

number generator utilized by Tensorflow does not 

lead to redundancy, see Fig.  6 for the first three 

generated images and their most similar images from 

the fake training database evaluating the difference 

images (mid) and the reference mask match (right). 

purpose dataset #real #fake 

TRAIN 

REAL_SMALL 2,200 0 

REAL 4,400 0 

FAKE 0 4,400 

HYBRID 2,200 2,200 

HYBRID_LARGE 2,200 6,600 

TEST 

REAL_T 640 0 

FAKE_T 0 640 

HYBRID_T 640 640 

Table 1. Small train and test ensembles for 

validation on the axial U-net. 
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test_fake #1 

 
train_fake #1094 

 
train_fake #1094 

 
test_fake #2 

 
train_fake #1377 

 
train_fake #4254 

 
test_fake #3 

 
train_fake #2427 

 
train_fake #3719 

 Figure 6. GAN synthesized image similarity. 

As the same GAN model is utilized, depending on 

the random seeds the similarity at least implies, the 

slices might result from a same virtual volume. 

Nevertheless, the accuracy of a potential model on 

the synthesized data is not as relevant as the 

difference in the real data from the synthesized 

samples, see Fig. 7. Here the GAN being trained on a 

distinctive dataset prevents from potential bias. For 

the real-data, separation into slices for 

train/validation/test that do not originate from the 

same volume is important. It ensures that not only the 

slices but the entire tomographic information is 

distinctive, very relevant to prevent from bias due to 

high z-resolution.    

 
test_real #1 

 
train_fake #873 

 
train_fake #4361 

test_real #2 
 

train_fake #2533 
 

train_fake #3804 

test_real #3 
 

train_fake #1103 
 

train_fake #3263 

Figure 7. Similarity of real images with GAN-

synthesized images in train and test. 

model 
dataset 

REAL_T FAKE_T HYBRID_T 

REAL 92.3572 89.9044 91.1111 

REAL_SMALL 88.7514 87.7616 88.3140 

FAKE 90.8081 95.7848 93.0345 

HYBRID 92.0237 94.9955 93.4568 

HYBRID_LARGE 92.9145 97.6974 95.1660 

Table 2. JI on axial U-net with Synthesized Data 

from 5k GAN. 

5.1.2 Training with synthesized data 
With the proposed datasets, 5 axial U-net models are 

trained with the mean JI evaluated as percentage-

accuracy on the 3 test datasets, see Tab. 2. With 

4,400 compared to 2,200 datasets used for training, 

REAL significantly outperforms REAL_SMALL.  

Comparing the performance on real data with the 

models HYBRID and HYBRID_LARGE it becomes 

obvious that synthesized data significantly boosts the 

training process. The model FAKE only trained on 

4,400 synthesized data achieves solid JI=90.808 on 

the REAL_T test data. In Fig. 8 results of 

REAL_SMALL model (second row) and 

HYBRID_LARGE model (third row) on REAL_T 

test data for slices #1-3 (first row) with color-

encoded FN (red) and FP (blue) are presented. 

The training process for 97 epochs on the 

HYBRID_LARGE model is shown in Fig. 9. Due to 

heterogeneity of the data and applied data 

augmentation, the validation accuracy follows the 

trend of the test accuracy indicating no over-fitting. 

The loss is reduced from 0.7 to 0.18 within the first 

epoch and then drops approximately indirect 

proportional to the loss with a sink at epoch 46. 

 

   

   

   
Figure 8. FN, FP and correct classification with 

HYBRID model on REAL_T test data. 
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Figure 9. Loss and accuracy of train/validation 

per epoch when training  HYBRID_LARGE. 

5.2 Graph cut Post-processing  
In this section, the applicability of Graph cut as post-

processing tool for DL classifications as well the 

influence of enriched datasets on the training process 

is evaluated.  

5.2.1 Training U-net cascade on MRI data 
Training on 13 test datasets (#2-14, 7 without and 6 

with HPC; 3,132 slices) gives solid results for the 

axial, sagittal and coronal models with significant 

boots when combining with 2/3 majority voting 

(AVGa,c,s) for tests on 420 slices of datasets #1 and 

#14 (1 with and 1 without HPC), see Tab. 3. 

model DSC JI NSD 

�J 92.1154 85.3834 92.3271 

�Je 91.9219 85.0513 88.6966 

�J` 92.5392 86.1144 93.2273 

�fBg,`,e 94.4096 89.4111 97.0472 

Table 3. U-net cascade trained with 13 datasets in 

axial, sagittal, coronal and combined AVGa,c,s.   

5.2.2 Graph cut for post-processing 
Utilizing evolution strategy, after 100 epochs 

evaluating on the CT parenchyma data with 

automatic application of the Graph cut post-

processing, the fitness-function weights get 

optimized to w0=0.287, w1=0.217, w2�0.419, 

w3�0.641, c.f. Fig. 10.  

 

Figure 10. Evolution Strategy-based optimization 

of the Graph cut fitness function. 

With only the weight ratio relevant, w3 for the  

cumulated DL result is of highest importance, while 

the original image aspects (w0, w1) still allow for 

adaption  to the image profile, see Fig. 11 for original 

images, combined DL segmentation and the 

horizontal edges derived from the fitness function for 

slices 30, 100 and 190 of MRI dataset #1.  

   

   

   

Figure 11. Horizontal GC fitness image. 

With the FG and BG seeds automatically derived 

from the combined segmentations, the required 

amount of user interaction is kept to a minimum; see 

Fig. 12 for skeleton, GC result and mismatch for 

slices 30, 100 and 190 of MRI dataset #1. 

   

   

   

Figure 12. GC segmentation based on skeletons. 

To allow for tests with enriched datasets, the 

remaining 5 MRI datasets (2 without and 3 with 

HPC; 1,238 slices in total) are segmented by a 

medical expert utilizing Live-wire (LW) to provide 

rough reference segmentations. From these 5 

datasets, two (484 slices) are classified by the U-net 

cascade (AVGa,c,s) as described in sections 3.1 and 

5.2.1. The two datasets thereby only achieve 

JI=82.1644, DSC=90.2091 and NSD=91.5809. After 

the GC post-processing, the accuracy is increased to 

JI=88.8186, DSC=94.0782 and NSD=98.1452 with 

the semi-automated processing lasting for 152min 

(18.8sec per slice on average). To evaluate 

robustness of the Graph cut post-processing step, 

three experts evaluate the same subset of n=30 

randomly selected slices. Although the FG skeletons 

placed by the experts in a manual way vary, the 

segmentation outcome is very stable, see Fig. 13.   

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

43

Vol.28, No.1-2, 2020



   
(a) (b) (c) (d) 

(e) (f) (g) (h) 

 
(i) 

Figure 13. Slice #28 robustly segmented by three 

medical experts utilizing GC with different FG 

and BG skeletons. 

Slice #28 without skeleton support (a) and expected 

ground truth (e) shows suboptimal DL result JI=.877 

and can be improved by all test persons (f-h) in range 

[.911;.920] even with very different GC skeleton 

interpretations (b-d). Utilizing GC for manual DL 

post-processing, potential invalid DL results get 

improved by test persons p#1-#3 and variability of 

the JI accuracy is generally decreased, see Fig. 13 (i). 

   

   

   

Figure 14. MRI add-on data with original, result 

from AVGa,c,s and result from Graph cut. 

As a rough Live-wire segmentation with immanent 

inaccuracies is used as base for comparison, the 

accuracies before and after GC correction allow for 

relative comparison only, see Fig. 14 comparing 

original slice, initial result from AVGa,c,s and after GC 

correction for add-on slices #100, 150 and 1100 

respectively.   

5.2.3 Re-training the U-net on enriched data 
The training of the 4 models for the U-net cascade, as 

described in section 5.2.1, is re-run with enriched 

data. The initial 13 datasets thereby get enriched by 

484 slices (1 dataset with and 1 without HPC) 

previously corrected by user-guided Graph cut post-

processing, see Tab. 4. Furthermore, all 5 add-on 

datasets (1,238 slices) are used to directly train the 

U-net cascade based on the rough Live-wire 

segmentation provided, see Tab. 5.  

model DSC JI NSD 

�J 93.2937 87.4303 96.0364 

�Je 92.1216 85.3940 85.8697 

�J` 92.9323 87.1230 93.4942 

�fBg,`,e 94.6671 89.8742 97.4724 

Table 4. Results on Models trained with 13 

datasets enriched by 2GC datasets 

model DSC JI NSD 

�J 92.6168 86.2488 94.3139 

�Je 92.1746 85.4850 87.9913 

�J` 92.1341 85.4155 91.9131 

�fBg,`,e 94.5163 89.6028 97.0967 

Table 5. Results on Models trained with 13 

datasets enriched by 5 LW datasets. 

A comparison of the achievable test accuracy for the 

models trained on the 13, the 13+2GC datasets and 

the 13+5 LW datasets is provided in Fig. 15. 

A visual representation of the tomographic 

segmentation achievable by the AVGa,c,s model 

trained on 13 + 2GC is given in Fig. 16 with FP 

(blue) and FN (red) visualized for test dataset #1 with 

errors in cranial and caudal direction and high 

accuracy in the mid slices. 

 

Figure 15. Achievable JI accuracy for DS13, 2GC 

add-on and 5LW add-on, c.f. Fig.12-14. 

 

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

44

Vol.28, No.1-2, 2020



  

Figure 16. 3D segmentation of test dataset #1. 

6. DISCUSSION AND CONCLUSION 
Although the texture of the GANs at increased mask 

size does not look natural for a human inspector, yet 

the synthesized data is highly applicable for training 

of DL Models with an abstraction from pure visual 

input to implicit features anyway. The results in Tab. 

2 indicate that enriching the data with synthesized 

data boosts the training process similar to data 

augmentation. In case of lack of real-world data, the 

gap can be closed. As models REAL (4,400 real) and 

HYBRID_LARGE (2,200 real, 6,600 fake) perform 

at comparable accuracy, the impact of synthetic data 

seems of course not equal to enriching with real data 

but leading to an improvement with increasing 

number as compared to models  REAL_SMALL and 

HYBRID. As synthesized data can be generated in 

arbitrary numbers at very high variability it is a good 

option to compensate for lack of real-world testing 

data. It has to be stated, that training the GAN itself 

at a high accuracy necessitates for a sufficient 

amount of real data too.  

For the GAN used in this paper, 5,000 input slices 

from 24 CT volumes were used. Thus, for application 

domains with a very low number of samples, a kind 

of chicken-egg-problem arises as the GAN needs to 

be trained first in a sufficient way. Here the 

application of data augmentation as applied for the 

U-net training helps to significantly reduce the 

demand for training data. Furthermore, a reasonable 

batch size, e.g. 16 or 32, which was not possible due 

to resource limits of the DL HW, will help to reduce 

the data demand for GAN training.  The presented 

encoding of intensity profile and binary reference 

segmentation as a 2-channel tensor allows for 

generation of medical data together with very precise 

ground-truth. To reduce the memory demand by a 

factor of two, both the intensity and the reference 

channel could be encoded in a single channel.  

The applicability of GC as post-processing tool is 

given due to fitness function weights optimized with 

Evolution strategy to balance between original image 

intensity and segmentation edges. Using two 

additional input data first weakly classified by the U-

net cascade at only JI=82.1644 and then post-

processed by GC allows to iteratively enrich the 

training dataset. As the reference segmentations 

generally originate from different tools and experts, 

this heterogeneity affects the training process too. It 

is shown, that a small set of segmentations prepared 

with region growing, Graph cut and Live-wire trains 

well with the U-net cascade. As shown in Fig. 16, 

adding data of adequate quality can help to improve 

the training and test quality.  

Thus, if in specific diagnostic domains or for 

particular studies the initially available amount of test 

data is insufficient to train DL models at highest 

accuracy, an incremental approach for data revision 

and model re-training was presented. In future, 

training of GANs with less input slices and the 

combination with GC will be evaluated.  
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ABSTRACT
3D mesh unfolding transforms a 3D mesh model into one or multiple 2D planar patches. The technique is widely
used to fabricate papercrafts, where 3D objects can be reconstructed from printed paper or paper-like materials.
The applicability, visual quality, and stability of such papercraft productions is still challenging since it requires
a reasonable formulation of these factors. In this paper, we unfold a 3D mesh into a single connected 2D patch.
We also introduce glue tabs as additional indicators in order to provide users with extra space to apply glue for
better reconstruction quality. To improve space efficiency, we do not apply glue tabs on every edge, while still
guaranteeing the stability of the constructed paper model. A minimum spanning tree (MST) describes possible
unfoldings, whereas simulated annealing optimisation is used to find an optimal unfolding. Our approach allows
us to unfold 3D triangular meshes into single 2D patches without shape distortions, and employing only a small
number of glue tabs. A visual indicator scheme is also incorporated as a post-process to guide users during the
model reconstruction process. Finally, we qualitatively evaluate the applicability of the presented approach in
comparison to the conventional technique and the achieved results.

Keywords
3D mesh unfolding, Simulated annealing, Glue tabs, Graph theory

1 INTRODUCTION
Papercraft is a popular art form, where people create
2D or 3D objects from cardboard or paper as shown in
Figure 1. To achieve this, a 3D mesh representing the
object is unfolded into a single or multiple 2D patches,
which can then be printed and used to reconstruct the
model in 3D. Possible models range from simple ones,
such as paper aeroplanes, to complex ones, such as
buildings. Recently, papercraft approaches are also
used in combination with self-folding materials to form
structures in an automatic fashion [1]. As demonstrated
by Takahashi et al. [19], unfolding a 3D triangular mesh
into a single patch, in contrast to multiple patches, eases
the reconstruction process for users. However, finding
an unfolding, in which no pair of faces overlaps with
one another and without distorting the original mesh is
a difficult task. More specifically, it has been proven
to be an NP-complete problem [8]. Reconstruction of a
model can be hard even with indicators that show which
edges should be glued together [19].
Glue tabs are essential as they allow users to build clean
3D models and guide them during the reconstruction
process. In this paper, we propose a technique to unfold
a 3D mesh with a minimum number of glue tabs. This
eases the reconstruction of models by guiding edges
that should be glued together, as well as providing users
sufficient surface to apply glue. The addition of glue

(a) (b)
Figure 1: An example of a papercraft model, including
(a) a 3D cow model and its corresponding (b) single
unfolded patch.

tabs increases the complexity of finding an overlap-free
unfolding, due to the combinatorial complexity of se-
lecting edges where to attach glue tabs. We calculate
minimum spanning trees of the dual graph of the 3D
mesh, which describe possible unfoldings. Simulated
annealing optimisation is used to find an overlap-free
unfolding. Glue tabs are pre-calculated and treated ana-
logue to mesh faces when unfolding the 3D model.

We incorporate trapezoidal glue tabs due to their pop-
ularity. Advantageously a trapezoid consists of two
triangles, so that we can consider glue tabs as addi-
tional faces of the 3D mesh and apply similar overlap-
detection when searching for a feasible solution. Fur-
thermore, this shape gives users more space than a sim-
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ple triangle. It is also preferable to a rectangle as it takes
less space. As the glue tabs size increases, the difficulty
of finding an overlap-free unfolding also increases. Our
contributions include the following:

• Introduction of a minimum number of glue tabs to
mesh unfolding problems.

• A new meta-heuristic approach to finding unfold-
ings of 3D meshes.

• Proof that the number of necessary glue tabs can be
optimally pre-computed for each unfolding patch.

The remainder of this paper is structured as follows:
Section 2 discusses conventional mesh unfolding and
optimisation techniques. Section 3 describes the con-
cepts used in this paper. In Section 4, we describe nec-
essary steps of the method. Section 5 brings insight into
the implementation. Section 6 shows several experi-
mental results generated using our approach and eval-
uates quantitatively and qualitatively. Section 7 sum-
marises the findings and provides an outlook on future
work.

2 RELATED WORK
This section focuses on previous work done on the topic
of optimising the unfolding of 3D models and also ex-
plains the differences to the proposed approach.

2.1 Optimised Unfolding of 3D Meshes
Mesh unfolding has different applications, such as cre-
ating papercraft models [16, 19] and the creation of
models from self-folding materials [6]. Some tech-
niques employ mesh deformation [2, 12], in order to
relax the problem. Mitani et al. [12] and Chang et
al. [2] propose methods that allow mesh simplifica-
tion as a pre-processing step. Also, the theoretical per-
spectives [14] of the problem have also been explored.
Some authors study different types of target meshes, for
example, orthogonal polyhedra [20]. The most relevant
work to ours is by Takahashi et al. [19], who proposed
a genetic-based algorithm to find a single connected
patch for printing purposes. They unfold 3D models
without distorting or editing the original 3D model. The
key concept of unfoldability is borrowed from topologi-
cal surgery, in order to guarantee an unfolded patch can
be stitched together along the corresponding cut edges.

Contrary to the work done by Takahashi et al. [19] our
paper explores a meta-heuristic simulated-annealing
approach to find unfoldings. Simulated annealing is
easy to implement compared to genetic algorithms and
it is more likely to find an optimal solution compared
to a greedy algorithm [16].

Another key conventional approach is investigated by
Straub et al. [16]. They explored unfolding and at-
taching glue tabs on all cut edges. They also explored

the removal of overlaps by introducing new subdivi-
sions to the mesh. A greedy algorithm optimises the
unfolding and resolves overlaps. Glue tabs that have
been added to an unfolding are optimised, i.e. changed
in size to avoid overlaps, after an initial unfolding has
been found. For printability, the unfolding is then sep-
arated into multiple cut-out sheets if it does not fit on a
single one.

In this paper, the proposed algorithm examines all pos-
sible glue tabs in advance and selects a minimum num-
ber thereof at each unfolding iteration. To the best of
our knowledge, the simultaneous handling of unfolding
and glue tabs has not been explored in the state-of-the-
art. Our technique is an improvement of the approach
studied by Takahashi et al. [19], where reconstructing a
3D model is facilitated if the mesh is unfolded into just
a single patch.

2.2 Optimisation Techniques
Since the 3D mesh unfolding problem is an NP-
complete problem [8], optimisation techniques are
often used to find a solution. Trying all combinations
would not be practical in most of the cases. Many
optimisation techniques are well explored, including
greedy algorithms [5] or heuristic optimisation tech-
niques [11]. Simulated annealing is a well-known
optimisation technique [9] that is widely applied in
computer science [4] and other scientific fields [13, 18].

Data: Configuration P, Max Temperature tmax
Result: Optimised Configuration P

1 Set t = tmax;
2 while t > 0 do

/* Random step to generate P′ from P */
3 Create P′ from P;
4 if energy(P′) ≤ energy(P) then
5 Set P = P′;
6 else if rand(0,1) ≥ exp(−(energy(P)−energy(P′))/kB/t)

then
7 Set P = P′;
8 Decrease t;
9 end

Algorithm 1: The pseudo-code of simulated an-
nealing [9].

Algorithm 1 depicts the concept of a simulated anneal-
ing approach, where a configuration P is optimised by
minimising its energy. In each iteration, a new config-
uration P′ is created, and the energy is compared to the
previous configuration through the function energy(∗).
In each iteration, there is a probability to take a worse
configuration, to avoid getting stuck in local minima,
as shown at Line 6 in Algorithm 1. kB is a constant,
which should be adjusted and determined through ex-
periments.

Optimising 3D Mesh unfolding with simulated anneal-
ing has the distinct advantage over greedy algorithms,
that it is less likely to get stuck in a local minimum.
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Compared to genetic algorithms, simulated annealing
is easier to implement and is good at approximating
a global optimum. Therefore, we chose simulated an-
nealing as the optimisation approach in our unfolding.

3 DEFINITION OF KEY CONCEPTS
In this section, the terminology used in this paper is
defined and key elements are described.

(a) (b)

Souce

Target	
Glue	tab

(c) (d)
Figure 2: (a) A triangular mesh M (black) and its dual
graph D (blue). (b) The MST T (green) and remain-
ing edges (brown) in the dual graph. (c) Bend-Edges
(dotted) and Cut-Edges (red). (d) Trapezoidal glue tabs
(green) with source and target edges.

Triangular Mesh M. The input for the algorithm is a
triangular mesh M (see black edges in Figure 2 (a)). A
mesh M is defined as a triple (VM,EM,FM), where VM ,
EM , and FM represent the sets of vertices, edges, and
faces, respectively.

Dual Graph D. Graph D = (VD,ED) is the dual graph
of the mesh M. For each face f ∈ FM , a dual vertex in
VD is first assigned, followed by connecting dual ver-
tices using a dual edge ED, if the two faces that enclose
the dual vertices are adjacent in M. In other words, the
dual graph D has an edge if and only if the two cor-
responding faces of M are separated by an edge in the
mesh [7].

The dual graph is then used to find an unfolding, since
a dual edge connects neighbouring faces. A dual edge
can either represent an edge that is cut or an edge that is
used for folding the papercraft. Note that each triangu-
lar mesh has only one corresponding dual graph, which
can be computed efficiently. This makes it a very com-
pelling concept for 3D mesh unfolding.

Minimum Spanning Tree (MST) T . From the dual
graph D, a MST T can be computed. Given a weight
c(e) to each edge e ∈ ED, a minimum spanning tree
T = (VT ,ET ), where VT =VD and ET ⊆ ED, is computed

by minimising the cost function ∑e∈ET
c(e) [3]. The

MST in combination with the dual graph is a viable
concept to calculate possible unfoldings, as explained
by Straub et al. [16]. To compute a MST, we need a
weight for each edge in the dual graph. Initially, we as-
sign a random weight between (0,1) for each edge in
our experiment. In practice, the weights are adjusted to
generate a better MST as the optimisation proceeds.

Unfolding. An unfolding is defined as the planar rep-
resentation of a 3D mesh, and is computed by mapping
faces onto a 2D surface. One can unfold the faces of
a mesh one after another by referring to the MST T
described previously. This process is called mesh un-
folding. We follow the strategy of Takahashi et al. [19],
and define that the goal of an unfolded mesh will not
contain overlapping areas. A correct unfolding should
have only occlusion-free areas (see Figure 2 (b)).

Bend-Edge. The dual edge of e ∈ ET is defined as a
Bend-Edge (see dotted edges in Figure 2(c)), where
users can fold their papercraft by bending Bend-Edges.

Cut-Edge. The dual edge of each e ∈ ED/ET (brown
edges in Figure 2(b)) is called a Cut-Edge (red edges in
Figure 2(c)). Glue tabs can be applied to Cut-Edges.

Glue Tab. A glue tab is defined as an additional region
that does not exist in the original mesh. The idea of
incorporating these regions has been widely used to ap-
ply glue for attaching Cut-Edges of a papercraft. It can
have different forms, while in this paper, we introduce
trapezoid glue tabs (Figure 2(d)) as our default setting,
due to its popularity in the community.

4 UNFOLDING MESHES WITH ADDI-
TIONAL GLUE TABS

Figure 3 shows the step by step (S1)-(S5) process of
our approach. We will describe the high-level idea here,
followed by the detail explanation in the corresponding
subsections.

Once a triangular mesh M is loaded (Figure 3(a)), in
(S1) the corresponding dual graph is computed (the
blue graph in Figure 3(b)). In (S2), a MST T is com-
puted (the green tree in Figure 3(c) and the Cut-Edges
in red). Based on this T , a minimum number of glue
tabs is selected (Figure 3(d)). The next step is to un-
fold the 3D mesh and assign glue tabs referring to the
MST T (Figure 3(e)). If any overlaps occur, we cre-
ate a different MST by changing an edge weight, and
return and continue with (S2). Otherwise, we optimise
the unfolding as described in Section 4.5, which results
in an unfolded patch with better space utilisation (Fig-
ure 3(e)). Figure 3(f) shows additional visual indicators
added during the post-processing. Steps (S1)-(S5) will
be explained in the following subsections.
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(a)
(S1)
ÐÐ→ (b)

(S2)
ÐÐ→ (c)

(S3)
ÐÐ→ (d)

(S4)
ÐÐ→

(e)
(S5)
ÐÐ→ (f)

Figure 3: Steps (S1)-(S5) of the proposed unfolding process. (a) The input 3D mesh. (b) The dual graph (blue) of
(a). (c) MST (green) and Cut-Edges (red) of (b). (d) Minimal number of glue tabs. (e) The optimised unfolding,
and (f) the patch after the post-processing.

4.1 Dual Graph and Preparation (S1)
The dual graph D is computed initially (Figure 3(b)).
We iterate through all faces of the mesh and save a
dual edge for each pair of faces that share an edge. To
compute a MST later, each new dual edge is initially
assigned a random weight between (0,1). Note that
the weight can be also computed based on the angle
bounded by the two adjacent faces or other measures.
We choose a random approach here due to its better
performance in comparison to other measures. More
sophisticated measures, such as mesh structure analy-
sis, will be conducted in a future study.

Glue Tab Pre-Computation

In this step, we also initialise glue tabs. After comput-
ing the dual graph, we compute all possible glue tabs,
in order to link each dual edge to its corresponding glue
tab. For each edge e ∈ EM a glue tab is computed. The
height of the glue tab is 20% of the face size it will
be glued to. The long base length is 80% and the short
base length is 40% of the edge length it is attached to, as
shown in Figure 2(d). These parameters are determined
empirically to avoid an infeasible solution space.

4.2 MST Computation (S2)
A MST T is computed from the dual graph D using the
well-known Kruskal’s algorithm [10]. Recall that the
dual edges of ET are all Bend-Edges, while the dual
edges e ∈ ED/ET are all Cut-Edges (red edges in Fig-
ure 3(c)).

4.3 Glue Tabs Selection (S3)
In our approach, we only select certain Cut-Edges to
assign glue tabs. This is because assigning glue tabs on
every Cut-Edge will limit the number of feasible solu-
tions in the search space and increase the effort needed
when reconstructing the 3D model. Therefore, we as-
sign only a minimum number of glue tabs that will re-
sult in a stable constructed 3D model. For each vertex,
we allow at most one edge associated with this vertex
without a glue tab, so that the created papercraft will not
contain an open hole after being built. This is achieved
by visiting all pre-computed glue tabs and selecting a
minimum set of them based on the lemma below.

This implies that each vertex v ∈VM of a mesh can only
be incident to one edge e ∈ EM that is a Cut-Edge, and
will not be fixed with a glue tab. This stability is rea-
sonable because adding more glue tabs will not yield a
more stable reconstructed model, while increasing the
reconstruction effort as shown in our user study.

Minimum Number of Glue Tabs

The aforementioned concept can be summarised as:

Definition 4.1. Given a mesh M = (VM,EM) and the
corresponding dual graph D = (VD,ED), the graph C =

(VC,EC), where VC = VD and EC = ED/ET , contains
only Cut-Edges that are not assigned a glue tab. If
∀v ∈VC ∣ degree(v) ≤ 1 holds true, the reconstruction of
the 3D model is stable. The function degree(v) returns
the vertex degree of a vertex v.
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Figure 4 gives an example to demonstrate this property.
The input mesh M (black) and the corresponding dual
graph D (blue) are shown in Figure 4(a). Different MST
T (green trees in Figure 4(b) and (c)) can be synthe-
sised from D. The graph C in Definition 4.1 can be
determined as follows. Assume that the graph C is the
union of n connected components Ci = (VCi ,ECi), where
i = 1, ..,n and 1 ≤ n < ∣EC∣. For each connected compo-
nent Ci we assign glue tabs, under the condition that
∀v ∈VC ∣ degree(v) ≤ 1 holds.

(a)

C1

C2

(b)

C1

(c)

Figure 4: (a) An unfolded mesh M (black) and its dual
graph D (blue). (b) A MST (green) of (a) and its EC re-
sulting in two path components C1 and C2 (brown). (c)
Another MST T (green) of (a) that defines the unfold-
ing and its corresponding EC as a cycle component C1
(brown).

vp
vq

(a) Closed mesh

vp
vq

(b) One hole

vp

vq

(c) Two holes

Figure 5: An example of multiple cycles.

We first investigate the properties of Ci. Suppose we
have a closed manifold mesh. Then there are two types
of Ci that can be taken into consideration. One type
is a path (brown graph in Figure 4(b)), and the other
one is a cycle (brown paths in Figure 4(c)). This is
because the dual vertex of a face in a triangular mesh
connects to three dual edges. At least one dual edge be-
longs to the MST, and thus each vertex in Ci can have
a maximum degree of two. We further summarise the
combinations of cycles and paths into three cases. Case
1 contains only one cycle, Case 2 contains only paths,
and Case 3 contains cycles and paths. Figure 5 shows
the reason why the cycles-only case does not exist. A
cycle Ci happens only when we cut a mesh into multi-
ple patches, or open a vertex. If we open vertices on a
closed manifold mesh, the Euler Formula does not hold:
(VCi −n)+∑n

p=1 degree(vp)−(ECi +∑
n
p=1 degree(vp))+

FCi ≠ 1. This leads to the condition that our unfolded
patch is not a single connected planar graph, which vi-
olates our assumption.

Since Ci can be only a cycle or a path, the glue tab as-
signment can be done independently. In practice, the

problem is equal to retrieving a minimum edge cover of
a cycle or a path, which can be calculated in O(∣ECi ∣)

time.
Based on this fact, we can devise an algorithm that finds
the minimum number of glue tabs for Ci. In Case 1, Ci
is a path, as shown in Figure 4(b). We pick a vertex
v ∈ VD with degree(v) = 1 as the start vertex, then we
iterate over the path and attach a glue tab on every sec-
ond edge. More specifically, the number of glue tabs

necessary of a path is exactly f (Ci) = ⌊
∣ECi ∣

2 ⌋. In Case
2, if Ci is a cycle, as shown in Figure 4(c), we can pick
an arbitrary starting edge for the path and the number
of glue tabs can be computed as f (Ci)+1.

Lemma 4.1. The minimum number of glue tabs for a
mesh M can be computed in O(n) time. The total glue
tab number is∑n

i=1 f (Ci), where n is the number of con-
nected components defined in Definition 4.1.

Proof. Note that f (Ci) returns the minimum number
of glue tabs, can be proven by induction. Let P(n) be

the statement that f (Ci) = ⌊
∣ECi ∣

2 ⌋ determines the min-
imum number of glue tabs necessary for a path. The
base case is P(1). For ∣ECi ∣ = 0, ⌊ 0

2 ⌋ = 0 is true. Let us
consider the step from n to n+1 and assume that P(n) is
true. Suppose n+1 is odd, this means that n is even and
P(n+1) = P(n)+1, in case n is odd, P(n+1) = P(n).

This leads to the fact that P(n+1) = ⌊
∣ECi ∣

2 ⌋ holds true.
The case of a cycle can be proven similarly. Based on
this fact, we now show that ∑i=1 f (Ci) is minimal by
contradiction. We assume that ∑i=1 f (Ci) is not min-
imal, which implies that ∃ f (Ci) having a larger value
than its minimum. This constitutes a contradiction to
our previous statement. ∎

4.4 Mesh unfolding using the MST (S4)
Figure 6 shows how an unfolding of the mesh is com-
puted. Each face is defined by three points A, B, and C
in 3D and a, b and c in the 2D representation. For the
first face, as shown in blue in Figure 6, we set the vertex
a to (0,0), b to (0,AB). Then we calculate the position
of c using the following Equation 1.

s = ∥(B−A)×(C−A)∥/(AB)
2

d = (B−A) ⋅ (C−A)/(AB)
2

cx = ax+d(bx−ax)− s(by−ay)

cy = ay+d(by−ay)+ s(bx−ax)

(1)

For every following triangle we already have the po-
sitions of two vertices and only need to calculate the
position for the last vertex c, which has two possible
positions c1 and c2 as shown in Figure 6(b). We select
the position that is on the opposite side of the shared
edge. If a glue tab is attached to a face it is unfolded
analogue to mesh triangles.
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C / B
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(a)

x

y

a b / a

c / b c1c2

(b)

Figure 6: (a) A 3D model of a box, and (b) the unfold-
ing of the first two faces.

4.4.1 Overlap Detection
After an unfolding is found, we detect overlaps to deter-
mine if the unfolding is correct. An overlap is defined
if two faces are intersected partly with each other, or if
a face is entirely located inside another face. For glue
tabs, the definition is similar. In total, three different
cases of overlaps can occur, including either face-face,
glue tab-glue tab, or face-glue tab overlaps.

If an overlap occurs, the Sutherland-Hodgman
Clipping algorithm [17] is used to calculate the
overlapped area. This algorithm finds the vertices
of the intersection polygon created by the two
faces. The overlap can be described as a polygon
p. The area is calculated with the shoelace formula
Area = 1

2 ∣∑
k−1
i=1 xiyi+1+xky1−∑

k−1
i=1 xi+1yi−x1yk∣ [15],

where xi and yi are the coordinates of the i-th point in
p. This area is then used as the energy(P) function to
describe the quality of the unfolding.

Face-face overlaps are checked before glue tab related
overlaps are checked to improve the performance. This
is because if faces overlap with each other, an overlap-
free unfolding cannot be found even if the glue tabs are
overlap-free. Moreover, the performance can be im-
proved by limiting the number of faces that need to be
checked. The overlap detection does not need to be
done if faces share Bend-Edges, as no overlap is pos-
sible due to how we handle the unfolding.

4.4.2 Spatial Optimisation
After the simulated annealing process comes to an end,
we try to find an unfolding that enables better spatial
efficiency, see Figure 7. The energy-function is thereby
redefined as energy(P) = spread(x-axis) + spread(y-
axis), where spread(x-axis) measures the distance of
the vertex with the highest value on the x-axis minus
the vertex with the lowest value on the x-axis. We use
simulated annealing again, whereas the algorithm now
discards all unfoldings with overlaps.

4.5 Post-Processing (S5)
Multiple strategies are introduced to improve the vi-
sual quality, namely the clean look of the reconstructed

model and guide users with reconstruction using visual
indicators.

Colour Coding and Edge Numbering. According
to the stitching algorithm proposed by Takahashi et
al. [19], boundary edges that will be glued together, are
assigned the same colour. We follow their strategy to
generate our visual indicators.

Bend-Edge Coding. Each Bend-Edge is coded to dis-
tinguish between a mountain-fold or a valley-fold, as
proposed by Takahashi et al. [19]. A mountain-fold is
represented by a solid line and a valley-fold is displayed
by a dotted line (see Figure 3(c)).

5 IMPLEMENTATION DETAILS

The system is implemented using an Intel Core i7 CPU
(4x3.3 GHz, 4MB L3 Cache) and 8 GB RAM. The
source code is written in C++17 using OpenGL ver. 4.5
to visualise the results and CGAL ver. 4.13 to manage
the graph data structure. QT 5.13 is employed to pro-
vide a graphical user interface, and CMake ver. 3.14 is
used to build the process. GCC 9.2 is used to compile
the sources on Ubuntu 18.04.02 LTS.

We limit in the simulated annealing process the maxi-
mum number of iterations to t = 100,000 and set kB =

0.002 based on our empirical experience.

Then we employ the simulated annealing process. Ad-
ditionally, a face-face overlap is weighed ten times
higher than a glue tab-glue tab and a glue tab-face over-
lap. This prioritisation should force the algorithm to
solve the mesh unfolding first, as glue tab related over-
laps could be resolved using post-processing.

At the end of every iteration, if P is set to P′, we visu-
alise the unfolding. The annealing process terminates
if energy(P′) = 0. If until t = 0 we do not find a cor-
rect unfolding we terminate unsuccessfully. The spatial
optimisation is limited to 5,000 iterations.

6 RESULTS AND EVALUATION

In this section, we show several experimental results
and discuss the findings in our evaluation.

6.1 Experimental Results

Figures 3, 7 and 8 show the results generated using our
system. In Figure 7, we compare the unfolding results
that are considered without and with spatial optimisa-
tion. In Figure 7(b), the triangles are smaller than the
ones in (c). Figure 8 show other interesting models,
where the glue tabs are highlighted in the 3D meshes.
The testing data specification is summarised in Table 1.
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(a) (b)

(c)
Figure 7: (a) Armadillo mesh. (b) Unfolding. (c) Spatially optimised unfolding.

6.2 Quantitative Evaluation

Figure 8(a)-(c) shows different models and their unfold-
ings. Sufficient results can be achieved within 100,000
iterations limit to find an unfolding. With a limit of
5,000 iterations for spatial optimisation compact results
can be achieved. More iterations did not yield consis-
tently more compact results.

Glue tabs certainly impact the amount of time necessary
to find an unfolding, but they are not the only influence.
The structure of the model also impacts the time nec-
essary to find an unfolding. While some models have
a similar number of faces, the time to unfold can differ
substantially. This can be attributed to the geometric
properties of the models, as spherical models seem to
unfold consistently faster than others. Further, the time
discrepancy can be attributed to the random-walk of the
simulated annealing process, where the time to unfold
can greatly differ for the same model.

To evaluate the algorithm, we conduct an experiment
by unfolding a variety of 3D models. The results are
summarised in Table 1 using glue tabs as described in
Section 4.1. In the experiment, a maximum of 100,000
iterations is used to limit the computational time, as an
experimental value.

Table 1: Table showing the average unfolding perfor-
mance for different models. VM is the number of ver-
tices, EM the number of edges and FM the number of
faces.

Time (seconds)
Model VM EM FM Ours Brute-force
Icosa 12 30 20 0 0
Star 14 36 24 8 19
Star-Sqrt3 38 108 72 31 >6000
Tiger (Fig. 3) 58 168 112 65 -
Star-PNsplit (Fig. 8(a)) 110 324 216 625 -
Horse (Fig. 8(b)) 153 453 302 946 -
Hand (Fig. 8(c)) 170 504 336 1377 -
Bunny-348 176 522 348 976 -
Armadillo (Fig. 7) 195 579 386 730 -
Moneybox-392 196 586 392 2200 -

The performance of the presented approach is not only
influenced by the number of faces, but also by the size
of the glue tabs. The bigger the glue tabs are, the more
iterations are needed to find a feasible unfolding. In the
worst case, an unfolding might no longer be possible.
Table 1 shows that not only the number of faces influ-
ences the computational time for finding a solution, but
also shows that the randomness of simulated annealing
plays an important role. A comparison with a brute-
force approach is conducted to investigate the feasibil-
ity of the solution space. The brute-force approach cal-
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(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)
Figure 8: (a.1) Star mesh with 216 faces. (a.2) Unfolding of the star mesh. (b.1) Horse mesh with 302 faces. (b.2)
Unfolding of the horse mesh. (c.1) Hand mesh with 336 faces. (c.2) Unfolding of the hand mesh.
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culates all possible minimum spanning trees, as well as
all possible glue tab positions until a solution is found.
Only small models can be solved using the brute-force
approach. As the number of faces increases using the
brute-force approach becomes infeasible.

6.3 Qualitative Evaluation
To evaluate the impact of glue tabs on the reconstruc-
tion process as well as the visual quality of the recon-
structed models, we conducted a user study with five
participants (P1)-(P5) between the age 22 and 32 with
different educational backgrounds. Three of them have
a computer science background, and one has a finance
background. The participants were asked to construct
the tiger model (Figure 9) twice. Once is with glue tabs
(Figure 3(f)), and the other time without. Apart from
the glue tabs, both unfoldings have the same visual in-
dicators, as explained in Section 4.5. Models with glue
tabs were prepared with double-sided tape, where par-
ticipants still needed to remove the protective covering.
For models without glue tabs, we prepared glue strips.
At the beginning of the study, participants were first in-
structed on how to construct the papercraft. We pre-
pared an unfolded octagon with glue tabs and visual in-
dicators, which the participants used to practice how to
follow the visual indicators. To avoid a learning effect,
P2-P4 started with the model with glue tabs (O1), and
P1 and P5 began with the model without glue tabs (O2).

Table 2: Time (in minutes:seconds) for participants to
reconstruct models. M/F marks the gender of the par-
ticipant. Bold values are the time achieved in the first
round. † indicates which model participants found eas-
ier to reconstruct, while ‡ marks the preferred visual
model.

P1 (M) P2 (M) P3 (F) P4 (M) P5 (M)
w. glue tabs 26:15 23:10‡ 14:08†‡ 19:08‡ 22:15†‡
wo. glue tabs 44:40†‡ 18:47† 19:09 15:04† failed

Table 2 shows the time spent for each model. Most par-
ticipants required less time for the second model recon-
struction, while P3 spent more time for the second one.
Her second model does not have glue tabs, which im-
plies that the model with glue tabs is sufficiently easier
for her. P5 failed to construct the model without glue
tabs after trying for an hour. We further analyse and
compare the time reduction of the two model orders,
which suggests that glue tabs improve the amount of
time necessary for reconstruction. The time needed for
reconstruction for P1 decreased by 18:25 and for P4 by
4:04, who started without and continued with glue tabs
respectively, while it increased for P3 by 5:01 and for
P2 by 4:23, who both started with glue tabs.

We also asked participants, which model was easier
to create. Opinions of participants differed. P1, P2,
and P4 said that the model without glue tabs was eas-
ier, although P1 spent almost half time for the glue tab

model. P2 remarked that without pre-cut glue stripes
they would find the reconstruction with glue tabs easier.
P3 emphasised that the glue tab model is significantly
easier, as fewer edges need to be glued and edges are
easier to connect. However, the last glue tab is prob-
lematic, since it cannot be fixed from inside.

We also asked participants to evaluate which con-
structed model has a better visual appearance. P2, P3,
P4 and P5 perceived that the model with glue tabs is
cleaner, while P1 prefers the model without glue tabs.
P1 stated that it is easier to use stripes in the process.

Figure 9 shows the results from P3. We highlight two
parts of the tiger. With glue tabs, sometimes the edges
do not stick together well, as shown at the upper part of
the picture, while edges fixed with glue strips are less
problematic. On the contrary, in the lower part, the glue
tabs stick together well.

Figure 9: Tiger with glue tabs (left) and without (right)
reconstructed by P3.

6.4 Limitations and Discussion
Multiple factors could limit the presented approach.
The approach tends to solve the problem in global
way, while disregarding local overlaps. Thus, small
local overlaps are harder to solve as their changes to
energy(P) is rather insignificant. Another limitation is
that the current approach is not globally optimal, since
we initially limit the glue tab placement to a certain de-
gree. One limitation inherited from the glue tab design
is that one can hardly connect the last two faces, since
users cannot access the inside of the model anymore to
apply counter-pressure.

7 CONCLUSION AND FUTURE
WORK

In this paper, we present a new approach to unfold 3D
meshes, by adding a minimal number of glue tabs to aid
users with the reconstruction. We also demonstrate the
applicability of the approach.

To improve the performance and lower the impact of
glue tabs on the performance, a glue tab can be adjusted
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if an overlapping area is rather small. This would in-
crease the solution space for the problem.
In the future, we plan to incorporate mesh structure
analysis to guarantee that semantic structures, such as
the ears of a bunny, are kept together in the unfolded
patch. This could improve the reconstruction process.
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ABSTRACT
Face hallucination is a type of super resolution that restores very low resolution (8× 8 pixel) to high resolution
(128×128 pixel) face images. Since unique facial features caused by age, e.g.wrinkles, are ignored during restora-
tion, restored face images can be somewhat dissimilar to the original faces, particularly for older people. To solve
this problem, we construct a pipeline network to restore face images more realistically by including age attribute,
predicted from the low resolution image. Predicted age attribute is divided into young and old groups, where the
aging network is the last pipeline stage and only applied when the original face image includes old age attributes.
Thus, older people tend to be restored with wrinkles and features similar to their original appearance. Restored
images are compared qualitatively and quantitatively with images created by existing methods. We show that
the proposed method maintains and restores age related personality features, such as wrinkles, producing higher
structural similarity index than other methods.

Keywords
Face hallucination, Pipeline network, Age, Personality, Deep learning

1 INTRODUCTION

Face hallucination (FH) restores a low resolution face
image (LR) to high resolution (HR), and is particularly
important for face recognition and restoration systems,
such as surveillance or CCTV [HHST17]. Generally,
FH supports 16 scale restoration for 8× 8 pixel and
8 scale restoration for 16× 16 pixels. Larger images
(16× 16 pixel) have considerably more information
compared to 8×8 pixel images, which allows employ-
ing prior information, such as heatmaps, during their
restoration. In contrast, 8×8 pixel images have limited
information, which makes restoration difficult. Figure 1
shows that it is difficult to distinguish face shape at all
for 8× 8 pixel images, whereas 16× 16 pixel images
can be divided into eye, nose, mouth, and face regions
by eye. This paper considers the more challenging 8×8
pixel image restoration.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Typical 8×8 and 16×16 pixel images (left)
and their corresponding ground truth images (right)

Several methods have been proposed previously to im-
plement FH. For example, Dahl et al. [DNS17] used
pixelCNN, Yu et al. [yu2018face] used auto-encoder,
Chen et al. [CTL+18] used GAN, and Huang et al.
[HHST17] used the wavelet transform. However, these
methods have ill-posed problems, producing many HR
solutions for a single LR face image. Lower image
quality increases restoration difficulty because more in-
formation regarding face feature and personality details
are lost. Consequently, we cannot solve the FH one-
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Figure 2: Restoration from 8×8 to 128×128 pixel im-
ages using a wavelet based convolutional network ap-
proach [HHST17]

to-many problem between LR and possibly many HRs,
even if we use large training datasets [YFHP18]. There-
fore, this paper proposes a pipeline based network that
includes facial age attributes to mitigate the ill-posed
FH problem. Very low resolution images (8× 8 pixel)
have lost considerable facial information compared to
their ground truth images, and it is difficult to restore
precisely because learning ignores age related facial
features (e.g. wrinkles). Figure 2 shows some typical
example restored images from 8×8 pixel input images,
which all have critical missing details, such as wrin-
kles. Hence the restored images look much younger
than their ground truth. Figure 3 shows that the struc-
tural similarity index (SSIM), a measure of image simi-
larity to ground truth, decreases relatively linearly with
increasing subject (and hence face image) age, being
considerably lower for 80 than 20 year old subjects. To
solve this problem, we create a pipeline network learn-
ing model that can restore face images including age
attributes by including age information in the pipeline
network to help produce an appropriate facial image for
their age.

The proposed pipeline network incorporates three
stages.

1. Age estimation. We apply an Wide ResNet CNN to
estimate age [RTVG15] from the original low resolu-
tion image. Young and old attributes are determined by
this predicted age.

2. First restoration. 8× 8 pixel images are restored to
128×128 pixel images using a wavelet based convolu-
tional network (CNN) approach following [HHST17].

Figure 3: Structural similarity index (SSIM) for re-
stored images with respect to subject age

3. Apply age attributes. We apply an aging general ad-
versarial network (GAN) [ZSQ17] only for images with
known age attributes to include subject’s age related fa-
cial features (e.g. wrinkles).

We assume that restoring face image with facial
features like wrinkles mitigates ill-posed problems by
making it look similar to the original. Experimental
results demonstrate that our pipeline network restores
much more similarly to their original images especially
for older people than other methods.

2 RELATED WORK
Many methods have been proposed for FH to solve the
ill-posed problem. Yu et al. [YFG+18] restored facial
images using a heatmap of the face, i.e., structural infor-
mation, to solve the ill-posed problem caused by pose
variation or misalignment. Chen et al. [CTL+18] used
a super resolution encoder-decoder structure to gener-
ate facial images, creating more realistic images by em-
ploying a GAN structure with loss function being the
difference between ground truth and generated images.
Huang et al. [HHST17] converted the super resolution
process to wavelet coefficient prediction for high res-
olution images. The high resolution image was then
reconstructed using the predicted wavelet coefficients,
considering texture and topology information from the
original low resolution image. In addition to restoring
low to high resolution images, recognition algorithms
have been proposed to distinguish individuals by in-
cluding facial features, such as eigenfaces [HYBK08].

Dahl et al. [DNS17] used pixelCNN to restore very low
resolution images (8× 8 pixel), employing a stochas-
tic model network rather than linear interpolation to
predict each pixel value in the high resolution images.
However, each pixel RGB value must be separately
trained in the model, requiring very high computational
complexity. Therefore, restoring for scales above 4 is
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very difficult. Yu et al. [YFHP18] proposed an FH
method by adding facial attributes to maintain face de-
tail. After restoring the low resolution image by inter-
polation, a facial attribute vector was inserted into the
residual block and then trained. However, they only
supported 8 scale restoration from 16× 16 pixels, and
restored the image using a random attribute rather than
actual face image attributes. In contrast, the proposed
approach supports 16 scale reconstruction for the chal-
lenging 8×8 pixel input resolution. We obtain the age
attribute from the low resolution image and then use
this in the pipeline to restore a facial image more likely
reflecting the subject’s own personality.

Tamura et al. [TKM96] proposed a neural network that
identifies gender with more than 90% accuracy at 8×8
pixels image, where the network learned image gen-
der using face shapes, cheekbone shapes, and shading.
Wang et al. [WCY+16] showed that recognition perfor-
mance from low resolution images is much lower than
ground truth images for face, digit and font recognition.

A key factor in identifying faces is the general patterns
of aging facial marks (e.g. wrinkles). Jain et al. [JP09]
attempted to increase recognition accuracy by detecting
facial-marks such as wrinkles. Ling et al. [LSRJ07]
showed that recognition error was higher when there
was a large gap between actual and expected age.

3 APPROACH
Overview Structure
Figure 4 shows three stages of our pipeline network.
Stage 1 (age estimation) predicts age attribute directly
for the low resolution image (8×8 pixel), using an age
classification network [RTVG15] with Wide ResNet
[ZK16] structure. We only assigned age attributes to the
image if estimated age is above 40. Stage 2 (restoration)
uses a wavelet based CNN [HHST17] to restore the fa-
cial image. Finally, stage 3 (aging) applies the aging
network [ZSQ17] for images with predicted age above
40. Predicted age from stage 1 and the restored image
from stage 2 are input to the age GAN to produce the
final restored image.

Dataset
We use the UTKFace dataset [ZSQ17] with age,
gender, and race labels comprising 23,704 images,
all aligned and cropped. This dataset has been used
in many fields, including face detection, age progres-
sion/regression, and age estimation. However, more
than half of this dataset subjects are in their 20-30s,
which could produce age bias when estimating subject
age for FH. Therefore, we constructed an age-balanced
UTKFace dataset, with even distribution between
young and old groups (less and more than 40 years old,
respectively) by randomly removing some of the young

group images. The age-balanced UTKFace dataset
includes 13,656 images with 6,591 young and 7,065
older group images. Figure 5 compares the original
and age-balanced UTKFace dataset distributions. The
age-balance case is clearly more evenly distributed
across the identified subject ages. Both datasets are
employed separately for training and their results
compared.

Age Estimation
The first stage in the pipeline estimates subject age from
the low resolution images using Wide ResNet CNN
[ZK16] and the UTKFace dataset. The age classifi-
cation network comes from [RTVG15]. Wide ResNet
solves the neural network depth problem by modify-
ing the ResNet structure and increasing the number of
CNN output channels rather than the number of CNN
layers. We use the UTKFace images, scaled down to
8×8 pixel. First, the low resolution image is converted
to 64× 64 pixels by bicubic interpolation. Then im-
age features are extracted using Wide ResNet CNN, and
age values were extracted using the softmax activation
function. We add data augmentation and dropout to im-
prove estimation accuracy.

After predicting the age, we divide the dataset into
young and old groups around the 40 year cutoff based
on the predicted age. The aging network, in the final
pipeline stage is only applied to images in the older
group. Table 1 compares actual and predicted young
and old attributes. Accuracy for subjects in their 40s
and 50s is relatively low, since they are close to the cut-
off, but overall matching rate is acceptable. The hit ratio
are more important for 60+ aged subjects, where facial
features such as wrinkles are very common. In partic-
ular, subjects in their 80s are quite accurately classified
(80%).

type hit total ratio
0s 2,967 3,059 96.99
10s 1,392 1,531 90.92
20s 6,712 7,343 91.41
30s 3,533 4,537 77.87
40s 857 2,245 38.17
50s 1,337 2,299 58.16
60s 893 1,318 67.75
70s 524 699 74.96
80s 407 504 80.75
all 18,749 23,704 79.1

Table 1: Age classification accuracy. (Notes: Hit =
when predicted and actual age bracket agree.)

Wavelet based CNN
The second stage in the pipeline uses a wavelet based
CNN [HHST17] to restore low resolution (8×8 pixel)
to high resolution face (128×128 pixel) images. Rather
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Figure 4: Proposed pipeline network

Figure 5: Population distribution by age group for (left)
original UTKFace and (right) age-balanced UTKFace
datasets

than simply reconstructing the high resolution image,
wavelet coefficients for the high resolution image are
predicted and restored while maintaining global topol-
ogy and facial structural textual information.

Embedding Net
This is the process of mapping the low resolution image
(3×w×h) to the feature map. We use 3×3 filters at 1
stride and output them to the final output (Ne× h×w)
without going through upsampling and downsampling.
(Ne is the channel size of the last layer)

Wavelet Prediction Net
If n is the level of wavelet packet decomposition, then
magnification r is r = 2n called the scaling factor and Nw
is 4n as the number of wavelet coefficients. The level
of packet decomposition determines the scaling factor
and the number of wavelet coefficients. Wavelet predic-
tion net is composed with Nw parallel independent sub-
nets that takes the output from the embedding net as in-
put and predicts wavelet coefficients for high-resolution
images. Each subnet learns the same image size as the
embedding net used 3× 3 filters with 1 stride (3wh).
Predicting the wavelet coefficient values for all subnets
will result in a wavelet coefficient of Nw× 3×w× h.
Let C = (c1,c2, ...,cNw), Ĉ = (ĉ1, ĉ2, ..., ĉNw) be the
ground-truth wavelet coefficients, predicted wavelet co-
efficients, respectively, and let W = (λ1,λ2, ...,λNw) be
the weight matrix to prioritize which wavelet coeffi-

cients are relatively important while restoration. As you
can see the loss function below, wavelet loss function
attempts to minimize the MSE loss of each wavelet co-
efficients.

lwavelet(Ĉ,C) = ‖W 1/2� (Ĉ−C)‖2
F

=
Nw

∑
i=1

λi‖ĉi− ci‖2
F

Reconstruction Net
The reconstruction net converts the full size of the
wavelet image, Nw× 3×w× h, to the existing image
size of 3 ×(r × w) × (r × h). The deconvolution
layer has a r× r filter and proceeds to r stride. The
formula below shows the overall change in image
resolution while learning with wavelet-based CNN. As
mentioned before, embedding net maps low resolution
images (3 × w × h) to feature maps (Ne × h × w).
The feature maps are then divided into Nw wavelet
coefficient images (3×w×h) in the wavelet prediction
net. Since Nw is r2, we can adjust the resolution of
high resolution images (3× (r× h)× (r× w)). The
definition of wavelet based CNN networks [HHST17]
can be formulated as follows:

Ψ : R3×h×w→ RNe×h×w

ϕi : RNe×h×w→ R3×h×w, i = 1,2, ...,Nw

φ : RNw×3×h×w→ R3×(r×h)×(r×w)

Aging network
The aging network [ZSQ17] includes an encoder to
convert face images into a latent vector and a GAN
to generate face images from the vector. The encoder
maps all images to latent vectors and collects them to
form a latent space with age on the horizontal axis and
personality on the vertical axis. We predict the latent
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vector for the age progression/regression image in this
latent space by moving the horizontal axis, and then put
this latent vector into the GAN to generate the aged im-
age. Traditional GAN uses latent vectors as random
sampling, producing blurry images. However, this net-
work creates facial images that retain specific personali-
ties by inserting the latent vector that encodes the actual
image into the GAN.

Discriminator on z
The discriminator on z (Dz) is trained to construct a
prior distribution (uniform distribution) when mapping
latent vectors z from the encoder into latent space. Dz is
trained to discriminate z from the encoder and random
sampling z∗ from prior distributions. It selects a uni-
form distribution as prior and builds a competition with
the encoder to ensure z is evenly distributed in latent
space.

