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ABSTRACT 
Adaptive undersampling is a method for accelerating the rendering process by replacing the calculation of a 

volume integral with an interpolation procedure for a number of pixels. In this paper, we propose a method for 

accelerating the volume integral calculation for the rest of the pixels, i.e. those pixels for which interpolation 

cannot be done with sufficient accuracy. This method requires two passes through the input data. On the first 

pass, rendering is done into a low-resolution texture. At this stage, the values of the volume integral on a set of 

intervals of a given length are calculated and saved into a special G-buffer alone with the pixel’s color. On the 

second pass, these values are used to determine colors of the pixels. For those pixels whose result is not precise 

enough, the volume integral is calculated on one or several intervals, rather than the whole ray. The proposed 

method allows one to accelerate adaptive undersampling by a factor of 1.5 on average, depending on the input 

data. 

Keywords 
Volume rendering, Ray casting, Adaptive sampling. 

1. INTRODUCTION 
The main visualization method for volumetric 

scientific data (e.g. medical data) is direct volume 

rendering, which calculates the value of the volume 

integral for each screen pixel. This approach uses 

scanning of the large volumes of data efficiently 

using various transfer functions, but this process is 

computationally expensive. Its running time is 

proportional to the number of pixels in the 

visualization window, so its optimization for high-

resolution screens and devices with low computing 

power is a relevant problem. Examples of such 

devices include mobile phones, laptops and PCs with 

slow video cards, as well as VR devices, which 

require a minimum of 60 FPS while rendering into 

two cameras at the same time. 

The method is usually implemented on GPUs in 

conjunction with various optimization techniques—

discarding regions on which the transfer function is 

zero [LCDP12], varying the integration step 

[CCF15], pre-integrated volume rendering [KE04], 

and adaptive undersampling (or screen 

undersampling) [KRHH11]. Adaptive undersampling 

makes use of the coherency of the scene in order to 

minimize the number of volume integrals to be 

calculated to determine the color of pixels in the 

image. This is achieved by an iterative procedure. On 

the first iteration, only part of the pixels is sampled 

(one for each n × n block), and then an attempt is 

made to recover the colors of the rest of the pixels 

with the information thus obtained (for example, by 

interpolating bilinearly between the colors of 

adjacent pixels). If this does not produce the required 

image quality, then the set of pixels being sampled is 

expanded. In practice, most input data sets (including 

medical data) have high levels of spatial coherence, 

which means that after the first iteration, only around 
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otherwise, or republish, to post on servers or to 
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ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

1https://doi.org/10.24132/JWSCG.2019.27.1.1



10% to 20% of the total number of pixels need to be 

sampled additionally. Unfortunately, when the 

algorithm is implemented on a GPU, additional 

calculations for some pixels lead to increase of the 

processing time for all pixels of the image, as if the 

optimization is completely absent. This is because 

the pixels are processed concurrently in groups, and 

the time it takes to process a group is equal to the 

maximum of the times to process each pixel. Thus, if 

at least one pixel in the group calls for the calculation 

of a volume integral, then the whole group will take 

exactly as much time to process as if every pixel’s 

volume integral had to be calculated. 

In this paper, we propose a two-pass algorithm which 

solves the problem by making the calculation of the 

volume integrals on the second pass much faster for 

pixels whose colors cannot be interpolated. To do 

this, on the first pass, the domain of integration for 

the volume integral is broken up into M pieces, and 

the values of the integral on each piece are saved into 

the G-buffer. On the second pass, the volume integral 

is calculated by summing its values on M pieces. 

These values are determined either by bilinearly 

interpolating the corresponding G-buffer values, or, 

if that is not possible, by integration. 

Below is an overview of related work (Section 2), 

followed by a discussion of what we consider to be 

our main contribution: a method for accelerating 

volume rendering by pre-computing the volume 

integrals on multiple intervals for part of the pixels 

(Section 3). We discuss the results in Section 4 and 

make conclusions in Section 5. 

2. RELATED WORK 
The most flexible and widespread method for direct 

volume rendering is raycasting. GPU-based 

raycasting was proposed in [KW03]. It uses cube 

proxy geometry (the bounding box of the dataset) to 

determine the starting and ending points of the way. 

However, the method is slow, as it requires the 

volume integral to be calculated for every pixel by 

going down the whole ray from start to end with 

some step. Adaptive sampling can be used for 

raycasting optimization. This allows to obtain the 

output image by calculating the volume integral for 

only part of the pixels. This was first proposed in 

[Lev90], in which the volume integral is calculated in 

the corners of equally sized blocks into which the 

image is partitioned. If the values in these corners do 

not differ significantly, then the colors of the interior 

pixels of the block are interpolated bilinearly. 

Otherwise, the block is partitioned into four parts, 

and the procedure is applied recursively to each part. 

Kratz et al. [KRHH11] present a variation of Levoy’s 

approach for GPU-based rendering. They replaced 

the comparisons of the integrals at the blocks’ 

corners with a more sophisticated technique based on 

finite element methods (FEM) to achieve explicit 

error control. In their implementation, raycasting was 

done on the GPU, while the hierarchical data 

structures of the blocks (quadtree) were stored on the 

CPU. [KSK*16] and [BSSS18] examine methods for 

excluding artifacts which arise due to the fact that 

volume integrals are not calculated for all pixels. 

On a GPU, recursive division leads to multi-pass 

algorithms which turn out inefficient due to the 

architecture of a GPU. Thus, [L15] uses a two-pass 

algorithm, in which the colors of interior pixels are 

calculated either via bilinear interpolation or by 

calculating the volume integral. The two-pass 

algorithm is also used in [BFE16] in order to 

optimize raytracing on mobile devices. 

In [BSM18] the second rendering pass is accelerated 

by saving (on the first pass) volume integral values in 

the ray intervals, where the transfer function value is 

not zero. Unfortunately, this algorithm is effective 

only when number of intervals is relatively small. 

3. ALGORITHM 

3.1. Overview 
The volume integral for each pixel gives the fraction 

of light passing through the volume along the pixel’s 

view ray. The discrete form of this integral can be 

efficiently computed via compositing, which replaces 

a Riemann sum with a recurrence relation: 

 Ci+1 = Ci + (1 – Ai) ∙ ai ∙ ci. (1) 

 Ai+1 = Ai + (1 – Ai) ∙ ai. 

In the above equations, Ci is the composited color on 

the i’th step along the ray, Ai is the composited 

transparency, and ai and ci are, respectively, the 

transparency and color in the given sample. 

The proposed algorithm is based on two-pass 

adaptive undersampling. The set of pixels is 

partitioned into n × n blocks, and on the first pass one 

pixel from each block is processed. However, unlike 

the method above, our algorithm divides the interval 

of integration into M equal pieces, and the values of 

the integral over these pieces are saved into the G-

buffer along with the color of the pixel. 

More details concerning M value will be explained in 

section 4. In Figure 1, which depicts the 

 

  

Figure 1: The G-buffer contains the color (C) of the 

pixel and the values (Ii) of the volume integral on a 

set of equal length intervals. 
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case n = 2, the pixels being processed are marked 

with an A. The volume integral over the i’th interval 

is denoted with Ii (i < M). C and Ii are 4-component 

vectors, containing the colors Сi and transparencies 

Ai. Colors Сi contain three components: red, green, 

blue. 

The rest of the pixels are processed on the second 

pass. If the colors of their adjacent pixels are 

sufficiently close, then the color CP of the current 

pixel is interpolated bilinearly. Otherwise, it is 

calculated with the following recurrence relation, 

according to [HLSR09]: 

 CP
i+1 = CP

i + (1 – AP
i) ∙ Ai

*
 ∙ Ci

*
. (2) 

 AP
i+1 = AP

i + (1 – AP
i) ∙ Ai

*,    0 ≤ i ≤ M – 1. 

In the above equations, Ai
* and Ci

* are interpolated 

bilinearly from the values of Ai and Ci in the adjacent 

pixels if those values are close enough and are 

calculated from the volume integral otherwise. Thus, 

on the second pass the volume integral is only 

calculated over the part of the ray in the worst case, 

which significantly accelerates the generation of the 

whole image.  

 

Figure 2: The volume integral only needs to be 

calculated on the red interval. 

 

Figure 3: Left: the resulting image. Right: the pixels 

whose volume integrals were interpolated bilinearly 

are shown in green (91.7%); those for which the 

volume integral had to be calculated over one 

interval are shown in blue (5.7%); over two intervals, 

in white (2.1%); over three intervals, in yellow 

(0.1%); and more than three intervals in red (0.4%). 

The algorithm accelerates rendering by reducing the 

length of the interval of integration. In Figure 2 

(drawn in two dimensions for simplicity), an example 

is shown for the second pass of the algorithm for the 

case M = 3, where r1 and r2 denote the rays passing 

through pixels processed on the first pass. The 

integrals Ii
1 and Ii

2 have been calculated and are 

stored in the G-buffer. The current pixel being 

processed is on the ray r. The values of Ai
* and Ci

* 

for i = 0, 2 are interpolated from Ii
1 and Ii

2, while A1
* 

and C1
* are calculated via the volume integral I1

* on 

the given interval. Figure 3 shows the number of 

pixels in a real dataset for which the volume integral 

needs to be calculated on the second pass, and the 

number of intervals on which it must be calculated. 

The pixels whose volume integrals were interpolated 

bilinearly are shown in green. Those for which the 

volume integral had to be calculated are colored 

based on how many intervals it had to be calculated 

on: blue for 1, white for 2, yellow for 3 and red for 

more than 3. As can be seen from the figure 3, in 

most cases the integral only needed to be calculated 

over one interval, which is what makes the algorithm 

so efficient. The following is a detailed description of 

the algorithm. 

3.2. Algorithm details 
In the first pass, the algorithm fills the M parallel 

textures (in the G-buffer) which have a resolution n 

times less than the viewport (along each side). 

Algorithm 1 shows a pseudocode for each ray 

calculation. The function GetDistanceForStart(s, f) 

called in line 1 finds the distance from the starting 

point s of the ray to the point v where it first meets 

the domain where the transfer function is not zero 

(Figure 4). Here, f is a final point on ray, both s, f are 

3D vectors, step initialization is explained below. 

 

Figure 4: No integration is done over r1. Over r2 and 

r3 integration begins at the points marked with v. 

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

3



 

Figure 5: On the left, I1
0 ≠ I2

0; on the right, I1
0 = I2

0. 

Condition (A < 1) in line 18 means that total opacity 

has not reached 1, i.e. integration process along ray 

has not stopped at this point. Important detail: last 

integration calculation has another “lastStep”, not 

equal to “step” and will be explained in detail below. 

VolumeIntegral(v, step) is a function, calculating the 

partial sum along a ray, starting from point v with 

“step” length. We find the point v for two reasons. 

First, the probability that the first integrals I0 coincide 

on adjacent rays increases (see figure 5). Second, this 

helps remove ”woodgrain” artifacts, especially in 

cases where the derivative of the opacity function is 

high in a neighborhood of v. This is explained in 

more detail in [LJKY13]. If v is not found, the 

function returns −1 and the algorithm halts (as in the 

case of the ray r1 in Figure 4). Otherwise, the 

algorithm calculates the color of the pixel and the 

volume integral over intervals of equal length (r2). 

All calculations are done in the texture space of the 

3D texture which stores the data to be visualized. All 

samples are contained in a cube with sides equal to 1, 

so the longest ray in the texture space has length √3 

(the diagonal of the cube). This value is used to 

calculate the interval length in line 6, where M is the 

user-selected maximum number of intervals. The 

integrals are calculated in line 12 and are stored in 

the G-buffer; the integration itself can be done using 

any known method. The color of the pixel is stored in 

G[0].rgb in line 13. As can be seen from Figure 4, the 

last interval of integration can be shorter than the 

rest; this interval is processed in lines 18–21. 

On the second pass, the colors are calculated for 

those pixels which were not processed on the first 

pass. Shown below is the Algorithm 2 that does this. 

It uses data from the G-buffer which was created on 

the first pass for the four neighboring pixels. In 

line 2, the current pixel’s color is interpolated 

bilinearly if the neighbors’ colors are sufficiently 

close. 

Index i in Gi means neighborhood texel, calculated 

on the first pass. Index i can be in range [0…3], due 

to four neighborhood texel for current ray, calculated 

during second pass. Condition for simple bilinear 

interpolation is based on comparison maximum color 

difference for neighborhood pixels with some 

parameter delta. 

Algorithm 1 The first pass algorithm 

1: G[0].a = GetDistanceForStart(s, f); 

2: if G[0].a ≤ 0 then 

3:  G[0].rgb = BackgroundColor; 

4: else 

5:  G = 0, i = 0, C = 0, A = 0; 

6:  step = √3 / M; 

7:  imax = floor(length(f − s) / step); 

8:  lastStep = length(f − s) − step ∗ imax; 

9:  r = normalize(f − s); 

10:  v = s + G[0].a ∙ r; 

11:  while A < 1 and i ≤ imax do 

12:   G[i + 1] = VolumeIntegral(v, step); 

13:   C = C + (1 − A) ∙ G[i + 1].rgb × 

    × G[i + 1].a; 

14:   A = A + (1 − A) ∙ G[i + 1].a; 

15:   v = v + step ∙ r; 

16:   i = i + 1; 

17:  end while 

18:  if A < 1 then 

19:   G[imax + 1] = VolumeIntegral(v, lastStep); 

20:   C = C + (1 − A) ∙ G[imax + 1].rgb × 

    × G[imax + 1].a; 

21:  end if 

22:  G[0].rgb = C; 

23: end if 

 

 

Algorithm 2 The second pass algorithm 

1: if for all i, 

   maxj||Gj[0].rgb|−|Gi[0].rgb|| < delta then 

2:  C = BilinearInterpolation(Gi.rgb); 

3: else 

4:  A = 0, C = 0; 

5:  t = r ∙ min{Gi[0].a}; 

6:  v = s + r ∙ GetDistanceForStart(s + t, f); 

7:  for k = 1 … M do 

8:   if for all i, 

     maxj||Gj[k].rgb|−|Gi[k].rgb|| < delta/M then 

9:    I = BilinearInterpolation(Gi); 

10:   else 

11:    if k = M then 

12:     Length = step; 

13:    else 

14:     Length = lastStep; 

15:    end if 

16:    I = VolumeIntegral(v, Length); 

17:   end if 

18:   C = C + (1 − A) ∙ I.rgb ∙ I.a; 

19:   A = A + (1 − A) ∙ I.a; 

20:   v = v + step ∙ r; 

21:  end for 

22: end if 
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Figure 6: Calculating the starting point for 

integration. 