Discriminator on Face Image
The discriminator on facial images (Dimage) is designed
to produce realistic images similar to the discriminator
used in traditional GANs. The generator takes a latent
vector as input and created facial images to trick the
discriminator, and the discriminator is trained to dis-
tinguish this generated image from the actual image.
Dimage also includes an age label to create a more re-
alistic image for older subjects.

4 EXPERIMENTS
The proposed pipeline network is supported by Ubuntu
16.04 LTS. All pipeline stages are implemented using
tensorflow and pytorch. We also use Anaconda V3 be-
cause each pipeline step uses a different python version,
and Anaconda makes it easy to build other environ-
ments by putting development environments in sepa-
rate containers. We use the age-balanced UTKFace and
UTKFace datasets for training, and put the age attribute
through the pipeline to restore low resolution facial im-
ages to high resolution facial images, while maintaining
their personality. If the subject’s predicted age (from
stage 1 of the pipeline) exceeded 40 years, the old age
attribute is assigned, and only those images go through
the aging network. The second pipeline stage primarily
restore face images. The final pipeline stage (aging net-
work) is only performed on facial images assigned the
old age attribute in the first step.

Qualitative Result
Figure 6 compares the proposed pipeline results qual-
itatively with current best-practice methods that sup-
port 16 scale from 8× 8 pixel images. The proposed
pipeline results are more similar to ground-truth image
compared with the other methods, more successfully
restoring subject personality, such as age-related wrin-
kles. Bicubic interpolation and SRCNN [DLHT15] fail
to restore face shape, and SRGAN [LTH+17] creates

blurry facial images due to the unstable GAN. Wavelet
based CNN [HHST17] largely restores facial texture,
but the over-smoothing causes subjects to look much
younger than their actual age.
Quantitative Result
Tables 2 and 3 compare SSIM by age group for the
age-balanced UTKFace and UTKFace datasets, respec-
tively. The proposed pipeline generally achieves higher
SSIM than the other methods for subjects older than 40
years that had the age attribute set.

Age SRCNN SRGAN Wavelet Ours
0s 0.513 0.696 0.675 0.698
10s 0.447 0.653 0.651 0.664
20s 0.435 0.667 0.666 0.68
30s 0.442 0.664 0.652 0.667
40s 0.443 0.65 0.644 0.659
50s 0.435 0.632 0.625 0.652
60s 0.444 0.634 0.622 0.652
70s 0.43 0.609 0.598 0.629
80s 0.398 0.579 0.551 0.577

Table 2: Structural similarity index scores for the con-
sidered image restoration methods on the age-balanced
UTKFace dataset

Age SRCNN SRGAN Wavelet Ours
0s 0.486 0.706 0.697 0.721
10s 0.418 0.66 0.677 0.69
20s 0.408 0.676 0.701 0.714
30s 0.41 0.671 0.686 0.698
40s 0.421 0.665 0.675 0.684
50s 0.418 0.649 0.652 0.66
60s 0.414 0.641 0.637 0.642
70s 0.417 0.623 0.625 0.65
80s 0.373 0.582 0.565 0.612

Table 3: Structural similarity index scores for the con-
sidered image restoration methods on the UTKFace
dataset

5 CONCLUSION
We propose a pipeline network to restore very low res-
olution images to be similar to ground truth by includ-
ing an age attribute. The proposed pipeline includes
three stages: age estimation, wavelet based CNN, and
aging network. We construct an age-balanced UTK-
Face dataset for training to avoid biases due to UTK-
Face dataset images being weighted toward a certain
age.
We compare restored face images qualitatively with
current best practice methods, and confirm that the
proposed pipeline network produce facial images that
restore subject personality due to age, such as wrin-
kles. Quantitatively, the proposed pipeline generally
achieves superior SSIM scores than the other consid-
ered methods.
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Figure 6: Image restoration outcomes for example 8×8 pixel input images. From left: input, ground truth, bicubic
interpolation, SRCNN, SRGAN, Wavelet based CNN, proposed pipeline.

Future study will expand the image restoration pipeline
to include not only age but also factors representing in-
dividual’s facial features, such as gender, race, and fa-
cial shape. We will also reduce the pipeline process by
restoring images with the age attribute in the upscaling
process.
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ABSTRACT
In the paper an algorithm for description of greyscale objects extracted from images is applied for recognition of
human red blood cells visible on digital microscopic images. This is a part of an approach for automatic (or semi-
automatic) diagnosis of selected diseases based on the deformation of erythrocytes. The disease is concluded by
means of the recognition of types of red blood cells visible on an digital microscopic image, stained using MGG
method and converted into greyscale. The applied algorithm is based on the polar transform of pixels belonging
to an object and a specialized method for constituting the resultant description, where derived coordinates are put
into matrix, in which the row corresponds to the distance from the centre, and the column—to the angle. This
assumption was previously applied only for shape features. The proposed algorithm includes several auxiliary
steps, e.g. median and low-pass filtering in order to pre-process the extracted object in greyscale. The algorithm
is experimentally evaluated and analysed. It is compared with four other greyscale descriptors, namely: Scale-
Invariant Feature Transform, Gabor filter, Polar-Fourier Greyscale Descriptor, and the approach based on polar
transform and projections.

Keywords
Image Recognition, Erythrocytes Identification, Greyscale Descriptor, Polar Transform

1 INTRODUCTION
In the paper a new algorithm for greyscale object de-
scription is applied to the problem of recognition of
red blood cells extracted from digital microscopic im-
ages. The identification of particular types of erythro-
cytes is applied for the automatic (or semi-automatic)
diagnosis of some selected diseases. It results from
the fact that deformed erythrocytes cannot properly de-
liver oxygen. Hence, blood circulation is not regulated.
Two exemplary diseases that can be concluded this way
are anaemia and malaria. In both cases the appearance
of cells is changed, what gives the possibility of per-
forming the automatic analysis based on digital micro-
scopic images using computer vision algorithms. In
case of works described in the paper, the digital mi-
croscopic images stained by means of the MGG (May-
Grunwald-Giemsa) method are applied. Considering
the approaches applied for the problem, the template
matching utilizing the greyscale as a feature is used.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The template matching is a general approach in which
the classes of objects for the identification are repre-
sented by templates stored in the template base. Usually
one or a few templates represent a class. However, both
templates and test objects are not stored in their original
appearance. Instead, they are represented (described)
using particular methods, so-called descriptors. These
descriptors apply some low-level features, e.g. shape,
texture, colour or greyscale. These algorithms are very
popular nowadays, thanks to their fast and easy deriva-
tion [Ver15]. In the paper the greyscale as a feature
is applied. This comes from the conclusion that in
real world, greyscale can bring important and useful in-
formation, sometimes better than in case of other fea-
tures [Fre19]. A new algorithm for greyscale object
representation is used for the problem of red blood cells
identification. It applies the polar transform of pixels
and a method for deriving the description, where ob-
tained new coordinates are put into matrix, in which
the row corresponds to the distance from the centre of
an object, and the column—to the angle. This propo-
sition was taken from an algorithm for shape repre-
sentation [Rau94] and was not used for the greyscale
so far. The applied method includes several additional
steps, e.g. median and low-pass filtering in order to pre-
process the extracted object in greyscale.
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The proposed algorithm is applied in the problem of
red blood cells recognition and the obtained results
are described in this paper. However, in order to
analyse the efficiency of the method, it is compared
experimentally with four other greyscale descriptors:
Scale-Invariant Feature Transform [Low04], Gabor
filter [Kum18], Polar-Fourier Greyscale Descrip-
tor [Fre11], and the approach based on polar transform
and projections [Fre18].
The rest of the paper is organized as follows. The sec-
ond section describes the related works, both by means
of the erythrocytes analysis, and the greyscale applied
as a feature. The third section provides the description
of the algorithm prosed in the paper. The fourth sec-
tion gives the basic information about the algorithms
selected for the comparison with it. The fifth section
presents the results of the experiment, and finally, the
last section concludes the paper and gives some discus-
sion about future plans.

2 RELATED WORKS
The usage of computer vision in the analysis of cells
visible on the digital microscopic blood images is
popular. However, various applications are taken
into account, e.g. counting the cells without their
identification (e.g. [Ven13]), analysis of all visible
objects (e.g. [Ran07]), sometimes more complicated
and hence less efficient. Even when only one type is
taken into consideration, usually leukocytes are anal-
ysed (e.g. [Son02], [Sab04]). However, some progress
in the examination of red blood cells was made—
several algorithms were applied for this purpose so
far, e.g. morphological operators [DiR02], threshold
selection techniques [Ros06], histogram [Dia09],
deformable templates [Bro00], and polar-logarithmic
transform [Lue05]. In [Fre10] three shape descriptors
based on polar transform were investigated, namely
Log-Pol-Fourier, UNL-Fourier and Point Distance His-
togram. Very popular lately Deep Convolutional Neural
Networks were applied to the problem of automatic
identification of malaria infected erythrocytes [Don07].
Usually, for the recognition of red blood cells the
shape is applied as the feature representing an ob-
ject. However, the greyscale is also applicable
(e.g. [Fre11], [Fre18], [Fre19]). This feature is less
popular than other ones. Additionally, the algorithms
are usually utilized for the whole image, yet they can be
applied for the extracted object as well. In this manner,
Scale-Invariant Feature Transform (SIFT) is especially
popular [Low04]. A modification of this method
(so-called extended SIFT) was also proposed [KeY04].
The Speeded Up Robust Features (SURF) approach
is a second popular algorithm designed for this
goal [Bay08]. Similarly, the Scale-Invariant Shape
Features (SISF) were utilized in the problem of detec-
tion based on greyscale [Jur04]. On the other hand,

human detection was also an area of interest, and for
this task the Histograms of Oriented Gradients (HoG)
were applied [Dal05]. The histogram for a scene in
greyscale was also used [Chi11].

Texture analysis can be in some application very
close to the usage of greyscale descriptors. Some
examples of texture descriptors that could be applied
in that way are: Local Binary Pattern with Local Phase
Quantization [Nan16a], connectivity indexes in local
neighbourhoods [Flo16a], Gaussian Markov Random
Fields [Dha14], Gabor features [Kum18], non-uniform
patterns [Nan16b], genetic algorithms [Wan17],
local fractal dimensions [Flo16b], Fisher tensors
with ’bag-of-words’ [Far14], and approach based on
morphology [Apt11].

3 PROPOSED APPROACH
The algorithm described in this paper is based on the
idea given by T. W. Rauber and A. S. Steiger-Garcao
for shape representation [Rau94]. Proposed by them
shape representation, called UNL (named after the Uni-
versidade Nova de Lisboa), was based on the assump-
tion that derived polar coordinates for silhouette points
were put into a matrix, in which the row corresponds to
the distance from centroid, and the column—to the an-
gle. The difference in the resultant representation from
the traditional polar transform for a shape can be easily
noticed—see Figure 1.

In this paper above-mentioned idea is extended to
the greyscale object representation. An example of
a greyscale object and its transformed representation by
means of the proposed approach is given in Figure 2.

The proposed algorithm is similar to the Polar-Fourier
Greyscale Descriptor, proposed in [Fre11]. The differ-

Figure 1: The difference in shape representation for
object (a) between polar transform (b) and UNL-
transform (c).

Figure 2: The result of the transformed greyscale object
by means of the proposed approach proposed: original
object on the left and its transformed representation on
the right.
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ence between the two approaches is explained in Sec-
tion 4.3.

Similarly to the Polar-Fourier Greyscale Descrip-
tor, the proposed algorithm applies some additional
pre-processing steps, improving the obtained represen-
tation, namely: median filtering, low-pass filtering, the
construction of the constant rectangle containing the
object, filling the gaps with the background colour, and
resizing the transformed image to the constant size.

The algorithm for computing the resultant greyscale ob-
ject representation is given in details below.

Step 1. Median filtering of the input sub-image I, with
the kernel size 3.

Step 2. Low-pass filtering, realized through the convo-
lution with mask 3×3 pixels, and normalization pa-
rameter equal to 9.

Step 3. Calculation of the centroid by means of the
moments [Hup95]. Firstly, m00, m10, m01 are de-
rived, and then the centroid O = (xc,yc):

mpq = ∑
x

∑
y

xpyqI(x,y), (1)

xc =
m10

m00
, yc =

m01

m00
. (2)

Step 4. Finding the maximal distances dmaxX , dmaxY for
X- and Y -axis respectively from the boundaries of
I to O.

Step 5. Expanding the image into both directions by
dmaxX−xc and dmaxY −yc and filling in the new parts
using constant greyscale level, e.g. 127.

Step 6. Derivation of new coordinates and insertion in
the image P, in which the row corresponds to the
distance from centroid (ρi), and the column—to the
angle (θi):

ρi =

√
(xi− xc)

2 +(yi− yc)
2,

θi = a tan
(

yi− yc

xi− xc

)
. (3)

Step 7. Resizing P to the constant rectangular size,
n×n, e.g. n = 128.

Step 8. Derivation of 2D Fourier transform:

C(k, l) =
1

HW
|

H

∑
h=1

W

∑
w=1

P(h,w) ·

exp(−i 2π
H (k−1)(h−1)) exp(−i 2π

W (l−1)(w−1)) |, (4)

where:
H,W—height and width of P,
k—sampling rate in vertical direction (k ≥ 1 and
k ≤ H),
l—sampling rate in horizontal direction (l ≥ 1 and
l ≤ W ),
C(k, l)—the coefficient of discrete Fourier transform
in k-th row and l-th column,
P(h,w)—value in the resultant image plane with co-
ordinates h, w.

Step 9. Selection of the spectrum sub-part, e.g. 10×10
size and concatenation into vector V .

4 THE ALGORITHMS APPLIED FOR
THE EXPERIMENTAL COMPARI-
SON

The proposed algorithm, described in the previous sec-
tion, was compared and experimentally investigated
with several other algorithms for greyscale object rep-
resentation. The selection was based on an assump-
tion that a popular method for object localization in
greyscale images and the one popular for texture rep-
resentation should be evaluated. Both are applied in
object description as well. Also, two previous algo-
rithms for greyscale objects representation proposed by
the Author were used. That gave four algorithms that
were compared with the proposition given in the paper.
Their description is given briefly in the following sub-
sections.

4.1 Scale-Invariant Feature Transform
The Scale-Invariant Feature Transform (SIFT) was pro-
posed by D. G. Lowe [Low04], [Low11]. The descrip-
tion obtained using it is invariant to rotation and scaling.
The algorithm is very popular as a method for feature
detection. However, it can be easily applied as a repre-
sentation of an object in greyscale. Therefore, in works
described in this paper it is utilized that way. Moreover,
some approaches were proposed in order to speed-up
the derivation of the representation [Hey07].

4.2 The Gabor descriptor
The Gabor filter is mainly used as a texture descrip-
tor [Zha09]. However, its practical usefulness in repre-
senting the grey levels lead to its applicability also in a
form of a greyscale descriptor. Similarly to the previ-
ously mentioned algorithm, the Gabor filter is applied
in the experiments described in the following section.

4.3 The Polar-Fourier Greyscale Descrip-
tor

The Polar-Fourier Greyscale Descriptor was proposed
in [Fre11] and is in fact a source for the descriptor ap-
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plied in this paper. Hence, it is very similar to the al-
gorithm described in the previous section. The signifi-
cant difference occurs in Step 6. In the original Polar-
Fourier Greyscale Descriptor simple polar transform is
applied. The proposed in this paper approach is sim-
ilarly to the UNL-transform more sophisticated, what
was explained in the introductory part of Section 3.

4.4 The Descriptor based on Polar Trans-
form and Vertical and Horizontal Pro-
jections

The approach applying the polar transform and pro-
jections has similar initial stages as the Polar-Fourier
Greyscale Descriptor, however the rest is different,
since instead of Fourier transform the vertical and hor-
izontal projections are applied. The whole descriptor is
given as follows [Fre18]:

Step 1. Median filtering of the input image I, with the
kernel size 3.

Step 2. Low-pass filtering, realized through the convo-
lution with mask 3×3 pixels, and normalization pa-
rameter equal to 9.

Step 3. Calculation of the centroid by means of the
moments [Hup95]. Firstly m00, m10, m01 are de-
rived, and later the centroid O = (xc,yc):

mpq = ∑
x

∑
y

xpyqI(x,y), (5)

xc =
m10

m00
, yc =

m01

m00
. (6)

Step 4. Transforming I into polar coordinates (resul-
tant image is denoted as P), by means of the formu-
las:

ρi =

√
(xi− xc)

2 +(yi− yc)
2,

θi = a tan
(

yi− yc

xi− xc

)
. (7)

Step 5. Resizing P to the constant rectangular size,
n×n, e.g. n = 128.

Step 6. Deriving the horizontal and vertical projections
of P:

Hi =
n

∑
j=1

Pi, j, Vj =
n

∑
i=1

Pi, j. (8)

Step 7. Concatenating the obtained vectors H and V
into one, C = HV , representing an object.

5 EXPERIMENTAL RESULTS
Before the representation and identification of partic-
ular red blood cells, they have to be segmented and
extracted. For this purpose the approach proposed
in [Fre10] was applied. It starts with the conversion
of the input image into greyscale. Later the modified
histogram thresholding is applied in order to obtain the
binary image. Then, particular objects can be localized.
This process is performed by tracing regions of each
separate objects. Only objects entirely placed within a
processed image are considered. The area of extracted
regions is analysed in order to reject thrombocytes and
leukocytes. In order to limit the processed objects to
erythrocytes, if a region is larger (for leukocytes) or
smaller (for thrombocytes) then it is rejected (the dif-
ference in size for these three main objects of interest is
provided in Figure 3). This assumption results from the
fact that leukocytes (e.g. monocytes) have the size of 40
µm, thrombocytes—ca. 2 µm, and the size of erythro-
cytes varies between 6 and 12 µm. Additionally, this
process rejects some occluded objects, what is a bene-
fit, since they are difficult to recognise. Nevertheless,
it is still possible that some undesirable objects remain,
if their area is similar to erythrocytes. In order to avoid
this problem, the analysis of object’s histogram is ap-
plied, since this feature varies for different particles—
thrombocytes and leukocytes have almost black parts
inside. Moreover, the histogram equalisation of the im-
age before the binarisation is performed, what reduces
the number of occluded shapes.

As a result of the above-described, by means of using
the established coordinates of a single cell, the rectan-
gular subpart of the greyscale image with it is extracted
and processed in next stages.

The experiments were performed using 55 May-
Grunwald-Giemsa stained microscopic images
magnified 1,000 times. All of them were converted
into greyscale, and then every cell was localised and
extracted separately by means of the above-described
approach. For each object the proposed algorithm as

Figure 3: Three different types of human blood cells,
varying in size: a) leukocyte, b) erythrocyte, c) throm-
bocyte [Omi14].
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well as the algorithms described in the previous section
were applied in order to obtain the descriptions. They
were matched using the dissimilarity measure with
the stored templates that were represented in the same
way. Twelve classes of erythrocytes were applied. For
each class five template objects were used. That gave
in result 60 templates, since 12 classes of erythrocytes
were considered.

The number of cells within a single MGG image varies
significantly. In case of the images applied for the ex-
periments, this number varies from a dozen to more
than a hundred. In order to emphasize the number of
analysed and processed objects, some statistical infor-
mation will be given. It is limited to the number of
extracted erythrocytes in the most limited case. After
the rejection of larger (leukocytes and occluded cells)
and smaller (thrombocytes) objects the overall number
of processed objects of interest was equal to 2,772. The
average for an image was (rounded) 50, and the me-
dian value was 44. The smallest number of properly
extracted erythrocytes was equal to 10 objects, and the
highest was 102.

The obtained efficiency for particular erythrocyte types
and greyscale descriptors applied in the experiment is
given in Table 1. Additionally, in the table average effi-
ciency for all analysed descriptors is provided.

6 CONCLUDING REMARKS AND FU-
TURE PLANS

In the paper an algorithm for description of greyscale
objects extracted from digital images was applied for
recognition of human red blood cells visible on digi-
tal microscopic images. This is a part of an approach
for automatic (or semi-automatic) diagnosis of selected
diseases based on the deformation of erythrocytes. The
disease is concluded by means of the recognition of
types of red blood cells visible on a digital microscopic
image, stained using MGG method and converted into
greyscale.

The proposed algorithm was experimentally investi-
gated in comparison with four other greyscale descrip-
tors. It obtained the best results by means of the effi-
ciency in recognizing the types of erythrocytes.

Nevertheless, future works are planned on further im-
provement in the representation of objects extracted
from digital images and represented using greyscale as
a feature. Another approaches are planned to be anal-
ysed.

Moreover, since the representation of cells was the main
topic of the works described in this paper, more atten-
tion should be put on the classification stage. Here, the
simplest method based on the template matching was
applied. It was assumed that some more sophisticated
and novel approaches should provide even better overall

results. Hence, the second direction of research should
be related to the analysis of the methods belonging to
the last steps of the method. For example, application
of some deep learning algorithms, very popular nowa-
days, would definitely lead to better results.

Finally, the Electron Microscopy seems to be a tempt-
ing object of future works. The tasks would be slightly
different in that case, e.g. the rejection of erythrocytes
could be performed in order to pre-process an image
for other applications. However, since objects visible
on EM images are spatial, some significant modifica-
tions of the proposed description algorithm should be
made.
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ABSTRACT 
The assessment of the accuracy and stability of model-based tracking approaches in the literature is a challenging 

task. Many of the presented methods lack a detailed evaluation or comparison to accurate ground truth data. 

Considering real world applications, it is hard to estimate the applicability of the respective method. In this paper 

we present methods to evaluate the accuracy and stability of model-based tracking approaches. Thereby, we focus 

on an industrial use and the robustness of the approach considering error sources like the influence of lighting over 

time, noise and the mechanical camera setup in general. The second part of this paper deals with the evaluation 

and application of model-based tracking in a robotic production line for gap measurements in the automotive 

industry. We present a method for synchronization with a conveyor setup and an operating robot. In this complex 

setup various error sources influence the output accuracy of the system. A further accuracy evaluation method is 

presented that uses the robot as a measurement device of the total error. The paper closes with the application of a 

model-based tracking system for robotic measurement tasks in a production line. 

Keywords 
evaluation, model-based tracking, evaluation methods, synchronization to conveyor, robotic production line

1. INTRODUCTION 
While doing the research in the literature of model-

based tracking (MBT) approaches we found that most 

presented papers lack a detailed evaluation concerning 

the achieved accuracy in comparison to ground truth 

data. The influence of different camera resolutions, 

camera types or the influence of interferences like 

lighting, noise or mechanical setup is often poorly 

evaluated or different non comparable evaluation 

methods are used. With this in mind we present a tool 

set of methods in this paper to evaluate MBT 

techniques. For the research community and the 

industry this toolset can be of special interest to assess 

the accuracy, stability and feasibility of a MBT 

approach for their desired use case. Correlations 

between different error sources and their influence to 

the results become clearer and are easier to evaluate. 

To allow researchers the evaluation of their own MBT 

approach we plan to publish a CAD model of a test 

specimen, camera intrinsic parameters, a video 

sequence of shifts of the specimen and the associated 

ground truth data recorded with a precise 

measurement device. 

Automated industrial vision based solutions in 

cooperation with robots that work on a conveyor 

become more and more important in the context of 

future industrial manufacturing and are accompanied 

by several international initiatives like industry 4.0, 

smart factories or the industrial internet consortium. In 

this regard MBT can play an important role but several 

challenges have to be mastered. Based on this 

motivation this paper presents a method to 

synchronize the vision based MBT with a conveyor 

and robots. The synchronization is evaluated in an 

application scenario of automatic measuring of gaps 

on body shells with a light weight robot. 

2. RELATED WORK 
Garon et al. [Gar18] gives a good overview over the 

current state of the art of frameworks and datasets for 

the evaluation of six degrees of freedom object 

trackers. Derived from the drawbacks of existing 

methods they propose a new method based on ground 

truth data captured with a Vicon motion capture 

system. They use complex error-prone transformation 

chains for their setup with a Microsoft Kinect. It is 

known that vision systems in combination with 

Permission to make digital or hard copies of all or part of 

this work for personal or classroom use is granted without 
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profit or commercial advantage and that copies bear this 
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capturing systems like Vicon need calibration 

procedures that afflict the outcome results. Due to that, 

the results are mostly in the millimeter (mm) range. 

Devices of the measurement technology achieve better 

results and are in the submillimeter range. An 

independent measurement solution regarding the 

sensor technology for the ground truth data would be 

more appropriate.  

Several evaluation techniques use fiducials like 

[Hin11] or a checker board [Wu17]. [Hod17] also 

gives a good overview of the state of the art regarding 

datasets for the evaluation of 6D pose estimation for 

texture less objects. Unfortunately they also use 

fiducials and manually aligned poses to define ground 

truth data. 

The existing methods try to combine a lot of test cases 

for an evaluation, like textured or untextured objects, 

robustness to occlusion or clutter, detection rates, 

training of artificial intelligence methods and so on. 

As already mentioned in [Gar18] most evaluation 

datasets and frameworks lack high precise ground 

truth data which is comparable to the results of 

professional measurement technology. Therefore we 

present methods that rely on ground truth data 

captured with an independent measurement 

technology. The setup is kept simple and designed in 

a way that the results can be compared directly. 

For our evaluation we use the model-based tracking 

approach of [Wue07] that is based on [Com06] and 

[Vac04]. The method was further developed by the 

authors and has reached a high degree of maturity. 

This was important in our selection process since we 

are focused on an industrial use case. We only 

considered one MBT method because of the great 

expense for all evaluations presented in this paper. For 

initialization, [Wue07] rely on a real camera 

perspective that closely matches a given CAD 

perspective. They use a real-time image space line 

model generation method as detailed in [Nie03]. After 

the matching in the initial position a continuous 

tracking can be achieved. In Figure 2 the right image 

shows an augmentation of an image with the MBT. 

3. EXPERIMENTAL SETUP AND 

EVALUATION RESULTS 
Our evaluation consists of different methods to 

determine the accuracy of a MBT approach. We used 

precise measurement devices like a Faro arm [Far20] 

and a Faro laser tracker [Far20] to obtain ground truth 

data. Various test objects are used in the tests: a test 

specimen constructed with standard mechanical 

engineering elements of aluminum, car body shells 

and assembled coated cars. To keep things simple and 

avoid complex transformation chains we focused on 

the evaluation of a simple transform of the test object. 

Thereby, the pose of the test object was measured in 

an initial position. Then the object was moved and 

measured again. The transformation between the two 

poses is our evaluation criterion. The MBT delivers 

results in the coordinate system of the CAD object. 

The same CAD model of the test object was used in 

the calibration of the ground truth measurement 

system to the test object. With this setting, we avoid 

complex coordinate system calibrations. That makes 

the transformation of the ground truth and the MBT 

data directly comparable. 

Figure 2: Evaluation results with Faro arm, Faro laser tracker and body shell. Two camera resolutions 

are tested. The measurements are in millimeter for the translation and in degrees for the rotation. 

Figure 1: Results for Faro arm and test specimen. 3 different camera resolutions are used. Translations 

are in millimeters and rotations in degrees. Right: Experimental setup and scanned model of test object. 
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We tested the MBT with a camera resolution of 4110 

x 3006 (12 megapixels (MP)) and 2560 x 1920 (4 MP) 

pixels. A uEye UI-3000SE-C-HQ USB 3.1 camera 

with global shutter and 12 mm lens, as well as the 

same camera as black and white version was used. For 

the 2560x1920 pixel resolution a UI-3580CP-C-HQ 

Rev.2 USB 3.0 camera with a 6 mm lens was used. 

3.1 Faro arm with test specimen 
The first experiment was conducted with a test 

specimen assembled of robustly connected standard 

aluminum elements from the mechanical engineering 

sector. For ground truth measurements a Faro arm was 

used. 

3.1.1 Test setup 
To avoid errors related to the CAD modeling process, 

the test specimen was scanned with a high precision 

GOM 3D scanner [Gom20]. The scanned CAD model 

was used for the MBT and for the calibration of the 

faro arm to the test specimen. The extent of the 

specimen was about 300 mm on the longest side and 

the temperature during the measurements was in the 

range of 20 to 30 degrees Celsius. Therefore linear 

expansions caused by temperature fluctuations lie in 

the range of approximately 0.07 mm and could be 

neglected for the evaluation. As described above, the 

test specimen was measured in an initial position by 

the Faro arm and the MBT. Then the object was 

moved and measured again with both systems. Thus, 

the transformation between the two poses of both 

systems can be compared directly. 

We calculated the mean and standard deviation (std. 

dev.) of the absolute values for every axis of the 

translation and the rotation. The span of all 

movements was also recorded and is shown in Figure 

1. To assess the influence of resolution and bayer color 

interpolation on the quality of the MBT, three different 

cameras were tested. The first one is a USB 3.1 12 MP 

global shutter color camera with a 12mm lens. The 

second is the same camera as a black and white 

version. The third camera is a USB 3.0 4 MP global 

shutter color camera with a 6mm lens.  

3.1.2 Results 
For the evaluation with the 12 MP color camera 149 

measurements were conducted, for the 12 MP B/W 

camera 77 measurements and for the 4 MP color 

camera 41 measurements. The span of the specimen 

movements were in the range of up to 166 mm for the 

translation and up to 23 degrees for the rotation. We 

limited our tests to these small distances due to our 

industrial use case. This is explained in more detail 

down below. The distance from the specimen to the 

camera varied roughly between 1,5 to 3 meters. The 

coordinate system of the specimen sets the z-axis as 

up axis and uses a right handed coordinate system. 

Compared to the transformation between the two 

measured poses of the ground truth data, the MBT 

achieved results in the submillimeter range for all 

three camera types and for both camera resolutions. 

Rotation values are accurate to the second decimal 

place for nearly all values. It can be seen that with a 

higher resolution the results of the MBT improve in 

comparison to the ground truth data. These 

improvements apply to the mean and to the standard 

deviation of the absolute values of the difference 

between the two poses as well. To investigate the 

impact of Bayer demosaicing a measurement series 

with a B/W camera was conducted. Differences in the 

results are hardly noticeable and in most cases only 

concern the second decimal place. Considering the 

results in total we decided to use the 12 MP color 

camera for our further experiments and the industrial 

use case. The improvements of the B/W camera in the 

results were small and the usage of color information 

gives us further opportunities in our industrial use case 

considering coated car bodies. 

3.2 Faro arm and Faro laser tracker with 

car body shell 
The second experiment was conducted with a car body 

shell on a locomotive platform. The platform could be 

moved along one axis in each of its directions. For 

ground truth measurements a Faro arm was used. 

Since the range of the Faro arm is limited we also used 

a Faro laser tracker for contactless measurements of 

larger platform displacements. 

3.2.1 Test setup 
The test setup is similar to the one before. In an initial 

position the body shell was measured by one of the 

Faro devices and then by the MBT system. Then the 

locomotive platform was moved along the x-axis and 

the measurement of both systems was repeated. The 

transformation between the two measured poses for 

both systems were calculated and the mean and 

standard deviation of the absolute values of the 

transformation were determined per axis. To 

overcome the limitation of moving the body shell in 

the x axis only, we also moved the body shell in the y 

direction by hand. To consider movements on the z 

axis (up), we put objects under the body shell in order 

to lift it up. The span of all movements was recorded 

again. For the evaluation of the 12 MP and the 4 MP 

color camera we used the same setting as described 

above. The CAD model of the body shell was 

delivered by the planning department and can slightly 

differ to the real body shell up to a range of ± 0.5 mm.  

3.2.2  Results 
For the evaluation with the 12 MP color camera, 139 

measurements were conducted and for the 4 MP color 

camera there were 87 measurements. The span of the 

movements of the specimen was in the range of up to 

278 mm in the translation and up to 2 degrees in the 

rotation. The rotational movements were also adjusted 

by hand and due to the weight of the body shell, these 
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rotational values are small. The right handed 

coordinate system of the body shell sets the z-axis as 

up axis. The x axis points along the car main axis and 

the y axis points through the mid of the front wheel on 

the right. Compared to the ground truth data for the 

translation, the results of the MBT lie in the 

submillimeter range and are accurate to the second 

decimal place for the rotation. This applies to both 

cameras and resolutions as shown in Figure 2. The 

usage of the 4 MP camera seems to have a slight 

advantage considering the accuracy but both results 

are close together. The total amount of measurements 

captured with the 4 MP camera is smaller and may 

look different if the same amount of measurements 

would have been conducted. Nevertheless we can 

assess a high accuracy for the MBT compared to the 

ground truth data for the considered span of 

movements in our tests. Since the results of the 12 MP 

camera were slightly better than the results of the 4 

MP camera in the tests with the test specimen, we 

decided to use the 12 MP for our further experiments.  

3.3 Lighting and temperature over time 
The third experiment investigates the influence of 

lighting and temperature changes over time to the 

MBT. The tests were conducted under real operational 

conditions of our industrial use case. We set a body 

shell on a conveyor in a production hall and triggered 

a measurement with the MBT system every minute for 

24 hours. We also measured the brightness of the 

scene in lux and the temperature in degrees Celsius. 

Figure 3 shows the results and correlations of the 

particular data for a 24 hour test with 1440 

measurements. Besides, the outside lighting 

conditions at the test location had a direct effect to the 

indoor lighting due to sloped roof windows with milk 

glass. This caused some abrupt peaks in the results that 

can be seen in Figure 3. We started our tests at 2 p.m.. 

The mapping of measurement numbers to time stamps 

is depicted in Figure 3 for chosen values. As expected, 

the lighting conditions correlate directly to the results 

of the MBT. This can be seen best for the translation 

in x direction in Figure 3. Comparing the temperature 

and tracking results, a correlation is not as obvious. In 

Figure 3 the translation in z may show a trend that with 

sinking temperature the z values also decrease. The 

same is observed for the rotation around the z axis. 

 X Y Z RotX RotY RotZ 

Span 3.28 1.66 1.68 0.04 0.03 0.03 

µ 4508.6 2668.8 -1571.2 42.80 299.14 112.23 

σ 0.35 0.35 0.28 0.006 0.006 0.007 

Table 1. Results of the 24 hour test with span, 

mean (µ) and standard deviation(σ) values. 

Translations are in mm and rotations in degrees. 

We tried different camera settings and achieved the 

best and most stable results considering the span and 

standard deviation of the results with an automatic 

exposure. The results of a 24 hour test is shown in 

Table 1. The MBT lies in the 2σ range of ± 0.7 mm for 

the translation and ±0.014° for the rotation. Regarding 

the total span, we found a total range of up to 3.28 mm 

for the translation that is caused by some outliers. 

3.4 Noise 
The fourth experiment aims towards the investigation 

of the jitter/noise behavior of the MBT. The setting for 

this test was the same given in the third experiment 

where a body shell in a production hall was used. 

Therefore 30 measurements of the MBT were taken 

successively. Table 2 shows results for one of these 

tests with 30 measurements. We repeated these tests 

Figure 3: Lighting test results over 24 hours. Horizontal axis: measurement number. Vertical axis left: top 

row, translation in X, Y and Z in millimeters and mid row, rotation in x, y and z in degrees. Vertical axis 

right: Brightness in lux and temperature in degrees 
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various times throughout our evaluation. It can be 

stated that the std. dev. throughout all tests only varied 

in the second decimal place for the translation and in 

the third decimal place for all rotation values. Table 2 

also shows the column “dist”. It contains the 

maximum distance to the mean value and is helpful to 

get an overview of the peaks of the values. 

Considering the fact that the values are given in mm 

and degrees, we found the MBT to be very stable and 

it achieves good results concerning jitter and noise. 

Table 2: Results of the noise test with maximum 

distance to the mean, mean (µ) and standard 

deviation (σ) values. 

3.5 Setup and dismantling of the camera 
The fifth experiment deals with the question if a 

camera can be physically dismantled and set up again 

while achieving similar tracking results afterwards. 

Therefore a special camera mount was needed. We  

Figure 5: Camera dismantling with pinned fitting.  

mounted the camera on a steel plate that was mounted 

on another steel plate with a connection of a pinned 

fitting (Figure 5). For the tests we measured a body 

shell with the MBT. Then we removed the alignment 

pins and the camera and then put the camera and the 

pins back on the second plate. Afterwards, a MBT 

measurement was triggered. We repeated this 

procedure six times. 

Table 3 shows the mean and the std. dev. values of the 

absolute difference of the values per axis. The worst 

result is a submillimeter mean value of 0.8 mm on the 

z axis. The rotation only varies in the second decimal 

place. For applications requiring a dismantling of 

cameras in a calibrated setting this may be of interest 

to assess the impact on the accuracy. 

 X Y Z RotX RotY RotZ 

µ 0.086 -0.046 0.822 -0.010 0.067 0.049 

σ 0.208 0.244 0.166 0.004 0.014 0.014 

Table 3: Results of camera setup and dismantling 

with mean (µ) and standard deviation(σ) values.  

4. APPLICATION AND 

EVALUATION IN A PRODUCTION 

LINE 
After the general investigations concerning the 

accuracy and stability of the MBT we show the 

application and evaluation in an industrial scenario. 

Therefore the MBT is used to track body shells on a 

conveyor. The results are send to a robot in order to 

navigate to points where gaps should be measured. 

Collisions with the body shell should be avoided.  

4.1 Motivation of the scenario 
Most industrial robot applications rely on an 

installation and configuration step in which all 

components are put into operation. For our use case 

the points for the gap measurements are taught to a 

robot on a body shell in an initial position. Thereby the 

conveyor stands still. The body shells are mounted on 

skids. During system operation the conveyor is 

moving and skids with the body shells are 

automatically placed on the conveyor by machines. 

Afterwards the position of the skids can deviate from 

the initial position. To avoid these deviations that can 

cause a collision between a robot and the body shells, 

the deviations have to be measured to correct the 

robots movements. To provide accuracy, the 

conveyor, the systems engineering and the imaging 

device for the MBT have to be synchronized. 

4.2 System setup and general procedure 
Figure 6 shows the setup of our industrial use case. 

 X Y Z RotX RotY RotZ 

dist 0.12 0.16 0.21 0.003 0.003 0.005 

µ 4521.21 2659.38 -1565.02 42.67 298.93 111.99 

σ 0.04 0.07 0.08 0.001 0.001 0.001 

 X Y Z RotX RotY RotZ 

dist 0.12 0.16 0.21 0.003 0.003 0.005 

µ 4521.21 2659.38 -1565.02 42.67 298.93 111.99 

σ 0.04 0.07 0.08 0.001 0.001 0.001 

Figure 4: System setup for the robot measurement evaluation. 
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The MBT runs on an industrial PC in a carriage. In 

addition a light weight robot is attached to the 

carriage. The carriage and the robot are connected 

with a programmable logic controller (PLC) that 

controls the production station. When a body shell 

enters the station boundary, our system gets pieces of 

information about the car type and loads the 

corresponding CAD model in the MBT system. In the 

setup phase an initial position of the car is defined and 

the robot is calibrated for that position. The pose of the 

body shell is measured with the MBT and stored as 

reference pose 𝑇𝑅. Later on, this position on the 

conveyor is used as measurement position for the 

MBT and denoted as “virtual trigger”. From this 

virtual trigger we calculate an earlier position in the 

opposite conveyor direction. This position is denoted 

as “first fit” (see Figure 4) and marks the position were 

the MBT matches the edges of the CAD model and 

video data to obtain a continuous tracking for the 

following frames. To account for the conveyor 

position and possible conveyor backlashes the 

increment of the conveyor is stored as 𝐼𝑛𝑐𝑅. Within the 

production process, cars come along the conveyor and 

are shifted or twisted in comparison to the reference 

pose. At the virtual trigger the actual pose 𝑇𝐴 is 

measured with the MBT and the transformation 

between 𝑇𝑅 and 𝑇𝐴 is calculated with 𝑇 =  𝑇𝑅
−1 ∗ 𝑇𝐴. 

4.3 Synchronization between conveyor 

and model-based tracking 
To synchronize the MBT with the conveyor and the 

robot we present a method that does not require 

external time severs. The conveyor increment is 

determined by a separate rotary encoder that uses a 

gear to attach to the conveyor. With a conversion 

factor the covered distance of the conveyor can be 

calculated. When a car enters the station, a light barrier 

detects it (see Figure 4) and sets a conveyor increment 

counter to zero. After this, the PLC sends the actual 

conveyor increment 𝐼𝑛𝑐𝐴 every 3 milliseconds (ms) to 

our system. If 𝐼𝑛𝑐𝐴 is greater than 𝐼𝑛𝑐𝑅 we know that 

the virtual trigger position is reached and a timestamp 

𝑡𝑎𝑐𝑡is set in our system. Then the last pose 𝑃𝑡1 before 

the timestamp and the first pose 𝑃𝑡2after the timestamp 

are used in combination with the time difference 

𝑡𝑑𝑖𝑓𝑓to estimate the interpolated pose 𝑃𝑉𝑇at the virtual 

trigger. With the help of the relation 

𝑃𝑉𝑇 𝑡𝑑𝑖𝑓𝑓 = 𝑓𝑎𝑐𝑡𝑜𝑟⁄  we can use the slerp function to 

interpolate between the poses 𝑃𝑡1and 𝑃𝑡2. Doing so, 

the correct pose 𝑇𝐴 at time 𝑡𝑎𝑐𝑡 for the virtual trigger 

position can be calculated. 𝑇𝐴 is directly comparable 

to the pose 𝑇𝑅 of the reference position. Since the PLC 

sends the increments every 3 ms to the MBT system 

an additional maximum error of 0.225 mm can occur. 

The conveyor speed was 75 mm per second in our 

experiments. 

4.4 Error sources 
In this complex application scenario various error 

sources influence the accuracy. Below the most 

important ones under an assumption of 2 σ are listed: 

 MBT errors: 0.7 mm ± 1.5 mm 

 MBT-conveyor synchronization:1.7 ± 1.5 mm 

 Robot to conveyor synchronization: ± 0.5 mm 

 Robot calibration of gap points: ± 0.5 mm 

 Production tolerance of test object ± 0.5 mm 

 Calibration conveyor direction 

 Calibration robot to test object 

4.5 Evaluation of the synchronization  
To test our synchronization method we put a coated 

car on a conveyor that can be moved forward and 

backward. The reference pose was measured in an 

initial position with the MBT system and the conveyor 

increments were recorded. Then the conveyor with the 

car was moved in the opposite conveyor direction in a 

start position before the virtual trigger 

For the tests the conveyor was started and the 

measurements with the MBT were triggered by 

reaching the increment values of the virtual trigger. 

For every measured pose the transformation to the 

reference pose was calculated. We repeated this 

procedure 56 times. Ideally, the mean of the pose 

differences should be zero if no error would occur. The 

mean, standard deviation and span of the results is 

Figure 6: Real setup for the robot gap measurement evaluation. Critical information is blackened. 
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depicted in Table 4. In this test the MBT errors and the 

production tolerances have an influence on the results. 

As expected, the biggest error occurs on the x-axis that 

corresponds to the conveyor direction. We found that 

coated cars are a bigger challenge for the MBT than 

body shells. This is caused by light reflections in the 

coating that can lead to edges being detected falsely 

and thus can corrupt the matching process. 

Unfortunately we have no comparison to ground truth 

data for coated cars. Therefore we rely on the 

assessment of the total error including all error sources 

described above. The rotational values only vary in the 

second decimal place. The translation values only vary 

in the submillimeter space except the x-axis. 
 X Y Z RotX RotY RotZ 

µ -1.72 -0.19 0.08 0.00 -0.02 0.03 

σ 0.78 0.24 0.20 0.01 0.01 0.01 

span 3.11 1.17 0.83 0.04 0.05 0.04 

Table 4: Evaluation results of the synchronization 

method with mean (µ), std. dev. (σ) and span. 

To be able to assess and quantify the total error of our 

system with a more independent measurement method 

a further evaluation is presented in the next section.  

5. Robot measurements 
In section 4.4 the error sources of the complete system 

are described. In a complex setup described so far, 

various correlations between the error sources exist. 

Thus a distinguished assessment of the influence of a 

single error source is hard to determine. We tried to 

quantify single error sources in this paper to allow an 

easier assessment of single components and the 

behavior of the MBT. Finally, the total error is 

essential to assess the accuracy of the whole system. 

Therefore we present a method to measure the total 

error. This is done by using the light weight robot of 

the gap measurement use case. On the robots end 

effector a tool for gap measurements is attached, 

denoted as laser line tool (LLT). It consists of two 

laser line scanners that are arranged in a mount in the 

way that a large laser scan line is generated. The LLT 

is shown in Figure 6, once with and once without 

housing. If the robot approaches a measurement point 

at a car the deviation of a gap mid point to the LLT 

mid point can be measured. This gives us the total 

error in 2D LLT coordinates. With this criterion it can 

at least be stated how precise a measurement point of 

an actual car can be measured with the robot LLT and 

gives us an overview of how the synchronized MBT is 

suited for this kind of application.  

As described in section 4.1 all necessary measurement 

points on the body shell are taught to the robot in an 

initial position. The LLT is thereby aligned 

perpendicularly to the normal of a gap, e.g. the gap 

between the hood and the car wing (see Figure 8). To 

assure a precise alignment a template for the 

alignment of the laser line is used (see Figure 8).  

The template has little bridges on the backside that fit 

into a gap and ensure a tight application of the 

template. The laser line is then aligned orthogonally to 

the template by hand and the robots position is saved. 

Afterwards a software offset is calculated on the basis 

of the measurements that corrects small deviations and 

ensures a tight orthogonal alignment of the laser line 

to the gap. 

During the system setup in the initial position the 

conveyor direction and the transformation between the 

robot base and the body shell is measured with a high 

precision measurement device, e.g. a Faro laser 

tracker. In the conveyor synchronous mode the robot 

uses these values to predict the position of the body 

shell at various conveyor increments. Together with 

the pose correction values of the MBT and the 

calibrated measurement points this makes an accurate 

approach of the robot to each measurement point 

possible. For the evaluation we used three 

measurement points on the body shells. Looking at the 

side of a car, the first is a horizontal gap between the 

trunk lid and the car body. On this gap our 

measurement point P1 is approximately placed in the 

mid. The second gap is vertical and between the back 

driver door and the car body. The measurement point 

P2 lies on the left side of the right wheel housing at the 

lower end. The third gap is also vertical and between 

the driver door and the back driver door. The 

measurement point P3 is placed in the upper area.  

 

Figure 7: Results of robot measurements for three 

gap points. MBT results are marked in red for the 

respective axis and robot results in blue. 

In our evaluation the MBT measures the body shell at 

the virtual trigger and sends the pose correction to the 

robot. The robot uses the values and his prediction of 

the body shell to correct the calibrated measurement 

positions in his coordinate system. Then the robot 

measures three points successively as the body shell 
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on the conveyor passes. The robot approaches each 

gap in a way that the laser line is orthogonal to the gap. 

In our experiment, three gap points were measured 

278 times. The results are shown in Figure 7. For each 

measurement point the axis is denoted in analogy to 

the car coordinate system (see Figure 7). The origin of 

the car coordinate system is in the mid of the front 

suspension. The x-axis is along the cars main axis and 

directed to the back wheels, the y-axis is directed to 

the right front wheel and z is the up-axis. 

 

Figure 8 Laser line tool calibration to gaps. 

The robot started each of the 278 measurement series 

with P1 then measured P2 and P3. As shown in Figure 

6 the cars back enters the station first. The body shells 

length is approximately 4.5 meters. For an ideal 

situation, the blue robot measurements in Figure 7 

would be nearly zero, indicating that the MBT results 

in red correct the robot movements perfectly. It can be 

seen in Figure 7 that the mean for the vertical gaps 

increase over the length of the body shells. Regarding 

the std. dev., a slight increase can be observed too. The 

further away the measurement points are in x-direction 

the more uncertainty can be found in the results. This 

is mainly caused by the leverage of rotational errors of 

the MBT, of the conveyor direction calibration and of 

the transformation between the body shell and the 

robot. Under the assumption of a gauss distribution of 

2 σ, it can be stated that P1 can be measured with an 

accuracy of up to 4.22 mm, given the worst case. P2 

with an accuracy of up to 5.89 mm and P3 with an 

accuracy of up to 6.23 mm in the worst case. The laser 

line has a length of several centimeters (see Figure 8). 

Thus, gaps can be measured with the presented 

method. To further improve our method, we plan to 

introduce a second virtual trigger that is shifted about 

a half or one-third of a body shell after the virtual 

trigger. This will reduce deviations caused by leverage 

effects of rotational errors or rising uncertainties of the 

matching pose by the MBT over larger distances. 

6. CONCLUSION 
In this paper we presented several methods to evaluate 

the accuracy and stability of model-based tracking 

approaches. We showed tests to determine the 

accuracy with different camera resolutions or camera 

types, the influence of light and temperature changes 

and the robustness to noise. For one particular 

approach we found that with precise CAD models an 

accuracy in the submillimeter range for the translation 

and up to the second decimal place for the rotation can 

be achieved. Distances of up to 300 mm and rotations 

of up to 23° were evaluated. Furthermore a method 

was presented to synchronize the vision based tracking 

to a conveyor and robot. This synchronization was 

also evaluated. Finally, we presented the application 

of model-based tracking in an industrial gap 

measurement use case with a light weight robot. This 

complex system was evaluated and the total error 

determined. In future we plan to introduce a second 

virtual trigger to further improve the accuracy of the 

system and to evaluate the system for coated cars. The 

presented methods help to assess the applicability of 

model based tracking approaches for even complex 

industrial application scenarios. 
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ABSTRACT
With 360 imaging devices becoming widely accessible, omnidirectional content has gained popularity in multiple
fields. The ability to estimate depth from a single omnidirectional image can benefit applications such as robotics
navigation and virtual reality. However, existing depth estimation approaches produce sub-optimal results on
real-world omnidirectional images with dynamic foreground objects. On the one hand, capture-based methods
cannot obtain the foreground due to the limitations of the scanning and stitching schemes. On the other hand, it is
challenging for synthesis-based methods to generate highly-realistic virtual foreground objects that are comparable
to the real-world ones. In this paper, we propose to augment datasets with realistic foreground objects using an
image-based approach, which produces a foreground-aware photorealistic dataset for machine learning algorithms.
By exploiting a novel scale-invariant RGB-D correspondence in the spherical domain, we repurpose abundant
non-omnidirectional datasets to include realistic foreground objects with correct distortions. We further propose a
novel auxiliary deep neural network to estimate both the depth of the omnidirectional images and the mask of the
foreground objects, where the two tasks facilitate each other. A new local depth loss considers small regions of
interests and ensures that their depth estimations are not smoothed out during the global gradient’s optimization.
We demonstrate the system using human as the foreground due to its complexity and contextual importance,
while the framework can be generalized to any other foreground objects. Experimental results demonstrate more
consistent global estimations and more accurate local estimations compared with state-of-the-arts.

Keywords
Depth Estimation, Scene Understanding, Data Augmentation, 360 images

Figure 1: A demonstration of incorrect representations
of dynamic objects (e.g. a running person) captured
with an omnidirectional RGB-D scanning device.

1 INTRODUCTION
As 360 cameras have become more popular and effi-
cient, the need for image processing algorithms applica-
ble to omnidirectional images increases. The ability to
estimate depth from a monocular omnidirectional im-
age can greatly benefit a wide range of applications in-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 2: The previous approach of inserting human
models introduces the problem of severe domain bias.
This is demonstrated by comparing synthetic data (left)
with captured data (right).

cluding navigation in robotics [7], stereoscopic render-
ing in graphics [10], augmenting virtual objects [14].

Existing omnidirectional approaches produce sub-
optimal estimations on real-world scenarios due to
their lack of consideration of dynamic foreground
objects. For captured-based approaches, using a stereo
setup of two 360 cameras will inevitably include the
other camera in the captured data [4]. While recent
360-capable scanning devices [3] can acquire paired
RGB and ground truth depth of scenes with improved
quality, they are incapable of including any dynamic
object as a result of scanning and stitching scheme
(Figure 1) [1]. For synthesis-based approaches [25],
although researchers attempt to solve this problem
by inserting 3D models into the scene to improve the
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Figure 3: The pipeline of the proposed data synthesizing system. The left section shows the input datasets, the
middle section shows the intermediate results, and the right section shows the output. We generate masks of the
interested region with mask R-CNN and corresponding RGB-D batches from the input 2D dataset. The batches
are then composited to the input 360 dataset with regard to the depth information.

prediction (Figure 2), it is challenging to efficiently
generate highly-realistic virtual foreground objects that
resemble real-world ones [2], and non-photorealistic
data often lead to undesirable and inaccurate outputs.
In this paper, we tackle the problem of foreground by
first augmenting datasets with realistic foreground rep-
resentations. We observe that given the same object
with a determined distance, its scale in spherical images
should remain consistent. Taking advantage of it, we
effectively composite color data of abundant and eas-
ily obtainable 2D datasets and rendered omnidirectional
images according to ground truth depth maps to ensure
correct occlusion representations. To preserve correct
distortions in equirectangular images, we project the
data to cube maps before and after compositions.
We then propose a novel auxiliary deep neural network
that estimates both the mask of the foreground objects
and regresses the depth of the omnidirectional images.
With the depth and segmentation estimations, we de-
sign a new local depth loss of dynamic foreground ob-
jects to achieve more consistent depth predictions. This
solves the problem that small areas with steep local gra-
dients often got minimized when regressing the global
gradient of the prediction, resulting in areas of interest
that are frequently smoothed out in existing work.
In this paper, we choose humans as the dynamic
foreground object to show the efficacy of our approach.
As a foreground object, human shares both a high com-
plexity in deformation and non-uniform depths, and
great importance being one of the most interested and
common subjects to deliver the context of the image.
By showcasing accurate estimations of human, we
demonstrate the ability of our method to be generalized
to other foreground objects.
Experimental results show that the proposed method
yields more consistent global estimations and more ac-
curate local estimations against contemporary state-of-

the-art models quantitatively and qualitatively. This
research is best applied in fields including occlusion-
aware augment reality, stereoscopic rendering.

Our contributions are summarized as follows:

1. We propose a method to synthesize an RGB-D
omidirectional dataset with dynamic foreground
objects to tackle the challenge of estimating the
depth of them in the context of spherical images.
The dataset is offered to promote future research.

2. We employ the proposed auxiliary network that es-
timates depth and segmentation masks to calculate a
new local depth loss of dynamic foreground objects.
This can resolve the issue of steep local gradient get-
ting smoothed out during optimization and improve
the estimation results of local regions. The source
code is publicly offered online.

The rest of the paper is organized as follows: we re-
visit learning-based monocular depth estimation meth-
ods and methods for synthesizing training data in Sec-
tion 2. In Section 3, we explain the novelty of our
dataset and describe the generation framework. In Sec-
tion 4, we describe the network architecture and the
proposed loss function to leverage the dataset. Details
of experiments are presented in Section 5 along with
qualitative and quantitative evaluations. Finally, Sec-
tion 6 concludes this work.

2 RELATED WORK
2.1 Learning-based Monocular Depth Es-

timation for Omnidirectional Images
Estimating the depth given a monocular RGB image is
one of the most fundamental capabilities in understand-
ing the 3D geometry of the scene [13]. A wide range
of applications in robotics, graphics, virtual reality, etc.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

80

Vol.28, No.1-2, 2020



can benefit from more accurate depth predictions. Ow-
ing to more established machine learning algorithms,
learning an implicit relation between color and depth
has seen significant progress recently.

A variety of algorithms [19] [17] have been proposed
by training a model with collected color and ground
truth depth images in a supervised fashion. Lately,
numerous strategies have been proposed to achieve a
more coherent and accurate monocular depth estima-
tion. Multi-scale networks [5] make coarse global depth
prediction and refine the local prediction. Multitask
learning [15] [23] with multiple regression and clas-
sification objectives is also prevalent in understanding
scene geometry and semantics due to their complemen-
tarity. A fully convolutional network architecture [17]
that endows novel up-sampling blocks achieved impres-
sive accuracy and efficiency.

Unsupervised methods focused on a stereo correspon-
dence framework to cope with the need for an expen-
sive secondary supervisory signal. This is either ac-
complished by synthesizing stereoviews with left/right
consistency [10] to produce intermediary disparity map
[6] [27], or multi-view consistency with structure-from-
motion (SfM) [28] to learn a dense disparity prediction.

To yield accurate estimations of both global and lo-
cal objects in the context of the omnidirectional do-
main, lacking paired data with dynamic foreground ob-
jects and distortion introduced by equirectangular pro-
jection will result in poor outputs for supervised ap-
proaches. On the other hand, while some unsupervised
approaches do not explicitly require paired datasets, is-
sues like distortions and occlusions still persists.

Therefore, predicting the depth of 360 contents with
the aforementioned 2D approaches often yields sub-
optimal results [29]. Failing to learn feature representa-
tions in the equirectangular domain inevitably leads to
inferior accuracy and coherency. To improve the per-
formance of prediction in 360 contents, cubemap pro-
jection is one of the most popular choices. By pro-
jecting spherical signals onto faces of a cube, six non-
distorted square patches can still be processed with ex-
isting convolution techniques. However, while such an
issue may not be critical in certain tasks such as styl-
ization and classification, the lack of consistency be-
tween the output of each patch is more pronounced
in depth regression. Recently, methods for enabling
rotation-equivariance in CNNs were proposed by Co-
hen [4]. However, since such equivariant architec-
tures provide a lower network capacity, only single
variable regression problems were demonstrated. In-
spired by [26], the state-of-the-art method [29] incorpo-
rated distorted CNN filters to improve the performance
of fully convolutional networks with skip connections
and showed impressive predictions of equirectangular
images. However, without any consideration on fore-

ground objects, the network will penalize small areas
with a steep local gradient when regressing the global
gradient of the prediction, resulting in areas of interest
such as humans are frequently missing in the output.

2.2 Synthesizing Omnidirectional
Datasets

Since the standard method to approach monocular
depth estimation is to train a model directly from
paired RGB images and ground truth depth, the
performance of such supervised approaches cannot
produce better results than the limits of its training
data. With advanced imaging devices and depth
sensors, high-quality datasets consisting of traditional
perspective images are easily obtainable, for instance,
KITTI [8], NYUv2 [24], Make3D [22], etc. However,
obtaining paired 360 data is not as straightforward
as using traditional imaging devices with calibrated
color and depth sensors such as Kinect to capture 2D
contents. Using a stereo setup of two 360 cameras to
calculate disparity is challenging due to the presence of
occluded regions [20]. In the case of omnidirectional
images, both cameras will inevitably include the other
camera in the captured data. Recent scanning devices
are capable of acquiring datasets that consist of paired
360 RGB and ground truth depth of static scenes with
improved quality, such as Stanford 2D-3D [1] and
Matterport3D [3].

However, existing methods fail to include any dynamic
object in the scene. As a result of a scanning and stitch-
ing scheme, trying to include dynamic foreground ob-
jects in the captured data [1] [3] will lead to distorted
and incorrectly composited images, as shown in Fig-
ure 1. [29] repurposed 3D model datasets, SunCG [25]
and SceneNet [11], to render 360 synthesis-based RGB-
D images with virtual cameras. However, a model
trained with synthetic data does not necessarily gener-
alize well to real-world scenarios, due to dataset bias.
As observable in Figure 2, a previous attempt to re-
solve this issue by inserting human models into the ex-
isting synthetic dataset suffers from a severe domain
bias from the real-world scenarios. However, because
of the inability to include realistic human representa-
tion in the existing omnidirectional RGB-D dataset, the
performance of all previous methods is greatly limited
when applied to real-world scenarios with humans.

3 FOREGROUND-AWARE PHOTORE-
ALISTIC 360 DATASET

To produce a foreground-aware photorealistic dataset
for machine learning algorithms, we explain our
method of augmenting datasets with realistic fore-
ground objects using an image-based approach in this
section. The pipeline of our method is visualized in
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Figure 4: Since traditional 2D images can be processed with perspective transformations, it is difficult to establish
a correspondence between color and depth information. In comparison, 360 images cannot be cropped or zoomed
and hence have a scale-invariant RGB-D correspondence. As shown on the right side, in the 2D plane, different
color representations map to the same depth map of interested regions. One the other hand, 360 images share a
one-to-one mapping between color and depth, and every object has a fixed scale.

Figure 3. As shown in Figure 4, based on the observa-
tion that 360 images can circumvent challenges brought
by perspective transformations in the traditional 2D
plane, we effectively composite color data of abundant
and easily obtainable 2D datasets and rendered omni-
directional images with z-buffer. We employ a Mask
R-CNN network to predict pixel-perfect masks of the
dynamic foreground objects. With the acquired masks
of interest, we can obtain perspective paired color and
depth batches. With cubemap projections done before
and after compositions, we can composite with correct
occlusions and distortions.

3.1 Scale-invariant RGB-D Correspon-
dence in 360 Images

In this section, we explain the novelty and feasibil-
ity of compositing existing 2D RGB-D datasets onto
equirectangular images.

We observe that it is difficult to establish a correspon-
dence between color and depth in the traditional 2D do-
main. We take perspective transformations as an exam-
ple and demonstrate with Figure 4. During the process
of "zooming in" onto the target region (dashed box), the
global color data changes continuously while the depth
of the target area stays the same, forming a many-to-one
mapping. It is particularly true in the real-world: when
we use binoculars to observe the same object, even
given the prior knowledge of an object’s average size,
it is inherently harder to estimate the distance without
knowing the magnification.

One the other hand, the relation between color and
depth in 360 images is scale-invariant. While some
perspective transformations such as cropping will make
360 images no longer spherical, rotation and zoom will
not affect the global color representation of the original

image after down-scaling. Therefore, given the same
object with a determined distance, the appearance of the
target region in 360 images should remain consistent.

Based on this observation, we exploit such an advan-
tage of omnidirectional images by inversely composite
local regions onto them with regard to the depth infor-
mation. In this work, we choose z-buffer to composite
owing to its simple implementation, high efficiency and
compatibility of occlusions.

3.2 Synthesizing RGB-D Foreground
Batches

3.2.1 General Foreground Synthesis

To automatically acquire paired color and depth maps
of a dynamic foreground object, we can either capture
with sophisticated RGB-D sensors or take advantage
of abundant and easily obtainable existing datasets in
the traditional 2D domain. In order to efficiently ac-
quire highly accurate segmentation masks of the input
data, we adopt a Mask R-CNN model with a back-
bone of ResNet-101, trained with the COCO dataset
to predict per-pixel label masks. The strengths of per-
instance prediction and less complex post-processing
are the main reason we choose Mask R-CNN over a
simpler U-Net network. During prediction, our imple-
mentation predicts per-person-instance masks in a near-
real-time speed (5 fps) with high accuracy. Some ex-
amples are shown in Figure 10 and Figure 11. With
acquired masks for areas of interest, we crop batches
from the input RGB-D data accordingly.

3.2.2 Human Batch Synthesis

Since human as a dynamic foreground object shares
both a high complexity in deformation and non-uniform
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Figure 5: Generated examples with the proposed method. From left to right: rendered color images with origi-
nal omnidirectional datasets, samples from an input human pose dataset, generated omnidirectional images with
humans, and corresponding depth maps.

depths, we choose humans to show the efficacy of our
approach. At the same time, humans have great im-
portance being one of the most interested and common
subjects to deliver the context of the image. By show-
casing accurate estimations of human, we demonstrate
the ability of our method to be generalized to other fore-
ground objects. In this work, we repurpose the PKU-
MMD dataset [18], which contains calibrated and syn-
chronized RGB-D video sequences. This large-scale
dataset includes motions of 51 categories performed by
66 distinct subjects. It contains different views, suffi-
cient intra-class variations and adequate classes of mo-
tions to ensure a robustness prediction result.

3.3 Synthesizing RGB-D Omnidirectional
Data with Foregrounds

3.3.1 Omnidirectional Background Synthesis
Since paired real-world 360 RGB-D datasets with hu-
mans are not available to our knowledge, to alleviate
the difficulty of evaluating the accuracy between ours
and the-state-of-the-art approaches, we use a similar
strategy matching with [29] to render paired and re-
alistic omnidirectional RGB-D images from the Stan-
ford 2D-3D dataset and the Matterport3D dataset cap-
tured with professional 360-capable scanning devices.
Specifically, a path tracing renderer with a virtual om-
nidirectional camera is used to generate the samples.
The light source is positioned identically with the vir-
tual camera. Omnidirectional depth maps with linear
distances of each pixel are generated with Z depth. To
show the effectiveness of our method across different
domains and to benchmark the accuracy with synthetic
360 datasets, identical processes are brought out with
the SunCG [26] and the SceneNet [11] as well.

3.3.2 Compositing Foregrounds and Back-
grounds

Since the RGB-D local batches are captured in the
traditional 2D domain, a direct composition will lead
to distorted and unrealistic appearances in the 360
context. To cope with this challenge, both RGB and
depth map of each rendered omnidirectional sample
is projected onto a cube map through cubic projec-
tion. With ground truth depth information of both
foreground batches and background faces, the com-
position is done through highly efficient and effective
Z-buffer, preserving correct depth annotations and
in-scene occlusions. To simulate real-world scenarios,
batches are randomly composited to lower halves of
4 surrounding cube faces, while faces of the ceiling
and the floor are not used during composition. Finally,
a reverse cubemap projection is done to generate
high-quality RGB-D equirectangular samples with
dynamic foreground objects.

In this work, our proposed dataset consists of 25,000
realistic and 25,000 synthetic equirectangular samples
with synchronized color information and depth anno-
tations. Abundant variation is achieved through a suf-
ficiently wide range of indoor scenes as backgrounds,
and a large human batch pool acquired in the previous
step as foregrounds.

4 DEPTH ESTIMATION FOR OMNIDI-
RECTIONAL IMAGES

This section presents our proposed end-to-end learning
model to estimate a depth map from an equirectangular
image. As shown in Figure 6, We use two fully-
convolutional encoder-decoder structured networks,
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Figure 6: An overview of the proposed depth estimation
network. The weight of the auxiliary MaskNet is fixed
when training the depth estimation model RectNet [29].

RectNet and MaskNet to regress depth and predict
masks of local regions respectively from a given RGB
input. The RectNet that resembles the design in the
literature can regress depth with changing filters in
an omnidirectional context. To take advantage of the
generated dataset with dynamic foreground objects,
we leverage the generated masks of interested areas
to train the auxiliary MaskNet. By calculating both
local depth loss and global loss, our network further
improves the consistency in local predictions.

4.1 Network Structure

Figure 7: The architecture of the fully convolutional
auxiliary MaskNet. The encoder of our network shares
the same structure of ResNet-101 [12], followed by a
decoding process with two upsampling layers to predict
the mask of the target object.

The proposed network approaches dense depth estima-
tion from monocular RGB images shares an encoder-
decoder design that progressively downscales and up-
scales to the target representation through regression.
Skip connections similar to ResNet structures can help
to preserve the information from a higher level during
regression while preventing vanishing gradient. When
applied to equirectangular images, inspired by [26], we
incorporate rectangular filters with changing sizes ac-
cording to rows of the input to cope with the character-
istic that the density of information, or namely the dis-
tortion level changes along the vertical axis but invari-
ant along the horizontal axis. In addition to L2 depth
loss to regress the prediction, a neighborhood smooth-
ness regularization term [29] is also calculated to im-
prove the global consistency of the output.

However, small regions with steep gradient changes
usually got smoothed out during the regression and
missing in the prediction. This can be observed in Fig-
ure 10. Predictions of human severely suffer from this
issue. To tackle this limitation, we introduce an auxil-
iary network, MaskNet, to calculate the local depth loss
of humans. The MaskNet network that predicts masks
of foreground objects from equirectangular RGB inputs
has the architecture shown in Figure 7. It is trained
with the COCO dataset and finetuned with generated
equirectangular RGB images with foreground objects
and corresponding segmentation masks to minimize a
cross-entropy loss. The weight is fixed during training
the depth estimation model.

4.2 Loss Function
We train the depth estimating network in a com-
peletly supervised fashion with input of the generated
foreground-aware RGB-D dataset. To address the
problem of vanishing local gradients for areas of
interest while keeping the desirable properties of the
original RectNet like consistent global predictions, the
total loss of our model consists of three different terms:

Ltotal = ∑
i
(αiLdepth +βiLsmooth + γLlocal),

while the α , β and γ are the weights for each loss term.
Since the loss is calculated under different scales i, the
estimations of lower scales are interpolated with near-
est neighbors are concatenated together to form the final
output. The depth loss Ldepth is regressed by minimiz-
ing the least square errors between the groudtruth depth
maps Dgt and the predicted depth maps Dpred :

Ldepth = ‖Dgt −Dpred‖2.

The smoothness loss is calculated by ‖∇Dpred‖2 to
minimize the gradient of the prediction. In order to
calculate the local depth loss, we pass the equirect-
angular color image Cinput through the trained auxil-
iary network M to obtain the mask of human instances
Mhuman =M(Cinput), so we can calculate the local depth
loss with

Llocal = ‖Dpred⊗Mhuman‖2.

By minimizing the local depth loss, we can ensure that
spatially closer pixels within the same area of interest
would have closer depth values.

5 EXPERIMENTS
In this section, we first evaluate our data augmenta-
tion method by presenting quantitative comparisons
between models trained with existing omnidirectional
datasets and our generated datasets. We then verify the
performance of the proposed network by comparing it
to the state-of-the-art omnidirectional depth estimation
algorithm. Finally, to evaluate the effectiveness of our
method in real-world scenarios with human objects,
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Table 1: Quantitative results of different training datasets. Error metrics are calculated on a global basis.

Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Synthetic 0.4918 0.4133 0.8944 0.6550 0.4083 0.6806 0.8212
Proposed Synthetic 0.3789 0.2893 0.6878 0.5225 0.4245 0.7926 0.9257

Realistic 0.3765 0.3540 0.8864 0.5230 0.5907 0.7500 0.8926
Proposed Realistic 0.3190 0.2180 0.5993 0.4788 0.6988 0.8454 0.9150

For four error metrics, absolute relative difference (Abs Rel), squared relative difference (Sq Rel), root mean square error
(RMSE) and RMSE log, lower values are better. For percentage of inliers under threshold δ < 1.25, δ < 1.252 and δ < 1.253,
higher values are better. Same for tables below.

Table 2: Quantitative evaluation against other models. Error metrics are calculated on a global basis.

Model Training Set Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

RectNet [29] Proposed Syn 0.3789 0.2893 0.6878 0.5225 0.4245 0.7926 0.9257
Proposed Proposed Syn 0.2895 0.2354 0.5957 0.4272 0.7440 0.8805 0.9284

RectNet [29] Proposed Real 0.3190 0.2180 0.5993 0.4788 0.6988 0.8454 0.9150
Proposed Proposed Real 0.1984 0.0817 0.3286 0.2608 0.7298 0.8984 0.9727

we offer comparative qualitative results of estimating
unseen images by different methods.

5.1 Training Details

Figure 8: Learning curves of models respectively
trained with original synthetic, original realistic, pro-
posed synthetic and proposed realistic datasets.

For fair comparisons, we randomly acquired 25,000
samples from existing synthetic omnidirectional
datasets to train models as the existing synthetic
dataset, and then we acquired 25,000 samples from
existing realistic omnidirectional datasets to train
models as the existing realistic dataset. We respec-
tively generate 25,000 synthetic samples and realistic
samples augmented with human objects to train models
as our proposed datasets. Each 512 x 256 sample
has color information and corresponding ground truth
depth annotation. We randomly split samples from
each dataset into training and validation datasets with
a ratio of 80% and 20%. All networks in this paper

are implemented with PyTorch [21] on an Nvidia
RTX 2080Ti graphic card and trained with Adam
optimizer [16], Xavier initialization [9], and a learning
rate of 2e-4. Training parameters of our networks are
[α1,α2,β1,β2,γ] = [0.482,0.245,0.121,0.061,0.090],
while parameters of training previous RectNet models
are [α1,α2,β1,β2] = [0.535,0.272,0.134,0.068]. The
same quantitative metrics from the literature [10] [29]
are used for evaluation. During experiments, predicting
a single image approximately costs 100 ms with the
same setup.

Figure 9: Estimated depth information of local regions
with different configurations. An ablation study shows
that using our augmented dataset can improve the accu-
racy of local regions, and the proposed network shows
an improved consistency with clearer boundaries.

5.2 Quantitative Results
Table 1 presents the results of the state-of-the-art mod-
els respectively trained with existing synthetic and real-
istic datasets and our proposed datasets. We observe
that when tested on unseen samples with human ob-
jects, networks trained with our proposed datasets out-
perform the existing ones. The increased performance
in accuracy against previous methods attributes to more
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Figure 10: Qualitative comparison between each model when tested on synthetic images.

Figure 11: Qualitative comparison between each model when tested on realistic images.
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accurate estimations of local human regions, as can be
observed in Figure 9. By further quantitatively evalu-
ating the accuracy of estimations between our proposed
network and the state-of-the-art models, we can observe
the inferior performance of previous approaches as ex-
pected in Table 2. Depth estimations of local human
regions are further refined with our proposed network.

5.3 Qualitative Results
To qualitatively evaluate our models’ ability to general-
ize to unseen data, we further acquire and augment sam-
ples from the SunCG and the Matterport3D that come
from other locations different from training datasets. As
we can observe in Figure 10 and Figure 11, our models
perform better to estimate the depth of both synthetic
and realistic scenes with a human. While previous mod-
els yield human depth estimations that are blended with
the background and have a blurred edge, our models
can predict much clearer and human-shaped results. It
is worth mentioning that although all omnidirectional
samples used in the experiment only cover indoor set-
tings, our method works with outdoor cases as well.

After observing generated samples, we believe there
are many challenges left to overcome. First, even our
method can augment foreground objects, we do not take
lighting into consideration during the process. This un-
naturalness may lead to less robust estimation in certain
scenarios (e.g. scenes with very high brightness).

5.4 Ablation Study
In Figure 9, we compare the accuracy of depth estima-
tions for local regions under different configurations.
Specifically, we compare using original data and pro-
posed data to train only the depth estimation network
without the auxiliary MaskNet at first to validate the
effectiveness of our data generation method. We then
use augmented data to train depth estimation networks
with the auxiliary MaskNet, and verified that the local
depth loss can successfully improve the consistency of
estimated depth within areas of interest. As we can ob-
serve in Figure 9, our method significantly outperforms
the state-of-the-art in local depth estimation.

6 CONCLUSION
We have presented a data augmentation method to gen-
erate high-quality equirectangular datasets with paired
color and ground-truth depth annotations by repurpos-
ing abundant and easily obtainable 2D RGB-D datasets.
With this dataset, we further introduced and imple-
mented an auxiliary network that calculates local depth
loss to resolve an issue that small regions of interest are
frequently smoothed out during optimizing global gra-
dients. We take human, a crucial subject in 360-degree
contents, as an example to show the efficacy of our ap-
proach. We showed improved accuracy of our approach

compared to the state-of-the-art technique. We believe
that the ability to estimate depth for foreground objects
in 360 images can benefit a wide range of applications
such as navigation in robotics and augmenting virtual
objects with occlusions.
Currently, our data augmentation method is based on
the premise that both 2D and 360 data are captured with
similar extrinsic parameters (e.g. cameras are aligned
horizontally, positioned at average eye-level height) and
lighting conditions, while it is true for most data cap-
tured in lab conditions, its application for in-the-wild
images is limited. Furthermore, our approach works
for both indoor and outdoor settings. Nevertheless, for
outdoor settings, a higher dynamic range of luminosity
and sunlight’s ambient IR will render capturing RGB
and depth information inherently difficult. For future
work, we aim to explore generating samples with dif-
ferent lighting conditions with GANs to improve the
robustness of depth estimation.
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ABSTRACT
Deep learning approaches suffer from the so called interpretability problem and can therefore be very hard to
visualise. Embedded Prototype Subspace Classifiers is one attempt in the field of explainable AI, which is both fast
and efficient since it does not require repeated learning epochs and has no hidden layers. In this paper we investigate
how ensembles and cascades of ensembles perform on some popular datasets. The focus is on handwritten data
such as digits, letters and signs. It is shown how cascading can be efficiently implemented in order to both increase
accuracy as well as speed up the classification.
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1 INTRODUCTION
Recently, deep learning based methods [Sha18], have
shown tremendous performance in the area of handwrit-
ten text recognition [KDJ18, DKMJ18, SF16]. Never-
theless, there are a few problems and challenges that
still need to be addressed. First of all these methods
usually require powerful GPU resources in the training
process, not at least because of the back propagation
in numerous epochs, which makes them very time con-
suming. Secondly, the learning process of a deep neural
network can be regarded as a black-box [CPC19]. Fur-
thermore, the learning mechanism is not easy to com-
prehend nor to visualise, because of the many hidden
layers. This is know as the interpretability problem
[Kri19, CPC19] and in order to find a solution the field
of explainable AI (XAI)[ADRS∗19, GSC∗19, CPC19]
has emerged.

A new kind of learning process together with a well
researched classification method [KLR∗77] was re-
cently proposed [HLV19] called Embedded Prototype
Subspace Classification (EPSC), which go beyond the
black-box deep neural network. It is a mathematically
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the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

well-defined neural net based on subspaces (or man-
ifolds) aimed at classification of handwritten letters,
which is both easy to interpret, explain and visualise.
This method is an especially interesting alternative
when speed is crucial since it is not based on back
propagation and therefore does not require an iterative
training procedure. Even if it not always beats the state
of the art, it comes close enough to be an interesting
alternative due to its interpretability and compactness,
having just one input layer and one output layer with
no hidden layers.

In this paper we present how ensembles of EPSC can be
set up in such a way that classification can be done in
an efficient manner. Cascading is used to progressively
exclude nodes in the resulting neural network that can-
not contribute to the correct classification. The idea is
to make classification faster without compromising ac-
curacy.

2 BACKGROUND
The first application of subspaces in pattern recogni-
tion was proposed by Watanabe et al. [WP73] in 1967,
and later further developed [WLK∗67], by Kohonen and
others [KLR∗77, KO76, KRMV76, OK88]. The idea of
the later approaches of subspace learning was to choose
some group of prototypes for the construction of each
subspace. This was done by searching for the k nearest
neighbors in feature space, which is a rather time con-
suming process. In the following subsections a more
efficient and accurate procedure is explained.
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2.1 Embedded Prototype Subspace Clas-
sification

The idea of EPSC [HLV19] was to use t-distributed
stochastic neighbour embedding (t-SNE) [MH08] to
find representative clusters in 2D image space by ap-
plying kernel density estimation (KDE) [CHTT96] and
a so called inverse watershed transform (IWS) [RM00,
VS91], which is simply the watershed transform on an
inverse image. Therefore, valleys between mountain
tops are found in the image rather than the drainage di-
vide that separates adjacent drainage basins, also known
as watersheds.

The t-SNE is a machine learning technique that reduces
the number of dimensions of high dimensional data to
2 or 3 dimensions. Clusters are formed since it strives
to maintain a representation of similarities among fea-
tures, so that similar features are represented as points
closer to each other and dissimilar points further away
from each other.

PCA [WEG87] is used both as an intelligent start guess
for t-SNE in order to make the process deterministic,
but also for generating each subspace [Laa07]. By com-
puting the norm of the projected feature vector to be
classified into each subspace, the process can be re-
garded as a two layer neural network [OK88, Laa07],
where the weights are mathematically defined through
PCA. Another important advantage is that the learning
process can easily be visualised, which makes it easy
to understand, interpret and explain compared to most
state of the art deep learning approaches.

2.2 Clustering
The main idea behind clustering, or cluster analysis, is
to group data that are in some sense similar into sep-
arate clusters. Usually some kind of distance function
is used to group similar data points together [JMF99].
Clustering is a common technique for exploratory data
mining and analysis, and is used in many fields, includ-
ing machine learning, pattern recognition, image anal-
ysis, machine vision and its applications [JMF99].

The selection of an appropriate clustering approach is
indispensable for the performance of a machine vision
task [XW05]. Clustering can be done in many ways,
and a variety clustering algorithms have been proposed
in literature, such as k-means [HW79] and DBSCAN
[EKSX96]. These algorithms require the user to set
the number of clusters to be found, while others, like
Mean-Shift [CM02, FH75] finds the number of clusters
depending on the size of the Gaussian Kernel chosen.

Just as in [HLV19], it was chosen to perform clustering
in image space in order to easily be able to visualise it as
the learning process proceeds. Nonetheless, the method
used is producing a similar result as Mean-Shift.

2.3 Kernel Density Estimation
Kernel Density Estimation (KDE) [CHTT96] can be
performed by splatting Guassian discs onto an image,
for each point in the dataset. The size d of each disc
can be set in a similar way as the kernel size for Mean-
Shift. However, since KDE and IWS work in image
space, the result can easily be visualised. It was cho-
sen in [HLV19] to use the Silverman’s rule of thumb
as the base level for computing the bandwidth h of the
clustering,

h =

(
4σ5

3n

)1/5

(1)

where σ is the standard deviation of n samples.

The KDE surface can be used in a visualisation as a
visual aid to identify clusters, but is also used as the
basis for the IWS. By multiplying h by a scale factor, it
is possible to vary the number of clusters.

(a) Clusters, h = 3.0. (b) Heatmaps for the 3 resulting
clusters.

(c) Clusters, h = 1.0. (d) Heatmaps for the 18 result-
ing clusters.

Figure 1: Visualisation of a subset using one character
from the Kuzushiji-MNIST dataset. (a) Visualisation
using low resolution. (b) Heatmaps from each cluster.
(b) Visualisation using high resolution. (c) Heatmaps
from each cluster. The number above the heatmaps
tells how many images are superimposed to make the
heatmap. Figure best viewed in color.

Figure 1 shows the result of clustering using the char-
acterを from the Kuzushiji-MNIST dataset. In Figure
1a) a rather large scale factor h= 3.0 is chosen and three
main clusters appears representing the three main ways
of writing the character を . By decreasing the scale
factor to h = 1.0 more clusters are found as shown in
Figure 1c) and the heat maps in Figure 1d) reveal more
variation among the individual characters.

In Figure 2 all characters from four different clusters are
are depicted. Each cluster contains rather similar ways
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(a) Two different sub-clusters from the upper main cluster.

(b) Another variant of the char-
acter from the lower left cluster.

(c) Yet another variant from the
lower right cluster.

Figure 2: Visualisation of the actual content of some
clusters. (a) Two different clusters belonging to the first
heatmap in Fig. 1b, which are represented in Fig. 1d as
the second, third and fourteenth heatmap respectively.
(b) This cluster belongs to the second heatmap in Fig.
1b, and is the eleventh in Fig. 1d. (c) This cluster be-
longs to the third heatmap in 1b, and is the first in Fig.
1d.

of writing each character. This is an important feature
of the clustering since it makes it possible to create sub-
spaces that correspond to each character variation, i.e.
it makes it possible to classify similar looking charac-
ters by each such subspace.

2.4 Subspace Definition
We follow the same definition of subspaces as in
[HLV19, Laa07, OK88]. Every image to be classified
is represented by a feature vector x with m real-valued
elements x j = {x1,z2...xm},∈ R, such that operations
take place in a m-dimensional vector space Rm. Any set
of n linearly independent basis vectors {u1,u2, ...un},
where ui = {w1, j,w2, j...wm, j},wi, j ∈ R, which can
be combined into an m× n matrix U ∈ Rm×n, span a
subspace LU

LU = {x|x =
n

∑
i=1

ρiui,ρi ∈ R} (2)

where,

ρi = xT ui =
m

∑
j=1

x jwi, j (3)

By projecting the vector x into each and every sub-
space LUk classification is performed. The vector x̂ will

therefore be a reconstruction of the input vector x, using
all vectors in the subspace through

x̂ =
n

∑
i=1

(xT ui)ui (4)

=
n

∑
i=1

ρiui (5)

=UT UxT (6)

Since all the vectors in U are normalised, the norm of
the projected vector can be simplified as

||x̂||2 =(UxT ) · (UxT ) (7)

=(UxT )2 (8)

=
n

∑
i=1

ρi
2 (9)

Therefore, the feature vector x, which is most similar
to the feature vectors that were used to construct the
subspace in question LUk will subsequently also have
the largest norm ||x̂||2.

3 CASCADING AND ENSEMBLES
Cascading [GB00], first introduce by Viola and Jones
for face detection [VJ01] can be regarded as a special
case of ensemble learning [OM99, Rok10]. It is based
on the concatenation of several classifiers rather than
combining the result of multiple classifiers in order to
obtain a better result. The idea is that further process-
ing is done only on tentative classes and non-relevant
classes are progressively excluded. By implementing
cascading for a neural network, the overall workload
will not only decrease, but in some sense the network
will mimic what humans do. When being presented to
a classification problem a person often instantly see the
correct answer, i,e. when being sure enough, no further
examination is necessary and therefore we sometimes
naturally make use of what is known as early termina-
tion. However, sometimes a person have to take a closer
look and choose from two or more tentative answers by
scrutinising the images further, e.g. "is the number a
sloppily written ’5’ or a ’6’?". Hence, the decision has
already been made that it cannot be any other number.
Such closer examination helps in making a more accu-
rate classification and therefore humans also deploy the
strategy of cascading in such cases.

3.1 Ensembles
Ensembles can be setup in several ways, and here was
chosen to use four EPSC networks working on the very
same test data images but using four different variants
of features that are extracted from the images. Hence,
the t-SNE will create a bit different looking clusters de-
pending on what kind of image features the different
features extractors are focusing on.
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3.2 Features
The features used herein are handcrafted in order to be
faster than learned features from CNN’s. They were
made from different combinations of HoG [DT05] and
combinations of some of the most significant elements
of the magnitude of the FFT (subsequently referred to
as mFFT), i.e. low pass filters, [MHWS17] of different
parts of the image and also in combination with down
scaled versions of the image itself. These were made
ad hoc through experiments in order to find good fea-
tures yielding both high accuracy used alone, but also
used together in an ensemble. In the paper introducing
EPSC [HLV19] a similar approach, using a combina-
tion of HoG and a down scaled version of the image,
achieved an accuracy of 99.2%, i.e. error of 0.8%. As
shown in table 1 using mFFT helped lowering the error
below that error for all features.

Feature 1 was setup by combining two HoG features
with different cell size and five mFFT features from
five different partitions of the image. The second Fea-
ture is a combination of one HoG and elevn mFFT of
eleven different partitions. The third feature is a com-
bination of one HoG, five mFFT and the image itself
down scaled to a quarter of its size. The fourth feature
is a combination of one HoG and five mFFT.

3.3 Cascading
The cascading was setup in six stages as visualised in
Figure 3. In the first stage a rough estimation on fea-
ture 1 is done by using a rather large scale parameter
h = 2.5 for clustering, which will produce a quite small
neural net that produces good enough results to distin-
guish with a high probability the (obvious) false posi-
tives from the tentative true positives.

In the second stage, one net (still using the same fea-
ture) evaluates only the top five candidates in a more
accurate but larger net that was produced by using a
smaller scale parameter h = 0.5 in order to get smaller
clusters. Hence, only the parts of the larger net that cor-
responds to these five candidates need to be evaluated.
The lowest ranking candidate is then excluded from fur-
ther processing. The advantage here is that only one
step of t-SNE is used for this particular feature, used in
the first two stages, while two different KDE’s are pro-
duced. The latter is many times faster than the t-SNE
so the overhead is small.

In the third stage, the nets corresponding to the four
candidates, evaluates the second and third features.
These are summed together in the fourth stage, together
with the output of the second stage, and a new ranking
is done based on the accumulated results from these
three finer nets. The two lowest score candidates are
then discarded and in the fifth stage the remaining two
candidates are evaluated using the fourth feature and
their corresponding nets. Finally, a total accumulated

(a) This time a ’2’ is fed into the network. Both the rough estima-
tion and the first network regards it to be a ’7’. However, the others
conclude that it must be a ’2’.

(b) An image of the number ’3’ is fed into the network. Note that
the rough estimation regards it to be a ’5’ but the finer estimations
concludes it its a ’3’. Early termination can be done in this case
since the difference between the top two classes is large enough.

Figure 3: Two examples of how the rough classifica-
tion finds 5 candidates for further investigation in the
cascading. Next one net evaluates the candidates using
a more accurate but larger net and removes the lowest
ranking candidate. Next two nets evaluates the remain-
ing four and a ranking is done based on the accumulated
results from the three finer nets. Finally only the top
two candidates are evaluated by the fourth net, and a to-
tal accumulated result is used to determine the winner.
Figure best viewed in color. Note that the top candidate
is underlined for each step.

score from all four stages is used to finally determine
the class.
The whole procedure is visualised for two examples of
non trivial images in Figure 3. Note how the pipeline
eventually comes up with the correct answer even if the
top candidate is wrong in the beginning of the pipeline.

3.4 Early Termination
If the difference in score between the top candidates
at stage 2 or 4 exceeds a certain threshold θ , it can in
most cases be safely concluded that the top candidate is
already found, since the uncertainty is considered low.
If the difference in score on the other hand is low, it
means that the nets cannot easily tell which class it is,
i.e. the uncertainty is high, and further processing is
necessary. Experimentally it was found that a threshold
of θ = 0.03 in both stages worked well. However, since
stage 4 is the sum of three scores it means that the val-
ues compared are higher and the difference generally is
higher, which in its turn means that the threshold is in
fact set more tight in this stage.

4 METHOD AND DATASETS
This section describes the method used in the experi-
ments and the individual datasets.
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Three important questions needed to be addressed. First
of all, how much would an ensemble of EPSC improve
the classification results? The second is, how much
would cascading improve speed and how close to the
accuracy of the ensemble could be achieved? Finally,
how much would an early termination mechanism af-
fect both speed and accuracy?

First different variants of features where run on MNIST
to find good candidates. A combination of HoG and
mFFT on the whole image (or partitions of the image)
turned out to give better results than just using HoG and
a down scaled version of the image. As explained ear-
lier they were made ad hoc in a trial and error process.
This means that other features might do better for other
types of input data, and we propose this for future re-
search.

Next combinations of four features where run in an en-
semble to find what four features actually give the most
different classifications in order to diminish the total er-
ror in the ensemble.

Finally, the experiments where repeated on the other
data sets without changing any parameters or features.
This was done in order to determine whether the cas-
cading and ensembles still improves on these datasets.

4.1 Datasets
The proposed EPSC framework has been tested on the
images from the following datasets:

• The MNIST database of handwritten digits
[LCB10], which is the standard benchmark dataset
within the machine learning community. It consists
of a training set of 60,000 examples, and a test set
of 10,000 examples.

• The E-MNIST (MNIST) dataset has the same exam-
ple and test set sizes as MNIST [CATvS17], but the
conversion process tried to optimise the size of each
digit.

• L-EMNIST has the same example and test set sizes
as MNIST and contains letters (26 in total).

• B-MNIST has the same example and test set sizes
as MNIST and contains both letters and digits (47
different in total).

• The Kuzushiji-MNIST (K-MNIST) dataset has
the same example and test set sizes as MNIST
[CBK∗18] and contains 10 differennt Japanese
Hentaigana, where each character may possess
rather different forms. The letters present in the
dataset are あきすつなはまやれを .

• The Fashion MNIST (F-MNIST) [XRV17] dataset
has the same example and test set sizes as MNIST
and contains miniature images of clothes and bags.

These were chosen for several reasons. First of all
most of them contain handwritten numbers and letters,
which is of our main interest, except for the F-MNIST
dataset that contains miniature images of clothes and
bags. Secondly, they all have similar format, making
them easy to evaluate for algorithms that have already
been tested on the MNIST dataset, which is very well
researched for machine learning. Nevertheless, it is a
good starting point for understanding how well classifi-
cation of handwritten text can perform.

5 RESULTS

Table 1 shows the classification errors on the datasets
using different approaches and features. In all cases the
four features used on ordinary EPSC (denoted F1, F2,
F3 and F4) perform a little better than using the feature
for EPSC reported in [HLV19].

More importantly, cascading on all features (C-ESCP)
as well as a full ensemble without cascading (E-EPSC)
perform much better than any of the single networks
using any of the features. One can also note that cas-
cading performs almost as well as the full ensemble,
but being much faster. Furthermore, the cascading on
just one feature (C-F1), which corresponds to the first
stage in Figure 3 also works very well. It is, not surpris-
ingly, the fastest of all methods as can be seen in Table
3, but is of course not the most accurate since it does
not make use of all the features and the full cascading
pipeline.

The result of using C-EPSC compared to what was
presented in different papers introducing each of the
datasets are shown in Table 2. Certainly, better accu-
racy have been achieved by much more complicated
deep learning architectures since the datasets where in-
troduced. However, the point here is not to beat the
state of the art by using the C-EPSC, but rather to show
that it is possible to come very close to a much lesser
cost, both for learning but also for the classification.

The cascading with early termination, denoted Cet ,
comes close to what the cascading does when it comes
to accuracy, but is quite a lot faster. In fact, it comes
close to what cascading using only one feature (C-F1)
does. The reason is that the whole cascading is seldom
necessary for an accurate classification. Table 4 shows
the percentage of classifications that goes on beyond
stage 2 and 4. Hence, the lower percentage, the more
cases can be terminated early.

It can be seen in Table 4 that the percentage vary quite
a lot among the datasets and one reason is probably the
fact that the same threshold of θ = 0.03 for both stages
were used for all datasets. This implies that this is one
parameter that could be learned for an implementation
of word classification.
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Table 1: Prediction error (%) using different features, cascading (C), with early termination (Cet ) and the full
ensemble (E)

Dataset EPSC E-EPSC C-EPSC Cet -EPSC C-F1 F1 F2 F3 F4
MNIST 0.80 0.56 0.56 0.56 0.69 0.69 0.75 0.70 0.74
E-MNIST 0.78 0.58 0.59 0.60 0.66 0.65 0.63 0.66 0.61
L-MNIST 7.60 6.38 6.43 6.43 6.90 6.89 6.97 6.84 6.98
B-MNIST 14.13 12.62 12.65 12.66 13.35 13.32 13.28 13.52 13.66
K-MNIST 3.08 2.17 2.20 2.19 2.52 2.51 2.15 2.35 2.58
F-MNIST 11.88 8.73 8.73 8.73 10.11 10.11 10.05 9.82 10.30

Table 2: Classification accuracy (%) for some popular datasets and comparison with other learning methods. Note
that we have taken the results from each paper proposing these methods and therefore the table is not covering the
use of all methods on all datasets.

Learning method MNIST E-MNIST L-MNIST B-MNIST K-MNIST F-MNIST
# classes 10 10 26 47 10 10
C-EPSC 99.44 99.41 93.57 87.35 97.80 91.23
EPSC [HLV19] 99.20 99.22 92.40 85.87 96.92 88.12
OPIUM [CATvS17] - 96.22 85.15 78.02 - -
MLP [XRV17] 97.20 - - - - 87.1
Keras CNN[CBK∗18] 99.06 - - - 95.12 -
PreActResNet-18 [CBK∗18] 99.56 - - - 97.82 -
PreActResNet-18 +
Manifold Mixup [CBK∗18] 99.54 - - - 98.83 -

Table 3: Wall clock time of classification in seconds of using different features, cascading (C), with early termina-
tion (Cet ) and the full ensemble (E).

Dataset E-EPSC C-EPSC Cet -EPSC C-F1 F1 F2 F3 F4
MNIST 825 381 192 187 250 247 178 157
E-MNIST 797 379 193 194 248 228 177 153
L-MNIST 3667 834 592 509 1088 1050 736 696
B-MNIST 4296 691 565 478 1321 1198 888 786
K-MNIST 614 306 172 159 186 183 131 118
F-MNIST 684 326 257 164 202 202 147 134

Table 4: Percentage of how many are not terminated early in step 2 and 4 respectively, but passes to the next step
in the cascading with respect to the total amount of images to be classified.

Dataset ET-2 ET-4
MNIST 6.23% 1.04%
K-MNIST 11.52% 2.75%
F-MNIST 63.20% 33.73%
E-MNIST 4.01% 0.77%
L-MNIST 45.30% 21.22%
B-MNIST 30.20% 12.15%

6 CONCLUSION

Deep learning architectures and the learning and classi-
fication process are not easy to visualise, nor to explain.
The EPSC on the other hand is based on clustering of
embedded features. Both the clusters and correspond-
ing images as well as the resulting neural nets can easily
be visualised and comprehended. Therefore, EPSC is
an interesting alternative in the domain of XAI. It was

experimentally shown that both ensembles and cascad-
ing can improve the speed and accuracy. Furthermore,
early termination bring down the cost of classification
quite a lot, without compromising the accuracy.

For future work we propose to use EPSC for word im-
ages rather on individual letters. Moreover, it is neces-
sary to find some plausible explanation why HoG and
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features based on the magnitude of FFT works so well
together.
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ABSTRACT 
In this paper, we propose a new semi-fragile watermarking scheme in the frequency domain for surveillance videos 

authentication. Our system starts operating by generating a binary watermark based on a novel watermark 

construction process. This latter combines Speeded Up Robust Features (SURF) and Maximally Stable Extremal 

Regions (MSER) detectors to extract frames relevant features that can resist common attacks while being fragile 

to intentional manipulations. Furthermore, the watermark security is improved using torus automorphism mapping. 

For the embedding process, Regions of Interest (ROI) are detected and then used as watermark holders. These 

regions are decomposed into different frequency sub-bands using Singular Value Decomposition (SVD) as well 

as Discrete Wavelet Transform (DWT). Then, the watermark is embedded in selected bands following an additive 

method. A blind detection is conducted to extract the hidden signature from the watermarked video. Evaluation 

results show that the proposed scheme is suitable for authentication purpose since it efficiently discriminates 

malicious manipulations from non-malicious ones. Besides, it preserves a high level of perceptual quality. 

Keywords 
Video authentication, semi-fragile watermarking, discrete wavelet transform, singular value decomposition. 

1. INTRODUCTION 
Recently, the ever-evolving multimedia technology 

and communication makes surveillance system 

installation further flexible as well as more cost 

effective.  Accordingly, video surveillance cameras 

are broadly used for security purposes by recording 

daily activities in several places such as airports, 

hospitals and train stations [Kha15, Abe14, Ben14].  

 

However, the progress in digital technologies field 

leads also to the development of powerful video 

processing tools that facilitate the recorded videos 

content illegal modification by fraud person. As a 

result, content-authentication becomes an increasingly 

important requirement for video security protecting 

especially in surveillance context where video can be 

involved as a legal proof in forensic investigations. 

Video watermarking has emerged as an appropriate 

technique to tackle this issue. Fundamentally, this 

authentication approach consists in embedding a 

secret information, which is referred as a watermark in 

the host video [Bpa14, Jos17, Mko12]. When needed, 

the embedded information is extracted from the 

watermarked video to check whether it has been 

tampered or not, thereby to verify its content integrity 

and authenticity. An efficient watermarking technique 

should provide a trade-off between several 
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requirements mainly robustness, imperceptibility and 

capacity [Aga19, Mch14]. 

In literature, several video watermarking schemes are 

proposed. Depending on the watermark selection 

holders, these video watermarking approaches are 

dived into two categories. The first one is frame by 

frame watermarking where the authentication 

signature is hidden in all regions in each video frame. 

Conversely, in the schemes dedicated for the second 

class only regions of interest (ROI) are watermarked. 

These ROI are identified based on specific criteria in 

such way to ensure that their modification will lead to 

a detectable change. ROI based techniques are 

recognized as very compression resilient approaches 

that provide a high level of imperceptibility [Ker17]. 

Moreover, watermarking schemes can be classified 

into two sets according to the insertion domain. The 

first category represents the spatial domain techniques 

in which the watermark embedding is performed by 

directly modifying frame pixels values. These 

techniques exhibit a low complexity while preserving 

a poor robustness [Ara19]. The second type is the 

frequency domain based techniques. In this case, the 

video frame is firstly transformed to a new domain. 

Then, the watermark bits are hidden into the 

transformed coefficients. Frequency domain based 

watermarking techniques are more efficient and 

ensure better robustness and higher invisibility 

compared to the spatial domain ones [Gup16, Mas17].   

SVD and DWT as well as Lifting Wavelet Transform 

(LWT) and Discrete cosine transform (DCT) are the 

most used transform domain methods. Indeed, in 

[Bha18] a LWT based watermarking video scheme is 

introduced. In this scheme, the watermark bits are 

hidden in the quantified LH3 coefficients resulting 

from the application of the LWT to a selective set of 

frames. Simulation results prove the robustness and 

the imperceptibility of this technique. In [Him18], a 

watermarking technique combining DWT and SVD is 

presented. After being ciphered by a chaotic logistic 

function, the watermark is embedded only within key-

frames. This scheme is robust against various attacks 

and it exhibits good imperceptibility level. A content-

based authentication technique using DCT is proposed 

in [Far16]. In this scheme, frame index and invariant 

features extracted from intra macroblocks form the 

authentication code. Next, this latter is inserted into 

Quantized coefficients of the DCT performed on an 

arbitrary chosen Group of Pictures. This watermarking 

scheme is immune to non-malicious attacks but 

sensitive to content changing ones. Likewise, another 

semi-fragile watermarking scheme for surveillance 

video authentication is presented in [Man16]. In this 

approach, only scenes with major changes are implied 

in the watermarking process. The signature is 

generated from the highest informative block of the 

DCT coefficients and inserted in the lowest one.  

Taking into account the above highlighted advantages 

and drawbacks of each watermarking category, we 

propose in this paper a ROI based semi-fragile 

watermarking scheme in the frequency domain using 

SVD and DWT for video authentication. The rest of 

this paper arrangement is as follows: section 2 

provides a detailed description of the proposed 

watermarking scheme. Next, we present and discuss 

the obtained results in section 3.  Finally, section 4 

concludes this work. 

2. PROPOSED SCHEME 
The proposed video watermarking scheme involves 

three main components namely the watermark 

construction, the watermark embedding and the 

watermark extraction. These processes mechanisms 

are discussed in the following subsections. The 

originality of this work includes: 

1) The proposed watermark construction strategy that 

allows to obtain a to-be-embedded watermark that can 

resist common attacks while being fragile to 

intentional manipulations. This is achieved thanks to 

the use of two efficient features detectors Speeded Up 

Robust Feature (SURF) and Maximally Stable 

Extremal Regions (MSER). 

2) The suitable choice of the more appropriate regions 

ROI for signature insertion since they are the most 

targeted regions by malicious attacks in a video frame 

and each forgery on their content will be detectable. 

3) The proposed frequency domain embedding 

process used to conceal the signature into the host 

video that involves two different domain transform 

techniques namely the SVD and the DWT. This 

watermark insertion method is designed upon the 

balance amongst the imperceptibility and the semi-

fragility requirements consideration. 

2.1    Watermark Construction Process 
In the proposed scheme, the host video is initially 

divided into sequences of N frames. N is used as a first 

watermarking key and set to the number of frames per 

second (FPS) in each video. Then, as illustrated in 

Figure 1, an authentication watermark is generated 

from the first frame in the considered sequence using 

relevant features extracted from video frames. Next, 

regions of Interest (ROI) are detected. Indeed, moving 

objects are identified as the most important regions in 

the frame especially in video surveillance context 

[Ker17, Tbo12]. A technique that involves an adaptive 

improved version of Gaussian Mixture Model (GMM) 

[Cst19] for background subtraction and several 

morphological filters is used to accurately isolate the 

moving objects in every video frame [Abe13, Ben13]. 

Key points are further extracted from these ROI using 

SURF detector which is invariant to geometrical 

transformations and additive noise [Hba08]. To 

enhance the watermark robustness, we opt for 
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combining the SURF detector and the MSER one 

[Jma04]. MSER detector allows to determine 

connected pixels with intensity values that exhibit a 

negligible variation over several thresholds ranges. 

MSER regions are immune to illumination variation, 

rotation, scaling and translation [Ali18]. After 

performing MSER, only SURF key points hold in 

MSER sets are selected for the further steps and the 

remainder points are discarded. Considered points 

coordinates are converted to binary codes and then 

concatenated in one sequence. To increase the scheme 

security, this latter is scrambled using one dimensional 

Torus isomorphic mapping [Fzh19] which is a typical 

chaotic map operating following the formula:  

1(L) mod X)(KX'                                             (1)              

 

Figure 1. The proposed watermark construction 

process schematic framework. 

Where mod denotes the modulus function. X’ and X 

are the original bit position and the encrypted one. K 

is the second watermarking key, which should be a 

prime integer, and L is the binary sequence length.  

Finally, the encrypted binary sequence is used as a 

watermark. 

2.2    Watermark Embedding Process 
The embedding procedure framework is presented in 

Figure 2. As already mentioned, the host video is 

decomposed in sequences containing N frames and a 

watermark is constructed for every sequence and 

embedded within each frame of the given sequence 

following the described procedure below. To start 

with, the RGB frame is converted to the YUV space 

color and its three constituent planes namely Y, U and 

V are separated. Only Y component is selected for the 

watermarking since it is more difficult to perceptually 

notice changes on luminance component as compared 

to chrominance ones. Following, the watermark is 

hidden in each ROI, recognized as already described 

in the previous subsection, which is an efficient choice 

for the authentication purpose as these regions hold on 

the most relevant information in the frames and every 

forgery on their content will be detectable; thus, each 

ROI is split into non-overlapping blocks.  

To enhance the watermarking capacity, we adopt the 

4x4 size instead of the generally used 8x8 size since 

one watermark bit is hidden in each block. 

 

Figure 2. The proposed watermark construction process schematic framework.
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As the proposed watermarking scheme operates in the 

frequency domain, each block undergoes one level 

DWT. This to avoid the visual degradation and the 

complexity cost yielded by multilevel DWT using. 

Providing the best compromise between the 

robustness and the imperceptibility makes the mid 

frequency sub bands the most appropriate for the 

watermark insertion. Hence, SVD is applied to these 

sub-bands.  Due to its stable nature, the singular values 

matrix S is the most convenient location for 

watermarking.  Finally, the watermark embedding is 

achieved by exploiting an additive blind method 

[Ham19]. This method allows the watermark strength 

control and optimization in order to well establish the 

trade-off between the robustness and the 

imperceptibility using the following equations:  

If W=0 

       








         S(0,0)(1,1)S'

kS(0,0)(0,0)S' α                                                (2) 

Otherwise 

       








         S(1,1)(1,1)S'

kS(1,1)(0,0)S'                                               (3) 

With  

α

S(1,1)S(0,0)
k α


                                                          (4) 




S(1,1)S(0,0)
k


                                                          (5) 

With W is the to-be-embedded bit, S and S’ are the 

original and the watermarked versions of S matrix. α 

and β are two scaling factors. Their values are fixed 

based on several experiments which demonstrate that 

the couple (2, 4) gives the best compromise between 

the imperceptibility and the robustness [Ham19].  

Hence α=2 and β=4 are the used values in this work. 

Finally, the inverse of each used function is performed 

to obtain the watermarked frame. 

2.3    Watermark Extraction Process 
The general architecture of the blind detection process 

is depicted in Figure 3.  It starts operating with the 

same steps of the embedding process. After 

decomposing the watermarked video in sequences 

using the same watermarking key N, the frame is 

converted to YUV space and the Y plane is extracted. 

Once the ROI are detected and divided into 4x4 

blocks, DWT and SVD are applied. The resulting 

singular values matrix coefficients are then scanned to 

extract the embedded information according to the 

following equation:  

If S”(0,0)-S”(1,1) >  
2

kk βα 
 

        W” = 0                                                                             

Otherwise                                                                           (6) 

         W” = 1                                                                             

Where S” and W” denoted the extracted singular 

values matrix and the extracted watermark bit. Hence, 

from each frame Fj in a given sequence a watermark 

denoted FjW will be extracted.  

Let denote Ωi =  i
FN

i
F2

i
F1 W,...,W,W  a sample space. 

With 
i
FjW  is the i-th bit in FjW . A global watermark 

EW is built by determining each of its bits i
EW  as 

follows:   

If p (
i
FjW =1) > p (

i
FjW =0)  

       i
EW  = 1                        

Otherwise                                                                           (7) 

        i
EW = 0                                                           

With p the probability function.  

Besides, the generation process is performed under the 

first watermarked frame in the given sequence in order 

to obtain the reconstructed watermark WR.  

WE and WR are compared to verify the watermarked 

video authenticity. 

 

 
Figure 3. The proposed watermark extraction 

process schematic framework. 

3. EVALUATION RESULTS 
The proposed scheme performance is investigated in 

terms of imperceptibility and robustness. Various 

surveillance as well as common videos that comprise 

at least one moving object are used. These videos 

include test.avi, camera2.avi, video1.avi, akiyo.avi, 

news.avi and coastguard.avi. The first three sequences 

belong to PETS benchmark datasets. The last three 

videos are often employed to evaluate previous 

existing approaches.  
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3.1    Imperceptibility Assessment   
To evaluate the visual distortion yielded by the 

watermarking scheme, the Peak Signal to Noise Ratio 

(PSNR) is used (Nta18, Kad16). The PSNR values 

corresponding to every test video are calculated using 

equation (8) and presented in Figure 4.  

PSNR = 10 log   














MSE

2552

                                                 (8) 

Where MSE designed the Mean Square Error.  

As clear from Figure 4, the obtained PSNR values 

vary between 48.7431 dB and 73.425 dB which 

indicates the high similarity between the original 

videos and the watermarked ones. Moreover, the 

original frames and the corresponding watermarked 

ones, illustrated in Figure 5, confirm that the two 

frames versions are perceptually identical. In fact, the 

suitable choice of the ROI as well as the selection of 

the singular values matrix of the SVD transform allow 

guarantying this high invisibility level. 

 
Figure 4. PSNR values for several watermarked 

videos.

 

      

 A1.a                     A2.b                      A3.c                     A4.d                     A5.e                      A6.f 

      

  B1.a                     B2.b                      B3.c                     B4.d                     B5.e                      B6.f  

Figure 5. Samples of (A) Original frames and their (B) watermarked versions from different used 

videos. (a) test.avi, (b) camera2.avi, (c) video1.avi, (d) akiyo.avi, (e) news.avi, (f) coastguard.avi. 

         Videos 

Attacks  
Test Camera2 Video1 Akiyo News Coastguard 

Salt & Pepper 0.0217 0.0018 0.0412 0.0315 0.0106 0.0330 

Gaussian noise (0.01) 0.0091 0.0008 0.0414 0.0330 0.0053 0.0329 

Gaussian noise(0.02) 0.0105 0.0008 0.0404 0.0340 0.0061 0.0372 

Median Filter (3x3) 0.0158 0.0011 0.0390 0.0268 0.0058 0.0310 

Median Filter (5x5) 0.0153 0.0004 0.0254 0.0192 0.0088 0.0326 

MJPEG compression 0.0184 0.0010 0.0398 0.0009 0.0009 0.0329 

Rotation (10°) 0.0215 0.0006 0.0312 0.0244 0.0155 0.0363 

Rotation (20°) 0.0209 0.0012 0.0310 0.0328 0.0087 0.0537 

Rotation (45°) 0.0149 0.0010 0.0408 0.0307 0.0056 0.0485 

Brightness (+10%) 0.0140 0.0019 0.0440 0.0335 0.0061 0.0331 

Brightness (+20%) 0.0181 0.0012 0.0392 0.0322 0.0062 0.0329 

Brightness (-10%) 0.0237 0.0008 0.0396 0.0326 0.0061 0.0329 

Brightness (-20%) 0.0189 0.0013 0.0398 0.0327 0.0065 0.0328 

Contrast (x2) 0.0080 0.0108 0.0291 0.0325 0.0093 0.0341 

Contrast (x0.5) 0.0122 0.0007 0.0416 0.0314 0.0046 0.0346 

Table 1. The BER values under various unintentional attacks
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3.2    Robustness Assessment   
Bit error rate (BER), which is calculated via equation 

(9), is the metric used to evaluate the robustness of the 

technique and its ability to verify the content 

authentication (Asi15).  

BER = 
 




m

1i

n

1j

ER

nm

j)(i,Wj)(i,W
                         (9) 

With WE and WR are the extracted watermark and the 

reconstructed one.  