In line 6, the algorithm finds the first point along the 

ray where the transfer function is not zero. This uses 

the same GetDistanceForStart function as in the first 

pass, but in order to accelerate its execution the ray is 

cast from s + r ∙ min{Gi[0].a}, rather than from s (see 

Figure 6). The loop (lines 7–21) implements the 

recurrence relations in formula 2. The integral 

calculation function in line 16 coincides with the 

function used in the first pass. 

4. RESULTS AND DISCUSSION 
All tests were performed on a 3.4GHz Intel Core i7 

2600 PC with 4.0GB of main memory with NVidia 

GForce GTX 780 Ti graphics hardware with 

3072MB of texture memory and implemented using 

Unity3D, using OpenGL ES 3.1. Three CT data sets 

were used as testing data; their characteristics and 

screenshots are given in Figure 7. 

Table 1 contains the framerate achieved in 

visualizing the data sets. The volume integrals were 

calculated using the standard method [KW03] with ¼ 

of the voxel size as the step size. The bounding 

volume was chosen to be a box. The viewport was 

1200×900 pixels. The value of M was chosen as 8, 

which is the maximum possible size of the G-buffer 

on the video card used. The value of delta (see 

Algorithm 2) was chosen as 0.05. 

 

(a) Transparent head 

 

 

(b) Head with bones 

 

(c) Transparent lungs 

 

 

(d) Lungs with bones 

 

(e) Detailed lungs 

 

 

(f) Detailed lungs 

Figure 7: Data sets; resolution is 256×256×256 for 

(a)–(d) and 512×512×136 for (e)–(f). 

 

 

 

Data Set 
OpenGL ES 3.1 FPS 

B/A C/A C/B 
A B C 

(a) 32 72 118 2.25 3.69 1.64 

(b) 48 92 116 1.92 2.42 1.26 

(c) 34 68 112 2.00 3.29 1.65 

(d) 40 66 74 1.65 1.85 1.12 

(e) 18 32 50 1.78 2.78 1.56 

(f) 20 42 74 2.10 3.70 1.76 

Table 1: The framerate achieved in visualizing the data sets. 
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Figure 8: The number of intervals of integration per pixel for delta = 0.05, 0.01, 0.005 (left to right). Color key: 

green = 0 (bilinear interpolation), blue = 1, white = 2, yellow = 3, red = more than 3. 

 

 

Figure 9: left: The acceleration factor as a function of delta; right: The acceleration factor as a function of M. 

 

Table 1 is organized as follows: the first column lists 

the reference to the dataset from Figure 7, the 

columns labeled A, B, C contain the framerates 

obtained with the following optimization methods: 

A. No optimization. 

B. Two-pass adaptive screen sampling. 

C. Two-pass adaptive screen sampling plus 

partitioning the interval of integration into 

M = 8 pieces. 

The next two columns contain the acceleration 

factors achieved using, respectively, two-pass 

adaptive screen sampling and the proposed 

algorithm. The last column contains the acceleration 

factors achieved only by using the proposed 

algorithm. 

You can note from the last column of the Table 1 that 

proposed method, by itself, increases FPS by a factor 

of 1.5 on the data sets used. This factor becomes 

smaller if a significant number of rays end early (for 

example, for the bones see Figure 7 in screenshots 

(b) and (d)). The reason for this is that most intervals 

of integration are short and are harder to partition 

into smaller ones. 

The efficiency of the method also depends on how 

coherent the dataset is. The less coherent it is, the 

more pixels need to be processed on the second pass. 

This can happen if the value of delta is lowered. 

Thus, to a first-order approximation, the dependence 

on the data sets’ coherence can be replaced with a 

dependence on delta. Figure 8 shows the pixels 

processed on the second pass in visualizing data set 3 

with delta values 0.05, 0.01 and 0.002. (Blue pixels 

are those for which the integral had to be computed 

over one interval; white, over two; yellow, over 

three; and red, over more than three.) 

Figure 9 (left) shows the acceleration factor (relative 

to standard adaptive undersampling) as a function of 

delta. It can be seen from the graph that the 

efficiency of our method is at its maximum for 

medium levels of coherence. The reason for the 

decrease in performance on low coherence is that 

volume integrals need to be calculated for more 

pixels (red pixels in Figure 8). The decrease in 
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performance for high coherence is because a small 

number of pixels need to be processed on the second 

pass. 

C/B on horizontal axis shows how much rendering 

frame rate is increased (in times) when using 

proposed interval partitioning in a comparison with 

usual two-pass adaptive screen sampling algorithm. 

Figure 9 (right) shows the graph of the average 

efficiency of the method as a function of M, where 

the average is taken over data sets 1, 3 and 5. (Since 

the video card used allows only 8 elements in the G-

buffer, only one component was used for color in this 

case, which allowed two integrals to be stored in one 

G-buffer, effectively increasing the value of M to 

16.) As can be seen from the graph, changing M from 

8 to 16 can lead to a further increase in the 

algorithm’s performance—around 21% on average—

but given the shape of the curve, we consider it 

ineffective to increase M further. 

5. CONCLUSION 
We have proposed an algorithm which allows 

adaptive undersampling to be increased by a factor of 

1.5 on average. The algorithm is most efficient when 

the input data has medium coherence and the transfer 

function given excludes early ray termination. If 

these conditions are satisfied, the acceleration factor 

can exceed 2.5. This algorithm inherits the limitation 

of adaptive undersampling: the input data must be 

spatially coherent. 
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Figure 1: left: Wireframe representation of a given model. middle: We voxelize the space around the model.
One voxel on the lowest octree level is selected, based on the light position, and all potentially-silhouette (need to
be tested) and silhouette edges (guaranteed to be silhouette) can be collected by ascending the octree hierarchy.
right: Red coloured edges are those that are a part of the silhouette after testing the set of potentially silhouette
edges (all red and black ones). Only a small subset of model edges need to be tested, which considerably reduces
the computational complexity.

ABSTRACT
In this paper, we present a novel approach for accelerated silhouette computation based on potentially visible sets
stored in the octree acceleration structure. The scene space, where the light source can appear, is subdivided into
voxels. The octree voxels contain two precomputed sets of edges that potentially or always belong to the silhouette.
We also propose a novel method of octree compression for reduction of the memory footprint of the resulting accel-
eration structure. Using our novel technique we were able to considerably decrease the computational complexity
of finding the silhouette and reduce its sensitivity to the number of edges.

Keywords
Silhouette Extraction, Octree, Compression, Shadow Volumes

1 INTRODUCTION
Solving surface visibility from a light source (or an-
other point in space in general) is a very fundamental
problem of computer graphics. Determining, whether a
point on a surface is lit from a point light source has
been subject of research for decades, as documented
by Woo and Poulin [Woo12]. Over the course of his-
tory, two major techniques were developed to address

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

this problem in the field of rasterization – Shadow
Maps and Shadow Volumes. Although the majority
of the derived methods of the above mentioned tech-
niques are based on Shadow Maps, Shadow Volumes
still provide an important option for scenarios requir-
ing sample-precise shadows, which can be problematic
when Shadow Maps are involved due to their discrete
nature and limited resolution.

Crucial part of the algorithm of Shadow Volumes is sil-
houette extraction, i.e. finding the subset of edges that
have both visible and non visible triangles connected
to them from the light’s perspective. Such edges are
subsequently extruded as the shadow volume side and
rendered into the stencil buffer on the GPU. Usually,
all the edges are tested during the rendering of a single
frame to determine whether they get extruded or not.
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In this paper we focused on improving the silhouette ex-
traction performance of the Shadow Volumes by reduc-
ing the number of edges that need to be tested during
the Shadow Volumes rendering of an arbitrary triangle
soup. Edge indices are stored in an octree-like structure
created by voxelizing selected scene space. This oc-
tree is later traversed by the GPU to acquire two sets of
edges – one set that requires further testing (potentially
silhouette edges, PE), the second set is known to be sil-
houette (silhouette edges, SE) and edges inside the set
are extruded immediately.

The remainder of the paper is organized as follows.
Section 2 outlines the previous work, focusing on
Shadow Volumes and silhouette extraction. The
following section 3 introduces the reader to the details
of our algorithm, being divided into octree construc-
tion, compression and traversal. Section 4 discusses
implementation details and problems. Performance and
practical analysis as well as limitations are described
in Section 5. Finally, we conclude our findings and
results in Section 6.

2 RELATED WORK
Shadow Volumes were first introduced by
Crow [Crow77]. The core of the algorithm is
casting rays from camera to the scene and increment-
ing/decrementing their value on intersection with
extruded shadow volume sides. When geometry is hit
by the ray, the fragment is considered lit or shadowed
based on the ray value being zero or non-zero. The first
GPU implementation came with the introduction of
stencil buffer by Heidmann [Hei91]. The drawback of
this method is that when the camera is in the shadow,
the stencil test must be inverted. The camera problem
of Heidmann’s method was solved simultaneously
by Everitt and Kilgard [Eve02] and by Bilodeau and
Songy [Bil99] in the so-called “z-fail” method, which
reverses the stencil test, but requires the shadow
volumes to be capped. In order to draw an arbitrary
triangle soup, Kim et al. [Kim08] introduced the
concept of edge multiplicity, so a single quad cast from
an edge is rendered multiple times.

Silhouette extraction methods can be divided into 3 cat-
egories – image space, object space, and hybrid (com-
puting in object space, displaying in image space), as
categorized by Isenberg et al. [Ise03]. The majority of
these methods were used to provide object contours for
non-photorealistic rendering, but some of the object-
based method are interesting from the perspective of
Shadow Volumes. Johnson and Cohen [Jon01] use a
hierarchy of normal cones to determine edge visibility.
Olson and Zhang [Ols06] propose octree as an acceler-
ation structure to store Hough transform of a 3D mesh.
Gooch [Goo99] and Benichou and Elber [Ben99] de-
signed a preprocessing method based on projecting face

A

B

C

D
light plane

triangle plane

Figure 2: Silhouette edges. Edge AB is not a silhouette
edge because triangles ABC and ABD do no lie on the
same side of the light plane. Two triangles partition the
world space into four subspaces.

normals onto a Gaussian sphere. However, all of these
methods are limited to 2-manifold objects.

With the introduction of programmable graphics
pipeline, research focused more on the ad-hoc algo-
rithms, mostly due to the fact that the new pipeline
provided mechanisms to determine the silhouette
during the rendering process with zero or minimal
preprocessing. Silhouettes can be computed in almost
any programmable shader stage, specifically vertex
[Bren02, Mil14], geometry [Sti07], requiring practi-
cally no preprocessing, tessellation [Mil15] or compute
(OpenCL) [Peč13] shaders.

Gerhards et al. [Ger15] use BSP trees constructed from
per-triangle frusta. Fragments are then tested against
this structure, whether they are lit or shadowed. This
method, however, needs to rebuild the data structure
each time the light source or geometry is changed by
– even a rigid – transformation.

The proposed method does not require rebuilding (un-
less the light source moves outside the targeted space)
and it is also invariant to affine transformation – the
correct voxel in the octree is selected by applying an
inverse transformation of the object to the light source
and then traversing from the corresponding voxel.

3 ALGORITHM
Our algorithm is based on the concept of the potentially
visible set (PVS) introduced by Airey et al. [Air90]. It
precomputes the results of brute force silhouette extrac-
tion for a discrete set of world-space voxels. The brute
force extraction process therefore does not need to be
executed on all scene edges but only on a small subset
that cannot be precomputed, see Figure 1. This section
will describe the construction of a compression struc-
ture for storing the PVS in an effective manner. It will
also describe the modified extraction process.

The algorithm can be broken down into two major
stages: construction and traversal, but first let us sum-
marize the brute force silhouette extraction process.
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Figure 3: The algorithm supports custom scales of the
scene bounding box. If a larger scale is selected, the
light can be moved farther from the model. The image
shows three different scales with the same voxelization
level (in this case 2 levels of octree, 4×4×4 voxels).

3.1 Silhouette Extraction
A model is composed of vertices that are connected by
edges/triangles. An edge is considered as belonging to
the silhouette if all triangles adjacent to this edge lie
on the same side of the light plane, see Figure 2. In
general, from 1 to N triangles can be connected to a
single edge. Kim et al. [Kim08] proposed a technique
that computes the difference in the number of triangles
on the left and the right side of the light plane called
edge multiplicity m ∈ [−N,N].

Without loss of generality, edges with more then 2 con-
nected triangles can be transformed into several simpler
edges by splitting and duplicating. If an edge is con-
nected to only one triangle, it is considered a silhouette
edge in every case. Our method works with edges hav-
ing maximum 2 adjacent triangles connected to them.

3.2 Octree Construction
We base the voxelization space on scaling the scene’s
axis-aligned bounding box (AABB) by a user-specified
scaling factor, as seen in Figure 3. The scaling factor
depends on the user’s needs and on the type of the scene
(closed-space scenes will do even with factor 1, open
scenes or simple models require larger factors, around
5–10).

This scaled bounding volume circumscribes all the pos-
sible light positions. The user can then choose the max-
imal level of the octree hierarchy, see Figure 4. AABB
scaling and maximum octree depth define the octree
granularity and voxel size on the deepest level.