The proposed scheme is designed to be capable to 

discriminate between unintentional attacks and 

intentional ones. To achieve this purpose, a threshold 

T is required. Since small BER values reflect the high 

immunity to a considered attack, the threshold T value 

is empirically fixed to 0.1.  

The authentication decision is done based on the 

following assumptions:  

If BER < T 

           The video is authentic. 

 

Otherwise 

           The video is intentionally tampered.  

 

As already mentioned, the scheme robustness is tested 

against two sets of attacks i.e. unintentional attacks 

and intentional ones. Table 1 exhibits the BER values 

obtained under unintentional attacks including (noise 

adding, filtering, rotation, MJPEG compression and 

brightness and contrast variation). From this table, it 

is evident that the proposed approach is immune to 

Gaussian noise as well as salt and pepper attacks since 

the obtained BER values are below the preset 

threshold T=0.1. The combination of SURF and 

MSER detectors as well as using the DWT, which are 

noises immune, guarantee this high resilience.  

Furthermore, our watermarking scheme exhibits a 

good robustness against rotation attack. In fact, the 

obtained BER values vary between 0.0006 and 0.0537 

for different rotation degrees. This robustness is 

achieved due to the utilization of SURF detector when 

designing the watermark and the involvement of SVD 

during the embedding process which are both rotation 

invariant. For median filter attack, the resulting BER 

values are ranged between 0.0004 and 0.0390 thereby 

inferior to T. Thus, the proposed scheme can 

withstand this kind of attack.  

According to the BER values tabulated in Table 1, the 

embedded information is successfully extracted after 

applying MJPEG compression attack. The watermark 

insertion in the DWT mid frequency sub bands, which 

allows to avoid information loss during compression 

process, explains this high robustness. The last non-

malicious considered attack is the brightness and 

contrast adjustment. Again, the BER values obtained 

by varying the brightness as well as the contrast ratios 

prove the robustness of our watermarking scheme 

since they are inferior to threshold T. This resilience 

is reached thanks to the use of MSER detector, which 

is immune to illuminance changes.  

Similarly, the proposed scheme robustness is 

investigated under malicious attacks including 

(cropping, objects deletion and objects insertion 

attacks).  For cropping attack, resulting BER values 

are displayed in Table 2. As can be seen from this 

table, The BER values, which are superior to the 

threshold T=0.1, demonstrate that the watermarked 

video is deliberately manipulated.  

Concerning object manipulations attacks, we 

intentionally delete or add an object to the frames 

content of randomly chosen sequences as shown in 

Figure 6. BER values relative to object deletion and 

object insertion are respectively presented in Figure 7 

and Figure 8. According to these figures, resulting 

BER values are significantly higher than the threshold 

0.1. Therefore, the proposed scheme can effectively 

detect these two malicious attacks. This efficient 

ability is provided owing to the choice of the moving 

object as watermarking best location.  

From all results, it can be concluded that our proposed 

scheme is suitable for authentication purpose where 

the discrimination between content preserving 

manipulations and content changing attacks is a 

prominent requirement. 

 

       Video 

Window  

size  

Test Camera2 Video1 Akiyo News Coastguard 

[20*20] 0.3484 0.2656 0.3840 0.1066 0.2502 0.1203 

[40*40] 0.3608 0.3626 0.3840 0.1133 0.1984 0.1240 

[60*60] 0.3884 0.4019 0.3840 0.1305 0.2233 0.1223 

[80*80] 0.3531 0.4159 0.3840 0.1590 0.1378 0.1245 

[100*100] 0.2712 0.41104 0.3840 0.1814 0.2700 0.1325 

 Table 2. The BER values under cropping attack with different window sizes 
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                              (a)                                                     (b)                                                 (c) 

Figure 6. Sample of (a) original frame and its intentionally attacked versions by (b) object deletion and (c) 

object insertion. 

 

                               

(a)                                                                                            (b) 

                                         

                                   (c)                                                                                                  (d) 

Figure 7. BER under object deletion attack for (a) test.avi, (b) camera2.avi, (c) video1.avi, (d) 

news.avi. 

                  

                                   (a)                                                         (b)                                                    (c) 

Figure 8. BER under object insertion attack for (a) test.avi, (b) akiyo.avi, (c) coastguard.avi. 

 

3.3    Comparative Study   
This section provides a comparison between the 

proposed watermarking scheme performance and the 

techniques proposed in Refs [Far16] and [Bha18] 

under different attacks. The technique presented in 

[Far16] operates using DCT by inserting the 

watermark into DCT coefficients. In [Bha18], a LWT 

based scheme is proposed where the watermark bits 

are concealed in the LH3 coefficients. Table 3 depicts 

BER values obtained after carrying out various attacks 

on the two watermarked videos versions resulting 

from the application of our approach and the technique 

presented in [Far16] to news.avi. Table 3 analysis 

reveals that the proposed system outperforms the 

technique in [Far16] in terms of robustness against all 

attacks listed in this table. The reason behind the 

proposed scheme robustness is the utilization of two 

domain transform techniques DWT and SVD instead 
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of one unique transformation which allows to better 

strengthen the resilience to common manipulations. 

Furthermore, the proposed watermark construction 

process which involves two noises immune features 

detectors namely SURF and MSER yields a signature 

characterized by a high survival level against several 

attacks. Performances comparison outcomes with 

[Bha18] are displayed in Table 4. Based on BER 

values reported in this table, it can be inferred that our 

technique exhibits better robustness compared to the 

work of [Bha18]. Concerning the imperceptibility 

performances, our watermarking scheme exceeds the 

method in [Bha18] as indicate the PSNR values given 

in Table 4. The main reason for this higher perceptual 

quality is the suitable choice of the watermark holders. 

In fact, the exploitation of SVD characteristics and 

DWT sub-bands ones to conceal watermark bits into 

the frame areas where human eye is less sensitive to 

the change preserves better output watermarked video 

quality. 

 

Attacks Ref [Far16] Proposed scheme 

Gaussian noise(0.01) 0.0581 0.0053 

Gaussian noise(0.02) 0.0598 0.0061 

MJPEG compression 0.0244 0.0009 

Brightness (+10%) 0.0466 0.0061 

Brightness (+20%) 0.0628 0.0062 

Table 3. Robustness comparison with Ref [Far16] 

 

 
News Akiyo 

 Ref [Bha18] 

PSNR=41.5(dB) 

Proposed scheme 

PSNR=50.42(dB) 

Ref [Bha18] 

PSNR=41.2(dB) 

Proposed scheme 

PSNR=56.66(dB) 

Gaussian  

noise (0.01) 

0.0791 0.0053 0.0742 0.0330 

Salt &   

pepper 

0.0303 0.0106 0.0322 0.0315 

Median Filter 

(3x3) 

0.0117 0.0058 0.0098 0.0268 

Median Filter 

(5x5) 

0.0371 0.0088 0.0371 0.0192 

MJPEG compression 

 

0.0009 0.0009 0.0009 0.0009 

Table 4. Imperceptibility and robustness comparison with Ref [Bha18] 

 

4. CONCLUSIONS AND FUTURE 

SCOPE 
In this paper, a semi-fragile watermarking approach is 

proposed for video content authentication.  It initially 

involves a content based authentication signature 

generation process using both of SURF and MSER 

detectors. After that, the watermark bits are hidden in 

the host video frames following a ROI-SVD-DWT 

based embedding method. The proposed technique 

ensures a high imperceptivity level. Moreover, the 

simulation results prove that the proposed semi-fragile 

scheme appropriately suits the content authentication 

goal. In fact, it successfully detects content changes 

attacks while tolerating incidental manipulations. In 

coming future works, we will extend the proposed 

approach to handle temporal attacks and forgery 

localization. 
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Figure 1: A partial room reconstruction using InfiniTAMv3. Left: result without applying a warping function.
Right: result using our warping method.

ABSTRACT
Indoor reconstruction using depth camera algorithms (e.g., InfiniTAMv3) is becoming increasingly popular. Sim-
ple reconstruction methods solely use the frames of the depth camera, leaving any imagery from the adjunct
RGB camera untouched. Recent approaches also incorporate color camera information to improve consistency.
However, the results heavily depend on the accuracy of the rig calibration, which can strongly vary in quality.
Unfortunately, any errors in the rig calibration result in apparent visual discrepancies when it comes to colorization
of the 3D reconstruction. We propose an easy approach to fix this issue for the purpose of image-based rendering.
We show that a relatively simple warping function can be calculated from a 3D checkerboard pattern for a rig
with poor calibration between cameras. The warping is applied to the RGB images online during reconstruction,
leading to a significantly improved visual result.

Keywords
Depth camera, image warping, calibration, image-based rendering.

1 INTRODUCTION
Indoor reconstruction algorithms for depth cameras,
like InfiniTAMv3, are becoming increasingly popular.
Such an algorithm performs camera pose estimation

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

based on the depth maps and feature extraction from
the color images to build 3D models from image ob-
servations. In order to provide textured or colored 3D
reconstructions, a large amount of approaches were de-
veloped adopting RGB-D cameras as input devices.

One of the practical issues encountered in using such
approaches is the need for accurate calibration of the
camera rig. The pose information from the color cam-
era and the depth camera have to be correct in or-
der to enable proper color and texture projection onto
the 3D point cloud or mesh. RGB-D devices are of-
ten calibrated in the factory. The calibration parame-

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

105

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.13



ters are stored inside a nonvolatile memory [BMP18].
The depth-to-color registration process uses the intrin-
sic and extrinsic parameters stored in the nonvolatile
memory, but the parameters themselves are inaccessi-
ble due to the closed nature of the sensor design.

Only a fraction of the large variety of depth camera
types is shipped with an accurate internal calibration
(e.g., Microsoft Kinect v2). Some products provide in-
accurate calibrations; custom rigs always require man-
ual calibration. In any case, a noticeable misalignment
between the depth maps and the color images makes
a full calibration of the RGB-D sensor necessary. A
survey of calibration literature suggests that creating a
proper calibration for RGB-D rigs is surprisingly diffi-
cult because of the heterogeneous nature of the involves
cameras1.

Projection-based depth cameras use a projector casting
infrared (IR) patterns observed by an IR cameras (or at
least a camera fitted with IR filters). The depth maps
accessible through the device driver or middleware like
OpenNI2 are generated using closed algorithms, which
use a nonlinear, depth-dependent mapping that cannot
be explained with a rigid transformation between the
two sensors. One could compare the raw IR image de-
livered by the depth camera to the RGB image [BF15].
However, this assumes that the IR image and the depth
image use the same projection, which is not the case
for the sensors we have examined. Indeed, there are
pairwise nonlinear mappings between color image, IR
image and depth image.

This work was motivated by a problem encountered
during the scanning of real environments for a Virtual
Reality application. When reconstructing model geom-
etry with InfiniTAMv3 [KPR+15] for an image-based
rendering (IBR) system [EHH+19], we noted a signifi-
cant misalignment between depth and color information
(Figure 1, left).

Diving deeper into this issue (see Figure 2) makes the
discrepancies more apparent. The color-depth offset is
non-linearly decreasing with the distance from the cam-
era center and increasing with distance from the opti-
cal axis of the sensor (see Figure 3). Attempts to cali-
brate the RGB-D sensor with standard camera calibra-
tion technique using a checkerboard pattern failed to
produce usable results. We also tested the depth-sensor
calibration algorithm by Ferstl et al. [FRR+15], but nei-
ther of those calibration methods led to a reduction of
the depth-color offset.

In this work, we devise a method to calibrate RGB-
D sensors using a polynomial warping function. The
warping function registers the RGB images to the depth

1 For the rest of the discussion, we focus on projector-based
depth cameras only.

2 OpenNI Github Repository

Figure 2: Visualizing depth discontinuities for Orbbec
Astra Pro sensor. First row: Left, example of expected
result. Right, the actual result. Second row: a corre-
sponding pair of color image and depth map.

Figure 3: Non-linear offset between depth maps and
color images, varying over the distance from the optical
axis. These offsets were obtained by moving a known
object in a static scene and measuring the depth to color
offset. We moved it along the horizontal (left plot) and
vertical (right plot) axis of the image plane.

maps, which produces a 1:1 correspondence between
pixels in the depth map and the color image. We use
a 3D equivalent of a conventional checkerboard cali-
bration pattern, which has its white squares raised and
turned into small cubes. The resulting 3D target can be
reliably detected with a depth sensor. After computing
the translational offset between corresponding corners
in the RGB and depth images, we fit an nth degree poly-
nomial to the resulting differences and use it to com-
pute the warped image RGB′(x,y) = RGB(xw,yw), with
(x,y) being pixel coordinates and (xw,yw) denoting the
coordinates retrieved from the warping function. Thus,
the primary contributions of this paper can be summa-
rized as:

1. The implementation of a calibration algorithm to re-
trieve translational offsets

2. An image warping registration algorithm which
achieves 1:1 correspondence of color to depth

3. The demonstration of the plausibility of the calibra-
tion approach on the popular Orbbec sensors
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We apply the proposed algorithm to an IBR algorithm
[EHH+19] and provide some experimental results (see
e.g., right of Figure 1).

2 RELATED WORK
The problem of proper calibration of RGB-D cam-
eras has been mentioned multiple times in the liter-
ature. The factory calibration of commercial RGB-
D sensors, such as Kinect and Structure Sensors, is
not suitable for applications requiring high quality 3D
data, i.e., 3D building models of centimeter-level accu-
racy [DTLC17]. Thus, several studies have extensively
analyzed the sources of errors of such sensors [GVS18,
SPB04, KBR14, HHEM16].

Simultaneous localization and mapping (SLAM) using
depth sensors has become immensely popular after the
publication of the KinectFusion [NIH+11] algorithm.
Later work improved or extended the original capabili-
ties [KPR+15, WSF18]. However, these methods gen-
erally assume a properly calibrated RGB-D rig.

Other work uses IBR to create high-quality results de-
spite poor alignment of color images, essentially cor-
recting the problem after acquisition is completed. This
usually involves generating new views from recorded
video frames [HRDB16, DH18, EHH+19]. The rig cal-
ibration problem was encountered in these works, but,
again, no direct solutions were proposed. For the rest
of the discussion, we thereby focus on the calibration
problem itself.

2.1 RGB to IR camera calibration
Basic camera calibration is usually done through well-
known algorithms, such as Heikkila and Silven’s cal-
ibration method [HS97], Zhang’s algorithm [Zha00],
Bouguet’s Matlab camera calibration toolbox [Bou01],
or more recent work, such as Rojtberg and Kuijper’s
method [RK17].

Chen et al. [CYS+18] and Darwish et al. [DLT+19] cal-
ibrate RGB-D sensors with a flat checkerboard pattern
via images from the RGB and IR cameras. The former
calibrates multiple RGB-D sensors into a single coor-
dinate system, while the latter improves the depth mea-
surement accuracy.

Geiger et al. [GMCS12] developed a method for fully
automatic camera-to-camera calibration that uses im-
ages of planar checkerboard patterns as calibration tar-
gets. They detect checkerboard corners in an image by
computing a corner likelihood at each pixel in the im-
age using corner prototypes. To produce a list of corner
candidates, they apply non-maxima suppression, fol-
lowed by a scoring based on gradient statistics that they
threshold to obtain a final list of corners.

2.2 RGB to depth map calibration
Like most approaches, Zhang and Zhang [ZZ11] use
a checkerboard pattern, but they do not calibrate the
depth camera through the detection of checkerboard
points in the images from the IR camera. They pro-
pose a maximum-likelihood method based on the fact
that points on the checkerboard in the depth map shall
be co-planar, and the plane is known from color camera
calibration. They use point correspondences between
the depth and color images that may be manually spec-
ified or automatically established.

Herrera C. et al. [HKH12] present an algorithm that si-
multaneously calibrates the intrinsics and extrinsics of
two color cameras and a depth camera. They use a pla-
nar checkerboard pattern for calibration. In the color
images, the checkerboard corners are extracted, and, in
the depth maps, the four corners of the checkerboard
plane are located. For the depth camera calibration, the
user selects the corners of the calibration plane in the
depth maps.

Jin et al. [JLG14] proposed an intrinsic calibration of
depth sensors in which they use a set of cuboids with
known sizes. Their approach consists of an iterative
plane fitting and non-linear optimization that takes
around five minutes to accomplish the calibration. The
objective function for calibration is based on the length,
width, and height of cuboids and its angle between the
neighboring surfaces.

Staranowicz et al. [SBMM15] developed an RGB-D
camera calibration algorithm for the estimation of in-
trinsic and extrinsic parameters. They use a recorded
sequence of a moving sphere to calibrate the sensor. El-
lipse and sphere-fitting algorithms are used to detect the
sphere in the RGB images, and the center of the fitted
sphere is reprojected onto the depth map. A great ad-
vantage is that no a-priori knowledge of the sphere’s
size is required.

Basso et al. [BMP18] developed a method to calibrate
RGB-D sensors by estimating the rigid body trans-
formation that relates the two sensors, while inferring
the depth error correction function. Their method re-
quires the depth sensor to be coupled with a calibrated
RGB camera that frames approximately the same scene.
First, they use the pre-calibrated RGB camera to detect
a checkerboard on a wall. Then, they infer the loca-
tion of the latter based on the pose of the checkerboard
in the RGB images, and finally they estimate the rigid
body transformation that relates the two sensors.

2.3 Learning-based approaches
Ferstl et al. [FRR+15] use a random regression forest
to optimize the manufacturer supplied depth measure-
ments. They detect feature points in both the RGB and
the depth maps using a planar target with known dimen-
sions.
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Figure 4: Sample images. RGB images IC (top). Depth maps ID (middle). Binary images IT (bottom).

Teichman et al. [TMT13] propose an unsupervised in-
trinsic calibration approach built on top of a robust
SLAM system. The RGB-D sensors they used to test
their system gave them correct extrinsic parameters,
i.e., a correct depth-to-color registration. The main ad-
vantage is that no specialized hardware, calibration tar-
get, or hand measurement is required. However, their
optimization approach takes several hours to converge.

2.4 Discussion
Calculating a correct differential pose of the depth map
and the RGB camera is not possible directly. At least,
a calculated geometric pose correction only works for
a dedicated physical distance examined, but does not
hold throughout the entire range of distances observed
in a practical scenario.

Our approach aims at creating suitable imagery for IBR.
We do not aim for improving the reconstruction directly
through the use of image observations. However, while
our algorithm has similarities to existing approaches, it
is much more straight-forward to apply, only requires
a small amount of images and works exclusively in the
image domain.

3 CALIBRATION ALGORITHM
In order to describe our calibration algorithm, we first
introduce some basic notation here. An RGB camera
provides an RGB image denoted by IC; a depth sen-
sor provides a depth image denoted by ID. From an
RGB image of a scene that contains a checkerboard, it is
possible to extract the checkerboard corners IC B, where
the superscript IC denotes the fact that the corners are
expressed in two-dimensional pixel coordinates, i.e.,
IC B = (x,y)1, ...,(x,y)n.

We do not use images from the IR sensor to calibrate
the RGB-D camera for the reasons explained earlier. In-
stead, we directly go for a method to relate RGB images
and the corresponding depth maps. For our algorithm,
we require a 3D checkerboard target, which can be de-
tected in both the RGB image and the depth map. Bamji
et al. [BOE+15] reported a depth resolution of 5cm at
7.5m and a precision of 2.7cm over a range of 0.2−6m

for commercial RGB-D sensors. Thus, we chose a min-
imum cube size of 125cm3 as features to detect in the
depth image.

We record color and depth images of the 3D checker-
board in different positions (see Figure 4). We need
to automatically detect as many points as possible to
obtain dense 3D-to-3D correspondences. This require-
ment deviates from the method of Zhang and Zhang
[ZZ11], who only need a few points because they es-
timate a rigid transformation with only six degrees of
freedom. In contrast, we estimate a warping function to
achieve a 1:1 correspondence of color and depth.

From the imagery, we extract the checkerboard points
in all the k color-depth image pairs, with k = 1,2, ...,K.
Once we have the coordinates of the checkerboard
points IC B and IDB in both color and depth images, we
calculate the offsets (in pixels). Two warping functions
Sx and Sy are estimated from these measurements,
which warp the image in x and y, respectively.

3.1 Corner detection
We use the algorithm of Geiger et al. [GMCS12] to de-
tect the checkerboard corner points in both color and
depth. Corner detection in RGB images is straight-
forward, but depth frames need pre-processing before
checkerboard detection works.

First, we estimate surface normals from the raw depth
image using the surface normal determination algo-
rithm of Ückermann et al. [UEHR12]. This proce-
dure results in edges becoming more distinct. The
method uses the 2D image coordinates and depth value
to yield valid three-dimensional vectors for every im-
age point. The surface normals are calculated from the
plane spanned by three image points in a vicinity of
5×5 pixels. Using the cross product

~n = (~b−~a)× (~c−~a) (1)

and the normal to the image plane ~nxy, we obtain the
angle ∠(~ni,~nxy) which gives us the degree of deviation
of the~ni normals from the optical center of the RGB-D
sensor. We heuristically determined a threshold value
of θmax = 1◦ to remove the edge pixels in the raw depth
map.
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Figure 5: Left: 3D checkerboard target blob. Right:
Binary image IT .

We use the output of the edge detection step to detect
sets of connected components. As with most checker-
board detection algorithms, we require to board to be
non-square, i.e., one board dimension should be even,
the other, odd. Consequently, blobs should be nearly
rectangular in screen space, and we can reject outliers
based on their aspect ratio.

From this rejection test, we obtain a bounding box E
that delimits the blob containing the 3D checkerboard
target. We use its boundary to remove all the pixels in
the depth map that lie outside of E and get an image
that only contains the 3D target (see left of Figure 5).

We threshold the depth map containing only the bound-
ing box E (see left of Figure 5) to obtain the binary
images IT (see right of Figure 5 and bottom of Fig-
ure 4). To do so, we determine a plane P(x,y) with
three non-colinear points (see Figure 6) which allows us
to remove the board’s background (checkerboard black
squares).

The 3D checkerboard position cannot be parallel to
the image plane because, when it is moved too far
away from the optical axis, the side faces of the cubes
interfere with the checkerboard detection algorithm
[GMCS12]. Thus, the board has to be slightly rotated
when moving away from the center. Hence, we cannot
use a mask which is parallel to the image plane.

Given the center EC (red point in Figure 6) of the
bounding box E, the plane points are determined as

P1 =
(
Ex

C−d, Ey
C−d, Gmin

1
)

(2)

P2 =
(
Ex

C, Ey
C +d, Gmin

2
)

P3 =
(
Ex

C +d, Ey
C, Gmin

3
)

d = EH/5, e = EH/5
Gmin

i = min{D j > 0}+θT ,

with EH being the height of the bounding box E, and
D j, all the depth values inside the green square Gi
in Figure 6. The threshold θT lets us decide the depth
values the plane P(x,y) masks out. We experimentally
determined a threshold θT = 4cm, since we know that
the height of the cube is 5cm (given a cube size of
125cm3).

d

d

e

Figure 6: Points (blue) defined around the bounding
box center (red) to determine the plane used as a filter
to remove the board’s background (checkerboard black
squares).
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Figure 7: Sorted lists of points ∆
x,y
s (non-linear offset

between IC B and IDB checkerboard corner points) ob-
tained from the sample data set of Figure 4.

We analyze the depth value of all the pixels inside the
bounding box E and binarize them to obtain IT . Pixels
with a depth value greater than P(x,y) are discarded.

IT (x,y) =

{
0 if E(x,y)≥ P(x,y)
1 if E(x,y)< P(x,y)

(3)

After this, we obtain binary images containing only
the checkerboard (see right of Figure 5 and bottom
of Figure 4) that we use as input for the detection al-
gorithm [GMCS12].

3.2 Color-to-depth offset
From a board with M×N corner points, we obtain a set
of p points, with p = 1,2, ...,M ·N. Once we have the
coordinates of the checkerboard points IC B and IDB in
both color and depth images, we calculate the offset (in
pixels) between each corner point IC Bp in the ICk image
and IDBp in the IDk image.

∆
x
p = IDBx

p − IC Bx
p with x = 1,2, ...,n (4)

∆
y
p = IDBy

p − IC By
p with y = 1,2, ...,m (5)

We sort the points ∆
x,y
p according to the coordinates of

its associated point IDBp (see Figure 7).

3.3 Image warping
From the sorted lists of points ∆

x,y
s , we estimate the

warping functions W x and W y. We fit cubic polyno-
mials to ∆x

s and ∆
y
s to obtain the warping functions W x
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(a) (b) (c) (d)
Figure 8: Warping functions W x and W y for different distances for the Orbbec Astra Pro sensor. (a): 80cm
calibration distance. (b): 100cm calibration distance. (c): 120cm calibration distance. (d): Interpolated warping
functions Sx (top) and Sy (bottom).

and W y, respectively (after the investigation of multi-
ple sensors and setups, a cubic polynomial turned out
to be sufficient). We solve the polynomial regression
problem using the least squares method

ATAc = ATb, (6)

For W x, the vector b = ∆x
s and the matrix

A =


1 IDBx

1
1

. . . IDBx
1

n

1 IDBx
2

1
. . . IDBx

2
n

...
. . .

...
1 IDBx

s
1

. . . IDBx
s

n

 (7)

The functions W x and W y can only be correctly approx-
imated, when the 3D target in all the IC and ID images
is at the same distance d from the image plane of the
RGB-D sensor. Hence, it is required to estimate warp-
ing functions W x

d and W y
d for multiple distances d, re-

spectively.
We interpolate all the available warping functions W x

d
and W y

d to model the warping of x and y as a function
of (x,D) and (y,D), respectively. We use cubic spline
interpolation to obtain the functions Sx and Sy which
warp all (x,y) pixels over all the depth distances D.
The function Sx,y is used to compute the warped image
I′C(x,y) = IC(xw,yw), such that

xw = x+Sx(x,D) (8)
yw = y+Sy(y,D) (9)

where D is the depth distance value at the pixel (x,y) of
the ID associated to IC.

4 EXPERIMENTS
We conducted a set of experiments with different RGB-
D cameras (Orbbec Astra Pro, Orbbec Astra Embedded

Figure 9: Offset error between depth and color images.
Blue points represent the offset error, for 12 different
points along the horizontal and vertical axes, before the
calibration. Red points represent the error for the same
12 points after the calibration.

S, etc.). An exhaustive overview about individual prod-
ucts is beyond the scope of this paper. However, in the
following we discuss our findings with respect to the
Orbbec Astra Pro sensor. Applying the algorithm to
others led to results showing the same trends, however.

4.1 Calibration results
In Figure 8, the calculated warping functions for dif-
ferent target distances, 80cm, 100cm and 120cm, are
depicted. With increasing distance from the sensor,
the warping is observed to become slightly more linear.
In Figure 9, the offset between IC B and IDB before the
calibration (blue), and the offset after using the warping
function on the RGB images (red). The error is signifi-
cantly reduced in both the x and y dimension.

At the top of Figure 10, the offset for a test data set of 12
images is depicted. We took twelve images in different
positions. The red circles are the IC B board corners in
RGB. The blue stars are the IDB board corners in depth.
The figure at the top shows the offset before applying
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Figure 10: Scatter plot of the depth-to-color checker-
board corners offset for two data sets of 12 images. Red
circles represent the IC B corners, and blue stars, the IDB
ones. Top: offset before calibration. Bottom: offset
after calibration.

the Sx and Sy functions. Similarly, for a second testset,
the result is shown at the bottom of Figure 10.

4.2 Colored point clouds
The warping can be done online or offline. The Sx,y

functions are used to create a lookup table that can
be consulted at runtime in order to apply the correc-
tion. We added this functionality to InfiniTAMv3 with-
out any noticeable performance drop. We compute
I′C(x,y) = IC(xw,yw) for every input frame IC. An ex-
ample of a colorized point cloud is showed in Figure 1,
without and leveraging our warping method. Another
example is shown in the top row of Figure 2, denoting
the result after (expected) and before (original) warp-
ing.

Another example is shown in Figure 11. The borders
of the tables in the scene prominently stick out, as well
as the partial erroneous texturing of parts of the mo-
bile computer, the mouse next to it, and the break of
the lamp in the back. Using the warping method, the
overall visual quality is significantly improved.

4.3 Image-based rendering
Erat et al. proposed an algorithm for generating an
unstructured lumigraph in real-time from an image
stream. Despite calculating the texture beforehand,
the texture mapping onto a 3D model is performed
online based on the actual view point onto the scene.
For a more explicit description of the approach, the
interested reader is referred to [EHH+19].

The overall quality of the approach is heavily depen-
dent on the accuracy of the RGB poses given to the
algorithm. Passing the original RGB images from the
sensor to the system results in clear visual artefacts and
inaccuracies, as depicted on the left of Figure 12, while
the results of our warping-based approach for the same
scenes are depicted on the right.

For the scene depicted in Figure 12, the most obvious
improvements can be observed at the 3D checkerboard
pattern itself. Another visible inaccuracy is present at
the left boundary of the monitor, which is completely
cropped in the original approach, but nicely preserved
in our new method.

5 CONCLUSION
In this paper, we presented a method to calibrate RGB-
D sensors using a polynomial warping function. The
warping function registers the color images to the depth
maps producing a 1:1 correspondence between pixels
in the former and the latter. This method is particu-
larly useful when the camera extrinsics determination,
through both color and depth intrinsics, does not give a
satisfactory result.

We presented a set of experiments using the popular
Orbbec Astra Pro RGB-D sensor along reconstruction
and IBR systems, showing the quality improvement ob-
tained after performing the warping.

The main drawback of our approach is the need to take
multiple images of the same 3D target, at different dis-
tances from the sensor, to obtain a dense enough 3D
warping function. The more 2D warping functions it
contains the better the results the warping produces,
though, a substantial improvement is noticeable with
only a few warping entries.

The main advantage of the proposed method is that
a depth-to-color correspondence between unrelated (or
factory attached) RGB cameras and depth sensors could
be achieved. For example, it could be used to build
a camera rig made up of multiple depth sensors and a
high definition color camera. This is subject to further
research and development in the future.
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Figure 11: Results from a reconstruction recorded with InfiniTAMv3. Left: original results. Right: results gener-
ated with the proper warping functions.

Figure 12: Results from the IBR pipeline of [EHH+19]. Left: original results. Right: results generated with the
proper warping functions.
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ABSTRACT
We present an experimental setup to capture photon distributions from a liquid scattering medium and to recon-
struct the flux density throughout the medium. The capture mechanism moves an occluder through the medium,
which is illuminated by a laser. For each position of the occluder, the exiting light intensity is recorded at se-
lected positions on the boundary of the medium; this produces a measured distribution of intensities blocked by
the occluder. The differences between blocked and unblocked intensities are used to solve for sets of photon paths
that match the observed exiting light intensity. From these photon paths, we calculate the photon distribution
within the medium. This work is validated with experiments using two occluder sizes in different concentrations
of milk-water solutions, as well as different incoming and outgoing light poses.

Keywords
Scattering, Physics, Photon Distributions, Optimization, Simulation, Computer Graphics, Rendering, Physically-based Model-
ing, Imaging

1 INTRODUCTION

This paper presents an experimental setup and algo-
rithm to determine the distribution of photons within
a physical scattering medium. In what follows, an in-
put pose (i.e. a position and direction) and an output
pose, both on the boundary of the medium, will be
fixed. Then the paths of only those photons that enter
the medium from the input pose and exit the medium
from the output pose will be considered.

In a purely transmissive medium, the photon path is a
straight line with all of the light travelling along the
line. In a scattering medium, there are many photon
paths for a given pair of input and output poses, so the
flux through each position will vary across the medium.

The output of this algorithm is, in two dimensions, a
photon distribution image in which each pixel stores
the average flux density through points in the medium
corresponding to that pixel, normalized by the output
magnitude for a given entry and exit pose pair.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In addition to a fixed entry and exit pose, we consider an
additional constraint in order to further study the photon
paths. We fix an internal point that the light must travel
through, and examine the distribution of photon paths
with this additional constraint. Simulated examples of
these distributions are depicted in Figure 1.
Knowledge of photon distributions may be of impor-
tance to rendering and reconstruction, because the dis-
tribution provides probabilistic weightings in the path
matrix used in ART or SART reconstruction [1, 2].
However, it is difficult to capture these distributions us-
ing a simple, low-cost setup. Our goal is to capture a
photon distribution image of desired resolution so that it
may be used in the aforementioned reconstruction tech-
niques.
To obtain the photon distribution image, a laser is di-
rected into the medium and a camera records the output
intensity on the other side of the medium. An occluder
is then moved through the medium. At each position of
the occluder, the measured difference between the out-
put intensity with the occluder and that without the oc-
cluder will provide the power of the photons intersect-
ing the occluder, provided the occluder has an albedo
of zero. But the occluder must be much larger than a
single pixel to obtain a sufficient signal-to-noise ratio
in the difference of intensity. To obtain the power at
individual pixels, further processing is required.
Photon paths are computed that produce the same dif-
ferences of output intensity as were measured by the

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

114

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.14



(a) The full photon dis-
tribution

(b) Through point 0 (c) Through point 1

(d) Through point 2 (e) Through point 3

Figure 1: Photon distributions through different points
in the medium.

large occluder. These paths can be used to provide an
estimated power through any region of the medium, in-
cluding a pixel region, which is smaller than the oc-
cluder.

The use of such paths was motivated by the paths an-
alytically derived by Feng et al. [3] for a diffusion ap-
proximation. Each of their paths travels from an input
pose to an output pose that is a varying distance away
from a central “most probable path”. Their derivation
also provides an “approximate boundary” of the distri-
bution. Therefore, we propose a similar numerical ap-
proach.

We use an active contour-based method, which starts
with an initial set of template photon paths originat-
ing at the input pose (i.e. the laser position) and ter-
minating at the output pose (i.e. a pixel in a camera
image). The simulated output from these photon paths
is compared to the physically captured output, and the
paths are warped to correct the error between the two.
The use of photon paths permits arbitrary distribution
shapes to be fit to the captured output. The density of
the paths at a point within the medium is proportional
to the flux density at that point. Compared to Monte

Carlo methods, this approach provides a very efficient
simulation of light transport.

2 RELATED WORK
Our work builds on the distribution derived by
Feng et al. [3]. The derivation depended on a diffusion
model [4] for photon migration. A similar experimental
setup has captured photon distributions, but was limited
by the pixel resolution [5]. Feng et al.built on their
work to perform an analysis for an object blocking the
photon paths [6] as well. The diffusion model has been
used to perform backprojection [7] to solve for the
interior of a scattering region. With the actual photon
distributions, it may be possible to perform optical
tomography using a variety of techniques [8].

There are many different scattering approximations that
can be used to render a scene. Real-time systems need
further approximations to obtain the necessary perfor-
mance [9], as ground truth Monte-Carlo simulations
cannot yield real-time performance. Real-time systems
use depth of materials, or approximate scattering in tex-
ture space. One of the more important contributions is
by Jensen et al. [10], in which a diffusion approxima-
tion is used to derive a local model for incoming and
outgoing light.

Light can be sampled through a scattering medium
along paths to determine whether the light paths are
occluded [11]. Sampling methods use parts of phys-
ical models to render pleasing, but physically inaccu-
rate images. Gkioulekas et al. have done much work
with reconstruction and simulation of scattering me-
dia [12, 13]. They have also shown the types of sub-
tle variations possible through changing the phase func-
tion, which isn’t captured in approximated models [14].

3 APPROACH
3.1 Experimental Setup
The experimental setup is shown as a schematic in Fig-
ure 2 and as a photograph in Figure 3.

A glass container with a square cross-section holds the
medium. Light from a laser enters at one edge. A two-
dimensional plotter robot moves an occluder through
the medium. For each position of the occluder, a camera
image is captured (see Figure 4) at another edge of the
medium. The whole setup is draped with light-blocking
fabric.

For a fixed laser pose and a fixed camera pose, each
pixel, p = (u,v), in the camera image corresponds to an
output pose at the boundary of the medium. The radi-
ance recorded at p varies with the position (x,y) of the
occluder. Let Iw

p (x,y) be the radiance at p when the oc-
cluder of width w is at position (x,y). Let Iabsent

p be the
radiance of p without the occluder present. Then, the
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Figure 2: Photon distribution scanner setup.

Figure 3: Experimental setup

Figure 4: A camera image with the occluder in the front
middle of the glass container.

Figure 5: The path the two-dimensional plotter robot
takes over the medium. The on positions for the laser
are marked with a solid line, the off positions are
marked with a dotted line. The occluder is represented
by the grey box following the arrow path. There are
a total of 128 vertical paths, sampled at 128 positions
along each vertical line to generate a 128×128 image.

photon distribution for a given pixel p with an occluder
of width w at position (x,y) is

Dp
w(x,y) = Iabsent

p − Iw
p (x,y).

While Dp
w(x,y) is a difference of radiances, it is pro-

portional to the difference of fluxes through p for ev-
ery (x,y), as the pixel area and its solid angle are con-
stant. Thus, Dp

w(x,y) is proportional to the flux passing
through the occluder at position (x,y).

The approximate flux density at (x,y) can be obtained
by dividing by half of the occluder’s surface area in-
side the volume, excluding the bottom surface of the
occluder, which scrapes along the bottom of the con-
tainer. As this surface area is constant, Dp

w(x,y) is also
approximately proportional to the flux density at (x,y).

We will discuss using the raw data Iw
p (x,y) to obtain the

most probable photon paths in Section 3.2. Our path-
based approach has the novelty of determining the pho-
ton distributions even for regions of the medium that
are smaller than the occluder used in the experiment,
yielding more accuracy in reconstruction or rendering.
Example distribution images are shown in Section 4.1.

3.1.1 Scan Process
To accelerate the data acquisition, the camera captures a
video during the experiment. While the camera records,
the plotter moves continuously in the y direction from
the start boundary to the end boundary. Then the plot-
ter moves in the x axis by a small amount depending on
the desired capture resolution, and the process repeats.
This is illustrated in Figure 5. The laser is turned off be-
tween each continuous movement. Doing so facilitates
the later (automatic) processing of the video.

3.2 Iterative Path Algorithm
Scanning the medium as described above allows us to
use various occluder widths. However, a better signal-
to-noise ratio is obtained with a larger occluder, since
the measured difference between the occluder and no
occluder is farther from the noise floor of the camera.
The size of the occluder that maximizes the signal-to-
noise is experiment-dependent. Performing a scan us-
ing a small occluder may obtain a better resolution, but
we wish to obtain the same resolution with larger oc-
cluders. Thus, we propose a novel algorithm that ob-
tains the most probable photon paths, and is relatively
insensitive to the occluder size.

From these paths we can generate a simulated absorp-
tion image Iw

p (x,y) for any occluder width w. To clar-
ify, the absorption image Iw

p (x,y) is not an image cap-
tured by the camera, nor is it a photon distribution im-
age, but is an array of values of the intensity difference
seen by the camera through a particular pixel, p, for
different occluder locations, (x,y).
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Let the entry and exit poses be denoted by Π0 =(xxx0,ddd0)
and Π1 = (xxx1,ddd1) with positions xxx0 and xxx1, and di-
rections ddd0 and ddd1. Photons travel in many piecewise
linear paths from pose Π0 to Π1, which can be sim-
ulated using the radiative transfer equation. However,
for better performance, we assume that the most prob-
able photon paths that match the light’s overall phys-
ical behaviour are smooth. This approximation yields
reasonable results, as discussed in Section 4.2. We pro-
pose an iterative approach, where we start with an initial
set of paths and generate a simulated absorption image.
Then we compare the simulated absorption image with
the corresponding physically measured absorption im-
age, and update the paths to reduce the error between
the two. This process is repeated until we converge on
a solution. This approach is similar to active contour
models, but solves for many contours at once [15].

3.2.1 Template Paths
We generate an initial set of smooth template paths with
boundary points xxx0 and xxx1 as follows. Let the midpoint
of the line connecting xxx0 and xxx1 be MMM = 1

2 (xxx0+xxx1). Let
nnn be the unit normal of this line. Let dmin be the dis-
tance from the midpoint to the closest medium bound-
ary along nnn.

The template paths are generated by fitting a quadratic
curve between xxx0, a middle point MMMi = dinnn+MMM , and
endpoint xxx1 for each path i and di

path ∈ [−dmin,dmin]. If
there are paths generated that leave the medium, we re-
move the same number of paths on both sides such that
they are contained in the medium. The distances, di

path,
are sampled using a Gaussian distribution so that they
are more dense near zero. The analytical distribution
curves are also quadratic, of the form

y≈ (2ln2)
x(rprob− x)

κ rprob
(1)

for a given y position, radius of the distribution proba-
bility rprob, and the inverse diffusive absorption distance
κ =

√
3σaσs(1−g) [3]. Since The material parame-

ters are unknown, so we set the quadratic curves to be
initially non-intersecting in order to allow the warp to
move the curves into the correct positions.

This is depicted in Figure 6. These paths do not in-
tersect except at the fixed entry and exit points. This
is necessary to prevent degenerate cases where over-
lapping paths cannot be separated with a warp. These
template paths will be non-linearly warped at each path
point such that the absorption image simulated from
these paths matches the captured absorption image, as
described in the following sections.

3.2.2 Distribution Image Generation
Let the simulated absorption image for the set of paths
P and known occluder width w be Gw

P(x,y). Given a

Figure 6: The template paths chosen for our iterative
path algorithm given the start and end points xxx0 and xxx1
respectively. The dashed lines indicate the paths that do
not contribute to the simulated output intensity at xxx1, as
they get absorbed by the occluder.

set of paths, to generate an absorption image we calcu-
late the percentage of paths that are occluded by an oc-
cluder of width w centered at each position (x,y) in the
medium. These positions match the distribution scan-
ner positions as discussed earlier. This is a very efficient
way to approximate the radiative transfer simulation, as
it is simply an intersection test between every path and
a square. We will compare this simulated absorption
image with a captured absorption image with the same
occluder width. This approach allows us to create pho-
ton distributions with a finer resolution than the original
captured occluder width.

3.2.3 Warp Calculation
Given a target absorption image Iw

p (x,y) for a known
camera pixel, p, and occluder width, w, and set of paths,
P, we minimize ||Iw

p (x,y)−Gw
P(x,y)|| through warping

P. A warp field is defined as a vector field vvv(x,y) =
(s(x,y), t(x,y)) that encodes a displacement vector vvv for
every (x,y) position in the image. We evaluated three
different approaches to generate a vector field between
two absorption images: the gradient of the difference
image ∇(Iw

p (x,y)−Gw
P(x,y)), the Lucas-Kanade optical

flow field from Gw
P(x,y) to Iw

p (x,y), and a combination
of the two by alternating every iteration.
The convergence for the three methods is shown in Fig-
ure 7. The optical flow technique does not perform very
well. The combination optical flow/gradient technique
converges faster, but converges to a result with a higher
error. The gradient approach performs the best, so we
use this approach for the remainder of the paper.

3.2.4 Path Warping
For each path point xxxk over all paths, bilinear interpo-
lation is applied to the four closest vectors in the warp
field to determine the vector vvvk = (sk, tk) at the given
point. Then vvvk is projected onto the path’s normal nnnk at
point xxxk, and update the point

xxxk← xxxk +h · pro jnnnk vvvk, (2)
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Figure 7: The root mean squared error (RMSE) be-
tween simulated absorption image Gw

P(x,y) at iteration
i and target absorption image Iw

p (x,y) using a gradient
approach, using Lucas-Kanade optical flow (LK), and
using an alternating gradient and Lukas-Kanade optical
flow approach. The RMSE is unitless as it is a differ-
ence of percentages.

Figure 8: Sampling the vector field vvv to apply a warp to
the path point xxxk. Then vvvk is projected onto the path’s
normal nnnk.

for a small h > 0. For a gradient field, the displacement
equals a fraction of the directional derivative in the di-
rection nnnk. This step is visualized in Figure 8.

3.2.5 Constraints
Applying the warp may introduce undesirable proper-
ties such as intersecting paths, non-smoothness, or bro-
ken boundary conditions. We introduce constraints to
remove each of these properties as follows.

To force the paths not to intersect, the intersection
points are projected outwards from the middle path, as
follows. The middle path is compared to one of its
neighbouring paths. The intersection points between
the two paths is determined (if it exists). If any inter-
section points exist, the path points of the outer path
are projected away from the middle path by some small
distance. This process is repeated outwards until the
boundary path for that side is reached. The same pro-
cess is repeated for the other neighbouring side.

To obtain the correct direction at the entrance and exit
poses, the pose positions are set, then nearby points are
forced in line with the pose direction.

Paths are smoothed using a Gaussian filter. Finally, the
path points are resampled at regular intervals using cu-
bic splines. This ensures a good sampling for the next
iteration of the warp algorithm. The whole process is
repeated multiple times. This is similar to constraints
using Verlet integration and other physics solvers [16].

3.2.6 Convergence
The above steps are repeated until the difference in error
between consecutive iterations falls below a threshold.
The algorithm outputs the set of paths from the last iter-
ation. Finally, a photon distribution image is generated
by counting the paths that intersect each pixel in that
image.

4 RESULTS
4.1 Raw Capture Results for Milk-Water

Solutions
Images were captured as video with an Olympus E-M1
Camera at 30 frames per second. The camera used a
lens at 60mm focal length, f/2.8 aperture, and 1600 ISO.
In order to capture these dark images, a high ISO and
open aperture were requried. The camera was focussed
at the boundary between the solution and the glass. We
assumed the amount of light arriving at the camera from
the medium due to refraction and reflection events was
minimal.

The distribution scan was performed for multiple differ-
ent milk-water solutions. Figure 9, shows results from
a 75% milk-water solution (that is: 75% milk and 25%
water). The figure shows different scans for different
output positions on the left edge and a fixed input posi-
tion on the right edge. Figure 10 shows a similar image,
except the camera is now on the bottom edge. Different
distributions are shown for varying output pixel posi-
tions. Figure 11 shows the result for varying milk-water
dilution ratios. All ratios use the same output pixel po-
sition on the left of each distribution. The intensity at
each pixel is the amount of light absorbed by the oc-
cluder for the position in physical space. The darkest
two regions occur where the occluder is blocking all
the light. One position is in front of the pixel in ques-
tion which blocks all exiting light. The other position is
where the laser enters the solution, blocking all incom-
ing light.

(a) (b) (c)

Figure 9: Distribution scans for varying pixel positions
at 75% milk-water solution with the laser (right side)
on the opposite side as the camera (left side).

4.2 Validation of Algorithm
The algorithm was valided through a simulated absorp-
tion image as well as captured absorption images from
the scanner. For each run of the algorithm, 512 photon
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(a) (b) (c)

Figure 10: Distribution scans for varying pixel posi-
tions at 75% milk-water solution with the laser (right
side) on the adjacent side to the camera (bottom side).

(a) 12.5% milk-
water dilution

(b) 50% milk-
water dilution

(c) 100% milk-
water dilution

Figure 11: Distribution scans for a single output pixel
position with varying milk-water solutions. The laser
(right side) is on the opposite side of the camera (left
side).

paths were used in the initial and subsequent iterations.
For visualization here, only a subset of these paths are
shown.

Figure 12 depicts the output of the algorithm on a vir-
tual set of target paths using a 10mm occluder. These
target paths have a nonlinear pinching closer towards
the end points to approximate a narrow band phase
function. This provides a set of paths that incorporates
pose orientation, as well as position. The algorithm per-
forms quite well when given an image generated by a
set of these known paths. Even though the error using
the template paths is large, it converges on a valid re-
sult, as the final simulated absorption image is similar
to the “ground truth” captured absorption image. Also,
the root mean squared error (RMSE) shows a large im-
provement, from 0.114 with an image generated from
the template paths to 0.014 with the final warped paths.
This test was repeated with a 2mm occluder and ob-
tained a similar RMSE improvement, from 0.18 to 0.03.

Figures 13 depict examples of the output of the algo-
rithm with captured absorption images from the phys-
ical experiment. The three datasets are a 50% milk-
water solution with output pose straight across from
the laser, output pose at an offset from the laser on the
opposite side, and a 75% milk-water solution with the
output pose on the adjacent side relative to the laser.
We denote these as the straight, offset, and side ex-
periments respectively. Note that for each of the three
experiments, the 2mm occluder captured images has a
lower background intensity than using the 10mm oc-
cluder. This suggests that the 10mm captured images
yields a higher signal-to-noise ratio since there should

be a uniform intensity outside the photon distribution
boundary.

The errors between the reconstructed images and the
captured ones are depicted in the fourth row of Fig-
ure 13. The template and final errors are shown in Ta-
ble 1. The template errors correspond to the starting
template paths. The algorithm works well for the virtual
captures with both occluders. For physical captures,
the algorithm performs better using the 10mm than the
2mm occluder captures. This is expected as the 2mm
occluder capture images have more noise, hence the ac-
tive contour algorithm could not find a better solution.

Other deviations may be caused by stray light, back-
ground noise, reflections and other physical phenomena
not captured by our model. The diffusion model used
also assumes that the medium is semi-infinite or infi-
nite. Thus the paths derived do not interfere with the
boundaries.

The fifth row of Figure 13 depicts the final resulting
photon distributions generated with a 1mm occluder
for a 128×128 resolution image. The scale is modified
to be between 0 and 0.2 to enhance the darker areas.

Table 1: The final root mean squared error (RMSE)
between capture and simulated reconstruction images.
The RMSE is unitless, corresponding to the fraction of
the flux over the medium arriving at the output pose.

Experiment Occluder Template Final
Type Size (mm) RMSE RMSE

Virtual Offset 2 0.180 0.030
Virtual Offset 10 0.114 0.014

Straight 2 0.078 0.078
Offset 2 0.070 0.069
Side 2 0.101 0.100

Straight 10 0.062 0.023
Offset 10 0.125 0.043
Side 10 0.063 0.016

5 CONCLUSION
In this experimental setup, we have shown that it is pos-
sible to scan a scattering medium with a relatively large
occluder, in order to obtain photon distributions through
the medium. We have also presented an iterative path
algorithm that can efficiently determine a set of photon
paths that produce a simulated absorption image that
matches the captured absorption image.

It may be interesting to use multiple occluder sizes and
different volumes of liquid. This may be useful to de-
termine the limit for the flux density as the occluder size
and liquid depth approach zero. Furthermore, a translu-
cent occluder also might be a better posed problem in
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(a) Ground truth
paths

(b) Ground truth
absorption image

(c) Template paths (d) Template path
absorption image

(e) Final com-
puted paths

(f) Final com-
puted absorption
image

Figure 12: Reconstruction from a virtual experiment.
(a) the “ground truth” photon paths in the virtual
medium. (b) the simulated absorption image from the
ground truth paths. (c) the initial template paths. (d) the
absorption image from the initial template paths. (e) the
final computed paths. (f) the absorption image from the
final computed paths.

terms of reconstruction, as each path may be able to en-
code the percentage of intensity absorbed instead of a
binary amount.

Photon distributions are a generalization of the matrix
used for ART and SIRT. It would be interesting to see
how well the distributions perform using the linear re-
construction techniques for a non-linear simulated phe-
nomena such as scattering. In addition to reconstruc-
tion, it would be useful to determine the accuracy of
using the photon paths for rendering simulation. An
example would be to use them to do efficient approx-
imations for occluders in scattering media. The path
shapes could determine the type and amount of scatter-
ing whereas the path attenuations could depend on the
medium in question. This is an approximation of the
Monte-Carlo process, but it would be beneficial to val-
idate the performance versus accuracy tradeoffs.
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Figure 13: The straight, offset, and side experiments for 2mm and 10mm occluders. Depicted are the raw captured
absorption images, reconstructed paths, simulated absorption images, error absorption images, and final photon
distribution images. The light enters the left side and exits the right side for the straight and offset experiments.
The light enters the right side and exits the top side for the side experiments.
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ABSTRACT

This paper reports on a service-based approach to enable real-time stream-processing of high-resolution videos. It presents a
concept for integrating black-box image and video processing operations into a streaming framework. It further describes ap-
proaches to optimize data flow between the processing implementation and the framework to increase throughput and decrease
latency. This enables the composition of streaming services to allow scaling for further throughput increase. We demonstrate
the effectiveness of our approach by means of two real-time streaming-processing application examples.

Keywords: stream processing, high-resolution video, real-time

1 INTRODUCTION

1.1 Motivation and Challenges
This work aims at executing fast video processing op-
erations, such as color enhancement or stylization, in a
service-based environment using streaming. Currently,
such operations are performed on the user’s own mo-
bile or fixed device using specialized software and hard-
ware, e.g., Graphics Processing Units (GPUs). How-
ever, the increasing complexity of such operations cou-
pled with the increase of spatial and temporal resolu-
tion of the input data requires more powerful hardware.
Additionally, more complex operations need to be op-
timized for each possible target device to achieve good
performance, requiring high investments in developer
time even after the initial development. As the user
expects low latency feedback of the chosen combina-
tion of video, operation, and parameters, extensive on-
line preprocessing approaches becomes unfeasible. The
preprocessing cannot be performed in an offline fash-
ion, as the video data may be read-only and transient,
e.g., in a live-streaming scenario. Therefore a suitable
approach has the following challenges/constraints:

Low Latency (C.1): In order for the user to effectively
choose an operation/parameter combination, the la-
tency to process videos should be in the sub-second
range.

High Throughput (C.2): An approach should be able
to process high-resolution videos with state-of-the-
art operations with at least the same frame rate as the
input video.

Hardware Independence (C.3): The user should be
able to use the approach on arbitrary devices. This
especially includes mobile devices such as smart
phones or tablets.

Low Integration Costs (C.4): The overhead to inte-
grate a given operation into the processing approach
should be low. This is necessary to provide the user
with new and updated operations in a short time
frame, e.g., to facilitate short time-to-market.

Challenges C.1 and C.2 represent the requirement for
an efficient end-to-end solution. This means that the
system is required not only to introduce a small perfor-
mance overhead, but also needs to improve the perfor-
mance of the offered video processing operations.

1.2 Optimization Approaches
There are multiple combinable approaches to improve
the performance of video processing operations. Each
of these approaches is based on a trade-off: some sac-
rifice quality, others development time. The major ap-
proaches and their trade-offs are as follows:

Preprocessing (A.1): This approach speeds up com-
putation by preprocessing input into a format that
is advantageous for further processing. This often
comprises an increase of data locality or indexing
operations. While preprocessing can deliver sig-
nificant improvements, it always introduces addi-
tional latency. On top of this there is a trade-off
between generality of the preprocessing and the ob-
tained speedup.

Manual Optimization (A.2): This approach increases
hardware utilization through operations and hard-
ware specific optimizations. The speedup gained is
proportional to the time invested and the skill of the
optimizing engineer. This approach can not improve
the performance of operations that are already suf-
ficiently optimized. Additionally, this approach re-
quires a thorough understanding of the implemen-
tation to be optimized and thus further introduces
development costs for new operations.
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Approximate Computing (AC) (A.3): This approach
sacrifices some quality to speed up the computation.
It is often not possible to do this without making
modifications to the operation implementation, due
to the tight coupling between the implementations
and the underlying graphics libraries and hardware
drivers. This means that additional developer time
is required to either introduce approximations into
the operation implementation itself or bring it into a
form where it can be automatically approximated.

Domain-specific Language (DSL) (A.4): The above
optimizations can often be made in an automated
fashion, if the operation is described in a DSL.
These automated optimizations often outperform
manual optimizations both in achieved performance
as well as performance to development overhead
ratio. However, most implementations are not devel-
oped using these DSLs and translating/transpiling
them will still incur a per-operation overhead.

Task Parallelization (A.5): While data parallelism is
utilized in current video processing operations, their
scope is too limited to implement task parallelism.
Task parallelism can instead be added on a higher
systemic level to fully utilize all available hardware.
Because task parallelism is provided at a higher
level, it can be implemented only once and then
reused across multiple video processing operations
and hardware architectures. However, it still re-
quires the user to provide enough hardware to meet
their performance requirements.