We found that depth level of 3–5 is suitable in most sce-
narios. Larger scales tend to consume too much mem-
ory (as described in Chapter 5.1, each octree level in-
creases the amount of memory by a factor of 4). The
next step is to find two sets (SE and PE) for every
voxel in the lowest level of the octree. The algorithm
tests each edge against all voxels on the lowest level

Figure 4: The algorithm supports a custom level of vox-
elization. The image shows three levels (1,2,3) of depth
of the octree for the same scale of the scene bounding
box.

no silhouette silhouettepotential silhouette edge triangle

Figure 5: Overview of the proposed approach in 2D.
The image shows voxels for one edge. The left side of
the images shows the first step of the voxel building al-
gorithm. Voxels are classified into 3 categories – no sil-
houette, silhouette and potentially silhouette. The next
step is to propagate this classification into higher levels
(middle image). The right image shows the improve-
ment of compression stage of building algorithm. The
octree is transformed into a tree with nodes containing
many different subsets of edges defined by bitmasks.

Node

Silhouettes

Potential silhouettes

Children

Figure 6: Node data in 2D space for the 8-bit compres-
sion. One node contains sets of silhouette and poten-
tially silhouette edges, each addressed by its bitmask
value. If a set shape does not intersect the triangle
planes of an edge, the edge is stored into the set. The
largest set shape is chosen if multiple set shapes do
not intersect the triangle planes. A node also contains
pointers to child nodes.

of the octree, as seen in Figure 5. If any plane con-
structed from the triangles adjacent to edge E intersects
the voxel, E is considered a PE. If none of the triangle
planes intersects the voxel and multiplicity of E is non-
zero, it is stored among SE (set of silhouette edges).
The multiplicity can be computed against any point in-
side the voxel because the whole voxel lies within one
of the four subspaces, as demonstrated in Figure 2.

The next step is to propagate PE and SE into higher
levels of the octree. An edge can be propagated to
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A and B only A only B

A
B

Figure 7: The first two images show two edges – A and
B. Each edge partitions all voxels into voxel shapes for
silhouette case and of potential silhouette case. If some
voxel shapes are the same for both edges, the edge sub-
sets of those voxel shapes contain both edges (middle
image). Otherwise, voxel shapes contain only one edge.

the parent node if it is contained in all of its children.
Both types of edges are propagated. The propagation
process already significantly reduces the memory foot-
print. We refer to this propagation scheme as “basic
compression”.

The last optional step in octree construction is advanced
compression. It extends the propagation step by allow-
ing edges to be moved to their parent node even if not
all of them are contained in all of its children. These
sets of edges are marked with bitmasks corresponding
to voxel shapes, see Figure 6. Every subvoxel in these
voxel shapes contains the same set of edges, see Fig-
ure 7. We call this extended propagation “8-bit com-
pression” as we propagate the edges from children to
parent and the bitmask is 8-bit integer. Edges can also
be propagated into grandparents (from 64 sibling vox-
els) which can further improve the compression ratio.
This compression scheme is referred to as “64-bit com-
pression”. Octree node data are shown in Figure 6.

3.3 Traversal
The traversal part of the algorithm has to copy SE and
PE subsets from the octree into two continuous buffers.
The light position determines which subsets of edges
have to be copied to the linear buffers, see Figure 8.

Figure 8: 2D illustration of all edge subsets that contain
silhouette edges for a given light position. The hierar-
chy level is 3. The union of all subsets forms the set of
all precomputed silhouette edges. Similar subsets are
selected for all potentially silhouette edges. Note that
some subsets could be empty. A single edge is con-
tained only in one of the subsets (the largest possible).

The PE linear buffer is in the final part of the brute force
silhouette extraction process. However, the PE set is

very small compared to the set of all edges which leads
to performance improvement.

4 IMPLEMENTATION
We implemented the whole process both on CPU and
an GPU (OpenGL). The construction process relies on
two compute shaders: the first one is used to load the
data to the octree, the second one for propagation to
upper levels.

Hypothetically, every voxel of the octree could contain
more than 50% of all the edge indices in both PE and
SE. Provided we use Crytek’s Sponza model as the ref-
erence which breaks down to 431246 edges with max-
imum multiplicity of 2, octree maximum depth of 5
(85 = 32768 leaf voxels) and indices stored as 32-bit in-
tegers, we may end up, in theory, with more than 50GB
of memory. For larger models, adding edges to the low-
est level of the octree runs in batches. The batch size is
limited by the GPU memory size.

Usually, not all edges get stored neither in PE or SE
buffer of a voxel, thus their size can be limited to a per-
centage of total edge count (we found that a factor of
0.8 works for most cases and can be seen for example
in Table 1). This increases the batch size and speeds up
the building process.

Data are then copied back to the system memory. Be-
fore the edge propagation, which is also implemented in
a compute shader, the algorithm needs to sort the edges,
which is carried out on the CPU in parallel.

We first tried the compression as a multi-core post-
processing of the octree, but such implementation,
although parallelized, was 20 − 170× slower than
8-bit compression, based on particular scene. For the
8-bit scenario, we moved the advanced compression
to the compute shader which tests the edges against
octree voxels, because it is in this very step that the
bitmask is already known. However, porting the 64-bit
compression scheme to GPU seemed problematic as
the potential number of sub-voxels is 264, which would
lead to excessive memory footprint, thus we perform
the 64-bit compression as CPU post-processing.
Due to implementation reasons, compressed nodes
using bitmasks other than all-bits-set are located
only in max_depth-1 for 8-bit compression or
max_depth-2 for 64-bit.

During traversal, the algorithm first determines the
(X ,Y,Z) voxel coordinates within the octree from the
light position (flooring the floating point coordinates),
which are then converted to linear voxel index. If a
light source lies on the boundary between two or more
voxels, only one voxel is selected according to eq. (1)
where l is the light position and A and B are minimal
and maximal corners of the voxel:

lx ∈ [Ax,Bx)∧ ly ∈ [Ay,By)∧ lz ∈ [Az,Bz). (1)

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

12



The traversal process depends on the compression level.
For non-compressed and 8-bit compression scenarios,
we first traverse the octree and compute an exclusive
scan of sizes of all necessary sub-buffers, which serves
as the input to the second stage that performs the actual
data copy from selected subsets to two linear buffers,
one for PE, the other for SE. Traversal for 64-bit com-
pression splits the pre-processing and prefix scan into
two steps as the amount of sub-voxels increases to sev-
eral thousands. Splitting the stage also helps reducing
the count of the global memory reads.

5 RESULTS
Evaluation took place on the following test setup: Intel
Core i5 6500, 16GB of DDR4, nVidia GeForce RTX
2080Ti (11GB of GDDR6, driver version 419.17), Win-
dows 10 Pro x64. The test application was built using
Visual Studio 2015 x64.

5.1 Build and Compression Tests
We conducted comprehensive build tests on the
Šibenik, Conference, and Sponza scenes. The aim was
to evaluate the building time and the size of the octree
structure, based on the octree deepest level, size of the
voxelization area, and compression type.

Tables 1, 2, and 3 show the performance evaluation of
the building process under various octree settings, with
respect to the selected light source position inside the
scene’s bounding box. We compared 3 types of the
build – with basic compression only (first two coloured
columns), 8-bit GPU compression (c8) and 64-bit CPU
compression (c64).

One of the first things the reader may notice is that 8-bit
compression on GPU performs actually faster than the
non-compressed version of the algorithm. This is due
to fact that GPU compression occurs in the very first
stage of the algorithm thus the following stages have
to process a smaller amount of data. However, the 64-
bit compression is performed as a postprocessing step
and it happens on the CPU, thus being very slow, even
though the algorithm was written using OpenMP. We
tested the 64-bit compression also on the AMD Thread-
Ripper system with 24 cores, which improved the 64-bit
compression build time by around 60%, but other two
methods performed significantly slower, probably due
to different architectures of the two processors.

It can be seen that the amount of memory required to
store the octree increases with a factor of 4 with each
octree level, but also the average amount of extracted
SE increases by around 10% and the average number
of PE that needs to be tested is almost halved with in-
creasing octree depth, for each of the tested scenes.

This test, however, shows the biggest weakness of the
algorithm, the memory consumption which, for a par-
ticular model, is strongly dependant on the algorithm’s

settings. For practical use, the 8-bit compression
scheme seems to be the the best choice, in terms of
both the building speed and the size of the resulting
octree structure.

The memory consuption can be approximated using
eq. (2), where S is an approximation of the resulting
size of the octree structure in MB, e is the number of
edges in millions, d is octree depth and c is compres-
sion ratio:

S(e,d,c) = e ·8d ·Vd · c (2)

Based on the results in Tables 1, 2, and 3, we estimated
the average compression ratios to 0.32 for 8-bit com-
pression scheme and 0.11 for 64-bit scheme by divid-
ing the compressed octree size with non-compressed
octree. Values Vd define the approximate size of a sin-
gle voxel per 1 million edges. These values were calcu-
lated as Vd(d,e) = Sm/8d/e, where Sm is the measured
size of non-compressed octree. Values obtained by this
equation are V3 = 0.93, V4 = 0.53 and V5 = 0.30.

The average relative deviation of eq. (2) is 6%.

5.2 Silhouette Extraction Tests
We compared our new method (with 8-bit compression)
to a brute-force compute shader implementation of sil-
houette extraction, based on an OpenCL implemen-
tation and multiplicity theorem described in [Peč13].
Both methods output edge indices as their result. For
this test, we compiled 26 models in total, mixing pop-
ular models (Sponza, Šibenik, Buddha, Conference,
Gallery, Bunny1) with two types of synthetic scenes
that we created – the first type were scenes consisting
of uniform grid of increasing amount of spheres, having
33750 to 1574640 edges. The second type consisted of
randomly positioned spheres differing in numbers, hav-
ing 124200 to 933120 edges. We evaluated our algo-
rithm with two levels of octree depth (3 and 5) posing
as best and worst case, and scene scales 1, 2, 4, 8, and
16.

In a single test run, we moved the light source through
the octree volume in a 10× 10× 10 grid, both for our
method and the brute-force approach. From each light
position we evaluated the traversal time as average of
5 repetitions. In total, we made 75000 measurements
in each scene: 50 000 for our approach and 25 000 for
bruteforce method. As mentioned above, we tested 2
octree levels; that is why our method has twice as many
measurements per scene.

The result can be seen in Figure 9. Our accelerated ap-
proach has reduced the sensitivity of the algorithm to
the number of edges, compared to the bruteforce ap-
proach. Our method performs always better on models

1 freely available at https://casual-effects.com/
data/
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Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 52 0.62 16 0.58 5 11.39 19668 16105 16.76 72.20
2 57 0.60 18 0.57 5 14.69 21586 15649 18.40 69.91
4 58 0.61 18 0.57 5 17.12 22088 15514 18.82 69.25
8 58 0.61 18 0.57 5 17.98 22179 15494 18.90 69.26

3

16 58 0.61 18 0.57 6 18.35 22147 15498 18.87 69.19
1 235 1.77 77 1.54 27 21.37 10291 18801 8.77 84.28
2 256 1.75 84 1.55 29 29.13 11359 18531 9.68 82.85
4 262 1.75 86 1.54 30 32.38 11610 18469 9.89 82.51
8 263 1.75 86 1.53 30 35.10 11688 18444 9.96 82.37

4

16 263 1.74 86 1.53 30 35.32 11690 18448 9.96 82.42
1 1022 7.67 341 6.82 127 62.17 5304 20405 4.52 91.52
2 1122 7.71 376 6.78 139 76.00 5876 20266 5.01 90.62
4 1147 7.78 385 6.78 141 81.60 6008 20246 5.12 90.45
8 1155 7.69 388 6.79 143 83.72 6038 20236 5.15 90.41

5

16 1155 7.75 388 6.77 142 86.69 6051 20237 5.16 90.39
Table 1: Build test of Sibenik scene, consisting of 117 342 edges. We evaluated the build times and resulting
octree size under various voxel sizes and scales. The 3rd and 4th columns contain results for octree build with
basic compression scheme. Columns tagged “c8” and “c64” show build times and sizes when using 8-bit or 64-bit
advanced compression schemes. The numbers in “Pot Avg” and “Sil Avg” columns show the average number of
PE and SE acquired during octree traversal, tested from each lowest level voxel. The second column from the last
tells the average amount of edges from the full edge count that needs to be tested, the last column describes the
average amount of SE acquired from octree as the percentage of all silhouette edges observed from light position
in the middle of each lowest level voxel.

Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 80 0.84 25 0.79 8 34.95 34338 19426 17.61 65.87
2 93 0.84 29 0.78 9 50.55 39952 18481 20.49 62.37
4 96 0.84 30 0.79 10 59.29 41323 18288 21.19 61.56
8 97 0.84 31 0.78 10 62.89 41656 18265 21.36 61.46

3

16 97 0.84 31 0.78 11 64.99 41794 18243 21.43 61.32
1 379 2.55 121 2.54 42 69.81 18675 23055 9.58 78.19
2 431 2.64 139 2.53 48 106.65 21857 22317 11.21 75.35
4 443 2.62 144 2.52 50 124.19 22595 22187 11.59 74.71
8 446 2.64 145 2.53 51 134.23 22783 22154 11.68 74.54

4

16 447 2.65 146 2.54 52 136.04 22832 22149 11.71 74.51
1 1786 10.66 581 8.80 209 150.24 9894 25738 5.07 87.29
2 2044 11.49 668 8.92 238 222.80 11698 25234 6.00 85.18
4 2102 11.12 687 8.61 245 265.10 12123 25151 6.22 84.69
8 2120 11.23 694 8.81 248 284.60 12219 25141 6.27 84.58

5

16 2121 11.28 694 8.96 249 291.80 12241 25135 6.28 84.56
Table 2: Build test of Conference scene, consisting of 195 019 edges. Check table 1 for column description.
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Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 192 1.56 60 1.40 19 270.59 83074 31640 19.26 58.98
2 202 1.57 63 1.38 20 332.78 86744 30845 20.11 57.30
4 205 1.59 65 1.37 20 361.90 87829 30661 20.37 57.08
8 206 1.62 65 1.37 21 373.43 88157 30644 20.44 57.08

3

16 206 1.60 66 1.38 21 379.24 88382 30618 20.49 57.02
1 893 5.31 289 5.10 96 586.34 44817 39567 10.39 73.72
2 930 5.36 302 4.62 101 705.98 47044 39029 10.91 72.58
4 943 5.40 306 4.62 102 783.30 47414 38933 10.99 72.34
8 946 5.42 306 4.64 103 819.03 47559 38906 11.03 72.34

4

16 948 5.41 307 4.61 103 837.29 47636 38899 11.05 72.34
1 4111 21.17 1359 15.45 498 1210.22 23895 45123 5.54 84.18
2 4305 21.37 1425 15.90 504 1517.91 25094 44867 5.82 83.47
4 4345 21.20 1438 16.18 522 1635.41 25321 44782 5.87 83.34
8 4351 21.25 1441 16.36 511 1735.49 25374 44819 5.88 83.30

5

16 4357 21.13 1443 16.26 519 1789.33 25376 44782 5.88 83.31
Table 3: Build test of Sponza scene, consisting of 431 246 edges. Check Table 1 for column description.
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Figure 9: Average extraction times for compilation of
26 scenes (sorted by the number of edges). Red line
represents bruteforce compute shader method, blue line
represents our new proposed method. The area around
the lines represents (+-) mean absolute deviation.