Off-device Processing (A.6): By performing the
computation on a different device, the user is
freed from the cost of operations and ownership
of current processing hardware. Additionally they
can easily scale the hardware to their performance
requirements. This approach incurs additional
latency when transferring the initial video to the
computation device and the processed video to the
consumption device. However, if the initial video is
not already present on the consumption device, then
the latency for transferring the initial video might
even be lower with this operation, due to higher
bandwidth of the processing hardware.

As can be seen, none of these approaches alone is capa-
ble of solving all the challenges. Additionally, some ap-
proaches require access to the operation’s source code
to perform effectively, rendering them impossible in
scenarios where the implementations are provided by
a third party. Therefore, a combination of approaches
seems promising.

1.3 Approach and Contributions
Our approach combines parallelization (A.5) with off-
device processing (A.6) to alleviate the challenges as-

sociated with current video processing systems. Off-
device processing allows usage of high-powered pro-
cessing hardware without the need to actually own this
hardware. The added transmission latency is low and
reduces with fast connections, increasingly. Addition-
ally, processing latency is lowered due to more pow-
erful processing hardware, yielding a low total latency.
Further, parallelization is used to gain not just the bene-
fit of more powerful but also more plentiful processing
devices to be had with off-device processing. This fur-
ther improves throughput and potentially can also lower
the processing latency even further.

To summarize, this paper makes the following contri-
butions: (1) it presents a concept for integrating black-
box software components for image and video process-
ing operations into a streaming framework, (2) it de-
scribes approaches to optimize data flow between the
processing implementation and the framework to in-
crease throughput and decrease latency, (3) it enables
composition of streaming services to allow scaling for
further throughput increase.

The remainder of this paper is structured as follows.
Sec. 2 reviews related and previous work w.r.t. various
optimization approaches of image and video processing
operations and and service-based processing in general.
Sec. 3 introduces the concept for enabling real-time
service-based stream processing of high-resolution
videos. Sec. 4 briefly describes implementation aspects
of our proposed concept. Sec. 5 discusses the presented
approach and implementation by means of different
applications examples and a performance evaluation.
Finally, Sec. 6 concludes this paper and outlines future
research directions.

2 RELATED WORK
There is a vast body of related work w.r.t. video stream-
ing and processing. This section focus on optimization
approaches and specifics of service-based provisioning
for video transformation operations.

2.1 Domain-specific Languages
DSLs are very appealing as they allow division of op-
timizations from algorithm description. Additionally
they offer a degree of platform independence, as they
abstract away the hardware specifics without sacrific-
ing performance. One of the simplest optimizations is
improving the locality of data and the parallelism of
computation for a given operation [28]. Further domain
knowledge helps with optimizing for specific hardware
may be directly captured by the language [17]. Alterna-
tively it may be specified separately from the algorithm,
thus an optimization expert can quickly tune new oper-
ations for specific hardware. Some frameworks enable
optimization that operates over all operations, there-
fore using all available information about a given oper-
ation [21]. Additionally, the abstraction provided by a
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DSL can enable higher developer productivity without
sacrificing performance [29]. In the same vein, DSLs
can enable optimizations that are outside the usual do-
main expertise of developers [20]. They can enable de-
velopers to automatically optimize for distributed sys-
tems [1]. On the other end of the scale, they can be used
to use more powerful but specialized hardware than is
usual for image and video processing operations, such
as ASICs and FPGAs [26].

2.2 Approximate Computing
A different approach is found in AC, which trades qual-
ity for performance. One major aspect of AC are the
singular operations that speed-up computation, such as
skipping samples in an image [15] or modifying a ker-
nel [16]. These have been accumulated into collec-
tions that can be automatically applied to existing ker-
nels and optimized in a subsequent tuning phase, ei-
ther by selecting between different kernels [31] or by
generating variations of the original kernel [30] based
on a quality target. Further approaches use alternative
representations of the input to efficiently sample the
approximation-parameter space [13]. This tuning has
been extended and refined for video processing [41].
All these operations have in common that they intru-
sively modify the algorithm and trade quality for perfor-
mance. In contrast thereto, our approach does not rely
on preprocessing of algorithms and avoids quality con-
trol directed by the user. However, the above operations
can be used in combination with our approach.

2.3 Visual Media Processing Services
Several software architectural patterns are feasible for
implementing service-based image-processing [5, 22].
However, one prominent style of building a web-based
processing system for any data is the service-oriented
architecture [35]. It enables server developers to set
up various processing endpoints, each providing a spe-
cific functionality and covering a different use case.
These endpoints are accessible as a single entity to the
client, i.e., the implementation is hidden for the request-
ing clients, but can be implemented through an arbi-
trary number of self-contained services. Since web ser-
vices are usually designed to maximize their reusabil-
ity, their functionality should be simple and atomic.
Therefore, the composition of services [9] is critical
for fulfilling more complex use cases [14]. The two
most prominent patterns for implementing such com-
position are choreography and orchestration [23]. The
choreography pattern describes decentralized collabo-
ration directly between modules without a central com-
ponent. The orchestration pattern describes collabora-
tion through a central module, which requests the dif-
ferent web services and passes the intermediate results
between them [27].

In the field of image analysis, Wursch et al. [39, 40]
present a web-based tool that enables users to perform
various image analysis methods, such as text-line ex-
traction, binarization, and layout analysis. It is im-
plemented using a number of Representational State
Transfer (REST) web services and application exam-
ples include multiple web-based applications for dif-
ferent use cases. Further, the viability of implement-
ing image-processing web services using REST has
been demonstrated by Winkler et al. [37], including
the ease of combination of endpoints. Another ex-
ample for service-based image-processing is Leadtools
(https://www.leadtools.com), which provides a fixed set
of approx. 200 image-processing functions with a fixed
configuration set via a web Application Programming
Interface (API). In this work, however, a similar ap-
proach using REST is chosen, although with a different
focus in terms of granularity of services.

Applications with respect to medical image process-
ing are presented by Yuan et al. [43] as well as Moulick
and Gosh [18]. Both propose a web-based platform to
present and process medical images by using server-
side computing for a series of image processing al-
gorithms. Further, in the field of geodata, the Open
Geospatial Consortium (OGC) set standards for a com-
plete server-client ecosystem. As part of this spec-
ification, different web services for geodata are in-
troduced [19]. Each web service is defined through
specific input and output data and the ability to self-
describe its functionality[42]. In contrast, in the domain
of general image-processing there is no such standard-
ization yet. However, it is possible to transfer concepts
from the OGC standard, such as unified data models.
These data models are implemented using a platform-
independent operation format [4]. In the future, it is
possible to transfer even more concepts set by the OGC
to the general image-processing domain, such as the
standardized self-description of services.

2.4 Distributed Processing Approaches

Over the last decade, a number of generalized ap-
proaches to distributed processing of streaming data
have been developed. The most important ones,
as identified by Karimov et al. [10] are Apache
Storm [34], Spark [44], and Flink [3]. While these
frameworks are developed for moving data between
processing nodes, they do not address processing of
image data on GPUs, which is required for high-
throughput video processing applications. With respect
to this, Scanner [25] is a system that is optimized for
these kinds of applications. However, it does require
preprocessing of the input data and does not work on a
stream-based abstraction.
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Figure 1: Conceptual overview comprising the components as well as data and control flow of the processing
pipeline.

2.5 Visual Media Processing Operations

In this work, we focus on edge-aware and content-
preserving image-processing as a fundamental tool in
computational photography and non-photorealistic ren-
dering for abstraction and artistic stylization for appli-
cation and testing purposes. Typical approaches that
operate in the spatial domain for abstraction use a kind
of anisotropic diffusion [24, 36] and are designed for
parallel execution, such as approximated by the bilat-
eral filter [33] and guided filter [8].

A plenitude of stylization operations exist using these
filters as building blocks to simulate traditional paint-
ing media and effects [12], such as cartoon [38] and
oil paint [32]. However, these may become computa-
tionally expensive when applied in an iterative multi-
stage process. This particularly applies to operations
using global optimizations to separate detail from base
information, e.g., based on weighted least squares [6]
or locally weighted histograms [11], and recent op-
erations that separate style from content using neural
networks [7]. Because of their global optimization
scheme, they are typically not suited for real-time ap-
plication, in particular not on mobile devices. To this
end, we implemented a variety of these operations using
the proposed image-processing service including styl-
ization, High Dynamic Range (HDR) tone mapping and
compression, JPEG artifact removal and colorization,
to demonstrate its versatile application. We used a rep-
resentative subset of these operations for performance
evaluation.

3 CONCEPTUAL OVERVIEW

This section describes our approach to real-time
service-based stream processing of high-resolution
videos. Based on preliminaries and assumptions, a
conceptual overview of our system is given (Sec. 3.1),
and components are described (Secs. 3.2 to 3.4).

3.1 Preliminaries & Assumptions
We base our work on software previously developed.
For the handling of video data we use a framework de-
signed to load videos and process them frame by frame,
based on a pipeline concept. For the processing of the
video frames, we use a software component compris-
ing state-of-the art image abstraction operations that is
called using a library interface.

Additionally, we make assumptions about the pro-
cessing hardware and operation implementations used
by our approach. We do not assume that the video is on
the local host or has even been fully recorded when pro-
cessing starts, as is the case in live-streaming contexts.
Offline processing is therefore not possible. Addition-
ally we assume that all operations work on a locality
of the time and space domains. We also assume that
the operation is being callable through a library inter-
face and therefore resides in the same process space as
our video processing pipeline. This means that mem-
ory and other resources (such as GPU handles) can be
easily shared between the operation processor and the
video pipeline, if the processor exposes appropriate in-
terfaces. Finally, we assume the software component to
be a black-box implementation, i.e., we cannot change
or rely on the implementation details of the operation
apart from the assumptions made above.

Fig. 1 shows a conceptual overview comprising the
components as well as data and control flow of the
processing pipeline of the proposed approach. It ba-
sically comprises the following components, which are
described in greater detail in the remainder of this sec-
tion; components (1) for receiving and sending video
streams, (2) for tiling video in the spatial or temporal
domain, and (3) that wrap the video processing opera-
tion.

3.2 Stream Separation (De-Muxing)
There are two domains, in which we can separate the
data into tiles for parallel processing: spatial and tem-
poral. If the applied processing for a target sample con-
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siders source samples at multiple points in a domain,
then an additional border around the original tile is pro-
vided by the split. This prevents quality degradation
due to missing source samples. The size of this bor-
der depends on the range of source samples in the given
domain and is therefore dependent on the operation and
its parameters. Because the software component is a
black box, is is not possible to exempt the border from
processing. Computational overhead is therefore intro-
duced by each sample in the border. Because of this,
the relative size of the border compared to the content
should be minimized to minimize overhead.
Spatial Stream Separation. Spatial Separation splits
the video in the spatial domain. Each spatially split
frame produces exactly one frame-tile for each paral-
lel strand of execution. If a border is required, it is
added to the frame-tile dimensions. As an optimization
the separation can be performed in only one dimension
of the spatial domain. This eliminates borders in the
other dimensions and is especially effective for large
frame-tiles and operations that necessitate large bor-
ders. Spatial separation also facilitates computing oper-
ations using limited resources; While computation time
is potentially unbounded, Video Random Access Mem-
ory (VRAM) and other hardware resources are limited.
The usage of these resources is often coupled to the size
of the input and output images. Spatial separation en-
ables the processing of complex and resource intensive
operations on hardware, which is otherwise not capable
of handling these on the requested input complexity.
Temporal Stream Separation. Temporal separation
is of advantage whenever the operation is time-local.
In this case, no border frames need to be created and
therefore the amount of data that is transferred between
the distributed stages is minimized. Additionally, this
method is the only possible method when the technique
is global in the spatial domain. If the technique is also
non-local in the time domain, border frames need to be
introduced. To ensure a good ratio of content vs. bor-
der, multiple consecutive frames should be sent to each
node for processing. Depending on the throughput of
the nodes, this will introduce a significant increase in
latency, as the border frames need to be processed be-
fore the content frames.

3.3 Per-Frame Video Processing
The actual video processing module is accessed via an
API. This necessitates wrapping the module within a
stage to embed it in our pipeline. The wrapper requires
a way to pass data into and out of this processing mod-
ule. To this end, we implement two approaches to pass
data between the wrapper and the processing module,
both exhibiting different computational overhead and
flexibility. The first approach passed data via shared
memory. If the processing is performed on the GPU, the
overhead might significantly deteriorate the throughput.

Additionally, it can not be guaranteed that the mod-
ule does not first copy the data for processing, leading
to potentially more overhead. The second approach is
passing the data as a texture in a shared GPU context.
To enable this, a GPU context can be obtained from the
module. This context is then used to allocate the re-
spective data memory in VRAM. The handles to this
memory are then passed into the module for process-
ing. Even if the data is copied, the asynchronous and
parallel nature of GPU processing allows progress to
be made on other work items while the data is copied.

3.4 Stream Compositing (Muxing)
Stream muxing combines the previously separated data
into a final composition result. It receives the data,
which is not defined as border values and stitches them
to create the final video stream. Therefore, it is re-
quired to work in the same domain as the separation
operation. If the separation is performed in the spa-
tial domain, then the frame tiles are copied into a final
frame representation. If the separation is performed in
the temporal domain, then sufficient frames need to be
buffered to unblock the processing nodes. These frames
are then aligned into the same order as their originat-
ing frames, discarding border frames if they exist. This
stage also maintains the synchronization with the input
audio stream.

4 IMPLEMENTATION ASPECTS
This section describes implementation specifics for our
approach. Based on the concept, the implementations
of the codec handling (Sec. 4.1), separation and re-
combination (Sec. 4.2), as well as the service-based
specifics (Sec. 4.3) are covered.

4.1 GPU-based En-/Decoding
Modern GPUs often have dedicated units for de- and
encoding of videos in commonly occurring formats.
Especially the encoders offer a significantly higher
performance than the software implementations run
on Central Processing Unit (CPU). Because of this
our framework allows to utilize GPU de- and encoders
where supported by the hardware. If the processing
of the frames is also implemented on the GPU then
an additional advantage may be gained by forgoing
the uploading and downloading of data to and from
the GPU. However, the interface of the GPU coding
units might not always be exposed in the same GPU
abstraction as the processing is required.

To bridge this gap, we support translation of the
data between different GPU abstractions. This happens
transparently to the processing module. Due to driver
limitations, registering a resource from one GPU ab-
straction in another might introduce an additional al-
location of memory. This might lead to performance
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degradation or even memory shortage if performed ev-
ery frame. To this end we implement the adapter as
a texture that is registered once at the initialization of
the pipeline and then copied to and from. While this
introduces additional data copies on the GPU, it does
not degrade performance and allows processing of large
data even on drivers where registering resources allo-
cates memory.

4.2 Tiling Implementation
We use different implementations for the tiling and
compositing stages of the pipeline, depending on the
domain of the division and the location of the data. If
data separation is performed on the spatial domain, it
is implemented using a copy operation, depending on
the location where the data resides. Data residing on
the GPU is separated using texture copies, while data
residing on the CPU is separated using memcpy. This
means, that at least twice the memory footprint of a sin-
gle frame is consumed during spatial separation - more
if a border is present (e.g., required for neighborhood
filtering). In effect, this overhead is often negligible
since it only occurs during the separation itself, i.e.,
only one frame at a time consumes twice the amount
of memory. Such additional use of resources is signifi-
cantly smaller than the use of resources required to have
multiple frames in flight.

If the separation should be performed in the tem-
poral domain, it can be implemented by routing in-
dividual or chunks of frames to different processing
stages. If a temporal border is required, all frames
that are within a border need to be routed to multi-
ple processing stages. Because the processing stages
do not consume the memory of the frames, no copies
need to be made during this routing. Copies are of-
ten made during transmission to different nodes, such
that memory overhead might occur in this case as well.
In a worst case scenario, each frame consumes (1 +
numberOfInstances) · memoryOfSingleFrame memory
at any point in time. Similar to spatial separation, this
only occurs for at most one frame at a time, thus the
total memory needed is bounded and near constant in a
high-throughput pipeline.

4.3 Provisioning and Streaming
Service Provisioning. In order to rapidly deploy the
service to new hosts, it is bundled as a Docker im-
age [2]. This allows instancing up the respective image
on different hosts without rebuilding the complete sys-
tem. However, due to the required tight coupling to the
GPU, all required processing libraries and APIs (such
as Open Graphics Library (OpenGL) or CUDA) need
to be present and supported on the host. This is a limi-
tation of Docker with respect to GPUs. Additionally, as
GPUs are often limited regarding the number of physi-

cal en/decoding units, using more than one instance per
graphics card can lead to a degradation of performance.
Application of Streaming Protocols. There are three
ways in which data may be streamed by the system: (1)
ingesting streams from outside the system, (2) stream-
ing between system instances, and streaming outside
the system to consumers. All three cases raise differ-
ent requirements on the streaming protocols used: For
ingestion, common existing streaming protocols should
be supported to enable easy interaction with existing
stream sources, such as YouTube or similar. For stream-
ing inside the system, low latency and high throughput
is desired, so as to not degrade performance when scal-
ing over smaller nodes. For streaming to the consumer,
the protocol should be supported by web-browsers for
easy consumption. For consumption, it is further de-
sired to allow for some degree of asynchronicity, as the
user might drop-out of the session and return to it at a
later point in time.

Because of these differing requirements, we choose
to support different protocols as follows. For stream
ingestion and streaming inside the system, Real-Time
Messaging Protocol (RTMP) was chosen. This pro-
tocol allows for low overhead, low latency streaming
and is used by popular stream ingestion APIs such as
Twitch. For streaming to the consumer we use Hyper-
text Transfer Protocol (HTTP) Live Streaming (HLS).
This protocol allows to use readily available technolo-
gies on both ends of the connection. The server can be
a HTTP driven and does not require prior knowledge
about the nature of the video. On the client side the
stream can be consumed using a standard video player
in the web browser. Additionally, this allows for asyn-
chronicity as the processed stream can be stored for as
long as desired.

5 RESULTS & DISCUSSION
This section demonstrates our approach by means of
different application examples (Sec. 5.1) and discusses
its runtime performance as well as technical and con-
ceptual limitations (Sec. 5.2).

5.1 Application Examples
We tested our approach and its service-based integra-
tions by means of different applications in the domain
of web-based video processing as follows (please refer
also to the accompanying video).
Interactive Web-based Video Editing. This appli-
cation example demonstrate how the streaming can be
used to provide visual feedback of chosen operations
and parameters.The user first selects a video, specific
processing operations parameters and triggers process-
ing. Subsequently, a preview of the video with the op-
erations applied is presented to the user.

The user can easily chain multiple operations without
an impact on the responsiveness of the application. This
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(a) NVIDIA GTX 1050. (b) NVIDIA GTX1080.

Figure 2: Throughput measurements in seconds using a consumer desktop (a) and a dedicated server (b).

(a) Latencies for different operations. (b) Latencies for different spatial resolutions.

Figure 3: End to end frame latencies on a consumer desktop (a) and a dedicated server (b)..

is possible even if the underlying processing framework
does not support chaining per se. Once the user has
decided on a set of operations and parameters, they can
download the result.
Real-time Stream-processing of Videos. This appli-
cation example demonstrates how a consumer can take
existing videos hosted online and process them using
our system. The user provides the link to a video hosted
on a video streaming platform, chooses an operation
to apply to this video, and starts the pipeline to con-
sume the processed video. As the video is processed
in a streaming fashion, the user can start watching the
video before it is fully processed.

5.2 Performance Evaluation
With respect to the application examples, a perfor-
mance evaluation using different test data sets and op-
erations are performed.
Test Data and Operations. Different image resolu-
tions were tested with different image-processing tech-

niques to estimate the run-time performance regarding
the spatial resolution of a video as well as the complex-
ity of processing techniques. The following common
spatial resolutions (in pixels) were chosen: 1280×720
(HD), 1920× 1080 (FHD), 2560× 1440 (QHD), and
3840× 2160 (4K). The source videos had a frame rate
of 24 Frames-per-Second (FPS) and a total duration of
150 s each.

In addition to various spatial resolutions, different
image processing techniques were tested in order to
cover a broad spectrum and obtain variant performance
estimates and behavior with respect to different types of
processing tasks. These operations range in complexity
from simple point based operations (invert) to complex
stylization operations (watercolor).

Test Hardware and Setup. To cover a common hard-
ware spectrum, the performance test are conducted on
two different test hosts: (1) a desktop PC with com-
modity hardware with an Intel i5-4690 CPU (4 cores) at
3.5 GHz, 16 GB Random Access Memory (RAM), and
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GeForce GTX 1050 Ti GPU 4 GB VRAM as well as a
(2) dedicated GPU server with an Intel i7-7700 CPU (4
cores) at 3.6 GHz, 64 GB RAM, and a GTX 1080 GPU
24 GB VRAM.

The videos were streamed in and out of the processor
by separate processes running on the same host. All
configurations are run 20 times to eliminate external
factors from the measurements.

Performance Results and Discussion. As depicted
in Fig. 2, the system is capable of processing the given
effects in real-time on the consumer device. For high-
resolution videos processed with compute-intensive ef-
fects, more powerful hardware is required.

As depicted in Fig. 3, the presented approach
achieves sub-second latencies for the processing of all
given effects. Most of this latency is incurred by the
batching of frames on the codec, as is evidenced by the
comparatively similar latency over the different effects
per resolution. Only the watercolor effect introduces
significant latency.

Inspection of the running process shows that we
achieve close to 100 % GPU-utilization using our
system. This means that our system is capable of
fully utilizing the GPU with processing the operations.
Whether this utilization represents a relatively high or
low throughput depends (1) on the input data, (2) the
chosen operations and parameters, and (3) the imple-
mentation of the operations in the given processing
system. However, the presented approach can not
overcome bandwidth limitations inside or between
processing nodes, since frames are not preprocessed.
This means that the connection to the video source
must be sufficiently fast to deliver the video data in
real-time. With respect to processing hardware, we
assume that each node has the capabilities to process
two encoded streams of the desired tile resolution. This
includes the encoder and decoder on this node being
capable of processing the stream at a frame rate that is
greater or equal to the frame rate of the input video.

6 CONCLUSIONS
This paper presents a concept and prototypical im-
plementation to integrate 3rd-party image and video
processing software components into services cable
of real-time streaming. The system achieves this
without the modification or optimization of the specific
processing algorithm’s implementations. It supports
scaling-up and scaling-out to cover different input and
processing complexities. This paper further presents
use cases in which such an approach is required to
facilitate new applications or features for users.

For future work, this system could be improved to
be more adaptive to the kind of workload that is im-
posed. This includes automated provisioning of new
nodes to scale-out as well as easy re-use of provisioned

nodes to handle multiple tasks without incurring start-
up and tear-down costs. In addition thereto, the sys-
tem’s behavior can be runtime-adaptive, thus the appro-
priate scale can be computed automatically – even for
unknown operations or input data complexities. To sup-
port this, research with respect to tuning the paralleliza-
tion process to balance the overhead associated with
tiling and the gain in performance must be conducted.
To lower latencies in complex processing pipelines, a
transitioning from traditional video streaming protocols
to new data exchange protocols such as a messaging
queue, can be considered.
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ABSTRACT

We demonstrate the acceleration potential of the Chebyshev semi-iterative approach for fluid simulations in Projective Dy-
namics. The Chebyshev approach has been successfully tested for deformable bodies, where the dynamical system behaves
relatively linearly, even though Projective Dynamics, in general, is fundamentally nonlinear. The results for more complex
constraints, like fluids, with a particular nonlinear dynamical system, remained unknown so far. We follow a method describing
particle-based fluids in Projective Dynamics while replacing the Conjugate Gradient solver with Chebyshev’s method. Our re-
sults show that Chebyshev’s method can be successfully applied to fluids and potentially other complex constraints to accelerate
simulations.

Keywords: fluid simulation, constraint-based simulation, projective dynamics, nonlinear optimization, animation

1 INTRODUCTION
The physically plausible simulation of the behavior of
various objects has been an important research topic
in computer graphics for the past decades. In the
early days, methods were adapted from simulations
in computational physics, like the Finite-Element-
Methods (FEM) [14]. These methods are derived from
continuum mechanical principles and therefore offer
high accuracy. This high accuracy is needed because
the goal of simulations in computational physics or
chemistry is to replace real-world experiments. In
computer graphics, however, physical simulations are
mostly used for special effects in film or for interactive
applications. High numerical accuracy is therefore of-
ten not needed as long as the objects behave plausibly.
This results in new methods that are specially tailored
to the needs of computer graphics simulation.

A common simulation method in computer graphics
is Position-Based-Dynamics (PBD) [13]. Classical
approaches use forces to apply a change of momen-
tum in a physical system, which leads to a position
change through numerical integration of velocities and
accelerations. In PBD there are specially designed
constraints, that enforce a change of position in a
quasi-static fashion. Constraints in PBD can be used
for simulating a broad variety of objects such as
rigid-bodies, soft-bodies, cloth, hair, muscles and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

even fluids. Unfortunately, this technique has limited
accuracy as the constraints are not directly derived
from continuum mechanical principles. In addition, a
large number of iterations are often required to solve
the entire system, as the constraints are projected onto
each other.

Projective Dynamics (PD) [3] is a relatively new
technique that also uses constraints to enforce posi-
tion changes. But in contrast to PBD, these constraints
are highly nonlinear energy potentials directly derived
from deformation energies in continuum mechanics.
PD bridges the gap between the physically correct FEM
and the fast, reliable and robust PBD. Since the emer-
gence of PD, research has continued to expand the num-
ber of objects that can be simulated, improve conver-
gence rate and increase speed. The Chebyshev Semi-
Iterative approach [17] is one method of accelerating
PD by using concepts from linear algebra to efficiently
solve the fundamentally nonlinear system in PD. This
approach has been successfully applied to deformable
bodies, which have a relatively linear behavior.

In this work, we demonstrate the acceleration poten-
tial of Chebyshev’s method on fluids, which in contrast
to rigid or even deformable bodies are particularly com-
plex and result in far more nonlinear dynamic systems.
To the best of our knowledge, we are the first to suc-
cessfully accelerate fluid simulation with Chebyshev’s
method. We use the approach proposed in [18] for sim-
ulating fluids in PD, borrowing Smoothed Particle Hy-
drodynamics (SPH) methods. Our results also show
the potential of Chebyshev’s method for other complex
constraints in PD (e.g. hair or cloth).
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2 RELATED WORK
In the following, we briefly introduce the concept of
Projective Dynamics and its extension to fluids. In par-
ticular, we also present the notation used, which is re-
quired in the section discussing the Chebyshev method.

2.1 Projective Dynamics
PD is a constraint-based simulation method using an
implicit integration scheme while projecting the con-
straints in an alternating Gauss-Seidel fashion onto a
common solution space. An object can be described as
a mesh consisting of m vertices. Each vertex (xi,vi), i∈
{1 . . .m} is characterized by a position xi and a veloc-
ity vi. All positions and velocities of the system can be
stored inside two matrices X ∈ Rm×3 and V ∈ Rm×3.
The implicit time integration from time tn to tn+1 of
these characteristics leads to:

Xn+1 = Xn +h ·Vn+1

Vn+1 = Vn +h ·M−1F(Xn+1)
(1)

with h being the simulation time-step and M ∈ Rm×m

a constant mass matrix. Forces F acting on the
system can be characterized as internal or external.
External forces fext , like gravity, are held constant
during the simulation. Internal forces can be under-
stood as material properties and are expressed by
strictly position-depended scalar energy potentials
fint(X) = −∑i ∇Wi(X). As shown in [11], for finding
the unknown Xn+1, the coupled system (1) can be
converted into the optimization problem

min
Xn+1

(
1

2h2

∥∥∥M
1
2 (Xn+1− (Xn +hVn +h2M−1fext))

∥∥∥2

F

+∑
i

Wi(Xn+1)

)
.

(2)

One of the key points in PD is the replacement of
the generally highly nonlinear energy function Wi(X)
by specially designed constraints. A fulfilled constraint
describes the rest state or undeformed configuration.
[3] showed that each constraint can be solved indepen-
dently with an auxiliary position variable P by projec-
tion to a common constraint manifold minimizing the
distance between the current and the projected posi-
tions, i.e.

W (Xn+1) = min
P

w
2
‖CXn+1−DP‖2

F +δC(P),

with constraint depended constant matrices C and D, an
indicator function δC that evaluates if the constraint is
fulfilled and a weighting factor w.

For solving the whole problem, two minimization
steps are necessary: a local and a global solve. Dur-
ing the local solve the minimization is executed over

the auxiliary variables Pi, while the positions Xn+1 are
kept fixed. This means that vertex positions are pro-
jected to their closest positions on the constraint man-
ifold. Since the auxiliary variables Pi are independent
for each constraint this can be done in parallel. In the
second minimization step the already projected auxil-
iary variables Pi are fixed and (2) is minimized over the
vertex positions Xn+1. This finds the configuration with
the best compromise between all constraints. Since the
unknown Xn+1 is quadratic in all terms of (2), the min-
imization is equivalent to solving the linear system(

M
h2 +∑

i
wiCT

i Ci

)
Xn+1 =

M
h2 (Xn +hVn)+

∑
i

wiCT
i DiPi + fext .

(3)

Since the objective function is bounded for an arbi-
trary choice of constraints, each iteration is guaranteed
to weakly decrease energies. Therefore the vertex po-
sitions Xn+1 converge iteratively towards the state of
minimal energy, without the need for any safeguards.

2.2 Projective Fluids
For the simulation of fluids in a constraint-based frame-
work, a fluid density constraint can be used, which
was first proposed for position based simulations in [9].
Later, [18] translated the methodology for the use in
PD. They defined the (incompressible) fluid constraint
as the state in which internal pressures force the contin-
uum into a resting state of constant density ρ0, i.e.

Wi(X) =
1
ρ0

(
∑
k

mkK(xi−xk, l)

)
−1, (4)

where local densities are calculated by the standard
SPH density estimator as an interpolation of neigh-
boring particles by an SPH Kernel function K with a
smoothing kernel length l.

The local solve is done by finding a position correc-
tion vector ∆P in the projected positions P that satisfies
the constraint W (P+∆P) = 0. A first-order approxi-
mation of the constraint with a restriction of ∆P in the
direction of the constraint gradient that conserves the
linear and angular momenta according to D’Alembert’s
principle leads to exactly one scalar Lagrange multi-
plier λ that solves the system (see [2])

W (P+∆P)≈W (P)+λ∇W T
∇W.

The gradient of the SPH density estimator is just de-
fined by the gradient of the kernel function. For an arbi-
trary particle k two cases need to be distinguished, i.e.
whether k is a neighboring particle or not and thus one
gets

∇pkWi =
1
ρ0

{
∑ j ∇pk K(pi−p j, l) if k = i
−∇pk K(pi−p j, l) if k = j

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

133

Vol.28, No.1-2, 2020



Since the result is only a first order approximation the
fluid constraint (4) in general will not vanish. Therefore
iterative updates Pζ+1 = Pζ +∆Pζ are used to converge
Pζ towards the correct projected positions P, where
the (4) vanishes. The iteration can be stopped when
the constraint is smaller than a predefined constant, i.e.
W (Pζ +∆Pζ )< ε . Usually after three to four iterations
ε < 10−14 is reached, which is sufficient [18].

3 CHEBYSHEV’S METHOD
The Chebyshev method is a semi-iterative approach to
solve a linear system Ax = b, like the global solve (3)
in PD. Contrary to the Conjugate Gradient method (CG)
proposed in [18], it doesn’t depend on inner products,
which offers more potential for parallelization [17],
since less safeguards are needed to prevent race con-
ditions. The key idea behind the method is to obtain
better results from an iterative solution, by blending in
previous results as a convex combination with blending
weights νi,k > 0, ∑

k
i=0 νi,k = 1. These blending coeffi-

cients νi,k can be determined by minimizing the error

ek = x′k−x =
k

∑
i=0

νi,k(xi−x) (5)

where x′k is the total iterative solution after k iterations,
x is the exact solution and

xi = Q−1 (Rxi−1 +b) (6)

is the result of the i-th iteration, where A = Q−R and
Q being an easily invertible matrix (e.g. a diagonal ma-
trix). Substituting (6) into (5) results in

ek =
k

∑
i=0

νi,k
(
Q−1(Rxk−1 +b)−x

)
=

k

∑
i=0

νi,kQ−1Rek−1

=
k

∑
i=0

νi,k
(
Q−1R

)i e0 = pk(Q−1R)e0

with pk(Y) = ∑i νi,kYi being a polynomial.
A polynomial of a matrix Y can be minimized by

minimizing ‖pk(Y)‖2 = maxλi |pk(λi)|, the analog
polynomial function for the scalar Eigenvalues λi of
matrix Y. Finding the eigenvalues of a large linear
system is not practical, but the spectral radius ρ gives
a measure of the range in which the eigenvalues must
lie. This means t hat pk can be minimized over a range
x ∈ [−ρ,ρ], i.e.

pk(x) = arg min
(

max
−ρ≤x≤ρ

|pk(x)|
)
. (7)

[17] showed that pk(x) = Tk

(
x
ρ

)
/ Tk

(
1
ρ

)
with the

Chebyshev polynomials of the first kind Tk(x) (for more
details on Chebyshev Polynomials see e.g. [7]) is a so-
lution to (7). Furthermore, [17] showed in detail that,

based on relations for these polynomials, an iterative
solution with a minimized error term only depending
on the range limiter ρ is given by

x′k+1 = ωk+1
(
Q−1(Rx′k +b)−x′k−1

)
+x′k−1 (8)

with a recursive resulting factor ωk+1 =
4

4−ρ2ωk
∀i ≥ 1

and ω1 = 1.
The idea of using the Chebyshev approach for PD

is to replace the global solve with the Chebyshev For-
mula (8) using the results of the previous iterations for
x′k and x′k−1. Furthermore, the matrix Q is chosen as the
diagonal matrix of the projective system matrix. For a
linear system, ρ is well defined by the spectral radius
of Q−1R. For PD where the combination of local and
global solves forms a fundamentally nonlinear system
this definition of ρ can’t be used any longer and an al-
ternative approach is needed. [17] proposed to use a
fixed ρ for the whole simulation. This ρ can be found
in two steps before the actual simulation starts. First it
is initialized by the error rate in the last iteration K of a
test run, i.e. ρ =

‖eK‖2
‖eK−1‖2

. After that, ρ is modified in a
couple of further test runs to minimize the convergence
rate. When ρ is overestimated the results begin to oscil-
late and when ρ is underestimated the results converge
slower.

4 IMPLEMENTATION

Algorithm 1 PD solve from t = n→ t = n+1

1: X(0)← InitialPositionGuess(Xn, Vn)
2: for iterations k = 0 . . . K-1 do
3: for all constraints i do
4: Pi← ProjectConstraint(Ci, X(k)) //(4)
5: end for
6: X̃(k+1)← SolveLinearSystem(Xn, Vn, Pi) //(3)
7: X(k+1)= ωk+1

(
X̃(k+1)−X(k−1)

)
+X(k−1) //(8)

8: end for
9: Xn+1 = X(K)

10: Vn+1 = (Xn+1−Xn)/h

We implemented a fluid simulation framework
in C++ 11, using OpenMP for parallelization and
the Eigen library for mathematical operations. The
parallelization is used, among other things, to project
fluid constraints in parallel onto their manifolds, while
updating the solution vector atomically to prevent race
conditions, as described in [18]. We used parallel
Spatial Hashing by [8] for finding particle neighbors
(see also [15]) and a cubic b-spline kernel [12] as
the SPH kernel for interpolating field quantities from
neighboring particles. Boundary and object collision
handling is done by surface sampled boundary particles
as proposed in [1]. The particle sampling on arbitrary
surfaces is done with an improved parallelized version
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Figure 1: A diagonal double dam break in a squared bounding box with one collision object and 298k fluid
particles.

Solver Dam
Break
30k

Dam
Break
88k

2Dam
Break
128k

Squirrel
298k

CG 1 It. 73ms 277ms 484ms 883ms
CG 94ms 616ms 889ms 2558ms
LDLT 88ms 306ms 486ms 1057ms
Jacobi 1 It. 89ms 276ms 476ms 1163ms
Jacobi 101ms 381ms 555ms 1225ms
Chebyshev 89ms 295ms 459ms 995ms

Table 1: Timing results for different scenarios. Fastest
runtimes without artifacts in bold.

of Poisson disk sampling [4]. The simulation time-step
size is restricted by the CFL condition [5]. The
pseudo-code for one PD solve, also referred to as one
time-step from a time t = n to t = n + 1 is shown in
Algorithm 1. The corresponding formulas from this
paper are added in parentheses behind code lines.

5 RESULTS
In this section, we present the simulation results and
discuss the time advantage over previously used solving
methods. We use four different simulation scenarios to
emphasize our statements. The first one is a dam break,
which is a classical test case in fluid simulation. In this
setup, a block of water containing 30k particles flows
under the influence of gravity in a rectangular bounding
box. For the second scenario we used the same setup
(see Fig. 2), but this time with 88k particles. The third
setup, the double dam break, involves two blocks of
water in a rectangular bounding box on opposite sides
containing a total of 128k particles (see Fig. 3). In the
last setup, two blocks of water with each 149k parti-
cles in opposing corners of a squared bounding box are
set loose, while a squirrel as a complex collision object
stands inside the bounding box (see Fig. 1).

As mentioned in section 3 the first thing that needs
to be done is finding an equivalent to the spectral ra-
dius ρ that minimizes the convergence rate. Figure 4
exemplary displays the averaged runtime of the first 80
simulation time-steps for different values of ρ , for the

Figure 2: A dam break scenario in a rectangular bound-
ing box with 88k particles.

Figure 3: A double dam break scenario in a rectangu-
lar bounding box with two bodies of water on opposite
sides with a total of 128k particles.

second scenario. The minimum is found in ρ = 0.925.
Furthermore, it shows that for an overestimated ρ the
convergence rate slows significantly, probably due to
oscillating results, as proposed in section 3.

For evaluating the quality of the solver we took the
average runtime during one time-step. Since all com-
pared solvers have different convergence behavior, we
used a common criteria for stopping the local/global it-
eration. It is stopped when the maximum Euclidean dis-
tance between two corresponding particle locations in
the current and the previous iteration is bellow a fixed
threshold. We compared our solver to other commonly
used solvers (see Table 1). For the Conjugate Gradients
(CG) solver, we used the matrix-free implementation
proposed in [18]. As an iterative method, we imple-
mented a standard Jacobi method [16]. We also com-
pared our results to a direct solving method the LDLT
Cholesky decomposition [6]. For this method, we used
Eigen’s SimplicialLDLT with sparse matrices. We
tested the CG and the Jacobi method until convergence
for the global solve (as stated in [18]) and for a sin-
gle global solve iteration only. While the CG method
with only one iteration was often the fastest in our tests,
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Figure 4: Average runtime for the dam break scenario
with 88k particles for different values for the equivalent
to the spectral radius ρ .

it produced artifacts and therefore isn’t feasible. The
Chebyshev method doesn’t generate any artifacts and
is the fastest method of all tested fully working meth-
ods for higher particle counts. This shows, that even for
complex and highly nonlinear constraints, like the fluid
constraint, the Chebyshev method accelerates the sim-
ulation. Compared to [18]’s CG solver (until conver-
gence), we were able to reduce solving times between
41% and 52% without creating undesired visual side ef-
fects. All results have been produced on a MacBookPro
with an Intel Core i7-4980HQ processor with 4 cores (8
threads), clocked at 2.80GHz and 16GB of RAM.

6 FUTURE WORK
In the future, we want to further investigate the ac-
celeration potential of our solving approach on mas-
sively parallel hardware like the GPU. Since the ap-
proach does not depend on inner products we believe
that there is a strong potential of increasing the perfor-
mance even more. Furthermore, we plan on testing the
solver in more complex simulation setups with different
non-fluid constraints. Additionally, it would be inter-
esting to see if the small substep method from [10] for
extended position-based dynamics (XPBD), could also
further improve Chebyshev’s method in PD.
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Topological-based roof modeling from 3D point clouds
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Figure 1: We address the problem of constructing polygonal 3D roof models from previously classified LIDAR
point data.

Abstract
Automatic extraction of building roofs from remote sensing data is important for many applications including 3D
city modeling, urban planning, disaster management, and simulations. In this paper, we propose an automatic
workflow for roof reconstruction by polygonal models from classified high-density LIDAR data. Roof planes are
initially delineated by a segmentation algorithm combining a robust Hough-based normal estimator and a region
growing strategy. Then, each roof is modeled by a 2D α-shape mesh which is used to discover not only building
outline but also all ridges defined by intersecting roof planes, without any geometrical calculations. The mesh
directly encodes the topological relations between neighboring planes which allows us to build the final polygonal
model straightforwardly. This topological approach makes our solution more simple and robust than existing
methods which mostly extract the intersection lines by means of geometrical computations. Experimental results
show that the proposed workflow offers a high success rate for extraction at plane level (94% completeness, 92.7%
correctness, 90.8% quality) when LIDAR point density is sufficiently high.

Keywords
automatic roof modeling, feature extraction, topology graph, polygonal model, 3D point cloud

1 INTRODUCTION

The digitization of real objects is increasingly used
in fields such as urban planning, architecture, disaster
management and homeland security. Acquisition tools
such as airborne light detection and ranging (LiDAR)
scanners make it possible to produce digital represen-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

tations of entire cities in the form of 3D point clouds
sampling the surfaces of the objects in the environment.
Despite the high degree of maturity achieved by dig-
itization techniques, effective computational solutions
for preprocessing and reconstruction from these mea-
surements are rare and ill-adapted to the complexity of
the environment (complex building structures and en-
tire cities).
Today, the process of creating a digital model from such
data is long, tedious and essentially manual. In this re-
verse engineering process, the human operator manu-
ally draws 3D model elements as close as possible to
the point cloud.
Although significant effort has been put into the de-
velopment of automatic and semi-automatic methods,
which are currently appearing on the market, no solu-
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tion proposed so far meets all industrial requirements
in terms of precision, accuracy and efficiency. This is
because the reconstruction of 3D building models is a
complex task that requires a workflow of several pro-
cessing steps such as classification, outline extraction,
segmentation, feature recognition, hypothesis genera-
tion and verification, geometric modeling and construc-
tion, adjustment and refinement.
In addition, the reconstructed models must respect a
number of structural constraints (planarity of roof seg-
ments, horizontal roof ridges, symmetry, etc.), which
cannot be retrospectively integrated into existing solu-
tions.
Despite the acquired knowledge, there is still a signifi-
cant number of unsolved problems coming from: gaps
in the data (due to occlusions or unwanted reflections
and absorption); noise and outliers; limited resolution
and variable point density; high variability and com-
plexity of building shapes in urban areas, to name a few.
In this work, we address the particular problem of con-
structing (creating) polygonal 3D roof models from
previously classified LIDAR point data. Our method
follows a pure data-driven approach and is fully auto-
matic, except for the parameters which must be chosen
with care by a human operator. The proposed method
strives for building roof models with a level of de-
tail (LOD2), as defined in the CityGML standard [18],
e.g. detailed roof structures but without superstructures
(such as chimneys, dormers, etc.). Moreover, each in-
dividual roof is assumed to be a set of flat planes.
A typical workflow of data-driven reconstruction meth-
ods consists of the following three steps:

1. Building points are aggregated to planar patches
(segments) which represent roof facets.

2. The resulting segments are then combined to extract
building modeling features or cues such as intersec-
tion and step lines, building outlines, corners, simple
surface primitives, etc..

3. Finally, 3D building models are constructed based
on the extracted modeling features and subsequently
regularized.

We are following this pipeline, improving steps 2 and 3.
Our originality comes from the fact that we fix in pri-
ority the topological properties of the resulting model,
which are known to be difficult to discover using geo-
metrical approaches.
In addition, this combinatorial approach makes it easier
to handle the step edges corresponding to height jumps.

2 RELATED WORK
Numerous building reconstruction approaches have
been proposed in the last two decades and are presented
in various surveying articles [37, 19, 8].

The model-driven approaches try to fit certain shapes
to the data, while the data-driven approaches try to ex-
tract shapes present in the data. Although the model-
driven methods are robust, their performance is limited
to known models [46, 51, 50]. The data-driven methods
work, in theory, for any rectilinear building shapes.

Here, we provide a brief overview of some data-driven
approaches that are appropriate to our work; the sec-
tions correspond to the above pipeline.

2.1 Segmentation of planar patches
We can classify the (data-driven) building reconstruc-
tion methods into four categories w.r.t the approach do
detect planar regions in point clouds:

Hough transform [20] is one of the earliest methods
used for building reconstruction [27], and it has been
enhanced and tuned many times [21, 32, 28].

RANSAC is another method that is applied fre-
quently [16, 9]. It tends to be more robust than Hough
transform. A comparison between these methods is
presented in [45] for automatic segmentation of planar
areas from point clouds.

Region growing gains its place thanks to its simplic-
ity and efficiency. In contrast to Hough transform and
RANSAC, it is a local segmentation technique. In [2]
surface growing is applied to a regularized raster of
building points to construct planar segments by a cell
aggregation technique. Further surface growing based
segmentation methods in the context of 3D building re-
construction are, for example, used in [4, 1, 44, 52].

Another viable (but costly) option is to perform a global
optimization. In [26], flat roof segments are determined
by minimizing an energy function formulated as a mul-
tiphase level set.

2.2 Model generation
After a set of segments has been determined, modeling
cues can be extracted for the subsequent construction
of 3D building models. For this, intersection lines, step
lines, and building outlines are frequently extracted.
Although building outlines can be considered as a spe-
cial type of step lines, they are often determined in a
separate processing step. There are several approaches
that focus on generating a construction draft and sim-
plifying or regularizing it. These approaches are, for
example, based on RANSAC [23], α-shape [36, 5, 38],
structured grids [52, 44], or line simplification such as
Douglas-Peucker [12].

For the detection of step edges, height discontinuities
between adjacent segments are searched in [48]. In
[41], step edges are determined based on statistical tests
and robust estimation. A so-called compass line filter
(CLF) is proposed in [17]. It determines the local edge
orientation for each step edge.
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The ridge lines are usually directly obtained by the in-
tersection of two planes that are derived from a pair of
adjacent segments. Other modeling cues are, for ex-
ample, extracted in [33]. Here, segments are enlarged
to roof faces by intersecting all segments, regardless of
their adjacency to each other. An approach to detect
modeling cues in form of ridge lines utilizing RANSAC
is presented in [15].
Most data-driven reconstruction methods generate a 3D
polyhedral model directly based on the modeling cues,
[41, 32, 36, 52, 49]. For this, the extracted lines are
extended and connected with each other so that each
roof surface is bounded by a closed sequence of con-
nected line segments. Further faces with a vertical ori-
entation are then added at step edges so that each edge
in the polyhedral model becomes part of two surfaces
defining line segment sequences. The implementation
of such a direct polyhedral model generation method
often comes, however, with quite a few problems be-
cause there are usually some ambiguities how the line
segments are to be connected to guarantee the planarity
of each polyhedral face without any gaps in between.
There are methods using 2.5D triangulation [11], but it
does not guarantee the correct topology of the model
(step edges).

2.3 Model regularization
Since building models derived from data-driven recon-
struction approaches resemble very closely the (imper-
fect) input data, several regularization and optimization
methods have been developed. For this, most of the
methods described above incorporate the main orienta-
tion of the building and support orthogonal and parallel
structures.
An adjustment model that considers the building topol-
ogy to improve the shape of a building model is, for
example, proposed in [40]. In [52], global regulari-
ties are incorporated during the construction. This in-
cludes orientation and placement regularities between
two roof surfaces, parallelism and orthogonality be-
tween building outlines and the normal of their owner
planes, and regularities between two boundary edges in
terms of their height and position. In order to automati-
cally determine independent and consistent constraints,
a greedy algorithm is proposed in [6] while Grobner
bases are used in [29]. In [43] and [24], a refinement
of building models is proposed based on aerial images
from which building edges are detected and incorpo-
rated in the reconstruction process. An implicit regu-
larization process in the framework of MDL in combi-
nation with hypothesize and test (HAT) is, for example,
proposed in [22].

3 PROPOSED METHOD
Our method takes as input a set of clusters of 3D points
where each cluster corresponds to the roof of an indi-

Figure 2: Detailed workflow. A: input points; B: delin-
eated planar segments; C: Delaunay triangulation; D:
α-shape; E: roof outline; F: ridge lines triangles; G:
raw topological graph; H: simplified graph; I: polygo-
nal mesh.

vidual building or a set of adjacent buildings. It pro-
vides a 3D geometric and topological roof model where
each planar patch is represented by a flat polygon and
these polygons are consistently sewn together. These
models are suitable for the subsequent reconstruction
of polyhedral buildings by geometric extrusion or as an
initialization for model-based fitting approaches.

We follow the pipeline depicted in §1:

1. The planar roof segments are first extracted from
each cluster using a robust Hough-based normal es-
timator and a region growing approach.

2. Then, each cluster of 3D points is projected to the
xy-plan and its α-shape is built from its Delaunay
triangulation in 2D. The initial building outline, in
terms of edges, is extracted from the outmost trian-
gles. We extract roof ridge lines and corners directly
from the mesh using the set of triangles belonging to
two or three segments. This approach allows us to
build at first an accurate topological model (graph)
where each vertex corresponds to the intersection of
exactly three planar roof patches. Each edge cor-
responds to the intersection of adjacent planes and
each facet corresponds to a roof plane.
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3. Finally, we regularize the model by detecting the
step edges and ensuring the polygons planarity.

The rest of the section is organized as follows: §3.1
describes the plane detection step, then §3.2 explains
the model generation step, and, finally, §3.3 detailed the
model regularization step. Figure 2 provides a visual
representation of the method as a number of different
entities computed during the processing (A to I).

3.1 Plane detection
Our method for plane detection processes each build-
ing cluster individually and takes into account the co-
ordinates of the input points and the estimated surface
normal vectors. We used a robust Hough-based al-
gorithm provided by Boulch [7] which approximates
the tangent plane at each point by considering its 30-
neighborhoods. This method is particularly well suited
to our data because it does not smooth the normal vec-
tors at the intersection lines between adjacent planes.

Then, a Region Growing algorithm, provided by the
Point Cloud Library [35], is used to merge the points
that are close enough in terms of a smoothness con-
straint defined as the deviation between normals of the
points. In order to compute the Cartesian equation of
each detected planer patch, we compute the plane nor-
mal vector as the average of the normals of its points.

At the end of this step, each building cluster has its
points labeled with a value corresponding to the pla-
nar patch to which it belongs, as shown in Fig.2-B. In
addition, we keep the computed plane equations, as a
text file, which will be used in a next processing step.

3.2 Model generation
Based on the planar patch segmentation performed in
the previous step, this step deals with the construction
of a roof shape descriptor in the form of a graph con-
sisting of the roof’s outer edge, the ridge lines and their
mutual intersections, referred to as corners. It essen-
tially involves a surface mesh generation algorithm al-
lowing to build a triangular mesh connecting all the in-
put points which can then be used to extract the coarse
roof model. This initial model will be geometrically op-
timized during the last step, in order to deliver a valid
polygonal 3D roof model.

First, we project the input 3D points to the xy-plane by
ignoring the z coordinate. Then, we build the 2D De-
launay Triangulation of the points which is a mesh of
their convex hull and can be embedded in 3D, as shown
in Fig.2-C.

Since the building footprints are rarely convex poly-
gons, this initial mesh has to be carved from outside in
order to remove the triangles spanning the concave area.
This brings us exactly to the definition of the α-shape

Figure 3: On the left, dual ridge edges. The corner ver-
tices are in red, the connection vertex is in blue. On the
right, simplified ridges by removing ordinary vertices.

of the points which is usually computed from the De-
launay mesh by removing the triangles having an edge
longer than the parameter α > 0, [14]. Indirectly we
are performing a Delaunay sculpting approach as intro-
duced in [13] and [30].

In practice, we have implemented an erosion and
boundary discovery algorithm. It stats by constructing
the convex roof boundary as the list of outmost edges
(i.e. incident to only one triangle in the Delaunay
mesh). Then, it considers the shortest edge and checks
if it is smaller than the threshold value α . If yes, the
edge is kept and the algorithm continues with one of its
adjacent edges. Otherwise, the edge is removed from
the boundary list and is replaced by the two other edges
of the current triangle. The algorithm stops when all
the edges of the boundary list have been checked.

The most critical aspect of this algorithm consists in the
selection of an optimal value for the parameter α , since
it depends directly on point density and the desired level
of detail in the boundary extraction. Although there ex-
ist a recent attempt [38] to incorporate the density vari-
ation information in the algorithm in the particular con-
text of building modeling.

At this stage of the processing, we have a dense tri-
angular mesh which perfectly fits to the input data, as
depicted in Fig.2-D. Note that we keep the labels at
the vertices computed at the previous stage. They are
shown in different colors and indicate to which plane
each vertex belongs to. This information will be used to
discover the ridge lines and the corners between planes
of the polygonal model.

In addition, the mesh edges of the concave border are
also tagged with a specific value, their vertices are
shown in red in Fig.2-E. We assume that the building
footprint (outline) has only one connected component.
Otherwise, processing stops and the input building clus-
ter must be refined in order to correctly separate the var-
ious connected components.

In deferential geometry, the ridge lines are defined as
the locations of local extrema of the principal curvature
of the surface, whereas their intersecting corners are
locations where the principal curvature vanishes.
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In our particular case, the ridge lines are defined by the
intersection of two adjacent planar patches, while the
corners corresponds to the intersections of exactly three
of them. These topological features are easily accessi-
ble from the mesh as the set of triangles having more
than two different vertex labels, as shown in Fig.2-F.

This simple observation, allows us to design a robust
combinatorial algorithm in 2D which essentially con-
sists in a simple mesh traversal and does not use any
user-given parameters.

This is in sharp contrast with most of the concurrent
methods which usually relay on 3D geometrical com-
putations (adjacent planes searching, planes intersec-
tion infinite line computation, ridge line end points
searching, etc.) which are known to be tricky to be ro-
bustly implement with floating point numbers [10].

In addition, by choosing to work as long as possible
in 2D, we avoid many complex 3D configurations and
defer the consideration of height jump edges to the last
step of the workflow.

In practice, there is no technical difficulty to build the
topological graph from the mesh as far as the mesh is
encoded in an appropriate data structure, for example
the half-edge data structure [31, 25].

The algorithm starts by adding to the graph the vertices
and the edges of the outline border which have been
previously tagged in the mesh. Then it adds the dual
edges of the ridge triangles that have been previously
tagged (spanning two or three planes). This consists
in adding a vertex in the center of each triangle and
connecting the barycenters of the triangles that share
a common edge (see zoom in Fig.3). The algorithm
also records, for each graph vertex, an attribute com-
posed of the labels of the involved planes. In 2D, there
are three possible configurations, as follows: If a ver-
tex has exactly three labels, it is tagged as a corner and
will be locked up and kept forever in the graph. If a
vertex has exactly two labels, it is an ordinary vertex
and could be removed during the optimization step. If a
vertex has a unique label, it is a connection vertex and
must be preserved. It is connected to the outline border
by projecting it to the closest boundary edge (which is
necessarily one of the edges of the triangle it belongs
to) (see zoom in Fig.3).

The resulting raw topological graph is shown in Fig.2-
G where the corner vertices are depicted in red, while
the connection ones are in blue. The ordinary vertices
are not highlighted for better visibility but the edges be-
tween them are drawn in blue.

Notice that, at this stage of the processing, the topologi-
cal graph is composed of many small edges which have
been extracted from the dense α-shape mesh. How-
ever, we are able to anticipate the model optimization
by simply removing all ordinary vertices, which allows

Figure 4: Model regularization step. Top row: input
points as seen from above and corresponding 2D poly-
gons after the simplification. Bottom row: side view
of the original input points and the regularized model.
Red dots show the vertices that were duplicated.

is to already simplify the internal ridge lines, as shown
in Fig.3.

3.3 Model regularization
The model computed by the previous steps already has
the correct topology but needs to be geometrically op-
timized to become an acceptable roof model. First we
need to simplify the polygon boundaries, then we have
to deal with the planarity constraint as well as the de-
tection of height skip lines.

There are several methods in the literature to simplify
polylines. While Douglas-Peucker’s algorithm [12] is
the best known, we have implemented Visvalingam’s
algorithm [47], because it is more efficient. The idea is
very simple: we gradually remove points with the least-
perceptible change, as in [34].

We have a polygonal (non-planar) mesh and the Carte-
sian plane equations. Each vertex of our model to be
regularized is incident to one, two or three facets. Ac-
cording to the connectivity we move the vertices:

• One incident facet: we project it onto the corre-
sponding plane.

• Two incident facets: we project it onto the intersec-
tion line.

• Three incident facets: we move it into the intersec-
tion of the corresponding planes.

While the projection is conceptually simple, care must
be taken. Refer to the bottom left image of the Fig. 4 for
an illustration. Yellow and blue planes do not intersect
each other, yet the 2D α-shape is not aware of that.

Consider the vertices highlighted in red in top right im-
age of the figure; if we project them onto both planes
simultaneously, we get an inconsistent result. Fortu-
nately, it is very easy to detect this inconsistency.
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Gross density Average density Beam divergence Accuracy x, y Accuracy z Mean distance between points

28 pts/sqm 30 pts/sqm 0,25 mrad 10 cm 6 cm 20 cm

Table 1: Lidar parameters.

Indeed, an inconsistency can be detected thanks to the
distance between the original position of the point and
its possible new position. If this distance exceeds a cer-
tain threshold then it’s an inconsistency. If the incon-
sistent point has a valence of three, then among the ad-
jacent planes, we identify a pair of planes that appear
to be the most parallel (the ones that will generate the
greatest inconsistency). And we duplicate the point so
as to separate the two planes. If it has a valence of two
then we simply duplicate the point and separate the two
planes as shown in the bottom right image. So, the reg-
ularization step can be seen as the following loop:

1. project all vertices onto the corresponding planes;

2. if there are no inconsistent configurations, stop;

3. else duplicate the inconsistent vertices and go to the
projection step.

The remarkable aspect here is the fact that our algo-
rithm detects and recovers the inconsistencies that cor-
respond to the step edges (height jump lines). The step
edge detection is a hard problem and our combinato-
rial approach is more robust than the geometry-based
algorithms like 3D α-shape or snapping outlines of in-
dividual roof panes. Fig. 5 presents some examples of
the regularization algorithm.

4 EXPERIMENTAL RESULTS
Data set description
The data set used in our tests was captured over
Breuschwickersheim of the Eurometropolis of Stras-
bourg in France using the LMS Q780 Riegl laser
scanner (see Tab. 1). It covers an area of approximately
1000 m×1000 m.

The classification of the point cloud is obtained dur-
ing the acquisition by return wave analysis. From this
classification, we were able to extract a set of 2.5M
points corresponding to the building roofs of the en-
tire area (Fig.1). This single point cloud has been fur-
ther delineated into clusters corresponding to individ-
ual buildings. We obtained 445 clusters using the Eu-
clidean Cluster Extraction algorithm provided by the
Point Cloud Library [35]. Any other clustering algo-
rithm could be used for this purpose. Each resulting
cluster corresponds to the roof of a single building or
a set of adjacent buildings (Fig.1). Note that, in very
densely built-up areas, the latter configuration may be
the norm and no automatic tool can determine a limit

between neighboring buildings if there is no gap be-
tween them, without cadastral information. Since we
are not interested in the problem of building detec-
tion, we assume that the building delineation is correct.
We have kept the large clusters as they were delivered,
without cutting them manually. This allows us to pro-
vide reasonably challenging inputs to our roof model-
ing method, presented here.

As a reference data, a human operator has built man-
ually the polygonal models for every cluster shown in
Fig.1 using the RhinoCapture software [39]. An exam-
ple of a reference roof is given in Fig. 6.

Figure 5: Models with step edges. First column: anno-
tated points; Second column: topological graph; Third
column: model after regularization.

Figure 6: Left: labeled input point set; Middle: man-
ually constructed roof model; Right: automatic recon-
struction.
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Cm Cr Ql

Mean 94.0 92.7 90.8

Median 100 100 100

First quartile 91.2 89.6 80.8
Table 2: Accuracy assessment of the plane detection
over the entire data (445 building clusters).

Quantitative evaluation
We have used the evaluation system proposed in [42, 3]
which assumes that the roofs are represented by polyg-
onal models and each individual roof consists of a set of
flat planes. We have carried out an object-based evalu-
ation at plane level since, let us recall, our method ad-
dresses only the problem of roof modeling by detecting
planes in already segmented building clusters.

In object-based evaluation, completeness (Cm), correct-
ness (Cr), and quality (Ql) are estimated by counting the
number of true positive (T P), false positive (FP) and
false negative (FN) planes in the extracted results, as
follows : Cm = T P/(T P+FN), Cr = T P/(T P+FP)
and Ql = T P/(T P+FN +FP). Ideally, these values
should be maximum at 100%. The completeness indi-
cates the detection rate and is the percentage of entities
in the reference data that were detected. The correct-
ness indicates how well the detected entities match the
reference data and is closely linked to the false alarm
rate. The quality provides a compound performance
metric that balances completeness and correctness.

As depicted on Table 2, the average completeness, cor-
rectness and quality metrics, computed on the entire
dataset (445 clusters of buildings), were respectively
94%, 92.7% and quality 90.8%.

In addition to these quantitative results, qualitative anal-
ysis is also presented via visualization (see Fig.7).

Table 3 gives detailed evaluation metrics for the clusters
depicted in Fig.5, Fig.7 and Fig.8. All of the clusters
corresponding to individual buildings were perfectly re-
constructed (see Fig.7). Large clusters corresponding
to adjacent buildings were also correctly handled (see
Fig.7:#10,#23). In the case of clusters presenting step
edges (Fig.5), some true planes were missed and some
roof planes were wrongly constructed. The last four
clusters (Fig.8) are considered as fail cases which are
mainly due to poor plane segmentation.

Discussion
The proposed method strives for building roof models
with a level of detail LOD2, as defined in the CityGML
standard [18]. This means that we look for a detailed
roof structures without superstructures (e.g., chimneys,
dormers, etc.).

Figure 7: Resulting models for 8 clusters.

The small roof superstructures such as chimneys, anten-
nas and various noisy components are mostly removed
by the plane segmentation algorithm (step 1).

However, some small roof extensions and detail
roof structure were correctly modeled as shown in
Fig.7:#105.

The dormers are roof elements defining small planes
which are topologically inside the primary roof planes.
Large dormers are recognized and accurately delineated
by our step 1 algorithm, as shown on Fig.7:#53. But
these structures are usually removed by the model gen-
eration algorithm (step 2).
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# #ref T P FP FN Cm Cr Ql

92 2 2 0 0 100 100 100
105 5 5 0 0 100 100 100
69 3 3 0 0 100 100 100
70 7 7 0 0 100 100 100
115 6 6 0 0 100 100 100
53 7 7 0 0 100 100 100
23 8 8 0 0 100 100 100
10 18 18 0 0 100 100 100

13 13 13 1 0 100 92.9 92.9
30 9 8 0 1 88.8 100 88.8
37 13 11 1 2 84.6 91.7 78.6
28 19 18 1 1 94.7 94.7 90

151 7 7 4 0 100 63.6 63.6
214 3 3 2 0 100 60 60
215 9 8 0 1 88.9 100 88.9
256 2 2 1 0 100 66.7 66.7

Table 3: Detailed evaluation metrics for the roofs in
Fig.7, Fig.5 and Fig.8.

Let us recall that our model generation algorithm works
in 2D, which allows us, on one hand, to design a ro-
bust combinatorial algorithm avoiding many 3D prob-
lems, on the other hand, to postpone the 3D embedding
problems due to height jumps. This makes our method
able to handle roofs with simple geometry quite effi-
ciently. For simple flat, gamble and hip roofs, the al-
gorithm achieved 100% completeness, correctness and
quality. Our data contains 40% of this kind of structure.
For cross-fipped, cross-gabled, hip and valley and inter-
secting roofs, the method achieved 98% of perfect mod-
els. These shapes constitute about 30% of our dataset
(Fig.7). As show on Fig.5, most of the complex struc-
tures with height jumps are correctly optimized by our
model regularization algorithm. The remaining 30%
are complex structures, 20% of them are successfully
handled and the resulting models are acceptable for fur-
ther use (see Fig.7:#10,#23), while 10% of our data are
real failures which are mostly due to poor plane seg-
mentation, as shown in Fig.8.

5 CONCLUSION
In this paper we propose a new workflow for the recon-
struction of building roofs from pre-classified LIDAR
point data. The method takes as input a cluster of 3D
points corresponding to the roof of an individual build-
ing. It delivers a 3D polygonal model where each pla-
nar roof patch is represented as a flat polygon and their
ridge and corner intersections are topologically consis-
tent. The main contribution is a combinatorial approach
that is more robust than the geometrical methods trying
to snap intersection lines. Having the combinatorial in-

Figure 8: Examples of failure cases due to incorrect
plane segmentation.

formation, we easily reconstruct step edges during the
regularization phase.

Experimental testing has shown that the proposed
pipeline successfully deals with challenging input data.
It achieves a plane detection rate of 94% and a quality
rate of 90%.

We believe that the resulting models will be suitable for
further polyhedral building reconstruction through geo-
metric extrusions, for example. Moreover, they could
also be useful for the initialization of model-driven
methods for roof modeling.
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ABSTRACT
Nowadays, when one needs a system for image recognition, it is mostly a matter of finding pre-trained CNN and,
sometimes, adding additional training based on transferred knowledge. Accurate 6-DOF object localization in the
image is a more laborious task and requires more complex training data to be available. On the other hand, if we
know the model of the object, it is straightforward to acquire its pose from the image (RGB or RGB-D). In this
paper, we try to show the advantages of mixing deep learning object recognition/detection with classical 6-DOF
pose estimation algorithms, with a focus on applications in service robotics.

Keywords
CNN object detection, VGG16, ResNet50, 6-DOF pose estimation, RanSaC, ICP, RGB-D

1 INTRODUCTION
1.1 Motivation
It is hard to imagine life without robots. They have
become an inseparable part of our reality and are ap-
plicable in almost every area of life. Robots are used
in factories for transport, production, and quality con-
trol. Telemanipulators, controlled by doctors, are used
to perform surgical procedures. Thanks to robots, haz-
ardous environments (for example, underwater or in
space) can be safely investigated. In the military, their
primary use is to disarm bombs or take other dangerous
actions, saving the life of the soldiers.
Robotics, as an industrial field, is developing rapidly.
According to a report of the International Federation of
Robotics, global robot sales in 2017 increased by 30%
compared to the previous year [oR18]. The develop-
ment in the field of industry is also accompanied by
great progress in the field of research. Modern robots
are able to carry out work that not long ago was only
performed by people. One of the sources of progress is
equipment robots with senses, making them more au-
tonomous.
Eyesight is one of the most important senses of man as
it allows us to perceive most of the information from the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

environment. It is estimated that 83% of human percep-
tion takes place through sight. For comparison, hearing,
smell, touch, and taste are processing 11%, 3.5%, 1.5%,
and 1% of information respectively [SK11]. Therefore,
equipping robots with eyesight becomes an important
research issue.

One of the tasks in service robotics is object manipu-
lation, where robots should cope with everyday things
from the human surrounding. For this task to be per-
formed flawlessly, robots must be equipped with effec-
tive manipulators and grippers and a vision system ca-
pable of accurate object pose estimation. Deep learning
approaches have proven their high quality and accuracy
in object classification multiple times, and are capa-
ble of distinguishing hundreds or thousands of different
classes with minimal impact on performance. Accurate
object pose estimation, on the other hand, is straightfor-
ward to achieve if we know what object we see and we
have its model. In this paper, we try to show the advan-
tages of mixing very popular deep learning approaches
for object classification/detection with classical 6-DOF
pose estimation algorithms in service robotics applica-
tions.

1.2 Paper structure

The rest of the paper is structured as follows. The next
section describes state of the art in object detection and
pose estimation tasks. Section 3 presents proposed sys-
tem structure, followed by the implementation details
in sec. 4. Sample results for a single scenario are pre-
sented in sec. 5, and the last section concludes the paper.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

147

Vol.28, No.1-2, 2020

https://doi.org/10.24132/JWSCG.2020.28.18



2 STATE OF THE ART
2.1 Object classification and detection
Object classification answers the question what is on
this picture. Object detection deals with a more com-
plicated task of not only telling what is on the picture,
but also where, for multiple objects at the same time.
The simplest way of creating an object detector is to
apply the classifier multiple times (e.g. sliding win-
dow) on different input scales, but there are also much
more sophisticated techniques. Here the important al-
gorithms for both are presented. The advent of object
detection can be connected with the first Viola-Jones
face detector [VJ01], which, although being still the
sliding window detector, applied methods for quick re-
jection of candidate regions to achieve big performance
gain. Next step in "classical" object detection is HOG
[DT05] with further improvement of deformable part
models [FMR08]. Those solutions were very good at
their time, and to some extent, were able to generalize
on objects different from the initial ones (faces and hu-
mans). As they rely mostly on shape, not texture, it is
hard to use them to distinguish between different sub-
types of similar objects.
Another branch of classification and detection algo-
rithms is based on the image feature points (either clas-
sical SIFT [Low99] or more recent binary descriptors
[RRKB11]). Those can be either compared directly
with the object models (with RanSaC) or their statis-
tics can be used (in the form of a bag of visual words).
The latter can be further extended to create an object
detector [VL09].
All aforementioned approaches were model-based,
handcrafted to a smaller or bigger extent. With the
advent of consumer-grade high power GPUs, the
branch of data-driven approaches emerged, with neural
networks and deep learning playing the main role. In
classification task, the most widely used architectures
are VGG [SZ14], Inception [SVI+16] and ResNet
[HZRS16], with their extensions and new ideas being
published almost constantly [ZSGY19].
Currently, two types of detectors are used to solve the
problem of object detection with the use of CNN, i.e.
one-stage and two-stage. The way of operation of
two-stage detectors consists of two steps: proposing
the regions of interest and classification of these, to-
gether with the improvement of their bounding boxes.
The single-stage detectors immediately determine the
bounding boxes along with the classes of objects, with-
out first detecting the regions of interest. The two-
stage detectors are characterized by high performance
in terms of accuracy but do not always operate in real
time. The single-stage detectors operate in real-time,
but the results are not always as good as those of the
two-stage detectors. The most popular two-stage detec-
tor is Faster R-CNN [RHGS15], while the most com-

monly used single-stage detectors are SSD [LAE+16]
and YOLO [RDGF16].

2.2 Pose estimation
The goal of object pose estimation is to find the position
and orientation of the query object in the scene (relative
to some given coordinate frame, e.g. camera). This task
can be performed either solely in RGB space or using
additional depth information provided by current sen-
sors (like Kinect or Intel RealSense). Contrary to ob-
ject detection (or classification), in general, one needs
an exact model of the object to find its pose.

A simple (yet effective) approach to pose estimation
for textured objects relies on feature points. Those can
be either extracted directly from RGB (like SIFT or
ORB) and then matched against a set of reference views
[Low01] or reprojected to 3D using available depth in-
formation and matched against reference sparse cloud
of feature points. When depth (or 3D in general) infor-
mation is available, features can be computed directly
from 3D [MBO10, RBTH10]. To overcome problems
from multiple matches between the feature points (in
multi-object scenarios), additional hypothesis verifica-
tion can be applied [HCL+13, ATP+13].

For texture-less models, LineMOD [HLI+12] uses mul-
tiple object silhouettes, generated from the rendered 3D
views. Part-based models, along with 3D CAD mod-
els, can also be efficiently used to retrieve the pose of
challenging objects [AME+14]. An interesting branch
is also usage of procedural models [GFJ+18], which,
apart from the pose, estimates also other object param-
eters, like size, radius, etc.

The next advancement in the field was the appli-
cation of trainable RGB-D feature detectors. It is
either based on previous solutions (like extending
LineMOD [TTKK14]) or learning features with the
CNN approaches [GAGM15, KMT+16].

Finally, end-to-end deep learning solutions were
proposed. This problem can be simplified if only
the grasp region candidates are required [TTS+18].
PoseCNN [XSNF17] extracts full 6D pose of the 21
known objects. The authors subdivided the problem
into three main steps: semantic labeling, 3D position
estimation, and final rotation regression, implemented
as the set of components in a multi-task network.
The network was trained on the data generated from
the YCB dataset [CSW+15], providing textured 3D
models of the objects and perfectly labeled test scenes.
SSD-6D [KMT+17] is an approach to extend the SSD
network to work with 3D data. In order to facilitate
the final 6D pose estimation, the authors trained the
network to recognize one of the multiple discrete
viewpoints. Final transformation refinement is done
using classical vision algorithms (based on either
RGB-only or depth-enriched data). One of the latest
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advancements in the field is YOLOff [GKMM20],
which is also a pair of cooperating networks. First
detects the 3D object patches, which are then passed
through the 3D points regression module, detecting
the corresponding points between the scene and the
model. Final pose refinement is done using classical
algorithms. Those kinds of solutions are, however,
much harder to train than 2D object detectors and
not as popular yet [HMB+18]. As the authors of
[XSNF17] state, sufficient and well-labeled training
data is necessary. On the other hand, for classical
approaches, only a simple model is enough, and no
retraining is needed in case new models are required.

3 PROPOSED SYSTEM STRUCTURE
To take the best of two worlds, we propose the hybrid
system, with CNN based object detector and feature-
point based pose estimator (as a lot of the objects in
human surroundings possess a rich texture). To further
increase the system performance, we decided to use ad-
ditional depth data (from the RGB-D sensor mounted
on the robot). The system is composed of three main
processing blocks (fig. 1) and an additional 3D model
database.

RGB image

Classifier

RPN network

ROIs

Depth image

Pose estimator

6-DOF pose

Refined 
ROIs3D model database

Object
labels

Object
models

Figure 1: System structure

The first block is responsible for regions of interest de-
tection in the RGB image. Service robots usually cope
with a small number of objects visible in a single scene,
and typically don’t require high detection framerates.
In that kind of scenario, separating RPN from classi-
fier doesn’t impact the overall system performance. De-
tected regions are passed to the classifier, which labels
the ROIs with known classes and refines the bounding
boxes. Finally, the object’s pose is estimated using ad-
ditional depth data and the 3D model retrieved from the
database based on the label provided by the classifier.

4 IMPLEMENTATION DETAILS
4.1 Region proposal network
The region proposal network was based on simple
yet popular VGG16 architecture. This architecture
provides a good compromise between complexity (has
only 16 trainable layers) and quality (won the ILSVRC
competition in 2014). Simplified scheme of our RPN is
presented in fig. 2.

VGG16 
up to block5_conv3

rpn_conv1 
ReLU

rpn_out_reg
linear

reshape

rpn_predictions
concatenate

rpn_out_cls
sigmoid

reshape

640 x 480 x 3

30 x 40 x 512

30 x 40 x 12830 x 40 x 128

30 x 40 x 9 30 x 40 x 36

10800 x 410800 x 1

10800 x 5

transferred

trained

other

Figure 2: Region proposal network

The network takes VGA RGB images as the input.
There were nine anchors defined for RPN. As the fea-
ture extracting backbone, the first 13 layers from VGG
were utilized, with an additional convolution added.
After that, the network splits into classification and re-
gression parts. Classification part produces a label (ob-
ject/background) for each anchor box (9 in total). The
regression part produces offsets (for top left corner) and
size corrections (width and height) for each anchor box.

4.2 Classification network
For the classification stage, the ResNet50 was used
as a backbone (fig. 3). Object proposals, cropped to
224×224 pixels, were fed as an input. Two additional
convolution layers further transformed features from
the backbone, and the global average pooling layer pro-
duced final features. After that, network splits into the
classification part (fully connected, all known classes
plus one for background) and bounding box regression
part (also fully connected, four values, like in RPN).

4.3 Pose estimation
After the object detection step, all recognized objects
are cropped from the RGB image along with accom-
panying depth information. Object type information
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ResNet50
up to activation_48 
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trained
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Figure 3: Classification and localization network

is used to retrieve the appropriate 3D model from the
model database (both dense point cloud and sparse fea-
ture cloud). Pose estimation is divided into three main
steps (fig. 4). The first one is responsible for feature
extraction and matching. On the cropped RGB image,
SIFT feature points are detected, which are then repro-
jected from 2D image coordinates to 3D world coor-
dinates using available depth information. After that,
those are matched with model features.

When the pairs of matched points are prepared, the
RanSaC is used to estimate the initial rigid transform
between the model and the query image. As this trans-
form is based on a sparse cloud of features, and the
query cloud itself is very low resolution, this transform
often needs refinement. To do this, as the last step, ICP
is used. It tries to find the final transformation between
the full model point cloud and the query point cloud
(built from RGB and depth crops). In the testing sce-
nario, simple ICP with the point-to-plane metric was
used.

5 RESULTS
5.1 Scenario, hardware and dataset
The prepared system was tested on everyday objects
that can be found in the kitchen, mainly tea boxes and
food cans. The assumed scenario was a robot tasked
to find and bring a particular object from the cupboard.
As the system should detect the same kind of objects
that the robot works with, it was trained on some most
popular ones. The set consists of 12 different objects,
and, as there is no available dataset with those, the new
one had to be created. For the training phase of the
detector, there were around 30 images for each object,

RGB crop

3D projection

feature extraction
SIFT

Features
2D keypoints

Depth crop

Pointcloud calculation

Features
3D keypoints

RanSaC

Feature matching

Sparse model 
feature cloud

Dense model 
point cloud

Matched 3D 
points

ICP

Initial transf.

Dense query 
point cloud

Final transf.

Figure 4: Pose estimation module

taken from two angles (front and top) around the ob-
ject. For each image, there was also a mask prepared
for further cropping and preparing augmented train-
ing dataset. Data acquisition setup and sample object
cutout are presented in fig. 5. Pose estimation step
used 3D object models prepared as cuboids or cylin-
ders, with applied scanned textures (1 model per ob-
ject). The whole process of data acquisition follows the
one described in [KS17], and created datasets are pub-
licly available [SLK16].

Figure 5: Training data acquisition – sample image with
generated mask overlay

The data was acquired using the MS Kinect sensor, pro-
viding aligned RGB and depth images with VGA res-
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olution. Test scenes were arranged with the objects
placed inside the cupboard (fig. 6).

5.2 Detection
On the object detection stage, two parts of the net-
work were evaluated. RPN network was trained using
weights transferred from the ImageNet model, and only
the added layers’ weights were optimized using Adam
optimizer with a learning rate of 10e−4. 10000 syn-
thetic images were used for training. The final network
achieved a precision of 0.63 and a recall of 0.98. High
recall suggests that all interesting objects were properly
selected. Low precision means that apart from the ob-
jects of interest (12 classes), others were selected (yel-
low boxes on fig. 6). This is a good result, as it makes
the network robust to changing needs and easy to ex-
tend with new objects. The spurious RPN detections are
filtered on the classification stage. On 4GB GTX 970
(rather mediocre in today’s standards), training took 10
hours. This time is not very short, but the RPN doesn’t
have to be retrained if new objects are added to the sys-
tem.

Figure 6: Sample result of object detection: yellow
boxes – RPN result, green boxes – detected objects.

The classifier also had its initial weights transferred
from the ImageNet model, and also only the top lay-
ers had updated weights. The training was done using
2000 synthetic images (taken from the same set as in
RPN training), and the network achieved its final qual-
ity after only three epochs. This fact makes the pro-
cess of adding new objects very fast. Classifier network
achieved 0.99 precision and 0.98 recall. The training
took 3.5 minutes on GTX 970.

Final tests were conducted for the network cascade,
where the output of the RPN was tied to the classifier
input. This time the precision was still very high (0.99),
but recall dropped to 0.92 (mainly due to one class,
which had the worst statistics in both the RPN and clas-
sifier stage). Sample detections are marked with green
boxes on fig. 6. The top-middle object is not in the
training set, so it was properly ignored by the classifier.

5.3 Pose estimation
The output of the detector is used to cut the single ob-
jects from the RGB and depth image. Due to the lim-
ited resolution of the Kinect sensor, the resulting object
clouds contain only a small number of points (fig. 7a).
It is, however, still possible to fit the 3D model to this
cloud. For the fitting stage, the initial estimation is
done using the RanSaC transformation estimation on
the sparse cloud of SIFT points. Features are calculated
on the RGB image, and their 3D coordinates are calcu-
lated based on the depth image. In 3D models, a sparse
cloud of SIFT points is created on the model creation
stage in a similar way [KL16].

a) b)
Figure 7: 6-DOF pose estimation: a – input, b – result

After the initial transformation is known, the full point
clouds of the object cropped from the scene and the
model are used in ICP refinement. Final transforma-
tion (fig. 7b), along with the known object parameters
(e.g. its size) is then passed to robots grasping subsys-
tem [SS16].

6 CONCLUSION
6.1 Results discussion
The presented system combines the advantages of com-
monly used detection and pose estimation algorithms.
RPN network is trained in such a way, that it is pos-
sible to detect novel objects from similar classes (new
boxes or cans), without the need for further training.
Classification module, in order to correctly recognize
particular instances, has to be trained on data as close
to the target as possible, but as only a few layers are
trained there, this process is rather fast. This makes the
process of extending/modifying known objects dataset
doable in an acceptable time (3.5 minutes in our exper-
iments). Pose estimation part works with the already
preselected data – object that is on the scene is already
known and only the 6-DOF pose has to be fit. Adding
new objects requires no retraining of this stage, as it is
purely procedural.

Performance-wise, the object detection part takes 0.9 s
per image and pose estimation another 1.0 s (on aver-
age, depending on the spatial resolution of the object).
The whole process is definitely not real-time, but for
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the grasping purpose, it is more than enough. After the
first phase (detection) coarse pose of the object can be
calculated, and while the robot moves its arm to the pre-
grasp location, the final object pose is calculated. The
system was tested on the Velma service robot [WBS15],
working in a safe environment (fig. 8).

Figure 8: Robot grasping the object

It is hard to directly compare our solution with those
presented in sec. 2. The most crucial difference, which
makes the comparison unfeasible, is the format of the
training dataset. PoseCNN, SSD-6D, and similar re-
quires pose-labeled images as the input for the training.
We decided that to make the retraining and extending
the system easier, those are not required (and we don’t
have them). On the other hand, one of the strong as-
sumptions in the presented solution is the rich texture
in the objects. In datasets used by the aforementioned
methods, those are a minority.

One comparison can be made in terms of the expected
burden of system extension with new objects. Data-
wise, in our system, one has to supply few (less than 20)
pictures of the new object and scanned textures (as the
many household objects can be modeled with simple
shapes). In contrary, to train the end-to-end solutions,
one has to supply pose-labeled pictures, and there must
be a lot of them to cover most of the possible view-
points. Time-wise, as it was described above, only the
part of the pipeline needs to be retrained, with a smaller
amount of data, which should take less time than re-
training the full end-to-end pipelines.

6.2 Future works
There are multiple ways this system can evolve. For the
training phase, instead of using the pictures of the ob-
ject, one can use the rendered scenes solely [PZL+18],
with perfect masks and no need for hand labeling.

Another possible direction for making the pose estima-
tion better is changing the feature points detector to bi-
nary (if algorithm speed is crucial) or apply depth-based
feature points rectification [Ste18]. ICP transformation

can also be refined by using other ICP flavors (e.g. color
information [LKS16]).

In its current form, the system is general-purpose and
can be applied in multiple scenarios. As it is used in
robotic applications, some extensions facilitating the
hardware available can be made. The biggest impact on
the pose estimation accuracy can be obtained using the
active vision. After the first estimation, when the arm
moves towards the object, additional pictures from the
wrist-mounted sensor can be passed to the pose refine-
ment subsystem, effectively implementing the multi-
camera visual servoing [KZ15]. As the initial pose is
already known, only a few ICP iterations could make
the estimation better.
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ABSTRACT
In computer graphics, the generalized barycentric coordinates (GBC) are often used for image deforma-
tion. To manipulate an input image using a cage based image deformation method, we usually have to
consider a source polygon with a triangulation; but defining the triangulation of the source polygon is
not a trivial task in most cases. In this paper, a uniform and a non-uniform triangulation technique—
which can be the basis of the cage based image deformation—are introduced and compared. Moreover,
different texture filtering methods are tried, producing various deformation results. Experimental results
and demonstrative pictures show the behaviors of the triangulation methods.

Keywords
generalized barycentric coordinates, image deformation, triangulation

1 INTRODUCTION
Barycentric coordinates are frequently used to rep-
resent a point inside a polygon as the weighted sum
of its vertices. In the last years, many general-
izations (e.g., harmonic coordinates [Jos07], mean
value coordinates [Ju05], local coordinates [Zha14],
or blended coordinates [Ani17a]) and techniques
[Ani16] have appeared with a different set of prop-
erties. However, most of them satisfy the linear re-
production property; therefore, the barycentric co-
ordinates are often used for different interpolation
tasks, e.g., shading, mesh parameterization, and
shape [Cas18] or image deformation [Hor06].
To use the generalized barycentric coordinates
[Flo15, Hor17, Nie13] for cage based image defor-
mation, we usually have to create a triangulation
of the source polygon, which envelops the input
image to be deformed. However, this mentioned
triangulation is not always self-evident because it
can affect the quality of the deformation [Ani17b].
Nowadays, the cage based image deformation

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: Input image with source polygon using
(left) a uniform and (right) a non-uniform triangu-
lation technique. The black dots mark the source
polygon defined by the user manually.

algorithms are usually implemented on the GPU
and operate with a uniform triangulation (e.g.,
Delaunay) [Web09]. Although they can create
a smooth deformation with several thousands of
interior vertices in most cases, we can decrease the
number of the triangles to save computation time
and cost by using a non-uniform triangulation (see
Figure 1).

Therefore our goal was to examine and compare the
two different triangulation techniques in the aspect
of the applied cage based image deformation meth-
ods. In our comparison, we take into account the
input image, the source polygon—which is often
determined by the user—, and the used coordinate
method. Moreover, we investigate different texture
filtering algorithms to improve the quality of the
deformation results.
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In the next section, we give a short overview of the
image deformation methods based on the general-
ized barycentric coordinates. Then, in Section 3,
we discuss the different triangulation techniques.
In Section 4, we introduce our non-uniform trian-
gulation algorithm in detail. We show the way how
the quality of the deformation results can be im-
proved in Section 5, while in the last two sections,
we present our results and future work as well.

2 IMAGE DEFORMATION
BASED ON GENERALIZED
BARYCENTRIC COORDI-
NATES

As we recalled in Section 1, one of the main appli-
cation areas of GBC is image deformation.
We can deform an input image I, which is en-
veloped by a source polygon P with vertices vi.
The source polygon has a triangulation T with ver-
tices tj . After relocating the source polygon P to
P ′ with vertices v′i, the new positions t′j of the ver-
tices of the triangulation can be computed by the
following interpolation function:

t′j =
n∑
i=1

bi(tj)v′i, (1)

where bi(tj) are the barycentric coordinates of the
vertex tj of the triangulation T respect to the ver-
tex vi, while n is the number of the vertices of the
source polygon P .
The generalized barycentric coordinates bi(v) of a
point v inside a polygon can be computed by the
equations below:

v =
∑n
i=1wi(v)vi∑n
j=1wj(v)

, (2)

bi(v) = wi(v)∑n
j=1wj(v)

, (3)

where wi(v) are the homogeneous coordinates. The
above mentioned barycentric coordinates are usu-
ally computed in a precomputation step before the
deformation.
Image deformation based on GBC is widely used in
computer graphics because of the straightforward
and real-time computation of barycentric coordi-
nates [Ska08]. However, we have to notice that
the deformed image depends on the initial and
the deformed source polygons, the used coordi-
nate method [Ani19], and the given triangulation
as well.

3 GENERATING THE 2D MESH
As we have mentioned in Section 2, defining a tri-
angulation is a crucial task of image deformation
based on GBC. After the user marks the desired
initial source polygon of the input image (see Fig-
ure 1) by defining its vertices manually using a
graphical user interface, we have to create a 2D tri-
angular mesh. To create that, we have to partition
a given region into simplices which satisfy different
criteria. In our case, the triangulation domain of
the region is marked by the initial source polygon,
and we use shape and size criteria. The shape crite-
rion is an upper bound B on the circumradius-to-
shortest edge length ratio, while the size criterion
is an upper bound S on the length of the longest
edge of triangles.
We used Shewchuk’s algorithm [She02]—which is
based on the Delaunay refinement method—to pro-
duce 2D meshes for the given domain. The algo-
rithm starts with a constrained Delaunay triangu-
lation and inserts new vertices until it satisfies the
criteria.

Definition 3.1. A triangulation T is a Delaunay
triangulation if there exists a circle C for each edge
e of T with the following properties:

• the endpoints of e are on the boundary of C,
and

• the circle C does not contain another vertex of
T in its interior.

Definition 3.2. Let G be a planar straight-line
graph (PSLG). A triangulation T of G is a con-
strained triangulation if it contains all edges of G
as a part of the triangulation. The edges are called
constrained edges.

Definition 3.3. A constrained Delaunay triangu-
lation (CDT) [Che89] of G is a constrained trian-
gulation of the vertices of G, which is as close to
the Delaunay triangulation as possible.

As we can see in the definitions above, we can con-
struct a uniform triangulated 2D mesh using the
Delaunay refinement algorithm if we define G from
the edges of the source polygon.
A non-uniform triangulated 2D mesh can be con-
structed if we define further segments or vertices
as constraints in G from the triangulation domain
and set a proper criterion.
The modification of shape and size criteria is an
excellent way to increase or decrease the number
of vertices of the mesh. By default, B =

√
2, which

guarantees that the Delaunay refinement algorithm
will terminate, but as we increase it, the resolution
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of the triangulation will be changed. In the same
way, the adjustment of S will affect on the con-
structed mesh (see Figure 2).

Figure 2: Generated meshes for a given initial
source polygon with different parameters. The
shape and size criteria are (left) B = 0.125; S = 0.2,
(middle) B = 0.25; S = 0.2, and (right) B = 0.125;
S = 0.05.

4 OUR NON-UNIFORM TRIAN-
GULATION METHOD FOR
CAGE BASED IMAGE DEFOR-
MATION

In the following, we introduce our method, which
is able to define an adaptive non-uniform triangu-
lation where the triangles are placed with respect
to the input image and the effect of the used co-
ordinate method. Therefore, we can preserve the
smoothness of the contour curve of the input im-
age after the deformation, and we can decrease the
number of triangles of the triangulation, which re-
sults in less computation time. Moreover, the posi-
tion of the source polygon does not affect the qual-
ity of the deformation result.
The inputs of our algorithm are the input shape I
and the source polygon P that is often marked by
the user manually using a graphical user interface.

4.1 Extracting the contour
After the user defined the source polygon, the input
image has to be converted to a binary one, on which
a threshold or canny edge detection has to be ap-
plied in order to use a contour detection technique,
e.g., the method of Suzuki et al. [Suz85]. The input
image has to be separable from the background, or
it needs to have a coherent black contour, so the
contour detection method can work successfully.
In the following part of the paper, we refer to the
mentioned contour as C = {(xt,yt)}Nt=1, where N
is the number of points on the boundary.

4.2 Calculation of curvature
Our algorithm calculates the curvature κt of the
contour curve of the input shape. The curvature
defines the rate of change of the unit tangent vector
at a given point, and it can be computed as

κ(t) = ||r
′(t)×r′′(t)||
||r′(t)3||

. (4)

However, in the discrete world, the contour curve
is represented as a chain of segments that are built
from a set of points; therefore, we have to associate
curvature with vertices. The discrete curvature κ̂t
of the contour curve in vertex ct ∈ C is the change
between segments (meeting at ct) in tangent direc-
tion:

κ̂t = ∠((ct− (ct−1−ct)) ,ct,ct+1) = θt, (5)

where t is a position in the contour (see Figure 3).
The curvature values are higher where the change
between segments are high, and it is constant if
the chain of segments is almost flat (see Figure 4).
Using the curvature values, we can decide in which
parts of the curve we have to use a high density of
sampled points to follow the shape of the contour
curve properly.

Figure 3: Notations for calculating the discrete cur-
vature.

We notice that our algorithm allows us to use dif-
ferent step sizes for discrete curvature calculation;
thus, the noise of the contour curve can be reduced.

Figure 4: Visualized contour curve curvature.
Those parts of the curve where the curvature is
high are marked by red.

4.3 Calculation of the effect of the
deformation

As we mentioned previously, the deformation re-
sults depend on the position of the initial source
polygon and the used coordinate method as well
(see Figure 5). Therefore, our algorithm calculates
the effect F (ct) of the nearest vertex of the source
polygon P in vertex ct ∈ C by

F (ct) = w(ct)∑n
k=1wk(ct)

. (6)
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With these values, we can decide which parts of
the input image will be deformed better. The ef-
fect of deformation is higher in those parts of the
input, where the initial source polygon—marked by
the user—is close to the image, or the normalized
barycentric coordinates values are close to 1.

Figure 5: The effect of deformation with different
initial source polygons using (top) mean value and
(bottom) maximum entropy coordinate methods.
The higher the effect of the deformation, the red-
der the contour. We made deformations with both
source polygons, we translated vertices vi and vj
to v′i and v′j with the same distance d. The com-
parisons of the deformation results can be seen in
the third column. They show us that the deforma-
tion depends on the position of the source polygon
as well.

4.4 Sampling of the contour curve
An essential step of our algorithm is to define those
points of the contour curve, which will be the basis
of the non-uniform triangulation. Therefore, we
have to sample the contour C with respect to the
previously computed κ̂t and F (ct) by

r =
{
r1 if κ̂t >∆κ̂ and F (ct)>∆F
r2 otherwise

(7)

C′ = {(xt,yt) ∈ C | t (mod r) = 0}, (8)

where r is the sampling ratio, and ∆κ̂ and ∆F are
lower bounds.
Sampling methods for freeform curves [Pag18] are
usually used to select sample points from the curve
according to some criterion (e.g., curvature, arc
length, parameterization, or complexity). Uniform
sampling methods for curves are the most popular,
but, unfortunately, they are not precise enough in
some cases. Other techniques are the adaptive ap-
proaches (also called non-uniform sampling), which
lead to increased sampled density on those parts of

the curve where, e.g., the curvature is high. These
techniques give us more efficient approximations.
We use the adaptive technique to determine points
to be sampled from the contour curve C with re-
spect to the previously computed curvature and the
effect of deformation values (see Figure 6). Our
goal is to increase the density of the sampling on
those parts of the curve where the curvature and
the effect are higher while we want to set the sam-
pling ratio to minimal in other areas. Naturally,
other properties can be examined as well.
In our algorithm, we set r1 to 4, r2 to 20, ∆F
to 0.7, and ∆κ̂ is exactly the average curvature of
the contour curve. In that way, we sample every
fourth point of the curve if the curvature is greater
than the average and the effect of the deformation
is greater than 0.7. Otherwise, we sample every
twentieth point. We notice that these values highly
depend on the resolution of the input image. We
worked with full HD images, but if we want to use
larger images, we have to increase the values r1 and
r2.
In addition to all of this, the r1, r2, ∆κ̂, and ∆F
values in Equation 7 are modifiable freely; thus, the
resolution of the approximation can be increased
and decreased.

Figure 6: The sampling of the contour curve with
the same initial source polygon using (top) mean
value and (bottom) metric coordinates. The con-
tour is colored with respect to the curvature and
the effect of deformation. We increased the sam-
pled density near to vertex vi (bottom) because the
metric coordinates has a higher effect on the input
image than the mean value.

After the sampling, we have to consider the sam-
pled points as the constraints of a constrained De-
launay triangulation; thus, a non-uniform triangu-
lated 2D mesh can be constructed as we discussed
in Section 3. The edges of the generated triangu-
lation follow the contour curve of the input shape.
Moreover, in those parts of the triangulation where
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the curvature and the effect of the source polygon
are higher, there are more triangles, while in other
areas, our method minimizes the number of trian-
gles.

4.4.1 Holes in the mesh
Another advantage of the non-uniform triangula-
tion over the uniform that it can handle holes in the
generated mesh. The user has the opportunity to
define holes—which are simple polygonsHi—in the
interior of the initial source polygon. In that case,
the algorithm uses the edges of Hi as constraint
edges in the constrained Delaunay triangulation.

Figure 7: Generated mesh with a hole for an input
image and its deformation result.

This solution can be very useful if we want to
deform images with logos, texts, or parts which
should not be damaged (see Figure 7).

4.5 The step by step process of our
non-uniform triangulation algo-
rithm

We can summarize our method in the following
steps:

1. Consider the input shape I, the source polygon
P , and the hole polygons Hi.

2. Extract the contour C = {(xt,yt)}Nt=1 of the in-
put.

3. Calculate the curvature κ̂t of the contour curve.

4. Calculate the effect F (ct) of the nearest vertex
of the source polygon P in vertex ct ∈ C.

5. Sample the contour curve C respect to κ̂t and
F (ct).

6. Generate a 2D mesh obtained from a constraint
Delaunay triangulation using C′ and Hi.

5 IMPROVING THE QUALITY
OF THE DEFORMATION

The image deformation applications based on the
barycentric coordinates usually use the OpenGL li-
brary to render the deformation. Therefore, as we

discussed in Section 2, we have to triangulate the
initial source polygon, then we have to apply the
input image to it as a texture. In order to draw
the texture, OpenGL executes a sampling opera-
tion, when the texture coordinates of the vertices
are mapped to the texture image. The result of
the sampling are texels, which are pixels in the tex-
ture image. These texels often contain color infor-
mation; thus, the final color of the corresponding
pixel can be defined. However, it can happen that
a computed texture coordinate will not match a
texel exactly. In these cases, OpenGL has to figure
out which texel corresponds to the texture coor-
dinate. The method, when OpenGL decides the
final texel value, is called texture filtering. During
the deformation, we usually do many transforma-
tions with the vertices of the initial source poly-
gon; therefore, we have to choose well the texture
filtering algorithm. The most used filtering meth-
ods are the GL_NEAREST and GL_LINEAR, but these
cannot produce good image quality in most cases,
e.g., if we stretch the image to be deformed. The
GL_NEAREST interpolation selects the closest pixel
to the texture coordinates; therefore, the result-
ing images will be blocky. The GL_LINEAR method
interpolates the closest four pixels, and it creates
smoother images than the previous interpolation
technique, but staircase effect may appear at the
edges of the image.

Using the OpenGL Shading Language (GLSL), we
have the opportunity to write shaders on the GPU,
where we can use our own filtering methods. In
order to increase the quality of the deformation re-
sults, we implemented a generalized bicubic inter-
polation method [Pra13] by the following equation:

F (p′, q′) =
2∑

m=−1

2∑
n=−1

F (p+m,q+n)

·RC{(m−a)}RC{−(n− b)},

(9)

where the pixel F (p,q) is the nearest to the pixel
to be interpolated, a and b are distances between
the previously mentioned pixels, while RC(x) is a
bicubic interpolation function such as triangle, cu-
bic B-spline, or Catmull-Rom interpolation.

While the GL_LINEAR method uses the nearest four
pixels to define the color of the intermediate pixel,
the bicubic interpolation uses the nearest sixteen
pixels (see Figure 8). Using a texture filtering
method based on a bicubic interpolation function,
the quality of the deformation can be further im-
proved, as we can see in Figure 9.
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Figure 8: Notations for the bicubic interpolation.

Figure 9: From left to right, top to bottom:
deformation result is rendered by GL_NEAREST,
GL_LINEAR, triangle, B-spline, bell, and Catmull-
Rom texture filtering methods.

6 RESULTS
6.1 Implementation
We implemented the prototype of the uniform and
our non-uniform triangulation algorithms in C++
on an Intel i7 6700K CPU at 4.0 GHz with 16 GB
memory. In the case of non-uniform triangulation,
to extract the contour of the input, we used the
method of Suzuki et al. [Suz85], which is imple-
mented in the OpenCV library [Bra00]. In order
to produce a 2D mesh for a source polygon using
the extracted contour points, we have to build a
constrained Delaunay triangulation then we have
to use the Delaunay refinement algorithm on it. In
the case of uniform triangulation, the mentioned al-
gorithms can be useful as well. These methods can
be found in the CGAL library [The19]. The imple-
mentation of the coordinate methods was based on
the CGAL library and the Ph.D. thesis of Anisimov
[Ani17b].

6.2 Validation and comparison
We tried the methods on many input images, and
we compared the deformation results using uniform
and non-uniform triangulations (see Figure 10).
We used different coordinate methods for the de-
formations: mean value, maximum entropy, met-
ric, Poisson, and blended coordinates. We can say
that the uniform and the non-uniform triangula-
tions works well with every coordinate method.

The introduced non-uniform triangulation method
only takes care of the outer contour of the input im-
ages. However, in those situations when we want
to deform, e.g., cartoon figures—which interiors are
not so detailed—, images with big homogeneous re-
gions, it produces smooth deformation results. Fur-
thermore, it can preserve the boundary of the im-
age after the deformation. Moreover, if the graph-
ical resources of the used platform or device are
limited, or we want to save computation cost by
reducing the number of triangles, the non-uniform
method is usable as well.
Although, if we can use a GPU implementation of
the cage based image deformation methods, and
can increase the number of the triangles up to sev-
eral thousands, the uniform triangulation can pro-
duce smooth enough deformation results as well.
To validate the algorithms, we also created a pixel-
based deformation (see the middle column of Fig-
ure 10) for the inputs. It can be used as a reference
resulting image because we computed the barycen-
tric coordinates of all the pixels of the input im-
age in the precomputation step, then we computed
new positions of them in the deformation phase. In
the case of large deformations, it can produce holes
because there are regions which are not covered by
deformed pixels, but using a filtering algorithm, the
result will be fully contiguous without holes.
We used the same deformation polygon P ′ to get
three resulting images based on the uniform tri-
angulation, the non-uniform triangulation, and the
pixel-based one. For the comparison, we measured
the computation times of the triangulations and
SSIM (Structural Similarity Index) [Wan04] values.
The SSIM value is frequently used to define the
similarity of two images X and Y with the follow-
ing formula:
SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (10)

where x and y are square windows of X and Y
(located at the same spatial position). The l(x,y),
c(x,y), and s(x,y) are luminance, contrast, and
structure comparison functions, respectively. α >
0, β > 0, and γ > 0 are parameters which define the
relative importance of the three comparison func-
tions. The SSIM value can be between 0 and 1.
The value 1 means that the two images are similar,
while the value 0 means that they are very differ-
ent. Table 1 summarizes the computation times
of the triangulation on CPU and the SSIM val-
ues between the two triangulations on different in-
put images and the number of triangles. In the
case of the Snake input image, the two triangu-
lations have almost the same number of triangles,
and the same computation times, while the non-
uniform solution increases the SSIM value. In the
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Figure 10: Input images with uniform triangulation on the left column and with non-uniform triangulation
on the right column, and their deformation results using mean value coordinates, while the reference
resulting images are in the middle.

Snake Swordfish Shark Cherry
u nu u nu u nu u nu

Triangles 340 335 638 360 29926 1342 16185 715
SSIM 0.956 0.959 0.978 0.979 0.939 0.938 0.984 0.984
Computation time (s)
of the triangulation 0.001 0.001 0.003 0.001 1.898 0.008 0.563 0.003

Table 1: The comparison of the uniform (u) and the non-uniform (nu) triangulations.

case of the Swordfish, the non-uniform method uses
much fewer triangles than the uniform triangula-
tion, so it decreases the computation time and in-
creases the SSIM value. In the case of the Shark
and the Cherry, the uniform method uses ≈30k and
≈16k triangles; thus, the computation times are in-
creased, while the two types of triangulations have
almost the same SSIM value. More comparison fig-
ures and values can be seen in our supplementary
material.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we have shown how the different tri-
angulation techniques can be used for cage based

image deformation using the generalized barycen-
tric coordinates. Our non-uniform triangulation
method was introduced in detail as well. The algo-
rithm takes into consideration the position of the
source polygon and the used coordinate method;
moreover, it can handle holes in the interior of the
polygon. The main difference from the earlier sys-
tems that the edges of the non-uniform triangula-
tion follow the contour of the input shape, there-
fore it can preserve the smoothness of the curves of
the input. We compared the uniform and the non-
uniform triangulation methods as well. The non-
uniform one can decrease the computation time by
minimizing the number of triangles of the triangu-
lation on those parts where the effect of the defor-
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mation is lower. The uniform triangulation method
can produce smooth deformation results by an in-
creased number of triangles. The quality of the de-
formation can be increased by using different tex-
ture filtering methods. Based on our results, we
can say that the non-uniform triangulation is more
efficient in cases when we work with fewer triangles,
and it can produce more accurate deformation re-
sults than the methods using the uniform one. Fur-
thermore, we have to notice that the deformation
depends on the deformed source polygon as well
because the barycentric coordinates are computed
with respect to the vertices of the source polygon,
which are not changed after the precomputation.
In our non-uniform triangulation, the vertices on
the boundary of the hole polygon do not change po-
sitions in the deformation phase, and it can lead to
deformation errors around the hole in some cases.
In order to solve this problem, further investigation
is required in the future.
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(a) Perspective (b) Panini (c) Stereographic

Figure 1: One view, rendered at 170 degrees of field of view using different projection methods (a, b, c).
Scenery provided by FALL Studios.

ABSTRACT
The rectilinear Perspective projection produces natural-looking results on the condition that the degree of field
of view (FoV) is narrow, as raising it causes an exponential increase in visual distortion. Curvilinear perspective
projection methods that counter this issue exist in photography, but unlike the rectilinear Perspective projection,
these are neither used nor technically documented in computer graphics. This paper contributes by presenting
results from a perceptual experiment comparing the rectilinear Perspective projection method to the curvilinear
Panini and Stereographic projection methods. These are commonly used with wide-angle lenses in photography
and have been digitally recreated for use in computer graphics. The experiment shows a clear preference for
the two curvilinear projection methods at high degrees of FoV, as not a single participant prefers the rectilinear
Perspective projection at degrees of FoV approaching the human breadth of vision.

Keywords
Computer graphics, Perception, Human computer interaction (HCI), Graphical projection methods, Field of view,
Perspective, Panini, Stereographic, Rectilinear, Curvilinear.

1 INTRODUCTION
The rectilinear Perspective projection method has al-
ways been the standard in realistic computer renditions.
Of the projection methods made readily available by the
common 3D graphics libraries, it is the only one that
takes the user’s positional perspective into account, a
necessity for a natural look. But it does suffer from
an unaddressed shortcoming; as the degree of FoV in-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

creases, it experiences increasing amounts of distortion
that leads to the rendition eventually becoming unrec-
ognizable [Yan08], as demonstrated in Figure 2. The
consequences of this have not yet been realized be-
cause the current hardware (computer monitors and TV
screens) has not incentivized anything but unrealisti-
cally low degrees of FoV. But as ultrawide monitors
and head-mounted VR-goggles attempt to push the lim-
its of immersive digital experiences, the shortcomings
of the Perspective projection method will have to be ad-
dressed.
Higher degrees of FoV have been shown to benefit the
user in many ways, by, for example, allowing them to
perform visual search tasks more effectively [Osm14],
which makes them popular in gaming. In one of the
most popular competitive 3D games at the time of writ-
ing - Overwatch - almost 99% of professional players
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use the highest degree of FoV available to them [Pro], a
trend that spans many competitive games. As computer
monitors have become wider, many applications have
also started automatically setting the FoV higher for
users of widescreen-monitors [Wgf], as monitors that
cover a greater portion of the user’s view are shown to
merit the use of higher degrees of FoV [Ste11]. As-
suming that the current trend continues; larger screens
that encompass a greater portion of the user’s view will
become more prevalent in the future, and this increase
in size will warrant increasingly higher degrees of FoV.
However, that will only be feasible if the picture can be
drawn without noticeable distortion. This issue merits
the evaluation of alternative projection methods, and of
whether they look natural enough to enable the use of
high degrees of FoV.

(a) 110 Degrees (b) 140 Degrees

(c) 170 Degrees

Figure 2: Difference between 110, 140, and 170 de-
grees of FoV, using the Perspective projection method.
Demonstrating the exponential increase in distortion.

Scenery provided by Elysium Fire.

2 OVERVIEW OF PROJECTION
METHODS

In the process of converting the view of a virtual 3D
world into a 2D rendition; projection methods are used
to map points from the 3D world onto points on a
2D plane that can thereafter be drawn on a physical
display. What differentiates projection methods is
how they distribute these points onto the plane, as the
resulting projection is produced. FoV is a parameter of
these projection methods. It is defined by a numeric
degree that specifies the angle from the left to the right
extent of the view; the breadth of vision of the virtual
camera.

The key difference between the Perspective projection
and the two alternative projection methods evaluated,
the Panini and the Stereographic projections, is that the
Perspective projection is rectilinear while the Panini
and the Stereographic projections are curvilinear, as

visualized in Figure 3. What defines a rectilinear
projection method is that it keeps the path between
every pair of points in 3D space straight in the resulting
projection onto the 2D plane, producing no unnatural
curvature of straight lines. Curvilinear projection
methods do not share this trait, as they bend lines that
do not pass through the center of the projection. What
differentiates the Panini and the Stereographic projec-
tion method is that the Panini projection only bends
horizontal lines, whereas the Stereographic projection
is fully curvilinear and will bend both horizontal and
vertical lines. The Stereographic projection method
also has the uncommon characteristic of being con-
formal, which implies that the angle at which curves
intersect will be correctly preserved in the projection,
despite other kinds of distortions.

The Panini projection method [Sha10] was included in
this study because it had received very high ratings in
a recent user study comparing projection methods us-
ing still pictures [Kim17]. The Stereographic projec-
tion method was included for its characteristics, that
contrast strongly with the Perspective projection, mak-
ing for an interesting comparison, and because it was
commended as the best choice for general-purpose use
in photography at high degrees of FoV, in a qualitative
analysis of various projection methods [Fle95].

(a) Perspective (b) Panini (c) Stereographic

Figure 3: Visualization of the point distribution and
curvature of the three projection methods [Nap18].

3 METHOD
To assess the naturalness of the curvilinear Panini and
Stereographic projections, and how they compare to
the Perspective projection at high degrees of FoV, they
were each rated in perceptual evaluations, by volunteer-
ing participants and then compared through a statistical
analysis. The following sections present the data gath-
ering process. For more information see [Nap18].

3.1 Design
The three projection methods were assessed in tests
that simulated the most common usage scenarios of 3D
software-applications, using a variety of virtual scenery
that was intended to assess a wide enough spectrum of
potential use. These tests were grouped into the follow-
ing usage scenarios:
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• Photographic tests would present regular still pic-
tures. These would allow the projection methods to
be assessed more precisely, as it allowed the partic-
ipants to carefully analyze the aesthetic qualities of
each rendition.

• Cinematographic tests would consist of the camera
moving, in both position and rotation, along a pre-
defined path through a scene. Moving too fast for
minute details to be discernible, these tests would
instead show how points in space flow across the
screen.

• Interactive tests would consist of the camera being
fixed to a set vantage point, allowing only rotation,
by the movement of the computer mouse. These
would allow the participants to consider the feeling
of actively engaging with an application employing
the specific projection methods.

Because the photographic tests were expected to take
the least time to rate, and the interactive tests the most
time; four different sceneries were used in evaluating
the photographic tests, three in the cinematographic,
and two in the interactive. Each scenery would be em-
ployed in nine tests, as the Perspective, Panini, and
Stereographic projection method each were evaluated
at 110, 140, and 170 degrees of (horizontal) FoV, at a
16:9 aspect ratio. These degrees were chosen because it
was expected that those below 110 would show too lit-
tle distortion, and those above 170 too much distortion,
to have produced valuable results.