Compression Average
(ms)

Max Abs Deviation
(ms)

basic 0.098 0.011
8-bit 0.102 0.012

64-bit 0.134 0.013
Table 4: Comparison between compression levels on
Sponza scene. Average octree traversal time calculated
from 1000 different light positions in the scene and
maximum absolute deviation from the average.

having more than 200 000 edges and it is also more sta-
ble. Its average absolute variance is almost half, com-
pared to the bruteforce method.

We also evaluated the performance difference when us-
ing different compression ratios. We used the Sponza
model and moved the light source around in the same
way as described in the previous test. The results can
be seen in Table 4. The complexity of the 64-bit com-

Figure 10: One of the possible extensions to the algo-
rithm. Instead of using one hierarchical structure, the
algorithm would use two – one for the close vicinity
of the model and one for all the other space around.
The green part shows the hierarchical structure as pre-
sented, the orange parts is the second hierarchical struc-
ture. The second structure uses angles instead of voxels.

pression traversal outweighs its benefits in the form of
lower size, thus the 8-bit compression scheme seems to
be the best choice.
We can estimate the extraction time for brute force ap-
proach as tb = E ·K where E is the number of edges
and K is extraction complexity. Our method yields
tt = P ·E ·K +T where T is traversal cost and P is the
ratio of potential edges, which can be seen in 2nd last
column of Tables 1 - 3. Based on the build test results,
we estimated the P to be 0.2, 0.1 and 0.05 for octree
levels 3, 4 and 5. According to our measurements, T
was 0.075 ms in average and was not dependant on the
number of edges.

6 CONCLUSION
We presented a novel approach to accelerated silhouette
extraction by storing pre-computed PVS in an octree, as
well as novel octree compression schemes.
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The majority of the building process was implemented
on GPU using OpenGL and compute shaders. The
building process is reasonably fast when using 8-bit
compression scheme, as it processes less data then the
basic compression scheme. The resulting octree can be
stored in a file to avoid repetitive builds in subsequent
runs. Experimentally, we were able to reduce the oc-
tree size using 64-bit compression to around 12% of
basic compression scheme, but the compression itself
was used as a post-processing step on CPU, thus not
performing as fast as the GPU implementation. In terms
of performance, 64-bit compression also lagged behind
due to having a more complicated traversal. The 8-bit
compression scheme provides the best results in terms
of octree size and traversal speed.
Compared to the brute-force approach, our method is
less sensitive to the number of edges. It was also more
stable, in terms of maximal absolute deviation. The
biggest drawback of the method is its memory con-
sumption and also spatial limitation due to the nature
of voxelization. The method also would not work well
on scenes with dynamic geometry (f.e. morphing).
This method could be further improved by storing tri-
angle indices instead of edges, which, in theory, could
reduce memory footprint of the method even more. The
whole structure does not need to reside on the GPU
but can be streamed as needed. Future research could
also evaluate usage of homogeneous coordinates, which
may create hierarchy with unlimited spatial span, see
Figure 10.
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ABSTRACT
The procedural generation of data sets for empirical algorithm validation and deep learning tasks in the area of
primitive-based geometry is cumbersome and time-consuming while ready-to-use data sets are rare. We propose
a new and highly flexible framework based on Evolutionary Computing that is able to create primitive-based ab-
stractions of existing triangle meshes favoring fast running times and high geometric variation over reconstruction
precision. These abstractions are represented as CSG trees to widen the scope of possible applications. As part of
the evaluation, we show how we successfully used the generator to create a data set for the evaluation of neural
point cloud segmentation pipelines and additionally explain how to use the system to create artistic abstractions of
meshes provided by publicly available triangle mesh databases.

Keywords
Evolutionary Algorithms, Geometry Processing, CAD, CSG, Deep Learning

1 INTRODUCTION

A plethora of empirical algorithm validation and deep
learning tasks in the field of primitive-based 3D geom-
etry processing require a diverse and sufficiently large
set of 3D models as test or training input. For models
represented as triangle meshes, these data sets exist and
are available for free (e.g. ShapeNet [CFG+15], Mod-
elNet [WSK+14], ABC [KMJ+18], etc.). However, if
model representations based on a composition of geo-
metric primitives (eg. spheres, cylinders, cuboids, etc.
combined by Boolean set operations) are needed, data
sets are rare. For example, the ABC data set con-
tains 1000.000+ Computer Aided Design (CAD) mod-
els with primitive information but lacks cuboids as one
of the considered primitive types and also does not ac-
count for compositional information like the arrange-
ment of Boolean operators in a CSG tree.
An example use case where such data sets are needed
would be a CSG tree detection pipeline based on neural
networks (see [SGL+18] for example). It requires a 3D
point cloud as input and delivers a CSG tree that fits the
3D point cloud best, together with the parameters of
detected primitives. Traditionally, deep learning tasks
need huge training sets, which are in this case hard to
find or cumbersome to generate manually with off-the-
shelf CAD tools.
In order to fill this gap, we propose a CSG tree gener-
ator framework based on Evolutionary Computing that
transforms a triangle mesh model together with a set
of constraints (e.g. frequency distribution of primitive

types) into a CSG tree representation which combines a
set of fitted primitives with Boolean set operations (e.g.
union, intersection, difference). Note that the primary
goal here lies not in finding the CSG tree which matches
the input geometry as perfectly as possible but in gen-
erating a sufficiently accurate abstraction, allowing for
the generation of tens of thousands of models within an
acceptable time frame on currently available hardware.
Another, completely different use case worth to con-
sider is the artistic abstraction of geometry for visually
appealing renderings and animations appearing in en-
tertainment products and multimedia installations.
The proposed processing pipeline starts with sampling
the input model, resulting in a 3D point cloud that is
then clustered for better computational efficiency. For
each cluster, primitives are fitted. Which primitive
types to use for fitting is determined by sampling a user-
defined frequency distribution that specifies the desired
distribution of primitive types in the resulting CSG tree.
Then, per-cluster CSG trees are extracted using a spe-
cific variant of an Evolutionary Algorithm (EA). Fi-
nally, resulting CSG trees are merged to a combined
result.
In summary, this paper presents the following main
contributions:

• A highly flexible and configurable framework for
the generation of primitive-based mesh abstractions
that are represented as CSG trees.
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• An evaluation of three neural network architectures
considering the task of primitive detection from 3D
point clouds. Necessary training, validation and test
data sets were generated with our proposed frame-
work.

2 BACKGROUND
2.1 CSG Trees and Signed Distance Func-

tions
A CSG tree represents a 3D model as a hierarchical
combination of Boolean set operations and primitives
(e.g. cubes, spheres, cylinders, ...). Set operations are
thereby inner nodes of the tree whereas primitives are
always leaves. In our case, a primitive p is described by
a signed distance function fp, where the surface of p is
the zero set of fp:{x ∈ R3 : fp(x) = 0}.
The Boolean set operations are represented using min-
and max-functions [Ric73]:

• Intersection: p1∩ p2 := max( fp1 , fp2)

• Union: p1∪ p2 := min( fp1 , fp2)

• Complement: p :=− fp

• Subtraction: p1 \ p2 := p1∩ p2

The surface normal for a certain point x ∈ R3 can be
retrieved by ∇ fp(x).

2.2 Genetic Algorithms
A Genetic Algorithm is a population-based metaheuris-
tic for solving optimization problems and belongs to the
class of Evolutionary Algorithms. The concept is in-
spired by the biological phenomenon of natural selec-
tion. Initially, a randomly generated population of pos-
sible solutions is created and ranked using a problem-
specific objective function. In the following iteration,
the best solutions from the last iteration are selected
and changed using domain-dependent modification op-
erators (mutation and crossover). This procedure is re-
peated until a certain stop criterion is met (e.g. a certain
objective function value or maximum iteration count
has been reached). The extraction of a CSG tree from
a set of fitted primitives and a shape-describing point
cloud is a combinatorial optimization problem (see e.g.
[FFPF18]) which we solve using a Genetic Algorithm.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

3 RELATED WORK
3.1 Available Data Sets
Large model databases of triangle meshes exist
(ShapeNet [CFG+15], ModelNet [WSK+14]) but do
not describe distinct primitives. The data set introduced
in [KMJ+18] contains primitives but does not include
cuboids and CSG tree descriptions. For an exhaustive
overview of available data sets, see [KMJ+18].

3.2 Procedural Model Fitting & Modeling
Procedural Model Fitting (PMF) describes the task of
finding a geometric representation that fits a certain
input data set (e.g. a point cloud) as precisely as pos-
sible. The primitive generator proposed by Zou et al.
[ZYY+] takes point clouds as input and uses a variant
of the Iterative Closest Point method (ICP) [BM92]
to fit cuboids but is restricted to that single primitive
type. A constrained-based PMF technique employing
a Genetic Algorithm is proposed in [HSS17]. While
results look promising, all models are represented
using triangle meshes, which is not suitable for our
use case. Other approaches use Sequential [RMGH15]
or Markov Chain Monte Carlo [TLL+11] methods as
well as Reinforcement Learning [TKS+13, SGL+18].
Our approach is different in that we accept arbitrary
3D meshes (not just point clouds) as input and focus
on generation speed rather than precise fitting.
A related research field is Procedural Modeling
(PM). There, visual content (3D models, textures,
...) is generated based on specialized algorithms with
user-controlled parameters. In recent years, there has
been vivid research activity in the field of procedural
content generation using Machine Learning approaches
(PCGML). See [SSG+18] for a comprehensive survey.
For a survey on the procedural generation of complete
worlds (landscapes, buildings, creatures, ...), see
[FE17].

4 PROBLEM STATEMENT
The problem that is solved by our proposed generator
can be described as follows: Given a 3D model repre-
sented as a closed triangle mesh and a frequency dis-
tribution of primitive types initially defined by the user,
generate a CSG tree which matches the input mesh as
closely as possible while the set of primitives corre-
sponds to the selected distribution. Important to note is
that the computational effort of the generation process
should be kept low in order to allow for the creation of
large model data sets (> 10.000 objects) in a reasonable
time frame. Speed is therefore more important than vi-
sual quality.

5 CONCEPT
The proposed pipeline as depicted in Figure 1 starts
with a closed 3D triangle mesh together with a user-
defined primitive frequency distribution Hp as input and
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results in a CSG tree together with a set of primitives
and their parameters as output. Each of the following
sub sections is dedicated to a particular pipeline step.

Figure 1: Overview of the CSG tree extraction pipeline.
Parameters nt and mt are explained in Section 5.4.

5.1 Sampling
In this step, the input mesh is sampled resulting in a 3D
point cloud S. The sample points are later used to mea-
sure how well a CSG tree matches the mesh’s shape.
Each point in S receives a label that indicates whether
the point is located inside, outside or on the surface of
the mesh. See Figure 2 for an example.

Figure 2: Elephant mesh (left) and corresponding sam-
pling points with inside points in green, outside points
in red and on-surface points in white (right).

The points and their corresponding assigned labels are
retrieved using a special raycasting approach, in which
rays do not detect meshes for which the origin of the
raycast lies inside the mesh: First, random points within
the bounding box of the mesh are selected. These points
serve as origins for rays that are cast in random direc-
tions. If a ray hits the mesh, the hit point phit is added
to S with an "on-surface" label. If no mesh was hit dur-
ing the raycast, then any point along that cast outside
the bounding box can be marked as phit with an "out-
side" label. In addition, the ray’s origin porg is added to
S. Its corresponding label ("inside", "outside") is deter-
mined by casting a second ray back from phit through
porg and comparing the lengths of both rays. If the first
ray is longer, then the label "inside" is assigned, if it is
shorter, the label "outside". In case of equal ray lengths
the point is marked as "on-surface. If phit and porg are
the same, the origin is not added to S. The label of porg
is therefore always uniform regardless of the initial di-
rection of the raycast.

Figure 3: Explanation of the employed raycasting ap-
proach for label assignment by example: A torus is used
as mesh geometry. The two cases for an "inside" (bot-
tom) and an "outside" labeled point (top) are depicted.
The label "on-surface" is assigned in case of equal ray
lengths.

5.2 Clustering
In order to reduce the computational complexity of
primitive fitting and CSG tree extraction, a two-level
clustering approach is applied to the point cloud S ("in-
side", "outside" and "on-surface" points are consid-
ered). First, it is clustered into a set of nc clusters C us-
ing the k-means algorithm [Llo82]. Then, each cluster
is again clustered into mc sub-clusters using the same
technique. The method results in a set of nc ·mc sub-
clusters Csub, which is then the basis for primitive fit-
ting. Please note that mc and nc are user-controlled pa-
rameters.

5.3 Primitive Fitting
For each sub-cluster csub in Csub, a single primitive is
fitted. The primitive type is determined by sampling the
user-defined primitive frequency distribution Hp, which
assigns a probability to each supported primitive type
(sphere, box, cylinder, torus, cone, extruded pentagon
and triangle). This results in the primitive set Psub. See
Algorithm 1 for all details.
Important to note is that the primitive fitting method
does not strive for high matching precision but for fast
running times and high geometric variation.

5.4 Per-Cluster CSG Tree Extraction
For each cluster ci in C, all sub-clusters are merged re-
sulting in a set of primitives Pi and points Si. The CSG
tree extraction process is conducted for each cluster in
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Algorithm 1: The primitive fitting algorithm. The
method createP(·) generates a primitive instance
based on a primitive type (e.g. sphere or box), a
center position and a size value. The size value for
a sphere would be its radius. For primitives with
more than a single size dimension (e.g. boxes), each
dimension is set to the size value.
input : Set of sub-clusters Csub, primitive

frequency distribution Hp
output: Fitted primitive for each sub-cluster ∈Csub

Psub←{}
foreach csub ∈Csub do

dmin← minimum of the largest distances per
axes in csub

dmax← diameter(csub)
sizep← random(dmin,dmax ·0.5)
centerp← center(csub)
typep ∼ Hp
Psub← Psub∪ createP(typep,centerp,sizep)

return Psub

C and uses a Genetic Algorithm to solve the CSG tree
extraction problem.
Initialization. The GA initializes the CSG tree popula-
tion with randomly generated CSG trees that use prim-
itives from Pi. This is done exactly once while the fol-
lowing steps are executed repeatedly.
Ranking. All CSG trees in a population are ranked us-
ing the objective function

E(t)=σ(t)·
|Si|

∑
j=1


ft(si j) l(si j) = "on-surf."
|min( ft(si j),0)| l(si j) = "outside"
max( ft(si j),0) l(si j) = "inside"

,

(1)
where σ(t) = log2(size(t)) is a tree size penalty term,
ft(·) is the signed distance function of tree t and l(·)
assigns a label ∈ {"on-surface","outside","inside"} to
each point in Si. The GA-based CSG tree extraction
aims for minimizing Equation 1. See Figure 4 for get-
ting an intuition of the objective function.
Selection. After the whole population was ranked and
sorted in ascending order, the best (with respect to
their objective function value as defined in Equation
1) nt CSG trees are selected for the steps "Enhancing",
"Crossover" and "Mutation" (collectively referred to as
variation steps in the following). Variation steps are ap-
plied to each of the nt selected CSG trees mt times, re-
sulting in a constant population size of nt ·mt CSG trees
(see Figure 1).
Enhancing. The idea of the enhancement operator is
to improve the geometry score before the actual classic
variation operators (mutation, crossover) are applied. It
can be seen as a local hill-climbing strategy for faster
convergence.

Figure 4: The intuition behind the objective function
(CSG tree primitives in orange dotted lines, input mesh
in grey). The objective function measures the accumu-
lated absolute distance between the surface induced by
the CSG tree t and inside (green), outside (red) and on-
surface sampling points (white). Only those distances
from incorrectly classified points are added. This is the
case for points that are labeled as "outside" but are lo-
cated inside the CSG tree and vice-versa. Distances to
on-surface points are always added (added distances are
indicated by grey arrows).

It works as follows: Each CSG tree in the population
stores the sample point pw with the worst objective
function value. The enhancement operator modifies the
CSG tree in the following way: If l(pw) = "outside",
i.e., the sample point pw should be outside, but -as it
has a bad objective value- is wrongfully placed inside,
a randomly generated primitive is cut out by adding it
to the CSG tree together with a difference operation. If
l(pw) = "inside", then a randomly generated primitive
is added to the CSG tree together with a union opera-
tion. In case of l(pw) = "on surface", a randomly gen-
erated primitive is either cut out or added to the solid
induced by the CSG tree. In this case, operation choice
(cut out or add) is random with both operations having
a probability of 0.5.
Crossover & Mutation. The currently used crossover
and mutation operators for a particular CSG tree are
chosen randomly and applied to the CSG tree mt times
together with the enhancement operator. Each com-
bined enhancing, crossover and mutation operation re-
sults in a single new CSG tree. See Figure 5 and Figure
6 for an overview and description of used crossover and
mutation operators.
Termination. In order to determine whether or not the
GA should terminate, the average score of improvement
δE for GA iteration k

δ
k
E =

1
nb

[
min

0≤l<k

(
∑
t∈Tl

E(t)
)
− ∑

t∈Tk

E(t)
]

(2)

is evaluated, where Tk is the set of the nb best CSG trees
in the population of iteration k and min 0≤l<k(·) is the
best accumulated score reached so far in that particular
cluster. δ k

E is then compared to a pre-defined average
score threshold δ ts

E which is multiplied by the best av-
erage score reached. This checks whether δ k

E has im-
proved by a certain amount δ ts

E compared to the current
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(a) Crossover 1: Merges the first tree with a randomly chosen
sub-tree from the second tree.

(b) Crossover 2: Replaces a proper, randomly chosen sub-tree
from one tree with a randomly chosen, not necessarily proper
sub-tree (the sub-tree could also be the entire CSG tree), from
the second tree and adds a randomly chosen operation (union,
intersection or difference) to the parent of the sub-tree of the
first tree.

(c) Crossover 3: Selects a sub-tree randomly from both trees
and combines them arbitrarily using the union, intersection or
difference operator.

Figure 5: All used crossover operators.

best average score. If this is not the case, an iteration
counter is incremented. If the number of iterations sur-
passes a user-controlled upper bound, the algorithm ter-
minates.

5.5 Merge
The result of the steps described in Section 5.4 is a CSG
tree for each cluster in C. In order to combine these per-
cluster trees into a single one representing the complete
model, we apply a hierarchical merge scheme based on
the nearest neighbor information obtained by the clus-
tering mechanism. See Figure 7 for an explanation of

(a) Mutation 1: Replaces a randomly chosen primitive in the
tree with a new, randomly selected primitive.

(b) Mutation 2: Adds a new, randomly selected top-level oper-
ation to the tree. The old tree is one child, a randomly created
primitive the other one.

(c) Mutation 3: Replaces two primitives connected via union
with a single randomly created primitive.

Figure 6: All used mutation operators.

the algorithm by example. The proposed merge proce-

Figure 7: The hierarchical merge process explained by
example. Per-cluster trees are combined with close by
trees using the union operator. The process is repeated
until only a single tree is left.

dure combines per-cluster trees that are close by, which
has positive effects on tree editability and tree balance.

5.6 Blending
For certain use cases (e.g. artful model abstraction), ad-
ditional blending of neighboring per-cluster CSG trees
can be applied using the blending operator [Ric73]

b( ft1, ft2,x) = ft2(p) ·(1−h)+ ft1(p) ·h−α ·h ·(1−h),
(3)

where ft1 and ft2 are the signed distance functions
of the two trees that should be blended together,
h = min(1,max(0,0.5+ ft2(x)− ft1(x)

2·α )) and α is a user-
defined parameter controlling blending smoothness.
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See Figure 15 and 16 for a visualization of different
smoothness strengths. Note that a specific α-value is
not given since it depends on model size and thus is not
generalizable.

6 EVALUATION
The evaluation consists of two parts: The first part de-
scribes and explains the performance characteristics of
the generator framework and the second part details a
possible use case.

Parameter Name Value
nt 15
mt 70
nb 15
Hp uniform distribution
δ ts

E 0.2
Table 1: Parameters used throughout the evaluation.

6.1 Generator Framework
The generator framework was evaluated using a ma-
chine with an Intel(R) Core(TM) i7 CPU @ 3.06GHz
and 12GB of RAM. Experiments were conducted with
a varying number of clusters and different sample
point cloud sizes with seven 3D models taken from
the Google Poly data set [pol] (see Figure 14 for an
overview). See Table 1 for a list of parameter values
that were used throughout the evaluation and Figure 13
for an exemplary CSG tree result.
For a meaningful quality evaluation, an extra sampling
of the triangle mesh’s surface with a fixed number of
samples is conducted. This point set is then used to
evaluate the objective function for a specific CSG tree
resulting in its geometry score.

6.1.1 Number of Clusters
The impact of the total number of sub-clusters |Csub|=
nc ·mc for a fixed |S| ≈ 2000 on the running time is
shown in Figure 8 (nc = 5, mc ∈ {1,2, ...,7}). It is
clearly visible that running time and |Csub| have an ap-
proximate linear relationship. The number of fitted
primitives (which is equal to |Csub|) positively affects
the quality of the model approximation. As visible
in Figure 9, this effect weakens significantly starting
from |Csub| = 15. This is a good hint for a running
time/quality trade-off. Note that geometry scores are
not normalized and thus an inter-model comparison is
not possible. Figure 15 and 16 show results for models
Elephant and Giraffe for different values of |Csub|.

6.1.2 Point Cloud Size
We evaluated the impact of the size of the sampling
point cloud |S| on the running times and result qual-
ity using all seven models and 25 sub-clusters (nc = 5,

Figure 8: |Csub| and running times.

Figure 9: |Csub| and reached geometry score (smaller
score means better quality).

mc = 5). Results are depicted in Figure 10 and 11.
As expected, running times grow linearly with the num-
ber of sampling points. The results also show a sig-
nificant improvement of result quality until a sampling
point cloud size of ca. 1000−1500 points. This can be
explained by the geometric complexity of the input tri-
angle mesh: There is no positive effect if more samples
are used than are required for the representation of the
input mesh in all its details.

Figure 10: Sample point cloud size and running times.
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Figure 11: Sample point cloud size on the geometric
quality (smaller score means better quality).

6.2 Deep Primitive Segmentation
We tested the usability of our generator framework
in an evaluation of three different neural network
architectures for point cloud segmentation (PointNet
[QSMG16], PointNet++ [QYSG17] and PointCNN
[LBSC18]). Our main interest was their performance
(Accuracy and Intersection over Union (IoU)) in the
task of primitive segmentation (cuboids, spheres,
cylinders and cones) as well as their robustness to noise
and differences between training and test sets.
The training set consisted of 15.000 point clouds, each
representing 20− 80 primitives using 2048 points. In
order to evaluate the networks’ performance, its robust-
ness and ability to generalize, we used six different test
data sets, each containing 500 point clouds:

• No Rotation: Generated with the same parameters
as the training set.

• Rotation: Same as no rotation but with additional
random rotation.

• Reduced Points: Same as no rotation but contain-
ing only 50% of the points.

• Noise (low/high): Same as no rotation but with
added low (µ = 0,σ = 0.5, noise low) and high
(µ = 0,σ = 1.5, noise high) Gaussian noise.

• More Primitives: Same as no rotation but with an
increased minimum primitive count of 40.

The data generation was fully automated and took 5
days on the system described in Section 6.1. Please
note that instead of the usual generator output (a CSG
tree), a point cloud sampled from it was used here.
Table 2 lists the results. PointNet++ performs best by
far on all test data sets which makes it the preferred can-
didate for further research on enhanced primitive fitting
pipelines. Figure 12 shows the result of an exemplary
point cloud segmentation for all evaluated networks.

Figure 12: Segmentation results of example point
clouds. (left: PointNet, middle: PointNet++, right:
PointCNN). Red points indicate classification errors,
blue points denote correctly classified points.

Test set Metric PointNet PointNet++ PointCNN
No rotation Acc 42.91 99.46 36.32

IoU 18.66 98.73 15.28
Rotation Acc 39.15 93.41 34.41

IoU 16.27 80.38 14.55
Red. points Acc 42.83 99.45 34.25

IoU 18.59 98.34 13.51
Noise low Acc 42.88 99.47 35.23

IoU 18.70 98.65 14.80
Noise high Acc 42.72 99.30 35.23

IoU 18.67 97.54 15.06
More prim. Acc 43.21 99.60 42.16

IoU 19.32 99.43 19.88

Table 2: Results of PointNet, PointNet++ and
PointCNN on the different test sets (Accuracy/IoU).

A possible explanation for the very strong performance
of PointNet++ might be its approach of separating the
point cloud into local regions first. Using a density
adaptive layer, hierarchical features are then extracted
in a next step. This seems to be working especially well
for the task of classifying single, isolated primitives
which are located in regions of otherwise low point den-
sity. This is a task in which the other networks show
particularly low performance. The approach Point-
Net++ takes also proves to be robust against noise and
it shows good generalization performance when the test
set differs from the training set.

Figure 13: Extracted CSG tree for the giraffe model
with 5 clusters (see first column in Figure 16).

7 CONCLUSION & FUTURE WORK
In this paper, we described a flexible and fast genera-
tor framework for creating primitive-based abstractions
of triangle meshes. The proposed pipeline’s output is
a CSG tree which is extracted by a Genetic Algorithm.
As an intended use case, we presented an evaluation of
deep primitive segmentation networks which use train-
ing and test sets created by the generator.
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Next steps include the integration of PointNet++ as a
semantic clustering tool, replacing the currently used k-
means approach. In addition, more sophisticated meth-
ods for primitive fitting like RANSAC [SWK07] could
further improve resulting visual quality.
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(a) Elephant. (b) Giraffe. (c) Drill. (d) Wolf. (e) Cowboy. (f) Kettlebell. (g) Key.

Figure 14: All used models (©Poly by Google, CC-BY-License).

Figure 15: Extracted CSG tree models of the elephant model with different cluster sizes and blending strengths.

Figure 16: Extracted CSG tree models of the giraffe model with different cluster sizes and blending strengths.
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ABSTRACT 
Recently, due to the huge damage caused by fires in many countries in the world, fire detection is getting more 

and more interest as an increasing important issue. Nowadays, the early fire detection in video surveillance scenes 

is emerging as an alternative solution to overcome the shortcomings of the current inefficient sensors. In this paper, 

we propose a new video based-fire detection method exploiting color and motion information of fire. Our approach 

consists in detecting all moving regions in the scene to select then areas likely to be fire. Further, motion analysis 

is required to identify the accurate fire regions. The proposed method is evaluated on different video datasets 

containing diverse fire and non-fire videos. Experimental results demonstrate the effectiveness of our proposed 

method by achieving high fire detection and low false alarms rates. Moreover, it greatly outperforms the related 

works with 98.81 % accuracy and only 2 % of false positive rate. 

Keywords 
Video fire detection, background subtraction, color modeling, PJF color space, spatio-temporal analysis. 