3.2 Rendering
The experiment-application was built on top of a mod-
ified version of the game Minecraft [Moj], adjusted to
fit the demands of the perceptual experiment. This ap-
proach was chosen because using a preexisting imple-
mentation of the projection methods would facilitate
the development of the experiment, and an open-source
rendering modification [Git], that had implemented the
projection methods to be evaluated in this study, ex-
isted only for this application. To produce the curvi-
linear Panini and Stereographic projections, the render-
ing modification had to use an uncommon, and compu-
tationally less efficient approach, compared to render-
ing with the rectilinear Perspective projection. This in-
volved first rendering five square views around the po-
sition of the camera, using the Perspective projection
method; one in the direction that the camera was fac-
ing, as well as one 90 degrees to the left, to the right,
above, and below that view, as shown in Figure 4. These
views would all originate from the position of the cam-
era, but they were rotated to be facing different direc-
tions. They were then sent to a fragment shader specific
to the desired projection method, where they formed a

theoretical cube around the origin that was ray-casted to
for each pixel of the screen. Where the ray intersected
with one of the view-planes, it sampled a color to out-
put for that pixel. This process faithfully reproduced
the Panini and the Stereographic projection from views
rendered with the Perspective projection method, as the
outcome would be virtually identical to ray-casting di-
rectly into the complex environment, but computation-
ally a lot more efficient.

Figure 4: Picture taken from inside the cube that is ray-
cast to produce the two curvilinear projection methods,
shown using the Panini projection [Nap18].

3.3 Perceptual Evaluation
To assess each projection method at every degree of
FoV; a perceptual experiment was conducted in which
every participant rated a total of 81 tests, presented in
randomized order. The average time to rate all tests
took approximately 14.5 minutes. These were dis-
played on a 23-inch monitor, at an approximate distance
of 71 centimeters from the participants’ eyes, a distance
that each participant was asked to maintain by keep-
ing their head approximately aligned with a given point
of reference. One test would be displayed at a time,
consisting of a view that filled the entire screen, and it
would be rated from within the experiment-application.
Participants were asked the same question for each test;
How unnatural (1) or natural (5) does the current pro-
jection look to you?, which was rated using a 5-point
Likert scale. A total of 24 people took part, whose
ages ranged from 18 to 29 years, and who used 3D
software-applications at an average of approximately
once a week.

4 RESULTS
Every projection method would generally be rated less
favorably when the degree of FoV increased, as that
would always increase distortion, but the Perspective
projection method was affected more significantly by
this increase than the Panini and Stereographic projec-
tions were. The drop in ratings can, for the most part, be
considered exponential, as there was a lesser difference
in ratings between 110 and 140 degrees than between
140 and 170 degrees. Only the Perspective projection
would drop close to the lowest possible mean rating,
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as it fell from the universally highest ratings at 110 de-
grees to the lowest at 170 degrees, shown in Figure 5.
While the Perspective projection method received rel-
atively even mean ratings across the three usage sce-
narios, ratings of the Panini and Stereographic projec-
tions were less consistent. In the photographic and cin-
ematographic tests, the Panini projection was rated only
marginally lower than the Perspective projection at 110
degrees, with no significant difference between them (p
> 0.05) at that degree of FoV, but in the interactive tests,
it dropped to unusually low ratings at every degree of
FoV. The Stereographic projection received lower rat-
ings than the Panini projection in the photographic tests,
and in the cinematographic tests, its ratings fell further
as those of the Panini projection rose. Only in the in-
teractive tests would the Panini and Stereographic pro-
jections be rated similarly, with no significant differ-
ence between the two (p > 0.05) at any degree of FoV.
There was also no significant difference between the
Perspective and Stereographic projections in the cine-
matographic tests at 140 degrees. Apart from the afore-
mentioned results; there was a significant difference (p
< 0.05) between ratings of every projection method em-
ployed in the same usage scenario and at the same de-
gree of FoV. All statistical significance tests were com-
puted using a Pairwise Wilcoxon signed-rank test.

Figure 5: Distribution of ratings across tests visualized
by their respective colors, for every projection method
and at every degree of FoV, separated by scenario.

The mean change in individual participants’ rating of a
projection method, when only the scenery changed but
not the projection method or FoV, was (0.66, 0.92, 1.20)
for the Perspective, Panini, and Stereographic projec-

tion methods, respectively. Showing that the favora-
bility of the curvilinear projection methods was more
dependent on the scenery displayed. The distribution
of individual participants’ preferred projection method,
across the three usage scenarios, calculated by count-
ing every participant’s ratings separately, was (63%,
31%, 6%) at 110 degrees, (19%, 69%, 12%) at 140
degrees, and (0%, 90%, 10%) at 170 degrees, for the
Perspective, Panini, and Stereographic projection meth-
ods, respectively. These differ from the mean ratings,
as, for example, the Stereographic projection received
higher overall ratings than the Perspective projection at
140 degrees, but was less often a preferred projection
method.

5 DISCUSSION
Every usage scenario would be tested using a number
of different sceneries, and ratings of the Panini and
the Stereographic projection would vary significantly
across these. The proximity of the foremost objects in
the scenery appeared to be the pivotal aspect, as scener-
ies with objects in close proximity to the camera were
rated unusually poorly. This is likely due to the curvi-
linear nature of these two projection methods, which
arguably becomes much more noticeable when objects
of distinct form take up a large portion of the view.
When a distinct shape, such as a straight line, is dis-
torted, the user will easily notice the abnormality as it
deviates from their expectations of what something is
supposed to look like, as the curved posts in Figure 6
(left). When objects lie close to the camera; shapes are
likely to dominate the look of the scenery. Whereas if
the foremost objects lie at a greater distance from the
camera, then composition will dominate, and a compo-
sition of objects tends to be irregular, which renders any
distortion less noticeable, as in Figure 6 (right).

Figure 6: Difference between a focus on objects (left)
and a focus on composition (right), demonstrated using
the curvilinear Stereographic projection method at 170
degrees of FoV.

Scenery provided by Elysium Fire.

The further a point lies from the center of the screen,
the more it is distorted. So when the display takes up
only a small portion of the user’s view, the distortion
will remain very noticeable, as it lies physically close
to the assumed center of focus, the center of the screen.
However, when the display takes up a large portion of
the user’s view, then the distortion will lie physically
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further away from the center of focus, within the user’s
peripheral vision, where it might be less perceptible.
Any unnatural curvature caused by either the Panini or
the Stereographic projection method might then bother
the user less. This theory would however not apply
to the Perspective projection, as it suffers from a fur-
ther problem; it distorts the proportions of the entire
view. When the degree of FoV increases, parts of the
view must shrink, as they must take up relatively less
space on the screen to fit that which becomes visible
with the additional degrees of FoV. However, the Per-
spective projection does not shrink the earlier view by a
proportionally accurate amount. It shrinks it to a dispro-
portionately small size, leaving the outer parts stretched
beyond the proportions of the central parts which be-
come inappropriately small, as illustrated in Figure 7.

(a) Perspective (b) Panini (c) Stereographic

Figure 7: Proportional differences between 110, 140,
and 170 degrees of FoV, from inner to outer rectangle,
illustrating a disparity between projection methods.

6 CONCLUSIONS AND FUTURE
WORK

The Perspective, Panini, and Stereographic projection
methods were evaluated in simulations of common us-
age scenarios, using different virtual scenery, by 24
volunteering participants of a perceptual experiment.
The Perspective projection was shown to be the opti-
mal choice at narrow degrees of FoV, as it was rated
the most favorably in every test at 110 degrees, al-
though often with an insignificantly small margin to the
Panini projection. Because the Perspective projection
was much more significantly affected by every increase
in the degree of FoV, its ratings fell past the two curvi-
linear projection methods at 140 degrees. The Panini
and the Stereographic projection were favored at 140
and 170 degrees, but their ratings depended largely on
the usage scenario within which they were employed, as
well as on the virtual scenery that was displayed. While
the use of curvilinear projection methods has been justi-
fied, they will first become practically applicable when
they can be computed efficiently enough not to inhibit
the effective use of the applications they are employed
in. Unless dedicated ray-tracing hardware becomes
more prevalent in consumer devices, an investigation
of alternative approaches to rendering with curvilinear
projection methods, and the computing overhead asso-
ciated with them, is merited. In addition, a further ex-
ploration of more realistic interactive experiences and
spatial navigation tasks would be appropriate.
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ABSTRACT

Since RGB-D sensors became massively popular and are used in a wide range of applications, depth data com-
pression became an important research topic. Live-streaming of depth data requires quick compression and de-
compression. Accurate preservation of information is crucial in order to prevent geometric distortions. Custom
algorithms are needed considering the unique characteristics of depth images. We propose a real-time, lossless
algorithm which can achieve significantly higher compression ratios than RVL. The core elements are an adaptive
span-wise intra-image prediction, and parallelization. Additionally, we extend the algorithm by inter-frame differ-
ence computation and evaluate the performance regarding different conditions. Lastly, the compression ratio can
be further increased by a second encoder, circumventing the lower limit of four-bit per valid pixel of the original
RVL algorithm.

Keywords
Lossless Compression, Depth Image Compression, RGB-D Streaming, Azure Kinect

1 INTRODUCTION

Over the past years, RGB-D sensors became an im-
portant topic in many research areas, including com-
puter graphics and computer vision. Their popularity
increased enormously when Microsoft released its first
Microsoft Kinect, an inexpensive, small, and easy-to-
use RGB-D camera, which captures rectangular color
images and corresponding depth images. Since then,
even smaller RGB-D sensors were developed, which
are now integrated into many devices. Prominent exam-
ples are the Intel RealSense RGB-D cameras, the sub-
sequently released Kinect V2, and Azure Kinect cam-
eras from Microsoft, whose sensors can also be found in
the augmented reality headsets HoloLens 1 and 2, and
Lidar scanners. Depth images can also be calculated
by using two RGB cameras and semi-global matching
(SGM).

Common applications are, for example, telepresence
[BKKF13, CK12, SST+18], Virtual/Augmented real-
ity (VR/AR) applications with remote sensors captur-
ing real word scenes [JSM+14], gesture and object
recognition and tracking [CJK15], 3D reconstruction
[NIH+11,WMS16] and SLAM (simultaneous localiza-
tion and mapping) [MT17, WKJ+15].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In many cases, the data needs to be streamed over a net-
work beforehand, which runs into the problem of lim-
ited network bandwidth, i.e., 100 Mbit/s or 1 Gbit/s for
Ethernet, or 300-450 Mbit/s for 802.11n WiFi. The sen-
sors accumulate a large amount of data, and the band-
width becomes a limiting factor quickly, especially if
multiple sensors are combined for better coverage. For
instance, a sensor with Full HD color resolution and the
depth with a resolution of 512×424 (Kinect V2) pro-
duces more than 6.6 MB of raw data per frame. At a
typical frame rate of 30 Hz, the network would have to
support at least 1.60 Gbit/s. More recent depth sensors
often support even higher resolutions. For example, the
new Azure Kinect is able to capture color, depending
on the mode, up to a resolution of 4K, and has a one-
megapixel depth sensor.

Data compression is essential in order to reduce the re-
quired bandwidth. This enables lower-bandwidth sce-
narios, makes room for other payloads, and increases
the number of possible cameras. Individual compres-
sion of color and depth images is, in general, com-
putationally less expensive than compressing recon-
structed 3D data like point clouds or surfaces. There-
fore, this approach is often preferred for real-time ap-
plications [LBW+15]. The color component of RGB-D
sensors can easily be compressed with standard image
and video compression algorithms like JPEG [Wal92]
or H.264 [WSBL03] as they are optimized precisely for
this task.

However, applying the same encoders to the depth data
would often result in sub-optimal compression perfor-
mance or, more crucial, severe artifacts, and geometric
distortions [Wil17]. The reason for this is that depth
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data usually is represented in a different format, 13
or 16-bit single channel, and has inherently different
characteristics than natural color images. In general,
depth images consist of more homogeneous regions
with abrupt discontinuities at object borders. In addi-
tion, individual not-captured pixels and regions of in-
valid pixels are scattered throughout the image, if not
filtered beforehand.

In recent years, the research and development of com-
pression algorithms specially designed for depth im-
ages became an important topic. Creating efficient and,
at the same time, geometry-preserving (lossless) ones
is still a very active area of research.

Our work focuses on analyzing and improving the novel
RVL algorithm [Wil17], especially regarding achiev-
ing higher compression ratios. More detailed, our main
contributions are:

• An improved adaptive intra-image prediction step
for the RVL algorithm, enhancing its compression
ratio.

• The addition of a final entropy-coder stage, further
enhancing the compression ratio.

• A multi-threaded implementation of the RVL algo-
rithm and variants speeding it up further.

• An additional inter-frame delta step as well as an
examination of its effectiveness regarding the com-
pression ratio over different application scenarios.

• Extensive experiments comparing the effectiveness
of various lossless depth compression algorithms for
different range cameras.

2 RELATED WORK

Data compression is an important and widely used
topic in computer graphics, image processing, and
many other research areas. For example, [KÖP13]
and [BÖK11] present methods to achieve compact
representations of surface-light interactions like sub-
surface scattering and BRDFs. The output of RGB-D
sensors is often visualized in 3D as mesh or point cloud;
therefore, a lot of focus was put on compressing these
geometric representations. In 2007 MPEG issued a call
for proposals on point cloud compression to develop
an ISO standard [SPB+19]. Point cloud compression
algorithms are mostly based on spatial data structures
like an octree. For example, [MBC17] is based on
octrees and is also able to exploit temporal redundan-
cies. [TCF16] introduced a time-varying approach that
can predict graph-encoded octree structures between
consecutive frames. Real-time capable mesh-based
compression and streaming techniques like proposed
by [MSA+13] and [BGTB12] are in most cases lossy
algorithms. As both of these representations, point

clouds, and meshes, are three dimensional, it is more
challenging to find and encode redundancy in the data
efficiently. Specialized data structures are needed and
raise the complexity and computation time for high
compression ratios.

A different approach is to encode the raw depth
images. Many standard lossless image and video
codecs like PNG [RK99], JPEG-LS [WSS96, WSS00]
or H.264 [WSBL03] can be applied, but the re-
sults are rather poor, founded in the inherent
differences between natural images and depth im-
ages [SMAP16, Wil17, HKR18].
Similarly, general-purpose compression algorithms can
be applied on depth images, but intrinsically are not
optimized for this kind of data. Therefore they are not
ideal solutions.

In recent years some effort was made to adapt
common video codes like H.264 and its successor
HEVC [SOHW12] to suit depth data better. [PKW11]
proposed an encoding scheme to convert the single-
channel depth data to the RGB format used by H.264
and VP8, reducing the occurring artifacts. This tech-
nique still produces noise at the borders. [LBW+15]
developed a hybrid lossless-lossy algorithm, where
the first bits are encoded lossless, and the remaining
ten bits are compressed using H.264. The HEVC
standard [SOHW12] features an extension called
3D-HEVC designed for 3D video coding, which uses
the multiview texture videos plus depth maps (MVD)
format. This extension addresses the compression
of depth images through multiple techniques. The
complexity is rather high. Aimed at lowering it and
enhancing the compression speed, [ZCH+15] proposed
multiple modifications exploiting depth map and
texture video correlation. Further speedups can be
gained by limiting costly intra-image compression
steps to regions, where they are effective according to
a decision model based on tensor feature extraction, as
proposed by [HE19].

Recently, [HKR18] proposed another technique in
which even noisy depth images and videos are encoded
through planar segmentation. Each frame gets seg-
mented into a number of planes by using the Graph
Cut algorithm over the image defined as a Markov
Random Field. While the proposed method achieves
a high Rate-Distortion performance, it is rather time-
consuming and only effectively applicable to scenes
that can be approximated by planes.

Most work of depth image compression is about
lossy compression. Lossless solutions are quite
rare. [MZC+11] combines run-length encoding and
variable bit length coding for lossless encoding of
depth images. [Wil17] took a similar but even sim-
pler approach and achieves with the proposed RVL
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algorithm higher speeds at comparable compression
ratios.

3 OUR APPROACH

We created a pipeline of four steps (Fig. 1) to compress
depth images losslessly from real sensors with a high
compression ratio. If we have a sequence of images,
we optionally calculate deltas between the frames. Af-
terward, we define spans and calculate individual pre-
dictors for each of them, before it will be compressed
by RVL’s [Wil17] alternating run-length and variable-
length coding. To decrease the lower bound of RVL, we
decided to use Zstandard as a final, optional step. The
focus lies on captured 16-bit depth values, which can
be handled as a single channel grayscale image. The
corresponding color images are not considered in this
work.

RVL consists of alternating run-length coding of
zero-values, which represents invalid pixels, and
variable-length coding for the rest. Like many com-
pression algorithms, RVL compresses not the raw pixel
values but the residuals, which remain after calculating
the delta to a prediction of the current value. This leads
to a decorrelation of the data, which in turn improves
the effectiveness of subsequent compression steps.
Smaller residuals have a low entropy, and fewer bits
are needed to encode them. In the case of RVL, the
prediction of the current pixel value is simply the last
valid pixel, which is, in most cases, the pixel to the left.

3.1 Adaptive Span-Based Prediction

One crucial aspect was to improve the simple inter-
image delta calculation of RVL to generate smaller
residuals. As the employed decorrelation heuristic is
not ideal, we propose to replace it with an adaptive se-
lector of different predictor functions. In lossless com-
pression, the transformations and functions applied in
the compression stage must be reversible in the corre-
sponding decompression stage; hence, the used predic-
tion method must be encoded in the form of bitflags,
too, because all the transformations must be reversible.
Pixel-wise switching of the predictors leads to too many
bitflags. Therefore the image is dynamically partitioned
into spans of valid pixels in our approach. A span can
be described as a one-dimensional block of a fixed num-
ber of consecutive pixel values. Invalid zero-pixels are
skipped. Figure 2 shows an example partitioning of pix-
els into spans of length four. Using spans instead of 2D
blocks reduces the computational complexity and leads
to faster computation.

Our adaptive prediction then works as follows: For each
valid pixel p in the span S, all possible predictor func-
tions Predi(p) are evaluated and the one, which in total

leads to the smallest absolute residuals, gets chosen for
all pixels in the span to calculate the final residuals rp:

rp = Predk(p) (1)

where

k = argmin
i∈[0,3]

{

∑
p∈valid(S)

|Predi(p)|

}

(2)

A high-level overview of our prediction can be seen in
Algorithm 1.

Algorithm 1 Span-Based Prediction

Require: inputImage

initialize data structures
for each non-zero pixel do

calculate possible predictor values
increment corresp. accumulated span errors
if span is full then

choose best predictor in span

save predicorID and corresp. pixel deltas
reset span errors

end if

end for

We decided to use four different predictor functions,
which then can be represented by exactly two bits per
span. In principle, the actual predictors, as well as their
quantity, are easily exchangeable, focusing either on
computationally simpler and, therefore, faster ones or
more complex and effective ones. To predict a pixel
p, we opted to use RVL’s standard predictor, given in
Equation 3, as default case, as it is similar to the com-
mon “left pixel” approach, but handles the occurrences
of intermixed zero-pixels very well by skipping them.
In Fig. 3, this process is illustrated.

Additionally, we use predictors based on the delta to the
upper pixel (Eq. 4), the average of the left and upper
pixel (Eq. 5), and lastly, the result of a combination of
the left, upper and upper left pixels (Eq. 6).

Pred0(p) = pX − pA (3)

Pred1(p) = pX − pB (4)

Pred2(p) = pX −
pA + pB

2
(5)

Pred3(p) = pX − (pA + pB − pC) (6)

Equation 6 is used as the default case in the Paeth
[RK99, pp. 159–162] as well as the MED predictors
[WSS96]. We use only this part of them as our fourth
predictor because it is computationally less expensive
than using the complete Paeth or MED predictor. Tests
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Figure 1: The pipeline of our approach. Stages in dashed lines are optional. They allow a better balance between
compression ratio and compression speed. First stage: frame delta, second: our span-based adaptive intra-image
prediction, third: RVL’s run-length and variable-length coding, fourth: an additional Zstandard [Col16] pass.

Figure 2: The pixel grid segmented in spans of four
valid pixels (red boxes). Invalid pixels (grey) are
skipped.

Figure 3: The prediction for pixel p depends on the
pixel itself (X) and its neighbors last (A), above (B),
and above left (C). Contrary to B and C, A is the last
valid pixel and, therefore, not fixed, as the right image
depicts.

we conducted showed that using the full MED predic-
tor is much more time consuming, but does not improve
the compression ratio significantly.

In this way, the number of additional bits needed for the
predictor representation can be significantly reduced,
while retaining the ability to adapt to the local image
characteristics dynamically. The exact number of pre-
dictor bits for the image can be computed as

x =

⌈

(n− z)

s

⌉

· ⌈log2 ( f )⌉ (7)

where n denotes the number of pixels in the image, z the
number of zero-pixels, s the span size and f the number
of predictor functions.

3.2 Inter-Frame Delta Computation

Another aspect we concentrated on is adding a frame
delta component as a first step in the algorithm’s
pipeline. This is a commonly used technique in video
compression, where differentials between subsequent
images are encoded instead of individual images one by
one. Figure 4 illustrates the process. The effectiveness
depends on the application scenario, the content, and
how dynamic it is. At least in cases where the change
between the images is small, or only some dynamic
elements occur, this technique should be beneficial for
the compression ratio and speed. In the original RVL
paper [Wil17], it is mentioned that such a frame delta

Figure 4: Frame delta computation: Sequence of im-
ages Ii and the corresponding differential images Di be-
tween every two consecutive ones.

calculation was experimented with but the compression
was even worse. According to the paper, the test scene
was a dynamic scene in which the camera constantly
moved, which would be the worst-case scenario for this
kind of technique. It is not clear if other scenarios were
tested. For our pipeline, we designed the frame delta
computation as an optional first stage so that it can be
skipped in scenarios where it is not effective. Another
aspect to consider is the inherent noise of the sensor.
Some pixels switch between being valid and invalid,
and in addition, the depth readings continuously vary,
even for physically static objects. This results in a
decreased effectiveness of frame delta computation but
can be compensated for by temporal filtering as a pre-
processing step (at least to some degree). Depending
on how intelligent and vigorous the employed filter
is, other artifacts may be introduced, which could be
tolerated depending on the application.

3.3 Further bit reduction

The coding of the residuals in RVL is done by variable
bit length, where each valid pixel is at least one nibble
(four bits) long. For each nibble, the first bit functions
as a continuation bit and the other three bits are used
to represent (a part of) the actual value of the resid-
ual. Therefore, in a single nibble, a residual r ∈ [0,7]
can be represented. In cases where image regions are
very homogeneous, and the computed residuals are fre-
quently below this maximum value of seven, the algo-
rithm can lead to comparatively poor compression re-
sults. We propose to couple RVL with a second encoder
without such a limitation to mitigate this drawback. In
our approach, the compressed output of RVL is, there-
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fore, further processed by Zstandard [Col16]. As a
combination of a dynamic dictionary-based component
with a sliding search window and an ANS-based en-
tropy component, Zstandard can potentially compress
symbols smaller than four bits. According to empirical
tests, Zstandard performed best as a backend.

3.4 Parallel Execution

To mitigate the inevitably increasing computation time
by the more complex prediction, we implemented
multi-threaded versions. The principle is the same
for all variants: first, for each thread, all necessary
data and an output buffer are initialized, then the
image, represented as a one-dimensional buffer, is
segmented into blocks by the number of threads.
Lastly, the compressed parts are stitched together
to one continuous block. Especially our improved
prediction step in the compression stage should benefit
from parallel execution as it is computationally the
most expensive part and there are only locally very
confined dependencies between the pixel computations.

4 RESULTS

All of our tests were conducted on an Intel Core i7-
7800X, 16 GB of system memory, and under Windows
10 x64 Enterprise using the Visual Studio 2017 com-
piler. Each test was performed multiple times, and the
average was taken.

We recorded sequences of depth images of six differ-
ent test scenes with the Azure Kinect RGB-D camera
in both of the two available modes, narrow and wide
field of view (NFOV, WFOV). In NFOV, the depth
is recorded in 640×576 at 30 Hz and in WFOV at
1024×1024 at 15 Hz. Each depth value is represented
as a 16-bit integer (short). Four of those scenes were
static, and two dynamic. In the first dynamic scene, the
camera is fixed, and a person moves in front of the cam-
era. In the second scene, the camera is handheld and
moved around. For the static scenes, 30 frames were
recorded, while for the dynamic ones, 120 frames are
used. Additionally, we tested three single depth images
from the Middlebury dataset [SP07] with very homoge-
neous depth values, and a dynamic scene of 600 frames
from TUM [SEE+12], in which the camera (Kinect 1)
is handheld, slightly shaken, and people moving, while
seated.

In each test case, we omit the first recorded frame from
the evaluation as we do a lot of initialization work
for the algorithms here (e.g. reserving memory) which
holds for the rest of the test. The measurements of all
the other subsequent frames in a test are then averaged.

The Azure Kinect camera has the unique attribute that
the output depth-image is rectangular, but depending

Figure 5: Example depth images of four different
scenes. We record the first three with the Azure Kinect
in different modes (NFOV, WFOV, NFOV with crop-
ping). The last scene from TUM [SEE+12].

on the mode, the content is only hexagonal or spheri-
cal. The corners are zero-pixels. While this is the stan-
dard output of the camera and could be representative
for other cases, where significant static areas fail to get
captured by an RGB-D sensor, it is a rather uncommon
situation. In order to not only test the standard configu-
ration but also more broadly comparable scenarios, we
also evaluate depth maps cropped by 25 %. As a result,
most of the static invalid regions are dropped.

Figure 5 shows a selection of our test scenes. For an
overview of all scenes and corresponding metrics, we
refer to Figure 11 and Table 2 in the supplementary
material.

We compare our novel compression algorithm against
the original RVL algorithm [Wil17], PNG [RK99] as a
classical lossless image compression algorithm that is
widely used, and LZ4 as a fast representative for the
LZ77 family of dictionary-based encoders. Addition-
ally, as an example of a modern and efficient entropy
coder, we decided to use an ANS implementation by F.
Giesen [Gie14]. In empiric tests, this implementation
performed best. Lastly, Zstandard as dictionary coder
is also compared.
For our algorithm Pred, we chose a span size of 16 valid
pixels. For our PredZ variant, which extends Pred by
applying Zstandard for further bit reduction, we chose
a span size of 16 valid pixels, and two as Zstandard
compression parameter. These configurations yielded
the highest compression ratios, while still achieving in-
teractive speeds. For algorithms featuring a selectable
acceleration (or compression) factor, we tested them in
multiple configurations and chose the one, which min-
imized the difference of the compression ratio in com-
parison to our algorithm. In the case of PNG, a quality
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Figure 6: Average combined compression and de-
compression speed over compression ratio for all al-
gorithms. Algorithms with asterisk mark our algo-
rithms. Our PredZ algorithm achieves the highest abso-
lute compression ratio, while still delivering real-time
performance.

level of five was chosen, for LZ4, an acceleration factor
of one, and for Zstandard a compression value of six.

The first test we conducted is a general comparison of
all the algorithms in terms of their respective compres-
sion ratio cr and combined compression and decom-
pression speed sp. Equations 8 and 9 describe the cal-
culation of the metrics.

sp =
2×ob

ct +dt
(8)

cr =
ob

cb
(9)

ob stands for the original image size in megabytes, ct

and dt for the compression and decompression times in
seconds and cb for the compressed size in megabytes.

Figure 6 presents the results of this initial compari-
son, where for each algorithm, the thread configuration
was selected, which yielded the best compression rate;
therefore, the number of threads was not equal for all
algorithms. For this test, the mean over all scenes and
modes were taken. The asterisks identify our algorithm
variants.

It can be seen that, on average, ANS is not competitive
in our test, neither in speed nor compression ratio. LZ4
is the fastest but compresses rather poor. PNG has a
high compression ratio of 5.9:1 but at the cost of a very
slow combined speed. RVL achieves good performance
and a compression ratio of nearly 4.4:1. Our span-based
adaptive prediction Pred can boost the compression ra-
tio on average by 6.5 %, but the performance decreases
considerably. A regression in performance to a certain
degree was to be expected by the inherently more com-
plex delta computation and less efficient memory ac-
cesses. A possible explanation for the strength of the

Predictor ID 0 1 2 3
Usage % 24.4 26.6 21.2 27.7

Table 1: Distribution of adaptively selected predictors,
average over all scenes and modes.

drop in performance, despite the rather low complexity
predictors, might be the lack of optimization done com-
pared to RVL. Interestingly, the general-purpose Zstan-
dard algorithm can achieve an even higher compres-
sion ratio of roughly 5.8:1. However, it is also slower.
Lastly, with our most sophisticated variant PredZ, we
achieve the best compression ratio of more than 7.6:1,
which is significantly higher than the ones of RVL or
Zstandard. At the same time, the combined compres-
sion and decompression speed of 67.2 MB/s is more
than sufficient to maintain interactive frame rates. For
more comprehensive data of this test, we refer to Fig-
ure 12 in the supplementary material.

To further analyze the effectiveness of our span-based
adaptive prediction component, we counted the fre-
quency how often each predictor is chosen as the best
one per image. Table 1 shows the percentages averaged
over all scenes and frames.

Each predictor is equally used, which indicates that the
adaptive prediction works as intended, and all of the
chosen predictors complement each other to effectively
reduce the average residual in contrast to a static pre-
diction like it is used, for example, in the original RVL
algorithm.

For all subsequent tests, we only consider the most
promising algorithms and omit the ones without com-
petitive results, namely ANS, LZ4, and PNG.

In order to review our multi-threading implementation
and analyze the behavior of the algorithms with increas-
ing parallel execution, we performed all tests as well
with two, four, and eight threads. Measuring initial
thread creation overhead is prevented by early thread
allocation. The multi-threading performance is shown
in Fig. 7, in general, the combined speed rises.

As expected, the performance gains shrink with more
threads as a result of diminishing returns. However, we
were able to achieve considerable speedups for RVL,
although it has low arithmetic complexity and therefore
becomes quickly memory-bound. With four threads,
the performance increased by factor 1.42. Our more
complex RVL-based algorithm benefits highly from the
parallel execution, as increasing the threads from one
to four leads to a speedup of 2.16. While all algorithms
gain performance by multi-threading, at least for up to
four threads, the speedup is generally much lower than
the theoretical optimum. This may be partly because
not all parts of the algorithms are multi-threaded, e.g.,
merging the results, and that some sections of the al-
gorithms are rather bandwidth- than compute-bound.
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Figure 7: The image illustrates the impact of paral-
lelization on the combined compression and decom-
pression speed for different algorithms. All algorithms
including RVL and our RVL-based ones benefit from
parallel execution.

An evaluation of the timings of the individual parts of
our Pred algorithm indicates that the more computa-
tionally complex prediction stage benefits significantly
more from the parallelization than the run- and variable
length coding stage. Furthermore, the decompression
component does not profit as much as the compression
component. The compression ratio did slightly, but not
considerably, decrease with more threads, as it was ex-
pected due to the separated image blocks. In the case
of Zstandard, the compression ratio decreased the most
with 2.68 %. RVL, on the other hand, had a decrease of
less than 0.1 %. The compression ratio of our adaptive
prediction dropped by 0.25 %.

To analyze the effectiveness of frame delta coding in
RVL, each test is executed with and without our imple-
mentation of the addition as well as with and without
a preceding temporal filter (see the last paragraph of
section 3.2), which makes four variants. The filter we
implemented and use is rather simple and only meant
as an example. Nonetheless, we aimed at preserving
the legit information (in contrast to the sensor noise)
and avoiding motion artifacts. It works as follows:
Pixels of an incoming image will get ignored, whose
delta to the corresponding pixels of each of the last two
images is below 2 %.

The combination of frame delta coding and temporal
filtering increases the compression ratio for all algo-
rithms the most, as is shown in Figure 8. While the
combination of frame delta coding and temporal filter-
ing, in general, leads to substantial improvements, our
algorithm PredZ still achieves the highest compression
ratio of up to 13.8:1. It should be noted though, that
with temporal filtering, the compression pipeline is not
strictly lossless anymore.
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Figure 8: Comparison of the impact of our inter-frame
delta computation on the compression ratio, both with
and without a preceding temporal filter. The compres-
sion ratio increases hugely with the combination of
temporal filter and frame delta, but using frame delta
computation without the preceding filter also, most of-
ten, accomplishes notable gains.
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Figure 9: The image illustrates the impact of the scene
type (static, dynamic content, dynamic camera) on the
performance of the frame delta computation with and
without filtering. Static scenes benefit the most by the
combination of temporal filtering and frame delta com-
putation.

With only the frame delta extension, the compression
ratio still increases for Pred and RVL, which contra-
dicts the statement of [Wil17]. It should be considered
that for our tests we took the average of static and also
highly dynamic scenes. Nonetheless, RVL’s compres-
sion rate increased by 18.54 % and with our improved
prediction by 11.1 %. Zstandard does not benefit from
frame delta, but only from the temporal filter instead,
although the confidence interval is very wide. Surpris-
ingly, the data indicates that our PredZ performs best
with the raw data compared to the others.

A detailed breakdown w.r.t. different classes of scenes
and their influence on the compression ratio, while
computing frame delta, can be seen in Fig. 9.
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Figure 10: The image displays the individual
compression- and decompression speed for different al-
gorithms. The decompression is significantly faster for
everyone.

The results indicate that the type of the scene, static
or dynamic, or more specifically, the amount and the
intensity of movement of the content and the camera
itself, do have a significant impact on the compres-
sion rate. Without temporal filtering, the average com-
pression rate of all algorithms is about equal. Accord-
ing to Fig. 8, not all algorithms benefit directly from
frame delta. If, however, such a filter is used, the influ-
ence of the scene type raises strongly, specifically rather
static scenes can be compressed extremely well. Inter-
estingly, sometimes the scene which involves camera
movement is better compressible using both, the tem-
poral filter and frame delta, instead of the scene, where
the camera is static and only parts of the captured envi-
ronment move.

How the combined speed of the tested algorithms is dis-
tributed over compression and decompression can be
seen in Fig. 10. The decompression speed generally
outperforms the compression speed, especially in the
case of Zstandard.

5 CONCLUSION AND FUTURE

WORK

We proposed a lossless RVL-based algorithm for real-
time depth image compression aimed at high com-
pression ratios. Our experiments show that our algo-
rithm achieves the highest compression ratios compared
to competing real-time capable algorithms. With our
method, depth images can be compressed up to 73 %
smaller than with the original RVL algorithm and 30 %
smaller than with the slower Zstandard. Using tem-
poral filtering beforehand, we accomplish even higher
compression ratios of 13.8:1, which is still the high-
est compared to the other evaluated algorithms but the
compression pipeline becomes lossy. Thanks to parallel
execution, our performance is still sufficient for typical
RGBD-sensor frame rates and real-time streaming in
bandwidth-limited applications. Finally, we were able
to show that the original RVL can also be sped up with
multi-threading, and it can, for some use-cases, benefit

significantly from frame delta computation. As future
work, further improvements could be made by optimiz-
ing the span-based prediction stage to lower the com-
putation times, and maybe even SIMD can be applied.
Also, it may be worth to investigate zigzag scan and
to use a block-based adaptive prediction instead. The
latter may exploit a possibly higher spatial coherency,
however, increase the computational complexity fur-
ther. Another promising idea would be to integrate the
inter-image- into the intra-image delta computation by
also using the neighbor pixel values from the previous
frame as possible predictors.
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ABSTRACT
Airborne light detection and ranging (LIDAR)- based
bathymetry is a highly specialized field within the widely
known and used geoscientific surveying technology based
on green spectrum lasers. Green light can penetrate
shallow water bodies such that river and lake beds can
be surveyed. The result of such observations are point
clouds, from which geometries are extracted, such as
digital elevation maps for lake, river or sea floors. The
quality of those maps is crucially dependent on the
amount of reliable information that can be extracted
from the noisy LIDAR signals. The primary LIDAR
data consists of amplitude response curves for each
emitted laser signal. A direct visualization of these
“raw”, pristine data is crucial to verify, assess and op-
timize subsequent data processing and reduction meth-
ods. In this article we present a method for scientific vi-
sualization of these amplitude response curves en mass,
i.e. for millions and tens of millions thereof simultane-
ously. As part of this direct visualization also prelimi-
nary analysis and data reduction operations can be per-
formed interactively. This primary and direct inspec-
tion allows studying and evaluating the full potential of
acquired data sets such that data processing methods
can be fine-tuned to squeeze out all needed informa-
tion of interest. Ideally such improved data processing
avoids subsequent surveying when output from already
measured data sets is improved, resulting in reduced
economical and environmental costs.
Keywords: airborne LIDAR, visual analysis, data
processing, geoscience, bathymetry, scientific visual-
ization, big data, GPU shaders

1 INTRODUCTION
The rendering of large point clouds has been a topic
of research for a long time [14] and has even been
used as an alternative faster than traditional rendering
methods based on triangular meshes. Once the data
sets become larger than RAM, out-of-core methods [8]

become mandatory and eventually a hierarchical rep-
resentation is needed. High performance in rendering
is tightly related to efficient usage of GPUs. With the
advancement and availability of WebGL even browser-
based rendering of arbitrarily large point clouds have
become possible [10]. However, rendering performance
drops significantly once the amount of data to be visual-
ized per frame no longer fits onto GPU RAM. For such
situations a purely CPU-based solution may scale bet-
ter, as presented by [13] using balanced P-k-d Trees.
Such a sorting method for points without memory over-
head is similar to the space-filling curves [9] used in
smoothed particle hydrodynamics for extremely large
data [12].

While point clouds are often considered as the pri-
mary data source to derive geometries such as triangu-
late meshes off them, rather little attention is given to
the origin of the point clouds itself. In many cases those
point clouds are based on LIDAR data acquisitions and
the provided point clouds are taken as-is. However, LI-
DAR technology does not produce point clouds per se,
but the instruments measure a time series of amplitude
signals from the reflected laser source. The point cloud
used for further processing is derived from this primary
data, see Fig. 1 and Fig. 2.

These sequences of amplitude modulations constitute
the actual “raw” data from the LIDAR sensor, out of
which the final point cloud has to be derived. This is
usually done by identifying maxima in the amplitude
modulation and outputting their geometrical location
along the laser shot direction. As these received sig-
nal curves may very well contain multiple maxima, this
identification will produce many geometrical points per
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laser shot. Finding only valid maxima within the noisy
signal is a matter of signal processing artwork such that
the quality of the results depends on the respective al-
gorithm. While extensive work has been undertaken
in this area [11], special cases still occur where an au-
tomatized algorithm may miss some relevant informa-
tion. This is particularly of interest in cases of com-
plex geometries such as vegetation, or for underwater
LIDAR penetration, Fig. 1. By inspection of the fi-
nal point cloud after data processing, it is impossible
to find such missed features in the raw data, they only
give hints of regions where more information would be
desirable. Thus, a comprehensive visualization method
that allows to investigate, study and explore the entire
raw LIDAR data is a must. Only then it is possible to
verify and optimize point extraction algorithms, such
as to fine tune them and to squeeze out the last little
bit of valid information from the already available and
recorded data, e.g. in order to complement the repre-
sentation of relevant object geometries in the resulting
point cloud.

This primary data, the amplitude time series per laser
shot, is larger by two orders of magnitude than the point
cloud derived from them. Due to this huge amount of
data amplitude signals have so far only been visualized
individually. Here we present an approach for the mas-
sive visualization of all amplitude time series signals
that are acquired from a LIDAR observation, a mas-
sive amount of information up to 100× larger than just
point clouds. Furthermore, we emphasize the practi-
cal implications of improved point extraction based on
LIDAR amplitude signal analysis especially for bathy-
metric (underwater) LIDAR data acquisition.

2 DATA STRUCTURES
Our data model of choice is the Fiber Bundle HDF5
“F5” model , which casts all data into a hierarchy of
five (plus two optional) levels [3]. The premise is that
nature is best described by a differentiable manifold [4].
This data model is very suitable for I/O and is directly
compatible with GPU data structures such as vertex
and index buffer objects. In particular, it maps eas-
ily onto the underlying Hierarchical Data Format V5
(HDF5) as it allows for random data access and par-
tial file I/O. These features are usually not available via
proprietary file formats for the raw data delivered by
the LIDAR hardware manufacturers. Reading those na-
tive files may last several days, while after conversion
into the F5 layout and storing as HDF5, reading them
is reduced to mere seconds or milliseconds. The initial
step is thus to convert the data from the respective pro-
prietary, hardware-specific file formats into the open,
application-independent HDF5 file format [5].

2.1 Review: The HDF5 File Format
Common data formats used in geoscience (e.g. LAS1,
Shapefile2) are often restricted to certain data fields and
data types. The HDF5 file format provides more flex-
ibility with the data layout. It is hierarchically struc-
tured similar to a file system, where folders are equiv-
alent to HDF5 Groups and files equivalent to HDF5
Datasets. HDF5 files are not limited in size and num-
ber of objects. Datasets provided additional structures
such as dimension and type information. Each of them
may be compressed independently with various dis-
tinctly tune-able compression methods. The file format
allows to construct compound data types like higher
dimensional geometric vectors or points from simple,
hardware-independent basic types and is therefore self-
describing. Furthermore it offers important features
such as partial data loading and random access, which
is crucial for indexing operations relating data struc-
tures to each other even beyond files. Finally it is a
free and open standard providing a high-level API with
interfaces for C, C++, Java, Python and Fortran. In its
most recent version it also offers remote data access via
web services, thus enabling inspection of big data via
the internet without modifying the main application.

2.2 Review: The F5 Data Model
The F5 Data Model bundles geometric entities, their
topological properties and attributes into a combined,
complex object that decomposes into the following lay-
ers:

1. Slice Combines all data related to a certain moment
in time, or - in case of a time series - until the next
sampling moment in time.

2. Grid Combines all data related to a certain geomet-
ric entity.

3. Skeleton Combines all data of a Grid that are re-
lated to a specific topological property of this Grid,
for instance its vertices, edges, triangles, agglomer-
ations thereof or hierarchical instances. A Skeleton
defines an "index space" where each index refers to
one such element of a topological space.

4. Representation Combines all data of a Skeleton
that are relative to either other Skeletons or to charts
that define coordinate systems. Basically, a Repre-
sentation only makes sense in relation to the object
that it refers to, for instance the Representation of
triangles relative to vertices, or the Representation
of vertices relative to Cartesian coordinates.

1 https://www.loc.gov/preservation/digital/
formats/fdd/fdd000418.shtml

2 https://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

178

Vol.28, No.1-2, 2020

 https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
 https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
 https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
 https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf


5. Field Combines all numerical values that have a spe-
cific semantic meaning, for instance physical fields
such as "temperature" or "velocity".

6. (Fragment) An optional 6th level to optimize per-
formance for big data by allowing to split a contigu-
ous data set into many smaller fragments.

7. (Compound) An optional 7th level to allow storing
compound data types as distinct arrays instead of in-
terleaved elements, i.e. offering the choice of us-
ing a layout of the kind XXXYYYZZZ instead of
XYZXYZXYZ.

This data model is capable to handle geometrical ob-
jects such as triangular meshes, point clouds, curvilin-
ear grids, uniformly rasterized images or time series
within one universal framework. It also allows to spec-
ify relationships between such objects and hierarchi-
cal multi-resolution instances. The complexity of the
model grows with the complexity of the data, simple
cases are modeled with just the minimally required lay-
ers filled out.

2.3 Topology of LIDAR Signals
With a LIDAR equipment on board an airplane or drone
(UAV), a laser source emits pulsed signals at a certain
frequency and a receiver measures the intensity of the
reflected light, Fig. 1. Both events are recorded with
a time stamp at sub-nanosecond time resolution which
allows geometrical reconstruction of the observation
events (in one nanosecond light travels ca. 30cm). If

Figure 1: Data acquisition from airborne LIDAR mapping.
The laser equipment emits signals at a certain frequency and
measures the time when the reflected signal arrives at the air-
plane again.

the laser beam hits a mirror orthogonal to its view di-
rection, then the received signal is an exact copy of the

emitted pulse, yet subject to distortions happening in
the detector itself. The location of such a mirror target
can then be reconstructed from the time stamps within
the precision of the clock. Eventually this location is as-
signed three-dimensional coordinates, forming one ele-
ment of a point cloud that describes the entire observed
geometry from the particular flight, as in Fig. 1.

Since actual geometries deviate significantly from an
idealized perfect mirror, the actually received signal
will be a superposition of many reflections that are de-
tected at different times according to their reflections at
different locations in space, Fig. 1 and Fig. 2.
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Figure 2: Received amplitude modulation over time for sub-
sequent laser shots.

Within the context of the fiber bundle data model,
data are identified via their base and fiber space. For
LIDAR point clouds the base space is the geometry, the
fiber space consists of all the attributes on them (such
as color, intensity, time stamp, ...). Since each point in
the final point cloud has been extracted from a specific
amplitude modulation those time series can be assigned
to each point as additional data, thereby expanding the
fiber space without changing the base space. This has
the advantage that the raw data can be investigated im-
mediately for each identified point. These points have
to reside at a maximum of the signal curve. However,
if this point has been extracted from a local maximum,
then other points will exist for the same signal curve,
requiring duplication of the same curve onto all those
points extracted from it.

Alternatively the base space can be considered as
constructed from the sequence of “laser shots”. Each
laser shot has been emitted at a certain time, forming a
one-dimensional sequence with monotonously increas-
ing timestamp. Using the flight path’s trajectory in-
formation geometrical 3D coordinates can also be as-
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signed to each individual time stamp. Here, the am-
plitude modulations are fibers over the base space that
is constituted by the flight trajectory. In this approach
there is no need for data duplication, but the relation-
ship between extracted geometries and the original raw
data is missed. While superior with respect to data ef-
ficiency, this approach is thus less suitable to study the
computational performance of the algorithm which is
the ultimate objective of the visualization approach.

2.4 Massive Variable-Length Multiplicity
Multiplicity is a property of a field that tells its number
of components. For instance, a scalar field has mul-
tiplicity 1, a coordinate field and a velocity field both
have multiplicity 3, even though they have algebraically
distinct properties. Within the classical fiber bundle
data model as illustrated in Fig. 3, the multiplicity of a
field must be constant for each point. This invariance of
the multiplicity is essential for performance on I/O, par-
allelization and GPU processing as it directly fits with
the requirements of vertex buffer objects. A field on a
Grid’s vertex Skeleton is just a vertex array in OpenGL.
While this concept applies well to vertices and vertex-

Positions (Coordinates)
Multiplicity: 3

Maximum Intensity
Multiplicity: 1

Timestamp
Multiplicity: 1

RGB Colors
Multiplicity: 3

Amplitude Signal
Multiplicity: 320+

Base Space

Millions of Points

Fi
b

er
 S

p
ac

e

In
fo

rm
at

io
n

 p
er

 P
o

in
t

Figure 3: Fiber Bundle data layout for amplitude time series
signals on point clouds: The amplitude signal is modeled as a
2D field given over a 1D base space.

related data as well as to homogeneous topologies such
as triangular meshes, it fails to cover inhomogeneous
cases such as mixed meshes constructed intermittently
from quads, triangles, or arbitrary polygons (only af-
ter explicit triangulation they become homogeneous).
They can be covered by extending the element type by a
variable-length data type per point. Such data structures
are possible both in C++ and in HDF5, but inefficient,
both in terms of I/O and handling on the GPU, so they
should be avoided. Staying at the classical fiber bundle
model as defined above as close as possible guarantees
better performance.

The LIDAR raw signal as received by the instrumen-
tal detector is a time series of the light amplitude over
time which is different for each laser shot (Fig. 2). The
number of sampling points ("bin") for this physically

continuous signal varies from a few dozen to a few hun-
dreds. The sampling interval in time was 0.57 nanosec-
onds for our hardware equipment, which corresponds to
about 8.5cm in space considering the light travel time
during that period, including double traversal time due
to the reflection on the observed point (Fig. 1). Thus,
when taking each single laser shot as the elements of
a topological space within the framework of the fiber
bundle model, then the field of the corresponding am-
plitude signal will have varying multiplicity (Fig. 2).
In order to maintain high performance while not los-
ing any potentially important information each signal
is expanded to the maximally found length. While this
approach blows up the raw data by adding zero values,
it is still preferable over dealing with variable-length
data. When storing data to disk, high-speed compres-
sion methods such as LZ4 are able to reduce disk stor-
age requirements without performance penalties, and
even performance gain [1].

2.5 Data Processing Pipeline
Prior to visualization, the raw data delivered from the
scanner has to be processed. In this case the source
data consists of the flight trajectory, the point cloud and
the amplitude response. To speed up the subsequent
processes all source data is imported to the F5 fiber-
bundle format first. The second step is to transform the
point cloud position from the scanner’s internal coordi-
nate system to a geographic one, in this case UTM coor-
dinates. This also includes the direction vector tracing
a point to the scanner’s position at the time of echo sig-
nal detection. To visualize the amplitude response as
described in the next section 3 a spacial point is needed
to mount the amplitude response onto. One possibil-
ity would be to calculate the coordinate location of the
start of the amplitude response: ~o+ ~d(ca ∗ (tr− te)/2) ,
where~o is the origin of the laser pulse, ~d is the direction
vector, ca is the speed of light in air, te the time of laser
pulse emission, tr the starting time of received signal
record, and division by two because the laser pulse trav-
els back and forth). The advantage is that amplitude re-
sponses can be visualized and processed independently
from the point cloud. Some scanners are storing the
amplitude response apart from the point cloud. In this
case the relation "points belonging to an amplitude re-
sponse" is not available but must be recomputed if it is
relevant for data analysis. This is done by calculating
the instant of time where the laser pulse is reflected by
a detected point ( te +d ∗ 2/ca, where d is the distance
between scanner and point) and search for the ampli-
tude response with an overlapping time interval. This is
a significantly time consuming process for millions of
points. For better performance these correlations and
intermediate values must be precomputed.
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3 VISUALIZATION METHODOLOGY
3.1 Basic Functionality
It is natural to display a time series as a curve such as
in the technical display of Fig. 2. For LIDAR signals,
each amplitude of the time series has a spatial corre-
spondence - namely a point with 3D coordinates - that
allows for assigning the amplitude value to locations
in space along the line of the respective laser shot. A

𝑃 + 𝛼 Ԧ𝑑

𝑃 + (1 − 𝛼) Ԧ𝑑

𝑃 + (1 − 𝛼 Ԧ𝑑) + Ԧ𝑣

𝑃 + 𝛼 Ԧ𝑑 + Ԧ𝑣

𝑃

Ԧ𝑑

Figure 4: “Mounting”
an amplitude signal to a
point P, given the laser
shot direction ~d, at posi-
tional location α ∈ [0,1]
and a billboard view di-
rection vector ~v = ~d ×~c
with ~c the view direction
from the camera.

billboard-like display does the job, where one orienta-
tion if the billboard is determined by the direction of
the laser shot in 3D and the other one by the plane or-
thogonal to the view direction, Fig. 4. The coordinates
of this laser-shot oriented billboard are easily computed
by an OpenGL geometry shader, based on a vertex co-
ordinate P with a vector vertex attribute specifying the
direction ~d, a scalar vertex attribute α (can be omitted
if P refers to always the same position within the ampli-
tude signal) and a uniform variable specifying the view
direction (which is, for instance, available via the mod-
elview matrix), as illustrated in Fig. 4.

Figure 5: Visualization of a time series along the downwards
direction of a laser shot with different color-coding of the am-
plitude value. The single point is located at the amplitude
maximum, which is usually the only source of information
constituting final point clouds.

The geometry shader thus “blows up” a single ver-
tex into a screen-orthogonal quad and provides two-
dimensional texture coordinates for its four corners.
The first component of the texture coordinates corre-
lates to the time index of the amplitude signal, normal-
ized to [0,1] (along ~d in Fig. 4). The second compo-
nent corresponds to the geometrical distance from the

precise line of the laser shot, also normalized to [0,1]
(along ~v in Fig. 4). It is then the duty of the OpenGL
fragment shader to display the values of the time se-
ries based on those texture coordinates, interpolated by
the hardware for each pixel, in a visually pleasing and
insightful way similar to Fig. 2; but an opaque area -
Fig. 5 - is preferable to a mere contour line.

3.2 Base Space Chopping
In order to access the - huge amount - of amplitude
signal data per vertex, all these amplitude data need
to be provided as a texture buffer to the GPU which
extends the capabilities of the commonly used vertex
attributes by orders of magnitude: An amplitude sig-
nal may encompass hundreds of entries, whereas ver-
tex attributes are limited to the types supported by
OpenGL, the largest one being a 4×4 matrix that could
store at most 16 values. This one contiguous buffer3

(OpenGL’s glTextureBuffer(), accompanied by
GLSL’s usamplerBuffer ) needs to be accessed as
a two-dimensional array then, with one index given by
the number of the vertex for which the fragment shader
is called, the second index given by the texture coordi-
nate along the direction of the laser shot.

However, while the size of a buffer is merely lim-
ited by the amount of total RAM available, the size
of a texture buffer constrained to the extent given by
GL_MAX_TEXTURE_BUFFER_SIZE. This maximally
allowed texture buffer size is easily exceeding by the
vast amount of amplitude signal information. To han-
dle this constraint, the base space (Fig. 3) needs to be
chopped into smaller pieces with the texture referenc-
ing a subset of the entire buffer for each such piece via
glTextureBufferRange() with increasing off-
set, as illustrated in Fig. 6. This offset is required to be
an integer multiple of the hardware-dependent value of
GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT4.

Consequently, the base space cannot be chopped at
arbitrary vertex indices, but only at index locations that
are an integral multiple of both the hardware-dependent
texture buffer offset alignment and the multiplicities of
the fiber space. The “minimal chop size” is then de-
termined by the least common multiplier of the align-
ment and the multiplicities. For instance, for a com-
mon alignment of 16, an amplitude signal length of 300
results in a minimal chop length of 1200, whereas a
signal length of 320 results in a minimal chop length
of 320 (which already is an integer multiple of 16).
Of course, minimizing the number of rendering in-
stances is mandatory, thus the largest integral multi-
ple of this minimal chop length that still fits into the

3 https://www.khronos.org/registry/
OpenGL-Refpages/gl4/html/glTexBuffer.xhtml

4 https://www.khronos.org/registry/
OpenGL-Refpages/gl4/html/glTexBufferRange.
xhtml
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GL_MAX_TEXTURE_BUFFER_SIZE will be the one
to be used such that all but the last chop will be of the
same - maximally possible - size for the rendering in-
stances. This is the effectively used chop length as il-
lustrated in Fig. 6.
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Figure 6: Chopping of the base space (per fragment) such
to allow multiple rendering passes to operate on texture sizes
that fit into the GPU hardware limits. The last render pass
receives a partial texture.

The maximal number of chops per rendering instance
is given by the GL_MAX_TEXTURE_BUFFER_SIZE
divided by the minimal chop length, meaning that many
chops can be rendered at once in a single rendering
call. Thus, the number of rendering instances actually
needed for the entire data set is given by this maximal
number of chops divided by the total number of ver-
tices. This will be a fractional number: Its integer part
gives the number of “full-length” passes, the remainder
part gives the last chop’s length. Table 1 gives some ex-
emplary numerical values for a typical data set totaling
more than 2GB of raw, uncompressed data correspond-
ing to a single fragment in the F5 data model.

Vertices . . . . . . . . . . . . . . . . 3 420 772
Amplitude signal length . . 320
Amplitude signal type . . . 16-bit integer
Storage size . . . . . . . . . . . . . 2GB ≈ 2 189 294 080
compressed disk space . . . 200MB ≈ 201 920 475
OpenGL max. texture size 128M = 134217728
OpenGL offset alignment 16
Min. chop length (lcm) . . 320
Max. number of chops . . . 419430 = 134217728 / 320
Total number of instances 8.1 = 3420772/419430

Table 1: Exemplary data for base space chopping us-
ing an NVidia GTX 1650 graphics card for an ampli-
tude signal stored as 16-bit integers on about 3.5 million
points.