1 INTRODUCTION 
Natural and human-instigated disasters threaten on the 

one hand the environment, people's lives and 

livelihoods on the other. Fire has been one of the most 

destructive disasters leading to enormous suffering 

and hazardous effects. The 2018 summer saw an 

unusually high number of fires in many countries of 

the world such United States, Sweden, Portugal, etc 

[Min18]. For instance, successively in 2017 and 2018, 

California was hit with the most destructive wildfires 
in its recorded history. According to the report 

presented in September 2018 by the California 

Department of Insurance, Carr Fire and Mendocino 

Complex are the largest ones [Eva18]. Carr Fire has 

destroyed 1 077 homes, 22 commercial structures, and 

500 outbuildings have been devastated with at least 

hundreds of people were killed. As reported in 

[Min18], the Directorate General of Civil Security and 

Crisis Management (DGSCGC) of the French 

Ministry of the Interior announces that forest fire is 

covering large areas in Europe. For example, more 

than 350 000 ha in Portugal in 2017 compared to 24 

500 ha in France. Therefore, there are significant 

social, economic and environmental impacts that the 

world is facing after fires, in spite the use of currently 

available fire sensors. These conventional sensors 

have been widely used for personal security and 

commercial applications. However, they usually take 

a long time to respond because carbon particles, 

smoke or heat require more time to reach the detector. 

Moreover, these traditional detectors are generally 

limited to indoor and are not applicable to outdoor in 
open large spaces such as forests [Çet13]. Most of 

them cannot provide additional information about fire 

location, dimension, etc [Çet13]. Face to the 

weaknesses of these sensors-based fire detection, fast 

and accurate fire detection methods are needed to 

protect both people and environment. Video Fire 

Detection (VFD) can be considered as a suitable 

solution especially with the propagation of video 

surveillance systems [ABe14, Ben16]. It has shown 

better flexibility, effectiveness and reliability 

[Han17], thanks to the capacity of image processing 
[Mej08, Gue11, Bou12] and of video processing 

techniques [Ela06, Kou12] to detect and analyze 

uncontrolled fire behavior in video surveillance scenes 

[ABe13, Ben13]. In fact, fire detection errors are 

reduced, and the response time can be immediate and 

faster than traditional sensors, as cameras do not need 

to wait for the smoke or heat diffusion. In addition, 

VFD systems are able to detect fire in large open scale 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 

and/or a fee. 
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areas providing crucial information to understand 

clearly the development of fire, such as size, growth 

and propagation [Çet13]. Consequently, VFD 

methods have received great attention by researchers 

in these recent years. They focus on developing VFD 

algorithms, based on exploiting fire characteristics to 

detect and analyze flames in consecutive video 

frames. In this context, our work is introduced. It aims 

to detect fire regions accurately by using color 

information and motion analysis. The main idea is a 
combination of background subtraction, to keep at the 

first stage only moving objects and a color model to 

identify then the possible fire regions based on PJF 

color space. Add to that, a motion descriptor, based on 

spatial and temporal analysis, is applied to filter out 

fire-colored objects. This paper is organized as 

follows:  Section 2, presents the related works of fire 

detection. A description of the new fire detection 

approach is presented in section 3. Section 4 provides 

experimental results and their discussions for system 

evaluation. Finally, conclusions are drawn in the last 

section. 

2 RELATED WORKS 
There are several methods in the literature developed 

for fire detection from video sequences. The current 

video-based fire detection systems use different fire 

features principally color, shape and motion. Based on 

these characteristics, the existing VFD systems can be 
classified into three categories: color-based, shape-

based and motion-based.  

Generally, almost all current methods employ color 

and motion information to detect the flame. The first 

works use purely color-based models. For instance, in 

[Che04], the RGB channels and the saturation values 

of the HSV color space are used. A set of rules is 

developed to determine fire pixels. These rules are 
based on the assumption that fire pixels have an 

intensity of red higher than green, and green higher 

than blue. However, this method does not well 

perform at distinguishing real fire regions from 

moving regions having similar fire color. To solve this 

problem, Çelik et al. in [Çel07] suggest to add the 

foreground object information to the statistical color 

model to detect fire pixels in RGB color space. This 

proposed fire detection method results in very high 

false alarms rates due to the brightness changes and its 

sensitivity to the tuning parameters employed in 
background subtraction. That is why, Çelik et al. 

propose in [Çel09] a chrominance model based on the 

YCbCr color space, since it can distinguish bright 

regions more than other color spaces. The authors use 

the mean intensity of the pixels and the difference 

between the Cband Cr channels to compose detection 

rules. Hence, their generic color model improves its 

robustness in segmenting fire regions. Motivated by 

the idea that YCbCr is better in discriminating the 
luminance from chrominance, the fire recognition 

system suggested in [bin15], is based on a set of rules 

developed to identify the fire pixel values of R, G, B, 

Y, Cb and Cr components in an image. Results show 

that combination between color spaces can better 

detect fire and confirm that YCbCr  color space is the 

best as to compare to RGB since it can separate 

luminance from chrominance more effectively than 

RGB. However, by applying this method, moving fire-

colored regions, in complicated environments such 
light reflections and brighter or darker environments 

are also detected. To deal with this issue, a different 

approach in [Zho15] consists in excluding color and 

investigating the shape features of flames and 

interference image. Eight candidate features are 

selected to establish weak classifier for each shape 

attributes. Results of this method show the 

inefficiency of applying just shape to detect fire 

regions. From these works, the majority of the one-

feature based methods achieves seldom satisfactory 

detection results. It may be concluded that obviously 
using one feature by itself cannot be reliable to detect 

fire. In fact, many natural objects sharing the same 

characteristics with flame are wrongly detected. 

Besides, changes in the flame appearance and 

environmental conditions (weather conditions, 

visibility and time of day) in the scene complicate fire 

detection. Thereby, a combination of characteristics is 

needed to detect fire accurately with lower errors rate. 

Some works such [Yan12] combines color and shape 

information, based on the assumption that fire 

randomly changes its shape during its propagation, to 
be able to distinguish fire from non-fire objects. In the 

same way, Xi Zhang et al. merge in [XiZ12] color and 

shape features. Fourier descriptors and edge corrosion 

model are used to recognize fire regions after its 

extraction by a mixture of Gaussian distributions in 

HSV color space. Another approach presented in 

[Cho10] adds fire’s texture to color and shape features. 

Assuming that fire regions have a significant amount 

of texture characteristics because of its random nature, 

the proposed method is useful to differentiate between 

fire and non-fire regions such as autumn color leaves. 

Although adding shape or texture information to color 
improves fire detection, many fire colored objects still 

detected. It can be observed that using color only or 

combined with shape is not enough owing to the 

presence of moving objects having the same color or 

shape features of fire such as red cars and persons with 

red clothes. To face this issue, the distinctive 

disordered movement of fire regions must be taken 

into account. It is a pertinent way of differentiating 

moving rigid objects from red colored regions to 

enhance the detection rate. As example in [Han17], a 

new method for detecting fire based on motion feature 
and color information is proposed. Motion detection 

using Gaussian Mixture Model (GMM) for 

background subtraction is applied to extract moving 

objects from the scene. Then, multi-color-based 

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

28



detection combining the RGB, HIS and YUV color 

spaces is employed to filter out non-fire regions. Once 

fire regions are extracted, foreground objects with 

similar fire colors or caused by color shifting are also 

selected. To remove these spurious fire-like regions, 

Kim Heegwang et al. propose in [Kim16] a different 

approach using color and motion estimation. It 

consists in extracting candidate regions in the HSI 

color space to estimate them using optical flow. Then, 

the motion vectors are quantized into eight directions 
and fire regions are detected when the amount of the 

quantized motion vectors exceeds a fixed threshold. 

The proposed system outperforms the color-based and 

the shape-based methods in terms of detection 

performance. As flame detection remains a 

challenging issue due to the fact that many natural 

objects have similar characteristics with fire, a new 

algorithm for video-based flame detection, which 

employs various spatio-temporal features such as 

color probability, contour irregularity, spatial energy, 

flickering and spatio-temporal energy is presented in 
[Dim12] by Dimitropoulos et al. They suggest adding 

in [Bar13] a new spatio-temporal consistency to 

combine it with the features extracted in [Dim12]. 

Texture feature in [Dim15] is also added to their fire 

detection system to increase its robustness. Thus, 

video-based fire detection systems using multi-

features of fire are more efficient than systems based 

on only one feature. Moreover, in [Fog15a], a multi-

expert system is developed by combining three 

descriptors based on color, shape and motion. A set of 

rules are implemented in the YUV color space to 

distinguish fire colored objects. Moving regions are 
detected as blobs via the scale-invariant feature 

transform (SIFT) descriptor. And, shape variation of 

the minimum bounding boxes which enclose the 

detected blobs is also used. Similarly, Li et al. design 

in [LiS17] a multi-attribute-based fire detection 

system which combines the color, geometric, and 

motion attributes. Two novel descriptors to 

characterize the geometric and motion features of fire 

are developed, the first one represents the outline of 

fire using contour moment and line detection and the 

other captures the instantaneous motion of fire with 
dense optical flow to well represent the inside and the 

boundary motions of fire. Despite of the capacity of 

these methods to detect fire regions, they still have 

limited application and lack enough robustness. They 

cannot effectively detect fire because of i) many 

natural objects sharing the same characteristics with 

the flame, ii) large variations of flame appearance in 

videos and iii) environmental changes that complicate 

fire detection, for example, shadows, clouds, sun 

shining, car lighting, light reflections or other kinds of 

lights can behave or flicker like fire [Bar13]. In order 

to overcome these limitations, a VFD method, which 
employs color information and motion analysis, is 

proposed in this paper. 

3 THE NEW FIRE DETECTION 

APPROACH  
By reviewing the above works, we aim to develop a 

video-based fire detection approach to reach high 

detection rate and low false alarms rate. The VFD 

method suggested in this work is basically composed 

of three phases as illustrated in figure 1. 

 

 

Figure 1. Flow chart of the presented fire 

detection method. 

Moving regions are firstly detected by using a 

background subtraction algorithm. Then, a novel 

model in PJF color space is developed to select fire 

candidate regions. Spatio-temporal analysis is finally 

applied in order to distinguish fire regions from other 

fire-colored objects. 

3.1 Moving regions detection  
Detection of moving regions is a necessary step in 

VFD. Since fire can be naturally interpreted as a 

moving object in the video, several methods such as 

the Gaussian Mixture Model (GMM) in [LiS17] 

[Han17] and frame differences in [Pel18] [See14] are 

used to detect moving regions. Nevertheless, the most 

popular VFD systems are based on background 

subtraction methods to identify moving objects by 
separating foreground from background in video 

sequences. Thanks to their simplicity, real time 

performing and low computational cost, the Gaussian 

Mixture Models are widely used to create background 

models and estimate moving objects. We adopt in our 

approach the Global Minimum with a Guarantee 

(GMG) algorithm from the GMM family [God12]. It 

employs probabilistic foreground segmentation 

algorithm that identifies possible foreground objects 

to track them later on. In fact, GMG combines 

statistical background image estimation, per-pixel 

Bayesian segmentation, morphological filtering 
operations like closing and opening to remove 

inherent noise, and an approximate solution to the 

multi-target tracking problem using a bank of Kalman 

filters [Kal60] and Gale-Shapley matching [Gal62]. A 

heuristic confidence model enables selective filtering 

of tracks based on dynamic data. Figure 2, presented 

below, illustrates its system block diagram. 

 

Figure 2. GMG algorithm block diagram [God12]. 
The GMG algorithm proves its robustness during 

variable lighting conditions and sudden changes in the 
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appearance of the background. From the detected 

moving regions after the GMG application, we aim to 

select only entities having the same fire's color 

characteristics. That’s why we suggest using the color 

features of the moving areas to discriminate between 

fire and non-fire regions. 

3.2 Candidate regions selection  
Selection of candidate regions is the second stage in 

our approach for fire detection with the aim of 

distinguishing the fire regions from the other moving 

objects. It is based on the most distinctive 

characteristic of fire, which is the color. Therefore, we 

propose a new color-based model in the PJF color 

space [Jac12].   

3.2.1 PJF color space 
The idea behind the PJF color space was transforming 

the RGB values into a new color space that follows 

more closely the concept of L*a*b* by expressing 

brightness as a single variable. This color space 

expresses color in firstly a variable that runs from 

green to red and secondly with a variable from blue to 

yellow, while remaining vectors are inside the RGB 

color cube as depicted in figure 4 [Jac12]. That’s why 

PJF reflects better the structure of L*a*b* color space 

by achieving a low color calibration error. 

Given RGB data, the conversion to PJF color space is 

formulated as follows [Jac12]:  

𝑃 =  √𝑅2 + 𝐺2 + 𝐵2 (1) 

𝐽 = 𝑅 − 𝐺  (2) 

𝐹 = 𝑅 + 𝐺 − 𝐵  (3) 

Where the component P measures the magnitude of 

brightness, the second component J indicates the 

relative amounts of red and green and the third one F 

measures simply the relative amounts of yellow and 

blue. The new color channels produced by equations 
(1), (2) and (3) are shown in figure 3 and the PJF color 

space model is presented in figure 4. 

 
Figure 3. The three-color channels created by the 

color space transform [Jac12]. 

 

Figure 4. 3D distribution of the PJF color space. 

It is assumed that fire’s color is generally close to the 

red color with higher illumination values. Through 

PJF color space, the representation of fire color 

information is better than other color spaces since 

margin’s variation of the fire color is presented by its 

two components J and F [Dus15]. Based on these cited 

statements, we propose to define rules in PJF color 

space to select fire regions. 

3.2.2 Fire color-based model  
A specific color spectrum characterizes fire where its 
natural colors are often in the red-yellow range. As 

mentioned above, the J channel in the PJF color space 

is the difference between red and green, and indicates 

the relative amounts of these two colors. Likewise, the 

F channel measures the relative amounts of yellow and 

blue. For these reasons fire pixels belong clearly in the 

J-F plane as confirmed in Fig. 4. Hence, these two PJF 

color space components can be used to estimate the 

range of flame pixels. In RGB image, fire is a red 

colored light source. Therefore, the red value 𝑅 for 
each pixel in fire region must be over a threshold as 

presented in equation (4) [Che04].  

𝑅 >  𝑅𝑇  (4) 

Where 𝑅𝑇  denotes the threshold value for the red 

channel.  

Motivated by these facts and based on the two 

transformation equations (2) and (3), the proposed rule 

to select the candidate regions of fire from other 

moving objects is given below:  

𝐹 ≥ 2𝑅𝑇 − 𝐽  (5) 

Where 𝑅𝑇  is experimentally fixed to 120 [Che04]. At 

this stage, fire detection leads to high false alarms. The 

selected candidate regions of fire may still be non-fire 
because of several moving objects having the same 

colors as fire such persons wearing red clothes or 

carrying red artifacts, red vehicles, etc. Consequently, 

analysis of fire motion are needed to filter the obtained 

regions. 

3.3 Spatio-temporal analysis  

 

Figure 5. Optical flow fields and orientation 

histograms for (a) fire region and for (b) 

pedestrian object. 

Motion is an essential characteristic that should be 

merged with color to detect accurately fire regions. It 
is clearly that the fire’s motion generally differs from 

the motion of the irrelevant entities since it is 

characterized by its disordered movement. Thus, 

motion analysis is needed to effectively discriminate 
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these areas. It consists mainly of three steps described 

as follows: (1) computation of motion vectors, (2) 

spatial analysis and (3) temporal analysis to finally 

detect fire regions.  

3.3.1 Computation of motion vectors 
To analyze the motion of the selected regions, we 

firstly compute the optical flow field. Motion 

information is obtained by calculating the velocity 

vectors for each pixel (𝑥, 𝑦) in region 𝑟 at frame 𝑡. 

These motion vectors are got by using Farneback 

method [Far03]. A two-frame motion estimation 

algorithm uses firstly polynomial expansion, where a 

neighborhood of each image pixel is approximated by 

quadratic polynomials. Afterwards, considering these 

quadratic polynomials, a new signal is constructed by 

a global displacement that is calculated by equating 

the coefficients in the quadratic polynomials' yields. 

The optical flow field is described by 

(𝑉𝑥𝑡
𝑟(𝑥, 𝑦),  𝑉𝑦𝑡

𝑟(𝑥, 𝑦)) where 𝑉𝑥𝑡
𝑟(𝑥, 𝑦) and 

𝑉𝑦𝑡
𝑟(𝑥, 𝑦) denote the horizontal and vertical velocities 

respectively of the region 𝑟 at frame 𝑡. 

3.3.2 Spatial analysis 
By adopting the fact that fire movements are multi-

directional, we aim to find fire areas. The motion 

directions of each pixel of the selected candidate 
regions are firstly extracted from every frame, by 

using optical flow field obtained at the previous step. 

The direction 𝑑𝑡
𝑟 of each pixel (𝑥, 𝑦) is then computed 

via the following equation: 

𝑑𝑡
𝑟(𝑥,  𝑦) =  tan−1(

𝑉𝑦𝑡
𝑟(𝑥,  𝑦) 

𝑉𝑥𝑡
𝑟(𝑥,  𝑦) 

) 
(6) 

Where 𝑟  is the selected candidate region in frame 𝑡. 

For a better characterization of the acquired directions, 

they are quantized to 𝑁𝑑 levels as shown in figure 6 

where 𝑁𝑑 is set to 8.  

 

Figure 6. Quantization of moving directions. 

In order to discriminate fire and non-fire regions, the 

different directions are interpreted by computing the 

orientation histogram ℎ𝑡
𝑟 for each candidate region 𝑟 

in frame 𝑡. The appearance of histograms as 

represented in the example of Fig. 5(a) confirms that 

the movement of the fire is disordered and spreads 

around the fire region, hence the dispersion of its 

orientation histogram. In contrast, the motion of non-

fire objects, like the pedestrian in Fig. 5(b), is 
distributed in uniform directions, which explains that 

its orientation histogram is concentrated in few bins.  

Through the orientation histograms interpretation, we 

can conclude that a dispersed histogram generated 

with more bins corresponds to fire region. However, 

using orientation histograms may be insufficient to 

detect fire regions because of the similar histogram’s 

appearance of some non-fire objects like autumn color 

leaves, which have disordered movement. That’s why 

we propose to compute the normalized weighted 

entropy 𝐻𝑤
′

𝑡

𝑟
 which is obtained by calculating first of 

all the weighted entropy 𝐻𝑤𝑡
𝑟 defined as follows: 

𝐻𝑤𝑡
𝑟 = − 𝑊𝑡

𝑟 ∗  ∑ 𝑝𝑡
𝑟(𝜃𝑗) ∙  𝑙𝑜𝑔2(

𝑁𝑑
𝜃𝑗=1 𝑝𝑡

𝑟(𝜃𝑗)) (7) 

Where 𝑟 is the region of interest at frame 𝑡,  𝑝𝑡
𝑟 

represents the orientation probability of each 

quantified direction 𝜃𝑗 , 𝑗 = 1, . . , 𝑁𝑑, of the motion 

vector. 𝑊𝑡
𝑟 denotes the weight which aims to maintain 

a deviation between the entropy of fire regions and 

that of non-fire in the interest of distinguishing easily 

between areas. That means, 𝑊𝑡
𝑟 enhances the entropy 

of fire region and reduces the entropy of non-fire 

region. It is calculated using the orientation histogram 

by counting the number of the most frequent bins with 

a greater amount of information as shown in the 

following equation:  

𝑊𝑡
𝑟 = 𝐶𝑎𝑟𝑑 {ℎ𝑡

𝑟(𝜃𝑗), j=1...𝑁𝑑 with ℎ𝑡
𝑟(𝜃𝑗) > 

∑ ℎ𝑡
𝑟(𝜃𝑗)

𝑁𝑑
𝜃𝑗=1

𝑁𝑑
} 

(8) 

We normalize then the range of values of 𝐻𝑤𝑡
𝑟 by 

using min-max normalization to scale them in [0, 1] to 

obtain 𝐻𝑤
′

𝑡

𝑟
.       

3.3.3 Temporal analysis 
Fire region in certain single frame may not be detected 

because of the flickering effects and instability of the 

motion. Flickering is one of the main features of flame 

and it is very significant to discriminate between fire 

regions and fire-colored objects. Besides, the motion 

of non-fire objects, like human and vehicles, is 
regular, hence it is temporally continuous and 

uniform. Differently to other entities, fire is always in 

disordered and discontinuous motion due to the 

flickering effects. For these reasons, temporal analysis 

is applied to each candidate region. After calculating 

normalized weighted entropy 𝐻𝑤
′

𝑡

𝑟
 in the previous 

step, the candidate areas must be further verified using 

movement’s temporal variation since motion analysis 

in a single frame are not enough to identify fire. For 

each candidate region 𝑟, we suggest to calculate, in 

equation (9), the temporal entropy 𝐻𝑇(𝑟) over the 

consecutive 𝑁 frames as follows:   

𝐻𝑇(r) =  
∑ 𝐻𝑤

′
𝑡

𝑟(𝑟)𝑁
𝑡=1  

𝑁
 

(9) 

Where 𝐻𝑤
′

𝑡

𝑟
 is the normalized weighted entropy of 

region 𝑟 at frame 𝑡 and 𝑁 represents the number of 

frames. At this point, a threshold 𝜏 will be determined 

to distinguish fire regions. As shown in equation (10), 
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if 𝐻𝑇(r) is greater than a given 𝜏, the region 𝑟 is 

classified as fire.  

r = {
𝑓𝑖𝑟𝑒  𝑖𝑓𝐻𝑇(𝑟) ≥ 𝜏

𝑛𝑜𝑛 𝑓𝑖𝑟𝑒 𝑖𝑓𝐻𝑇(𝑟) < 𝜏
 

(10) 

4 EXPERIMENTAL RESULTS  
In this section, we evaluate our approach on a wide 

dataset. Moreover, we carry out comparison with two 

recent fire detection methods [LiS17] [Pel18]. 

4.1 Dataset  
In spite of the importance of fire detection researches 

nowadays, there are no standard benchmark datasets 

for fire detection up to now. Therefore, to test the 

presented approach we construct our database from 

four public datasets available in [Fog15b] [Çet07] 

[Caz17] [Kmu18]. It contains 157 videos varied 

between 10 and 30𝑓𝑝𝑠, in a diverse range of 
environmental conditions and illumination: 137 

positive videos characterized by the presence of fire 

and 20 negative videos, which do not contain fires. 

Hence, 246 581 frames compose this collection. 

4.2 Evaluation metrics  
In order to measure the robustness of our new method, 

it is necessary to compute validation metrics. True 

positive (𝑇𝑃), false positive (𝐹𝑃), true negative (𝑇𝑁) 

and false negative (𝐹𝑁) are calculated.  𝑇𝑃  is the 

number of frames where fire regions are correctly 

detected. 𝐹𝑃 is the number of frames in which non-fire 

regions are incorrectly detected as fire. 𝑇𝑁 is the 

number of frames with non-fire regions that are 

correctly rejected and 𝐹𝑁 is the number of frames in 

which fire regions are wrongly rejected. For negative 
fire videos, the evaluation is done by using the 

detection error rate 𝐸𝑅 calculated in the equation (11) 

presented below. It represents the rate of recognizing 

fire in a frame where there is no fire. 𝑇𝑁𝑅 and 𝐹𝑃𝑅 

metrics are also used to measure respectively the 

ability of the algorithm to well eliminate non-fire 

regions and the false alarms rate.  

𝐸𝑅 =  
𝐹𝑃

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐹𝑟𝑎𝑚𝑒𝑠 
 

(11) 

Similarly, positive fire videos are assessed with 

different metrics to measure the effectiveness of 

detecting fire regions by the proposed method. As a 

first metric, we use the detection rate 𝐷𝑅; it is defined 

as the rate of detecting fire successfully by the 

following equation:  

𝐷𝑅 =  
𝑇𝑃 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 
 

(12) 

Accuracy is also employed to measure how close our 
algorithm can detect the correct fire areas. It is 

calculated via the equation (13) below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(13) 

Recall and precision are calculated too, as stated in 

equations (14) and (15). Recall metric, named also 

sensitivity, expresses the ability of an algorithm to find 

all the pertinent cases. While, precision measures the 

proportion of detections that a method indicates as 

relevant when they are really relevant.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 

(14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(15) 

In order to measure the trade-off between precision 

and recall, we combine the two metrics using the 

𝐹1 𝑠𝑐𝑜𝑟𝑒 in the following equation. It is a weighted 

harmonic mean showing how many frames with fire 

regions are correctly detected. 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 

(16) 

4.3 Evaluation of the new fire detection 

approach  
It should be noted that the number of frames 𝑁 used to 

calculate the temporal entropy for each candidate area 

(cited in the section 3.3.3), is experimentally set to 20 

according to results presented in Fig. 7. This figure 

shows the variation of the fire detection accuracy of 

different fire videos samples to validate the choice of  

𝑁 frames. For example, the first scene (Scene_1) 

achieves in terms of accuracy 0.84, 0.88, 0.83, and 
0.76 with 10, 20, 30, 40 and 50 frames respectively. It 

is discernable from Fig. 7 that increasing 𝑁 decreases 

the accuracy values. The best rates are obtained when 

𝑁 is equal to 20. As a consequence, we adopt 𝑁 = 20 

to evaluate our method. 

 

Figure 7. Comparison of fire detection accuracy in 

video sequences by varying the number of 

frames 𝑵. 

In this section, we aim at successfully detecting fire 

regions in several scenes to measure the performance 

of our video-based fire detection approach. Figure 9 

illustrates the output frames of each phase of our 

approach. On the one hand, Fig. 9(A) shows the results 

on three different positive fire movies. It can be 

remarkable that our presented method is able to 

eliminate non-fire moving objects, such as in video 

A2. These include fire-like colored objects, such the 

firefighters wearing jackets and caps with similar 
color of fire. In the same way, fire-color background 

areas, which may cause false detection like scene A1 
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in Fig. 9(A), are rejected too. Moreover, fires in 

videos, which are filmed in different conditions of 

environment, weather and illumination (in forest, 

indoor, outdoor, day and night scenes), are 

successfully detected. On the other hand, results on 

negative videos where there is no fire are presented in 

Fig. 9(B). Spurious fire-like objects such as sun 

reflections, human with red clothes and bright 

sparkling lights are correctly rejected. Scene B3 of 

Fig. 9(B) proves that spatial analysis at Fig. 9(B3.c) 
(as detailed in the section 3.3.2) are not sufficient to 

distinguish fire regions from areas sharing the same 

fire’s characteristics. As it is shown in Fig. 9(B3.b) 

and Fig. 9(B3.c) bright sparkling lights are still 

detected after applying our color model. But, adding 

temporal analysis improves differentiation between 

regions. As depicted in Fig. 9(B3.d), all fire colored 

areas are rejected. This further confirms the robustness 

of our approach in recognizing fire regions. 

From these results, we can conclude that our proposed 

method succeeds in distinguishing fire from non-fire 

regions. This is thanks to the fact that the deviation 

between the temporal entropy 𝐻𝑇  values of fire and 

that of non-fire regions has become more larger. In 

fact, they can be easily differentiated. These results are 

clearly observed in figure 8, which shows the variation 

of temporal entropy for fire and non-fire areas.  

As it is illustrated, values of temporal entropy for fire 

region (the red curve) is greater than those of non-fire. 

Through the analysis of the variation of temporal 

entropy in figure 8, discriminating between moving 

regions is becoming easier. It is sufficient to determine 

the threshold 𝜏 (cited in the section 3.3.3). Otherwise, 

𝐻𝑇 of fire area is over than 𝜏. This evidently confirms 
that fire is always in active motion and its temporal   

entropy is near to 1. As it is shown in Fig. 5(a), a fire 

region has a temporal entropy value equal to 0.832. 

 

Figure 8. Temporal variation of entropy for fire 

region and non-fire areas. 