3.3 Performance
It is evident that with data sizes of 2GB per fragment the
available memory of smaller graphics cards are quickly
reached even with medium-sized point clouds encom-
passing a few tens of million vertices. As the GPU
drivers are able to trade CPU RAM for performance, the
rendering rate quickly drops by a factor of 20 or more
from 14 frames per second to less than 1 frames per
second (data measured for an NVidia GTX 1650 GPU,
utilized for laptops). Still, this makes rendering huge
data at least possible even on less powerful hardware,
while navigation within singular fragments - ideally the
“most visible” one [2] - remains interactive. A more
powerful graphics card such as a GTX 1080 GPU with
8GB of on-board graphics RAM utilizes 6.3GB for a
larger dataset of 14 Mio points and can maintain ren-
dering rates faster than 15fps throughout all navigation
events.
IO and GPU transfer The main bottlenecks oc-
cur during data transfer at two stages, firstly from the
disk to CPU RAM, secondly from CPU RAM to GPU
RAM. HDF5 offers a wide choice of compression fil-
ters. The high-speed lossless LZ45 filter easily achieves
data reading rates of more than 500MB/s. For mas-
sive data such as the 2GB required per dataset fragment
for amplitude signals, this still results in noticeable 4
seconds. Even though this is a one-time effort only,
such initial I/O operations significantly stall an interac-
tive application and strongly justify asynchronous data
loading in some subthread.

But also the second part of CPU-GPU data transfer
done via OpenGL’s glBufferData() call lasts 1-2
seconds for realistic rates of 1.5GB/s. Such behavior
also results in noticeable “stutter” of a rendering appli-
cation each time a new fragment is loaded. As of now
we have not yet implemented asynchronous GPU data
transfer [6] but such would be a next step for enhanced
user experience.

4 HANDS-ON DATA ANALYSIS
4.1 Visual Enhancement Techniques
The fragment shader provides various opportunities of
enhancements for the most insightful visualization of
LIDAR amplitude series among millions of combined
renderings each of them containing complex informa-
tion on their own. Some of these opportunities are envi-
sioned first in (Fig. 7(a)) for a single LIDAR amplitude
series before pointing out their meaning for the visu-
alization of multiple LIDAR amplitude series as pre-
sented in Fig. 8.

Beyond the mere factual plain data display as in
Fig. 7(a), contours (Fig. 7(b)) are easily added by over-
laying the amplitude signal value of the pixel from the

5 https://lz4.github.io/lz4/
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(a) plain (b)
contours

(c) bins (d)
symmetry

Figure 7: Visualization options for LIDAR amplitude series.

laser shot axis with the color value. Once this tech-
nique is applied to massive data Fig. 8(a), the singular
amplitude signals are exposed with much better con-
trast Fig. 8(b). The interpolation of the signal bins, i.e.
the texel access, is a potential tuning parameter as well
such to change linear interpolation to nearest neighbor
Fig. 7(c) as means to more accurately display the ex-
act data values instead of a smooth visualization. In
some situations displaying the amplitude signal sym-
metrically as in Fig. 7(d) is more appropriate since the
choice to limit the visualization to the “left side” is en-
tirely arbitrary.

(a) Massive Plain Rendering (b) Massive Contour Rendering

Figure 8: Visualization of a series of amplitude signals rep-
resenting terrain surface and vegetation (trees) in the back-
ground using differing shading enhancements as described in
the text. Colorization by amplitude replicates the geometric
shape. 8(a) plain rendering, 8(b) contour rendering.

4.2 Feature Detection
The ultimately outcome of analysing a cloud of am-
plitude signals is the production of a cloud of points
that correspond to physical objects. Such data reduc-
tion functionalities can be built into the fragment shader
to provide immediate, real-time interactive assessment
capabilities to the raw data as shown fully in Fig. 8.
Since the fragment shader has full access to the tex-
ture describing the amplitude at each point, it can also
compute the gradient of the signal. Thus, a color value
can be limited to pixels where the sign changes for the
texel left and right, i.e. indicating a local maximum at
each of the pixels in Fig. 9 (same data as Fig. 8). In
practice, the recorded amplitude series come with noise

Figure 9: Visualization of same series of amplitude signals
as in Fig. 8, but display of pixels restrained to bins containing
a local maxima.

such that displaying any local maxima as shown in
Fig. 9 results in undesirable visual clutter (Fig. 10(a)).
A simple thresholding by user-specified noise level al-
ready improves the situation significantly, as shown in
Fig. 10(c) and Fig. 10(d), where the river bed becomes
distinguishable from the waterbody in the left and right
part of the cross-section. Of course, more complex data

(a) 130 (b) 150

(c) 180 (d) 200

Figure 10: Cross-sectional view of a series of amplitude sig-
nals through a waterbody demonstrating the effect of realtime
noise reduction on bins containing local maxima only, using
increasing threshold values for data cutoff.

analysis and feature extraction methods can be incor-
porated into the fragment shading step, but come at the
cost of reduced rendering speed. Simple but fast analy-
sis parameters may already prove useful for subsequent
data analysis routines that are performed on the GPU.
For instance, Fig. 9 depicts the global maxima (band
of broad stripes) followed by local maxima (band of
thinner stripes). Such local maxima are not necessar-
ily physical targets, but may be the result of the sig-
nal detector’s response curve exhibiting overshooting
and ringing behaviors. The mathematically correct ap-
proach to remove these artifacts is via deconvolution [7]
with the perfect signal response of a delta function.
However, they drastically increase the noise level nu-
merically . Performing a full deconvolution at each
frame rendering is unreasonable, but can be done as a
one-time preprocessing step with the presented visual-
ization method as verification and data assessment tool.
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The immediate visualization of raw amplitude signal
series from LIDAR datasets alone already allows for a
direct and detailed exploitation of their potential. This
is specifically emphasized in Fig. 11, where different
amplitude visualization and point extraction methods
are combined and compared in order to improve fea-
ture detection results in vegetation and terrain mapping
(Fig. 11(a) compared to Fig. 11(c)).

(a) Maxima Points, colored by altitude

(b) Points + Full Amplitude

(c) Points + Noise cutoff at 150

Figure 11: Improvements of feature detection for vegeta-
tion and terrain mapping shown for a cross-section through
a densely vegetated river foreland area. The combined visu-
alization of originally digitized 3D points at data acquisition
Fig. 11(a) and signal amplitude maxima Fig. 11(c) indicates
that feature recognition can be substantially improved by fur-
ther amplitude signal processing.

4.3 Water Clarity
Beyond point cloud extraction and identification of phys-
ical objects, the full amplitude signal provides more in-
formation that is not even of geometrical nature. Par-
ticularly, when observing lakes or rivers with a green
laser source capable of penetrating the water body, the
attenuation coefficient becomes measurable. The at-
tenuation coefficient can be viewed as a proxy for de-
termining the water clarity respectively water turbidity
as an areal measurement. Such measures are impor-
tant specifically for quantifying active fluvial sediment
transport processes, or for habitat modeling in rivers
and lakes and assessing their ecologic state.

The Beer-Lambert law is valid in the linear regime
where the material is not highly scattering and states
that the optical attenuation I(s)/I0 is an exponential
function of the path length s through the medium: I(s)=
I0e−κs with κ as the attenuation coefficient. This atten-
uation coefficient is constant for a fluid with homoge-
neous scattering properties. This exponential decay of
the reflected light intensity along the path of the ray is
immediately suitable for analysis from the amplitude
signal.
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Figure 12: e-Fitting

A point cloud with reflectivity information contains
this information as well, but provides only non-equidistant,
lower spatial resolution along the ray of penetration
(Fig. 13(a)). The information of subsequent connected
data values is instead available from an extracted point
cloud, whereas it is primarily available in the full sig-
nal (Fig. 13(b)). Actual amplitude signals are noisy,
so fitting an exponential curve to each individual curve
is needed to determine the attenuation coefficient for
each laser shot (Fig. 12). Such analysis is too time-
consuming to be performed at the rendering stage -
which is aiming toward running at multiple frames per
second, but it makes sense as a pre computation step. In
future these pre-computed attenuation coefficients may
be used at the visualization stage to subtract an expo-
nential bias curve in order to enhance peaks above the
exponential decay, instead of simple noise thresholding
as in Fig. 10.
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(a) Point Cloud of a water body

(b) Myriads of Amplitude Signals

Figure 13: Cross-section through a waterbody. (a) originally
digitized 3D points at data acquisition colored by reflectivity
decreasing from water surface (light blue indicating higher
reflectivity) to depth (dark blue equaly lower reflectivity). (b)
Associated amplitude signal series showing signal fade out
with water depth with largest maxima at water surface and
water ground (green to red color).

5 RESULTS
The presented visualization enhancement approaches
of raw LIDAR amplitude signals are of great advantage
when analyzing complex topobathymetric datasets, be-
cause they allow for direct and fast data access with-
out time-consuming data post-processing efforts. Es-
pecially, the full amplitude visualization exposes river
bed areas where the point cloud shows no coverage
Fig. 15(a). Displaying local maxima also shows those
signals on the water surface that triggered the original
point cloud (compare Fig. 15(c) with Fig. 15(a)). More-
over, full amplitude visualization can also reveal ter-
rain coverage below dense vegetation where the orig-
inal point cloud indicates no coverage (Fig. 11). In
practice, these two findings are of particular relevance
to improve terrain extraction from LiDAR point clouds
above and below water, and thus to significantly im-
prove the quality level of survey data, which are already
of high quality when considering only the original point
clouds Fig. 14.

Further insights on water conditions in terms of clar-
ity respectively turbidity derived from signal analysis
can be of relevance for determining sediment trans-
port processes in rivers related to floods or during snow
melt. We are currently evaluating the potential of signal
analysis for automated substrate mapping in water areas
in terms of grain-size distribution along the river bed
and surface roughness, which are verified by ground
truth data.

(a) Enhanced Coverage

(b) Original Coverage

Figure 14: Comparison of a river bed based on amplitude
signal analysis versus immediate LIDAR point cloud data.

6 CONCLUSION
In this article we presented a rendering method for the
direct, immediate visualization of massive raw ampli-
tude response curves from LIDAR data acquisitions.
The method provides intuitive insight into the potential
of the data sets to allow for optimizing further data pro-
cessing steps and potentially reducing the actual num-
ber of observation flights needed for airborne LIDAR
bathymetry. Simple data processing steps can be per-
formed interactively in realtime. As per our knowledge
this is the first time that a direct, simultaneous visual-
ization of dozens of millions of LIDAR amplitude re-
sponse curves has been done. Its formulation within
the fiber bundle model ensures a rigid mathematical ba-
sis yielding high performance independent of the appli-
cation domain.

Our visualization technique has potential beyond LI-
DAR and can be applied to e.g. multispectral imaging
with hundreds of spectral channels as well. Further-
more, the technique straightforwardly extends to other
topological properties than vertices, e.g. edges or trian-
gles, and can thus be applied also to high dimensional
data given on more complex geometries.
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Figure 1: Exemplary results of the presented approach: input image (left), vectorized result of toon stylization
(middle), and vectorized result of half-tone stylization (right).

ABSTRACT

This paper presents a new approach for the vectorization of stylized images using intermediate data representations to interface
image stylization and vectorization techniques. It enables the combination of efficient GPU-based implementations of interac-
tive image stylization techniques and the advantages of vectorized image representations. We demonstrate the capabilities of
our approach using half-toning and toon stylization techniques.

Keywords: Image stylization, image processing, vectorization, half-toning, toon, interaction

1 INTRODUCTION
1.1 Motivation
Image stylization techniques (e.g., half-toning [3] or
toon [14]), and their applications offer users the op-
portunity to express their creativity and increasingly
attracted attention during recent years. There are nu-
merous stylization techniques that operate on raster im-
ages. Often, these can be implemented efficiently using
Graphics Processing Units (GPUs). However, with re-
spect to viewing or reproduction (e.g., for printing pur-
poses), the resulting raster images are limited due to
their limited spatial resolution.

In contrast thereto, vector images or graphics can
be easily rasterized to required resolutions. However,
their creation, editing and manipulation is often a cum-
bersome task. This work aims at combining efficient

*These two authors contributed equally

GPU-based implementation for image stylization and
the advantages of vector-based presentations of their re-
sults (Figure 1).

1.2 Problem Statement

Vectorization techniques use raster images as input and
generate a respective output vector image based on user
defined settings such as number of colors and respective
thresholds. Thus, their output often differs with respect
to the number of colors being conveyed and the number
of polygon required to represent image features such
as colored areas or edges. However, they do not take
information about the respective stylization technique
into account (e.g., regions of unified color, edges, etc.).
This often impacts the visual and data quality of results
(e.g., high number of polygons or no explicit edge rep-
resentations) and can lead to imprecise presentations of
the stylization to be achieved (Figure 3).
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Figure 2: Comparison between a common vectorization approach (a) and the concept of stylization-specific inter-
mediate representations (b).

To counterbalance this, vectorization would require
high-resolution input data to convey fine features. Sub-
sequent editing or animation of vectorization results,
e.g., changing half-tone elements or its size and ori-
entation, is hard or would require to perform styliza-
tion and vectorization repeatedly, which can be a te-
dious process. Thus, to support fast image stylization
and high-quality vectorization results, it seems promis-
ing to research intermediate representations that encode
specifics of the respective stylization approach and fa-
cilitate representation and manipulation of the vector-
ized results.

1.3 Approach and Contributions
Using the naive method, the raster image is read in
with the custom parameters for a stylization technique,
which creates a stylized image. The stylization output
is again represented as a raster image and serves as the
subsequent input image for vectorization that generates
the final vector image. However, this vectorization is
performed without any prior information describing
the nature of the stylization. Instead of directly ap-
plying the stylization to an input image, our approach

(a) Input raster image
(1440×1920 pixels)

(b) Inkscape vector-
ization (12 colors)

(c) Proposed ap-
proach (114120
elements)

Figure 3: Comparison of vectorization results of a half-
toned input image (a). Using the method of (b), the
input image was vectorized with Inkscape yielding half-
tone elements that can hardly be recognized. With the
method of (c), the element’s position, size, and color is
defined by an intermediate representation that is used
for its instancing during vectorization.

encodes a stylization-specific raster-based intermediate
representation that is used to generate vector images,
subsequently. Such representations acting as “data
maps” are suitable for fast GPU-based processing and
facilitate interactive applications.

To summarize, this paper makes the following contri-
butions:

(i) Concept for generating intermediate representation
in order to create a vector image of a stylization ef-
fect.

(ii) Minimal adaptation of existing effect pipelines and
their rendering passes with shader programs to use
the raster-based outputs as basis for vectorization.

(iii) Provision of parameters for interactive modification
of vectorization, which we demonstrate by styliza-
tion effects such as toon and half-tone filter.

The remainder of this paper is structured as follows.
Section 2 reviews related work with respect to vector-
ization approaches in general and specific to stylized
images. Section 3 presents the basic concept of our ap-
proach as well as implementation details specific to two
exemplary image stylization techniques. Section 4 dis-
cusses the presented approach and Section 5 concludes
this paper.

2 BACKGROUND
Antoniou et al. [1] has pointed out the inflexibility of
raster image formats and describes a conversion of such
into XML-based structure like Scalable Vector Graph-
ics (SVG) files. While raster images are based on
pixels, in an XML-based environment elements such
as points, lines or polygons can be reused. However,
this approach only describes how to convert each pixel
directly into a rectangle and thus does not use other
shapes.

Further, Olsen and Gooch introduced an edge-based
image reconstruction method that extracts vector edges
using tracing, which can be applied on photographs [8].
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(a) Intermediate representation (adjusted) (b) Vector image using a dot element (c) Vector image using a flower element

Figure 4: Comparison of the intermediate representation (a) and two vector images (b) and (c). Each pixel of (a)
encodes element color, size, and position.

The result is a vector image in grayscale, which is qual-
itatively well done, but this simplification does not in-
clude the color details from the original image. With
respect to this, they showed that the vector-based im-
age representation can be more memory efficient than
raster images.

Noris et al. [7] present a vectorization method for
raster images of line drawings with a focus on junc-
tion configurations. It produces a vectorization repre-
sentation of the lines, but these have all the same width.
Additionally, small details are not be captured by the
topology extraction and the method needs solid color
areas in the input image. Our approach allows the ex-
traction of line widths from the input image and thus
lines of variable width.

Simo-Serra et al. [13] focused on simplify sketch
drawings and trained a convolutional neural network
with a new data set of pairs of rough and simplified
sketch drawings. The network provides a clean vector
result out of a raster image with a rough pencil sketch.
Their approach establishes the state of the art in sketch
simplification. Additionally, the computation time us-
ing the GPU-based model achieves times under a sec-
ond. Unfortunately, the approach depends on the qual-
ity and quantity of the training data. Furthermore, only

Figure 5: Half-tone image with multiple different ele-
ments (’W’,’S’,’C’,G’) at once.

line drawings are recognized, but no color areas or other
compositions of an image. Therefore, this method is
not suitable for vectorizing complex image stylization
effects.

Xie et al. [15] treats vector images in an artistic way
and promote the user to guide the vectorization inter-
actively. For this purpose, the possible edges are cal-
culated at first and the user then decides which ones
should be used. In addition, the user can also draw
edges or modify edges. The colors have to be applied
manually, so there is no recognition of colored areas.

Favreau et al. [6] present a vectorization algorithm
for photographs into cliparts based on stacking col-
ored polygons. These layers are either opaque or semi-
transparent and are faded to give the final result. But a
segmented image is used as input, which must be cre-
ated manually to generate a more stylized clipart.

Faraj et al. [5] explores the geometrical structure of
an image to perform local operations like replacing or
rotation. For it, a topographic map is used, which
has a hierarchical order of color shapes in stacked lay-
ers [2]. Thus, this work can be considered as an image-
abstraction method, which does not store the recog-
nized mathematical forms in a vector image but in a
tree. So this work is limited to the few operations that
are offered. Our approach, however, saves all recog-
nized components as SVG and can therefore be manip-
ulated with common editing tools.

Several papers focus on image vectorization by de-
tecting edges and shapes. Most of these works are lim-
ited to the color variety or only line vectorization. Both
aspects are considered in our approach and are espe-
cially important for e.g., the toon effect. Moreover, our
approach deals with the composition of stylization ef-
fects and examines the structure of effects in order to
create the best possible generation of a vector image
variant with the effect.

The previous works would try to generate a vector
image from an input image with applied stylization ef-
fect. Thus the recognized areas and lines are vectorized
independently of the applied style and the vector image
is not sustainable. Possible later editing of this image
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(a) Raster image approach
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Figure 6: Comparison between a raster image half-toning pipeline (a) and our slightly modified vectorized ap-
proach (b).

e.g., replacing of elements by half-toning would be very
complex or not possible (see Figure 3b).

3 VECTORIZATION CONCEPT
3.1 GPU-based Image Stylization
In order to access different intermediate steps of a styl-
ization effect to be used for vectorization, a system
is required where a stylization effect is divided into
individual sub-steps, which can be combined as de-
sired. Our approach is based on the work of Semmo
et al. [12], which provides a GPU-based framework for
complex image stylization effects and was also used
for ProsumerFX [4]. It consists of three components,
which are explained below:

Effect pipeline: An effect pipeline defines the individ-
ual steps that are applied to an input image to pro-
duce an output image at the end.

Effect: A single step of the effect pipeline is an effect
(e.g., difference-of-Gaussians filter [14]). This ef-
fect can have parameters that can be adjusted by the
user.

(a) Half-tone vector image with-
out sub pixel offset

(b) Half-tone vector image with
sub pixel offset

Figure 7: Comparison of the half-tone stylization with
and without sub pixel offset. Without it the rounding
to whole pixel positions can create error patterns which
are visible in the output (a). The use of the offset tex-
tures increase the positional resolution enough to elim-
inate the error patterns (b).

Rendering pass: For the execution of the effects the
rendering passes are needed, which are available as
shader programs or C++ code.

3.2 General Approach
Figure 2 shows a comparison between a common vec-
torization approach (a) and the proposed one (b). While
common vectorization of stylized images is performed
by applying a stylization technique to an input image,
resulting in a stylized raster image that is converted to a
vector image using tracing [11]. In contrast thereto, our
approach comprises the following main components:

Data Encoder: The encoder basically implements the
image stylization technique and generates the inter-
mediate data specific to this technique. Therefore,
it reads in the image data and user parameters and
executes the GPU-based stylization.

Intermediate Representation: The intermediate data
represents the major components of the stylization
Gestalt (e.g., colored areas edges, half-toning ele-
ments) and is represented using textures. These dif-
ferent textures can have different channel counts,
do not necessarily have to have the same resolu-
tion as the input image, and can be obtained us-
ing render-to-texture in combination with multiple
render-targets.

Vectorizer: A stylization-specific vectorizer receives
the intermediate representation with user parame-
ters and generates a final vector image. This makes
it possible to separate the vectorization into sub-
steps: thus, different components of the effect can
be vectorized separately and then merged for the re-
sult. This approach enables to generate an specifi-
cally structured vector image for the respective styl-
ization. To allow easy reuse of data encoders and
vectorizers we integrated these as image processing
passes into a modular system. These components
can be combined with different image preprocessing
steps to create new image stylizations.

In the following, we describe how these three compo-
nents can be adapted to different stylization techniques.
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(a) Half-tone vector image with
no rotation applied to the ele-
ments

(b) Half-tone vector image with
random rotation applied to the el-
ements

Figure 8: Comparison of aligned and randomly rotated
halftone elements. Aligned half-tone elements with an
recognizable orientation introduce noticeable patterns
(a). This can be avoided by randomly rotating the ele-
ments (b).

3.3 Half-toning Vectorization
Half-toning is a common reproduction technique for
photography in printing, where the continuous tones of
the images are represented by full-tone dots of varying
size, shape, and density [3]. For the printing medium,
usually the Cyan-Magenta-Yellow-Key (CMYK) col-
ors are used for the point-data, which are mixed sub-
tractively. This image style can be recreated perfectly
with SVGs since it requires only single colored shapes,
which can easily be represented in the SVG format.

Effect Pipeline. The original pipeline consists only
out of one step. This is a GLSL shader getting a raster
image and some parameters as input and outputting
a raster image with the half-tone effect applied (Fig-
ure 6a). In our pipeline the shader is slightly mod-
ified and becomes the data encoder and its output is
the intermediate representation. Furthermore, as a new
step, a vectorizer is added, that reads the intermedi-
ate representation and generates the SVG output (Fig-
ure 6b). Vectorization for half-toning stylization can
be achieved by implementing these components as fol-
lows.

Data Encoder. We use a variation of a single-pass
GLSL shader-based half-tone stylization. Here, the in-
dividual elements constituting a half-tone stylization
are not rendered directly into a raster image, but the
determined element positions, colors, and sizes are en-
coded in three textures.

Usually the half-tone shader would determine for
each pixel the position of the closest half-tone element
center and the size of this element. This information
is than used to determine if the examined pixel is in-
side the element radius and colored accordingly. This

(a) Line thickness modulated
multi channel image

(b) Line thickness modulated sin-
gle channel image1

Figure 9: Color intensity modulated using line thick-
ness instead of shape size.

is done for each of the color layers (usually cyan, ma-
genta, yellow and black). In our modification we only
set the value if the pixel is less then half a pixel away
from the center, therefore only modifying the pixel at
the center of the element. Also instead of choosing the
color dependent on the half-tone color that is processed,
this just determines which texture channel is written to,
as described in the next paragraph.
Intermediate Representation. This is a set of three
textures with pixels of different colors (Figure 4a). The
color of the half-tone element is determined by the color
channel where the red, green, blue and alpha channels
represent the cyan, yellow, magenta and black channels
respectively. The half-tone element size is determined
by the intensity of each pixel in the corresponding chan-
nel in the first texture. Pixels with a value of zero do not
represent an element. The position of the half-tone el-
ement is determined by the position of the pixel. To
improve the positional accuracy and therefore prevent
artifacts introduced by rounding to a full pixel position,
we use the other two textures. These encode a sub-pixel
offset in the x- and y-direction respectively (Figure 7).
This increase in resolution allows us to decrease the ac-
tual resolution of the three intermediate textures. The
resolution of the three textures is not dependent on the
input image but on the half-tone frequency. The resolu-
tion must be big enough that two elements of the same
color layer do not correspond to the same pixel position.
Vectorizer. This outputs an SVG for further editing.
First, half-tone elements are generated using a template
(cf. Line 5 in Listing 1). Following to that, a group
element (<g>) is created for each of the CMYK color
channels. Inside these, instances of the template are
created for each of the non zero pixels in the main tex-

1 Depending on the used PDF viewer it might be necessary to zoom
this figure to full screen size.
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(a) Half-tone vector image with the color space CMYK for the half-
tone elements.

(b) Half-tone vector image with the color space RGB for the half-tone
elements.

Figure 10: Comparison of the CMYK and RGB color spaces for the halftone elements. Images with a high black
content would have to generate a lot of black halftone elements (a). It is easier to change the color space, since
black is the basis for the RGB color space (b).

ture (<use>). The position and intensity of the pixel
is used for the transformation, which consists of a scal-
ing and a shift. The x- and y-offset textures are used for
fine adjusting the position. To achieve the characteristic
subtractive color mixing, the SVG blending mode is set
to multiplication (Line 2) and applied to the respective
color group. For wider support of display and editing
tools the blend mode is specified using the comp-op
attribute and Cascading Style Sheet (CSS) styling.

Figure 3b shows the vectorization result of a styl-
ized half-tone image (Figure 3a) in a common way us-
ing Inkscape. For comparison, Figure 3c shows that
the appearance of half-tone elements can be conveyed,
yielding high-quality visual output. The common vec-
torization achieves only colored areas that do not repre-
sent the half-tone elements sufficiently. Using the blend
mode for creating the mixed color areas instead of cre-
ating separate shapes for the overlapping areas, we can
save calculation time and decrease the file size. This
also allows users to modify the resulting SVG more in-
tuitively because the shapes of the half-tone elements
are still intact and can be manipulated as a whole.

1 <svg width="1280" height="484" ...>
2 <style>.blend{mix-blend-mode: multiply;}</style>
3 <g>
4 <g opacity="0">
5 <g id="element"> <!-- Graphical element to re-use -->
6 <path transform="..." d="m 0.0,-0.5 ..."/>
7 </g>
8 </g>
9 <!-- Cyan color group -->

10 <g fill="#0ff" comp-op="multiply" class="blend">
11 <use xlink:href="#element" transform="..."></use>
12 <use xlink:href="#element" transform="..."></use>
13 ...
14 </g>
15 <g fill="#f0f" comp-op="multiply" class="blend">...</g>
16 <g fill="#ff0" comp-op="multiply" class="blend">...</g>
17 <g fill="#000" comp-op="multiply" class="blend">...</g>
18 </g>
19 </svg>

Listing 1: Exemplary structure of a SVG re-using
elements to represent the results of an half-tone
stylization.

The usage of an instanced template decreases the
overall file size for half-tone elements more complex
than a circle. This also allows the user to modify the
shape of all the elements at once by just editing the
template. Actually instancing the group containing the
shape even allows swapping the shape for an entirely
new one easily. Also, the reference for all the ele-
ments does not always have to refer to the same tem-
plate and thus displaying different elements at once is
possible. Figure 5 shows how four templates are dis-
played at once, which have the four letters "W", "S",
"C" and "G" defined as path. Not only the reference can
be changed, also the transformation matrix. Thus each
element can be rotated as desired. This has the ben-
efit that the grid structure is not immediately visible.
Figure 8a shows that the half-tone element of a heart
reveals the direction of the grid through its tip, but by
random rotation the grid is no longer recognizable. Fur-
thermore, the scaling in the transformation matrix can
also be adjusted. Thus, the size can be easily changed
for all elements and allows the user to define the size
according to his own perception.

It is also possible to make all elements the same size
and allow intensity modulation through the outlines of
the elements. Therefore, the fill is changed to transpar-
ent and the stroke width is scaled differently. Figure 9a
shows how even a complex half-tone element can ex-
press the intensity through the line thickness and Fig-
ure 9b shows this with a circle as half-tone element.
Currently, the color space CMYK is used with a sub-
tractive blend mode. This can also be changed to addi-
tive and the color space Red-Green-Blue (RGB). For
this purpose, the SVG blend mode must be changed
from multiply to lighten and the shader of the render-
ing pass must use the color space of RGB instead of
CMYK, accordingly. Also only certain color channels
can be displayed. For this purpose, the grayscale rep-
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(a) Raster image approach as abstract overview of the 29 rendering passes based on Semmo et al. [12]
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(b) Our vectorized approach

Figure 11: Comparison between a raster image toon pipeline (a) and our slightly modified vectorized approach (b).

resentation of the image is used for the intensity value.
There are many ways to generate a grayscale represen-
tation, e.g., using the brightness value per pixel. Fig-
ure 10 shows how the respective color components can
also be displayed individually. The frequency can be
adjusted by the user for the level of detail of the dis-
play. A higher value means that the grid for the color
channels has a higher resolution and therefore more el-
ements are displayed.

In addition to the many interaction possibilities, the
SVG structure allows easy access to a representative
element. Thus, further modifications, e.g., using
JavaScript, are possible to animate the elements.

3.4 Toon Vectorization
Toon stylization [14] is a typical representative for im-
age abstraction techniques, e.g., for expressing carica-
ture drawings. This image style is a good candidate for
vector image representation because it is composed of
mostly uniform colored shapes as well as lines, which
both are geometric primitives of SVG.
Effect Pipeline. The original pipeline already con-
sists of several steps. The underlying GPU-based effect
pipeline based on Semmo et al. [12] for toon styliza-
tion calculates two parts from an input image. On the
one hand an edge detection is performed with the ex-
tended difference-of-Gaussians and on the other hand a
color quantization based on local luminance in the LAB

(a) Input raster image
(1280×1920 pixels)

(b) Inkscape vector-
ization (11 colors)

(c) Proposed ap-
proach

Figure 12: Comparison of the vectorized results for a
toon effect (a). In method (b), the stylized image was
vectorized with Inkscape. In method (c) the intermedi-
ate representation was used to generate a vectorized re-
sult, which has a typical toon color area and the edges
are paths with individual line width.

color space. These two partial results are merged again
for the output (Figure 11a). In our pipeline the result
of the edge detection is passed to a thinning step. The
thinned edges are then used for the edge vectorization.
Additionally, the quantized color data is used for an
area vectorization. Instead of blending the intermedi-
ate results pixel based, the two vectorization results are
merged to create the final vector image (Figure 11b).
Data Encoder. We use the output of the multi-pass
stylization technique to generate on the one hand a styl-
ized color quantized raster image and on the other hand
an edge raster image from the input. Usually these two
images would be blended on a per-pixel basis to gener-
ate the stylized output image. The edge image is addi-
tionally passed through a thinning pass to create lines
of one pixel thickness.
Intermediate Representation. Two textures are used
to represent the stylization outputs for subsequent vec-
torization: (1) a RGB texture stores quantized colored
areas and (2) a luminance texture stores edge data. The
edge data contains a Boolean (Figure 13b), whether an
edge exists at the pixel and another value, how thick the
edge would be at the location. To calculate these values
the rendering pass is used, which creates the edge image
for the toon stylization. This is used as the input image
to perform a thinning [9, 10]. Thereby the edge widths
in the image are always reduced by one pixel from out-

1 <defs>
2 <inkscape:path-effect
3 end_linecap_type="round"
4 scale_width="1"
5 miter_limit="4"
6 linejoin_type="round"
7 start_linecap_type="round"
8 interpolator_beta="0.2"
9 interpolator_type="CentripetalCatmullRom"

10 sort_points="true"
11 offset_points="0,9.5| 1,2.5 | 2,9.5"
12 lpeversion="1"
13 is_visible="true"
14 id="path-effect998"
15 effect="powerstroke" />
16 </defs>
17 <path
18 id="CPUVectorizeEdgePassProcessor998"
19 style="fill-rule:evenodd"
20 inkscape:path-effect="#path-effect998"
21 fill="rgb(0,0,0)"
22 stroke="none"
23 stroke-linecap="round"
24 inkscape:original-d="M 79 9.5 Q 74.1 1.8 68.5 1 L 67 4.5"
25 d="m 87.014,4.399 c 0,0 0.411,0.350 0,0 C 85.193,2.849

81.295,0.691 77.096,-0.392 73.863,-1.227 70.964,-1.173
68.853,-1.474 a 2.5,2.5 15.554 0 0 -2.651,1.490 c
-0.5,1.166 -6.611,0.618 -7.934,0.742 -0.180,0.016 0,0 0,0 A
9.5,9.5 90 0 0 75.731,8.242 c 0,0 0.112,0.142 0,0 C
74.909,7.199 70.297,3.151 70.797,1.984 l -2.651,1.490 c
1.338,0.191 2.260,1.885 2.607,3.967 0.428,2.568 0.093,5.734
0.231,7.157 0.033,0.349 0,0 0,0 A 9.5,9.5 90 0 0
87.014,4.399 Z" />

Listing 2: Definition of offset points in Inkscape to
apply this effect to a path via the Id.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

193

Vol.28, No.1-2, 2020



(a) Thresholded
edge-pass texture
(720×1080 pixels)

(b) Edge texture after
thinning

(c) Distance data
used for local line
thickness

Figure 13: Edge preprocessing for the toon stylization.
The edge pass from the toon effect is thresholded to cre-
ate a binary image (a). This is than thinned iteratively
to yield the edge skeletons (b) necessary for the vector-
ization. During the thinning the shortest distance from
outside the to the middle is determined (c).

side to inside during an iteration until only one-pixel
thick skeleton results (Figure 13b). Thus, the number of
times a pixel has been deleted is saved as distance data
in the resulted skeleton and this value can be used later
to reconstruct the actual width of the line (Figure 13c).
Vectorizer. This consists of three components: a area
vectorizer for colors, a edge vectorizer, and a merger.
The area vectorizer generates colored polygons from
separate quantized color-areas using a standard vector-
ization approach2. The edge vectorizer generates paths
based on the edge image. This is performed by first cre-
ating paths with one node per pixel and than simplifying
the path using line and curve segments where possible.
The resulting nodes read the actual width from the lu-
minance texture. This can then be used for the varying
line thickness of a path. The SVG standard does not
support varying line widths, but there is a proposal for
this3. However, the most common vector graphics ed-
itors e.g., Inkscape and Adobe Illustrator support the
display of this. In our approach, we have exported the
results for display in Inkscape. For it, we set the path
effect powerstroke. This requires offset-points (List-
ing 2), where the first value is the position on the path
(e.g., 0 for the first node, 1 for the second node, etc.)
and the second value is the distance from the node, the
value we got during the thinning process.

Finally, the merger combines the two partial results to
an SVG (Figure 12c). Figure 14b and Figure 14c show
the difference and added value achieved by varying path
thicknesses. This option has advantages over previous

2 https://github.com/jankovicsandras/
imagetracerandroid/blob/master/process_
overview.md

3 https://www.w3.org/Graphics/SVG/WG/wiki/
Proposals/Variable_width_stroke

(a) Combined color
and edge layer of
the raster sylization
(720×1080 pixels)

(b) Vector output
with average line
width per path

(c) Vector output
with dynamic line
width along paths

Figure 14: Different line width representations. In the
raster based stylization the line thickness can vary along
the line (a). The SVG standard (1.1) does not include
a way for varying line thickness along a path. There-
fore the width information can only be used to set the
thickness to e.g., the average (b). Vector graphic editors
like Inkscape support dynamic stroke widths with there
own extinctions and therefore allow for a higher degree
of detail (c).

work, where only paths of constant thickness could be
created.
Figure 12a shows an exemplary raster-image output of
the toon stylization technique. By using the common
method, both color areas and edges are represented
as colorized polygons in the final vector image (Fig-
ure 12b). In contrast thereto, our approach handles col-
ored areas and edges separately by creating line paths
on top of polygons (Figure 12c), which can be edited
individually. This technique is closely related to how
vector artists work, namely creating different layers for
different elements of the image like the line and color
layer. This also allows for easy manipulation of all the
lines or shapes at once (e.g., changing the thickness or
color). Also by including the outlines as paths in the
SVG they can be edited as such e.g., path patterns or
stylizations can be applied.

4 DISCUSSION

4.1 Performance Evaluation
We tested the run-time performance of prototypical ap-
plications of our approach to two stylization techniques
with respect to the following resolutions: 1280× 720
(HD), 1920 × 1080 (FHD), 3840 × 2160 (4K), and
7680× 4320 (8K-UHD) pixels. The performance tests
were conducted using a NVIDIA GeForce GTX1080Ti
GPU with 12 GB VRAM on a Intel i7 CPU with
3.7 GHz and 32 GB RAM. We used two different
input images with different level of detail in the form
of existing edges and number of colors (Figure 15).
Measurements are averaged over 100 runs per input
image (Table 1).
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(a) Low detail raster image used
for performance test.

(b) Split view of toon and half-tone
vector outputs of the low detail im-
age.

(c) High detail raster image used
for performance test.

(d) Split view of toon and half-tone
vector outputs of the high detail
image.

Figure 15: Images used for the performance test. Image (a) has very little detail. Image (c) on the other hand has
a lot of details.

One can observe an increase of run-time with respect
to the (1) input image resolution, (2) the complexity of
the stylization techniques, (3) the number of vectoriza-
tion passes, and (4) level of detail. For simple single-
pass stylization techniques such as half-toning, which
yield only a single vectorization pass, interactive frames
rates could be achieved. Additionally, this image styl-
ization technique is independent from the level of detail
in the input image.

However, for more complex stylization techniques
that yield multiple vectorization passes, the resulting
performance is below interactive constraints for input
resolutions greater than High Definition (HD). Further-
more, the level of detail affects the running time of the
complex toon effect. An input image with more edges
and colored areas leads to slower performance espe-
cially for the tracing step. Thus, this effect takes almost
double the time with a more detailed image as with a
less complex one. This is mainly due to the higher num-
ber of steps for thinning and also a higher quantity of
path effects that have to be generated for the individual
line thicknesses.

4.2 Image Stylization Representation

Our approach to use intermediate representations to
create stylized vector images was successfully demon-
strated using two stylization effects. Here we use the
output of the existing rendering passes and extend them
only with calculations like thinning. Furthermore, we
enable interaction with parameters to change the vec-
torization. We could show that our result of the stylized
vector image is more suitable for further use than a vec-
tor image that is only based on a stylized image. This is
due to our representation in the SVG structure, which
facilitates editing. For example, the use of cloning in
the half-tone effect allows the shape of the half-tone el-
ement to be easily replaced in the final SVG. Only the
one template element needs to be adjusted. Besides the
exchange of elements, these can also be animated by
accessing the certain SVG elements and their attributes,
e.g., line thickness, displacement or rotation.

4.3 Limitations
Besides the many advantages of an SVG, the presented
implementation has a few limitations.

Currently, the variable line thickness of the toon ef-
fect can only be displayed in an appropriate editor (e.g.,
Inkscape) that supports variable line thickness. For
each effect we have considered individually how this
effect can be logically broken down into vectorization
steps. Now vectorization steps exist to trace edges and
surfaces. There are also other pipelines for the placing
of clones and the thinning step. All these vectorization
steps can be reused for future effects.

Another limit is e.g., if the user edits the shape of
the template object in a half-tone SVG, then all clones
would be edited as well. This leads to high update times
in vector image editors like Inkscape. But this is rather
due to the software than the vector file.

4.4 Future Work
For future work, we plan to test our approach with ad-
ditional image stylization techniques and explore possi-
bilities of further intermediate representation variants.
With respect to run-time performance improvements, a
more compact intermediate representation could speed-
up the vectorizer by avoiding scan-lining during trac-
ing.

5 CONCLUSIONS
This paper shows how the extension of image vector-
ization by means of intermediate data can be used to
increase the output quality of vector images for certain
types of image stylization techniques. Our approach,
which is to perform stylization as part of vectorization
rather than as a pre-process, is actually close to how
vector artists work, since they commonly create com-
plex artworks as multiple layers (e.g., one layer for
color regions and another layer for outlines), and fill-
in regions with vector patterns. We enable the combi-
nation of fast GPU-based image stylization techniques
and high-quality visual output by means of vector im-
ages. However, this requires minimal changes for en-
coding the output of each technique to yield the inter-
mediate representation that drives the particular vec-
torization. We implemented and tested the presented
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Table 1: Run-time performance comparison in total (Total), for the stylization (Style), and tracing stages (Trace)
(in milliseconds) for input images of different spatial input resolutions (in pixels).

Half-tone (H) [3] Toon (T ) [14]
Single GPU-pass 29 GPU-passes

1 Vectorization pass 2 Vectorization passes

Low Detail Image High Detail Image Low Detail Image High Detail Image

Input Resolution HStyle HTrace HTotal HStyle HTrace HTotal TStyle TTrace TTotal TStyle TTrace TTotal

1280×720 26.5 35.0 61.5 24.7 37.7 62.4 24.8 792.2 817.0 20.0 1389.4 1409.4
1920×1080 23.6 57.2 80.8 20.6 57.3 77.9 26.5 1590.7 1617.2 30.4 2822.5 2852.9
3840×2160 33.1 154.9 188.0 34.7 147.3 182.0 37.2 6037.0 6074.2 35.3 10655.1 10690.4
7680×4320 52.3 545.9 598.2 47.6 544.1 591.7 91.0 28167.6 28258.6 102.3 53362.9 53465.2

concept using GPU-based half-tone and toon styliza-
tion techniques.
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ABSTRACT

The detection of pedestrians plays an essential part in the development of automated driver assistance systems.

Many of the currently available datasets for pedestrian detection focus on urban environments. State-of-the-art

neural networks trained on these datasets struggle in generalizing their predictions from one environment to a

visually dissimilar one, limiting the use case to urban scenes. Commercial working machines like tractors or exca-

vators make up a substantial share of the total number of motorized vehicles and are often situated in fundamentally

different surroundings, e.g. forests, meadows, construction sites or farmland. In this paper, we present a dataset

for pedestrian detection which consists of 1018 stereo-images showing varying numbers of persons in differing

non-urban environments and comes with manually annotated pixel-level segmentation masks and bounding boxes.

Keywords
Pedestrian Detection, Instance Segmentation, Non-Urban Environment, Off-Road, ADAS, Commercial Vehicles

1 INTRODUCTION

The detection of pedestrians is a major problem for

Advanced Driver Assistance Systems (ADAS) and

substantial effort has been made in the past decade to

advance the performance of detection methods. Current

state-of-the-art approaches to pedestrian detection in

monocular RGB-images rely on convolutional neural

networks (CNN) that output either bounding boxes

or pixel-level segmentation masks for every depicted

person [1]–[6]. To train these networks for pedestrian

detection in a supervised manner large image datasets

are needed that come with ground truth annotations

for person bounding boxes or segmentation masks.

The most commonly used datasets for this task portray

scenes in urban environments, motivated by the need

for and the recent progress in autonomous driving

systems for private passenger cars and commercial

cargo trucks.

In contrast, most industrial vehicles operate in com-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

pletely different environments. Although used in

dozens of industries, from coarse earthwork operations

to tactful harvesters, and making up a substantial share

of the total number of motorized vehicles, they are

currently neglected by published datasets available for

pedestrian detection. In many cases, neural networks

trained on urban images fail to generalize from the

context of the city to a visually different one, resulting

in reduced detective capabilities for off-road environ-

ments and posing a problem for ADAS in the context

of mobile working vehicles, e.g. automated emergency

brakes for tractors, excavators or harvesters. Addi-

tionally, urban environments constrain the variety of

poses that pedestrians are portrayed in: Most are seen

walking or standing upright on the pavement. Industrial

or agricultural vehicles in off-road environments can

find people in unusual poses, e.g. crouching or lying

down while picking crops or doing construction work.

These points pose an obstacle to the safety of humans

around autonomously operating vehicles in non-urban

contexts.

Since there is evidence suggesting that data may

be more important than algorithms for performance

[7], [8], in this paper we aim to contribute a stereo

image dataset of pedestrians in 5 different off-road

environments: Meadows, woods, construction sites,

farmland and paddocks. The persons shown in the
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Figure 1: Example images from different datasets. Left: Cityscapes dataset [9]. Center: KITTI Stereo 2015 Dataset

[10]. Right: OPEDD. From colour spectrum, over gradient orientations to pedestrian’s poses: The visual makeup

of urban scenes is substantially different from off-road environments, impeding generalization in detections by

neural networks.

dataset are portrayed in varying poses, with some

being highly unusual in the ADAS context, e.g. ex-

tended limbs, handstands, crouching or lying down.

Additionally, our dataset shows significant occlusion

of persons from vegetation, crops, objects or other

pedestrians. The dataset itself consists of 1018 stereo

images, where the left image comes with manually

created ground truth pixel-level segmentation masks

and individual IDs for every portrayed pedestrian,

allowing the data to be used for tasks like object

detection (bounding boxes), semantic segmentation

(pixel masks) or instance segmentation (pixel masks

and IDs). In addition to the dataset itself, we provide

depth maps generated from the stereo images and the

stereo video sequences from which the images of the

dataset were selected.

2 RELATED WORK

Since the popularization of neural networks for object

detection, many datasets with annotated pedestrians

have been published, either explicitly for the task

of pedestrian detection or as part of complete scene

segmentation.

Cityscapes [9] is a widely used dataset for urban street

scenes. Captured with a stereo camera setup on a car

in 50 different cities, it consists of 25000 images, out

of which 5000 are provided with fine-grained semantic

labels and 20000 are coarsely labelled. The depicted

classes include persons, cyclists, cars and other mo-

torized vehicles, while pixel-level semantic labels and

instance IDs enable the evaluation of object detection,

semantic- , instance- and panoptic-segmentation tasks.

KITTI [10] is a popular driving dataset similar to

Cityscapes in terms of portrayed environments, of-

fering benchmarks for different object detection and

segmentation tasks. The capture setup consists of a

stereo camera in addition to a 360◦ laser scanner and

GPS, providing video sequences and ground truth for

the evaluation of tasks like detection, segmentation,

sceneflow, depth estimation, odometry, tracking and

drivable road detection.

The Caltech Pedestrian Detection Benchmark [11]

consists of about 250,000 images frames of regular

traffic in an urban environment. A total of 350,000

bounding boxes label circa 2300 unique pedestrians,

but no annotations in terms of pixel-level segmentation

masks are included.

These datasets are a subsample of publications that

focus solely on urban environments and roads, making

them unsuitable for the magnitude of industrial and

agricultural commercial vehicles.

In contrast, the NREC Agricultural Person-Detection

dataset [12] provides a large number of images for

off-road pedestrian detection in apple and orange

orchard rows, taken from a tractor and a pickup truck.

Pedestrian poses include non-standard stances found

typically in the orchard environment, only pedestrian

bounding boxes are included however, making them

incompatible for semantic- and instance segmentation

tasks.

In total, the currently published datasets do not allow

for comprehensive benchmarking on different pedes-

trian recognition tasks in off-road-environments. Our

presented work offers manually generated ground truth

segmentation masks besides bounding boxes, displays

a larger and more varying number of environments and

includes poses typical for the corresponding off-road

environment as well as stances that are completely

arbitrary and unusual, filling a gap in published datasets

not yet covered.

Dataset Number of Images Depth Segm. Masks Environment Poses

KITTI 14,999 LIDAR X Urban Std. Urban

Cityscapes 25,000 Stereo X Urban Std. Urban

Caltech 39,702 - - Urban Std. Urban

NREC 23,950 Stereo - Agricultural Std. Agricultural

OPEDD 1,018 Stereo X Multiple Off-Road Wide Range, Unusual

Table 1: Comparison of contents of datasets for pedestrian detection.
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Figure 2: Our dataset shows different types of occlusion in varying environments, including naturally occurring

obstacles (left: vegetation, center: construction materials) and unusual objects (right: umbrella).

3 CHARACTERISTICS OF OFF-ROAD

ENVIRONMENTS

Off-road, agricultural or rural environments show sev-

eral characteristics that differentiate them from urban

surroundings in a number of ways:

Visuals The largest differences are recognizable in

the visual domain. In urban images, the background

is mostly characterized by buildings and paved roads,

yielding a colour spectrum dominated by greys. In con-

trast, off-road environments can depict a multitude of

backgrounds. Agricultural and wooded surroundings

usually show ample vegetation with a colour spectrum

controlled by greens and browns, while construction

sites display a mix of urban and non-urban components.

In terms of texture, backgrounds dominated by vegeta-

tion show heavy textural repetition. Moreover, Tabor et

al. [13] have shown that the gradient orientation align-

ment is very distinct between the different types of en-

vironments.

Composition In urban settings, pedestrians are one

visually distinct object class out of many, including

cars, cyclists, trucks and many more. In off-road en-

vironments, pedestrians tend to appear as much more

strongly separated objects.

Occlusion In surroundings dominated by vegetation

partial occlusion of persons by leaves, grass or branches

is very common. Examples are people harvesting fruit

in orchards or a person standing in field crops, having

parts of the lower body obstructed. Additionally, the

boundary of occlusions is often much fuzzier than in

the case of occlusions by e.g. cars in the urban setting.

Poses Due to the nature of city scenes, datasets for

pedestrian detection in urban environments show per-

sons predominantly standing or walking upright. Addi-

tionally, because the data is usually captured from a ve-

hicle driving on the road, most pedestrians are located

on the lateral edges of the image, with persons only

directly in front of the camera if the data-capturing-

vehicle is positioned in front of a cross- or sidewalk.

Contrary to that, many agricultural or industrial scenes

show persons in unusual and more challenging poses:

Often the person is seen working in a crouching or bent

position and limbs extended in differing ways are com-

mon. Due to the hazardous environment on construc-

tion sites, the vehicle could encounter people lying on

the ground. In general, off-road scenes display a much

larger variety of poses than the average urban scene.

Many of these difficulties are addressed in our dataset,

described in the following chapter.

Figure 4: Histogram of distances of the portrayed

pedestrians to the camera.

Figure 3: Special attention was paid to capture a wide range of poses not usually encountered in urban driving

datasets. Left: Handstand. Center: Jumping with extended limbs. Right: Head covered with clothes.
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Task Implementation Trained On AP50 AP75 AP

Instance Segmentation Mask R-CNN COCO 0.6831 0.4355 0.3935

Instance Segmentation Mask R-CNN COCO + Ours 0.80031 0.4880 0.4500

Object Detection YOLOv3 COCO 0.5666 0.3966 0.3437

Table 2: Test-set results on object detection and instance segmentation tasks with Mask R-CNN and YOLOv3.

4 DATASET

4.1 Data Capturing

We record all sequences of our dataset using a Stereo-

labs ZED Camera [14]. The stereo camera has a base-

line of 120mm and is able to capture video sequences

with a side-by-side output resolution of 4416x1242 pix-

els at 15 frames per second. In order to prevent com-

pression artifacts, which can impair detection perfor-

mance [15], the video sequences are captured with loss-

less compression.

Figure 6: Histogram depicting how many pedestrians

are visible in the images.

Besides rectifying the images, the ZED camera also

outputs depth maps from stereo for every frame. Data

was captured in short video sequences of 1 to 50 sec-

onds with a framerate of 15 Hz.

Environments We capture data in different locations

to cover a broad range of possible ADAS application

scenarios: Meadows, woods, construction sites, farm-

land and paddocks.

While capturing, emphasis was laid on covering many

scenarios that complicate pedestrian detection in off-

road environments.

Occlusions In all of our environments, occlusion hap-

pens with locally characteristical obstacles like grass,

leaves, field crops, construction materials or fences, as

well as more unusual barriers like stone walls, garbage

bins or objects held by persons (umbrellas, paper files).

Examples can be found in Fig. 2. Moreover, we took

care to include many instances of person-to-person oc-

clusion, oftentimes by a pedestrian standing close to the

camera.

Poses Our dataset shows a variety of uncommon and

challenging poses including people doing handstands,

lying on the ground or on objects, lying on the back or

on the side, sitting, crouching or bent over, limbs ex-

tended as well as running and jumping.

Composition Special attention was paid to have mul-

tiple positions in the image covered by pedestrians, to

avoid the urban situation where persons are located

mainly at the sides. Additionally we vary the number

of persons, see Fig. 6, and the distances they appear

to the camera (Fig. 4). Most images are taken from

eye-level up to 1m above, facing forward, to simulate

taller vehicles like tractors or excavators, with images

showing a more downward facing angle.

Image Resolution 2208 x 1242

Stereo Camera Baseline 120mm

Number of video sequences 1004

Video Framerate 15 Hz

Compression Lossless

Number of Images 1018

Total pedestrian instances 2801

Table 3: Capturing and dataset statistics.

Lighting The light conditions vary naturally as well

as intentionally, with some images being taken against

direct sunlight or with people being hidden in the shad-

ows of walls or trees.

Miscellaneous Further variations include clothing,

helmets or gimmicks like clothes being thrown around

or people deliberately hiding.

Image Selection From the video sequences 1018

image pairs are selected. Since the images are often

Figure 5: Samples of images with difficult lighting conditions.
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Figure 7: Selection of environments contained in the presented dataset. Left column: Left frame of stereo image.

Center column: Corresponding segmentation masks. Right Column: Corresponding depth maps. Our dataset

shows a variety of environments and poses.

almost identical from one frame to the next, we make

sure to choose the next frame in such a way that suffi-

cient alteration is visible, often by clear repositioning

of persons or after a pan of the camera. The images

that make it to the final dataset are selected by hand.

Annotation The ground truth annotations of the

images were created using the VGG Image Annotation

Tool (VIA) [16], [17]. All visible persons were

annotated with a segmentation mask and given an

(imagewise-) unique ID. Since drawn masks some-

times overlap, the IDs are assigned in increasing order

with increasing depth of the person in the image. All

labelling information is stored in a json file that can

also be imported as a VIA project, allowing users to

easily modify and expand on the annotations. The

project files are available on the GitHub Repository

provided at the bottom. Additionally, we supply scripts

to extract segmentation masks and bounding boxes.

4.2 Related Detection Algorithms

Object Detection Object detection describes the task

of extracting bounding box coordinates and dimensions

of target objects in the image. We use YOLOv3 [2]

trained on the COCO dataset [18] to make a first rough

evaluation on our data. The CNN first predicts bound-

ing box coordinates from anchors, regresses an object-

ness score and classifies the image patch.

Instance Segmentation In contrast to plain object

detection, instance segmentation algorithms also out-

put pixel-level segmentation masks for every detected

bounding box. We apply Mask R-CNN [3] to our

dataset, first as-supplied ([19]) trained on COCO, then

fine-tuned on our training set. A region proposal net-

work first predicts possible objects and their bounding

boxes. Further branches then classify the object and

output corresponding pixel masks. The results of our

first evaluations can be taken from table 2. We compute

the average precision (AP) similar to [20], where the

number specifies the minimum intersection over union

(IoU) for a predicted bounding box or segmentation

mask to be assigned to a ground truth instance, e.g.

AP50 meaning a minimum of 50% IoU. In addition,

we average AP over multiple IoU thresholds from 0.5

to 0.95, simply denoted as AP, to avoid bias towards a

specific value [9], [18].
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5 CONCLUSION AND FUTURE

WORK

In this paper, we have introduced a new Off-Road

Pedestrian Detection Dataset (OPEDD). It consists of

1018 manually annotated images and displays persons

in scenarios broadly characterized as meadows, woods,

construction sites, farmland and paddocks. The people

portrayed show a wide variety of poses usually not

encountered in urban environments and corresponding

datasets. In all settings, it supplies a variety of types

of occlusions, compositions and lighting conditions.

Ground truth annotations are available as pixel-level

segmentation masks, with each person in an image

having an individual ID, making it possible to use the

dataset for object detection, semantic- and instance

segmentation tasks. For future work, we aim to add

additional annotations to our currently unlabelled

sequences. Furthermore, instead of labelling unique

images in the captured data, complete sequences could

be labelled for tasks like multiple object tracking.
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