However, for areas which may be a moving objects 

having the same colors as fire, their temporal entropy 

is close to 0. For example, 𝐻𝑇value for a non-fire area 

is equal to 0.165. As earlier detailed, these values 

demonstrate effectively that the movement of fire-

colored regions is uniform and significantly different 

from the motion of fire regions. That’s why fire areas 

have a higher value of temporal entropy 𝐻𝑇. In this 

study, our experiments show that the best 

discrimination is achieved when the value of the used 

threshold 𝜏 is fixed to 0.5. 

The assessment of this approach is given below, and 

results are shown in Table 1 and Table 2. For almost 

positive fire movies, our novel method has yielded a 

true positive (𝑇𝑃) average of 99% for detecting the fire 

regions correctly, hence the detection rate 𝐷𝑅 is high. 

Values of false positive (𝐹𝑃) are null which leads to a 

null detection error rate 𝐸𝑅, this proves how 

effectively our algorithm can distinguish fire from 

non-fire regions. Precision and recall values in Table 

1 reach over 0.9.  Indeed, the obtained values of recall 

are respectable, they are around of 0.99. High 

precision relates to the low false positive rate. This 

proves also that almost all fire regions are detected 

correctly. Most significantly, the overall performance 

of the presented approach is high in terms of the 

weighted harmonic mean 𝐹1𝑠𝑐𝑜𝑟𝑒 with 0.99. Add to 

that, Table 2 shows the achieved results on the 

accuracy of fire detection in three negative fire scenes.

Figure 9. Results of the presented fire detection method on (A) positive fire videos and on (B) negative 

movies. (a) Original frames, (b) Moving regions detection using the GMG algorithm, (c) Candidate 

regions selection by applying the PJF color model, (d) Detected fire regions obtained after spatio-temporal 

analysis.

(A) Positive scenes (B) Negative scenes  

        

A1. a A1. b A1. c A1. d B1. a B1. b B1. c B1. d 

        

A2. a  A2. b A2. c A2. d B2. a  B2. b B2. c B2. d 

        

A3. a  A3. b A3. c A3. d B3. a  B3. b B3. c B3. d 
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Videos TP (%) FP (%)  DR (%) ER (%) Recall   Accuracy Precision F1score 
Sample 

picture 

fireVid_001 98 0 98 0 0.98 0.98 1 0.98 
 

fire_8 99 0 99 0 0.99 0.99 1 0.99 
 

flame_1 100 0 100 0 1 1 1 1 
 

fire_11 99 0 99 0 0.99 0.99 1 0.99 
 

rescuer_060 96 0 96 0 0.96 0.96 1 0.98 
 

rescuer_021 100 0 100 0 1 1 1 1 
 

Average  98.66 0 98.66 0 0.99 0.99 1 0.99  

Table 1. Fire detection results of the presented method applied on positive fire movies 

Videos TN (%) FN (%) ER (%) TNR FPR Accuracy 
Sample 
picture 

fire_15 100 0 0 1 0 1 
 

fire_16 100 0 0 1 0 1 
 

fireworks 94 0 6 1 0.06 0.94 
 

Average  98 0 2 1 0.02 0.98  

Table 2. False fire detection results of the presented method applied on negative fire movies 

Since there is no fire, 𝐹𝑁 of the proposed algorithm is 

null. 𝑇𝑁 average of 98% is obtained resulting firstly 

in a greater 𝑇𝑁𝑅, secondly in a higher accuracy with 

0.98 and lastly in a lower error rate with 2%. These 

values reflect the interesting performance of our 

contribution that is to say it can distinguish accurately 

fire regions from non-fire areas having the same colors 

as fire. 

 

Figure 10. Receiver Operation Characteristics 

Curve. 

As well, the performance is depicted in figure 10 
where the Receiver Operating Characteristics (ROC) 

curve is presented. This curve shows how much the 

novel approach is able to discriminate between fire 

and non-fire regions. The area under the ROC curve is 

a pertinent indicator for performance measuring. The 

higher is the Area Under the Curve (AUC) the better 

is the algorithm at distinguishing between fire regions 

and fire-like colored objects [Faw06]. For this, the 

AUC computed value is 0.969. Therefore, the ROC 

curve proves too that our method has a low false 

alarms rate. From these results, we can conclude that 

the proposed approach accomplishes a rate of 

accuracy values over than 0.9 for both positive and 

negative scenes of the datasets, and only 2% for the 

false alarms rate.  

Method Accuracy FPR FNR 

[Pel18] 64.30% −  −  

[LiS17] 92.30% 8.33% 9.09% 

Presented 98.81% 2% 1% 

Table 3. Comparison of the presented approach 

with two related works   

For better assessment, we compare the presented 

approach with other fire detection methods based on 

motion and color features. In [LiS17], a multi-

attribute-based fire detection system is developed 

which combines the color, geometric, and motion 
attributes. While, [Pel18] is based on color 

segmentation and moving objects detection by 

applying the frame differences. The experimental 

results are illustrated in Table 3.  

It should be noted that accuracy,  𝐹𝑃𝑅 and 𝐹𝑁𝑅 

values presented in Table 3 are the averages of all used 

datasets. 𝐹𝑃𝑅 and 𝐹𝑁𝑅 values obtained with our 

contribution are better than [LiS17] method with a 

decrease from 8.33% to 2% and from 9.09% to 1% 

respectively. These values are very low that is to say 

that our system can distinguish between fire regions 

and fire-like colored objects in the same frame, detect 

very well fire regions and eliminate undesirable areas. 

From Table 3, it can be found that our results 

significantly outperform Li’s [LiS17] and Peleshko’s 
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methods [Pel18] in accuracy rate with the highest 

value of 98.81%. By combining the PJF color model, 

the motion information and the spatio-temporal 

analysis of the fire’s behavior, the obtained accuracy 

is nearly 6.5% and 34.5% greater than the related 

works [LiS17] and [Pel18] respectively. As shown in 

the first row of Table 3, accuracy in [Pel18] is 64.30%, 

because of using only color segmentation with frame 

differences. It cannot correctly discriminate fire from 

non-fire moving objects. Whereas, although Li's 
method in [LiS17] accomplishes 92.30% of accuracy, 

it may yield a few failure cases on some sequences 

(long distance between fire and the camera). In these 

cases, the geometric and motion attributes cannot 

work well because the fire areas are too small. For our 

method, it is able to detect fire regions in these special 

cases despite the far distance. Compared to the motion 

attribute in [LiS17], motion analysis in our work can 

obviously improve the detection accuracy by using 

spatial and temporal information. Generally, the 

proposed approach achieves a promising performance 

in detecting fire. 

5 CONCLUSION  
In this paper, we present an effective novel approach 

for fire detection in video sequences. It is based on 

color and motion features. It consists in detecting 

moving regions at the first stage using the GMG 

algorithm for background subtraction. After that, a 
novel fire color model developed in PJF color space 

selects candidate regions. Therefore, the detected fire 

regions are determined by a spatio-temporal analysis 

of the fire’s motion. This method is tested over 

different datasets. It is shown experimentally that we 

succeed in detecting fire regions with accurate 

discrimination between fire and non-fire areas. 

Through experiments, we demonstrate that the 

achieved false alarms rate is only 2%. The false 

negative rate where fire regions are wrongly rejected 

is reduced too to reach 1%. Experimental results show 

also that our new method clearly outperforms the 
related works in terms of fire detection accuracy. In 

order to face the variable illumination problem, our 

approach can be further improved in the future. And 

the forthcoming scope includes the application of 

deep-learning methods. 
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Abstract

Nonlinear anisotropic diffusion (NAD) filtering is a procedure based on nonlinear evolution PDEs which seeks
to improve images qualitatively by removing noise while preserving details and even enhancing edges. However,
well-known implementations are sensitive to parameters which are necessarily tuned to sharpen a narrow range of
edge slopes; otherwise, edges are either blurred or staircased [Kee2002]. One important parameter is the iterations
number, for that reason, in this paper a stopping criterion to halt the diffusion process is proposed. To meet this
goal, two stopping criteria were compared. The first is the stopping criterion proposed by Joao et. al. [Joã2016],
which is based on the Mean Squared Error (MSE). The second is our proposed method based on the CIRR contrast
measure. To this end, a comparative analysis of five diffusion methods is performed. Four of them are nonlinear
anisotropic diffusion methods and the fifth is the Perona-Malik method. According to the tests performed, the
number of iterations required by the smoothing algorithms using the proposed stopping criterion is lower.

Keyword: Smoothing, Stopping criteria, Nonlinear anisotropic diffusion, Edge detection

1 INTRODUCTION
Medical images typically suffer from one or more of the
following imperfections, low resolution (in the spatial
and spectral domains), high level of noise, low contrast,
geometric deformations and/or presence of imaging arti-
facts. These imperfections can be inherent to the imag-
ing modality (e.g., X-rays offer low contrast for soft tis-
sues, ultrasound produces very noisy images, and metal-
lic implants will cause imaging artifacts in CT) or the
result of a deliberate trade-off during acquisition. For
example, finer spatial sampling may be obtained through
a longer acquisition time. However that would also in-
crease the probability of patient movement and thus
blurring. To remove noise while preserving details and
even enhancing edges techniques based on Partial Dif-
ferential Equations (PDEs) have been used. The idea
of using the PDE diffusion equations in image denoising
and restoration arose from the use of the Gaussian filter
in multiscale image analysis.

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or
re- publish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Convolving an image with a two or three dimensional
Gaussian filter is equivalent to the solution of the dif-
fusion equation in two or three dimensions [Bar2014].
Nowadays, PDEs have been successfully applied to
many problems in image processing and computer vision
[Ter1994, Cas1998, Sap2006, Aub2006, Cao2003], e.g.,
denoising [Per1990a], enhancement [Rud1989], inpaint-
ing [Ber2000], segmentation [Li2005], stereo and optical
flow computation [Sap2006].

Nonlinear anisotropic diffusion is a variant of the
heat equation, generalized in two regards: nonlinear-
ity and anisotropy. Nonlinearity in diffusion means that
diffusion tensors are automatically generated from the
processed image. Anisotropy means that the smooth-
ing induced by the PDE can be favored in some direc-
tions and prevented in others. This is specified by local
eigenvectors and eigenvalues of the diffusion tensor field
[Wei1996]. Diffusion coefficients are thus location and di-
rection dependent, generalizing the approach of Perona
and Malik [Per1990, Per1990a] which is only location de-
pendent.

NAD is a powerful image processing technique, which
allows to simultaneously remove the noise and enhance
sharp features in two or three dimensional images.
Anisotropic diffusion is understood here in the sense
of Weickert [Wei1998], meaning that diffusion tensors
are anisotropic and reflect the local orientation of im-
age features. Weickert [Wei1999] proposed two non-
linear anisotropic diffusion algorithms. The first one
is called Edge Enhancing Diffusion (EED), which al-
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lows smoothing while preserving the edges. The sec-
ond one is called Coherence Enhancing Diffusion (CED),
which allows smoothing based on the structures (flow-
like) present in the images. Based on the filters defined
by Weicket, several methods have been proposed. For
example, Bazan et. al. [Baz2007, Baz2009] proposed a
new approach based on nonlinear anisotropic diffusion
and bilateral filtering for electron tomography of mito-
chondria. Dong et. al. [Don2015] introduced a source
term in the CED filter to restore the initial image and
contrast lost by pure diffusion filters. Prasath [Pra2016]
proposed an adaptive coherence enhancement diffusion
filter (CED) combining anisotropic diffusion and diffu-
sion functions derived from the structural tensor. Mire-
beau et. al. [Mir2014] proposed two variants to the
Weickert’s algorithms. The first is associated with the
EED algorithm, which is called Conservative variant of
EED (cEED). The second is called Conservative variant
of CED (cCED). The main distinction lies in the defini-
tion of the diffusion parameters of the diffusion tensor.

This paper is organized as follows: In section 2, non-
linear anisotropic diffusion filters are explained. In sec-
tion 3, the most relevant methods to stop the diffusion
propagation are described. In section 4, the proposed
method for stopping the propagation is briefly explained.
In section 5, tests performed in 2D and 3D images are
presented, and the paper finishes with some conclusions.

2 NONLINEAR ANISOTROPIC
DIFFUSION FILTERS

The idea of nonlinear anisotropic diffusion was pio-
neered by Nitzbeg et. al. [Nit1992] and Cottet et al.
[Cot1993]. Later on, Weickert [Wei1999] put forward a
formal method for enhancing the elongated structure, re-
ferred to as coherence-enhanced diffusion (CED).

NAD filtering is a procedure based on nonlinear evo-
lution PDEs which seeks to improve images qualitatively
by removing noise while preserving details and even en-
hancing edges. In the anisotropic case not only the
amount of diffusion is adapted locally to the data but
also the direction of smoothing. It allows for example
to smooth along image edges while inhibiting smooth-
ing across edges. This can be achieved by replacing the
scalar-valued diffusivity function by a matrix-valued dif-
fusion tensor [Bro2006].

The eigenvectors of the diffusion tensor define the
principal directions of smoothing and the correspond-
ing eigenvalues define the amount of smoothing. We-
ickert based the diffusion tensor on the structure ten-
sor [Wei1996, Wei1997, Wei1998], which describes struc-

tures in the image using first order derivative information
[Bus2016].

In general, any nonlinear anisotropic diffusion can be
described by the equation

∂u

∂t
= div (D (∇u)∇u) (1)

where u is the initial smoothed image that is initial-
ized with the input image f (that is u (x, 0) = f (x)), and
D represents a matrix-valued diffusion tensor that de-
scribes the smoothing directions and the corresponding
diffusivities [Erd2012]. In this case, the diffusion ten-
sor D is a function of x , i.e., depends on the space.
Additionally, D is a positive definite symmetric matrix
[Wei1998, Wei2002]. The idea is to adaptively choose
the diffusion coefficient D such that intra-regions be-
come smooth while edges of inter-regions are preserved
[Cha2010]. As D must be a nonnegative function of
gradient magnitude so that small variations in inten-
sity such as noise or shading can be well smoothed, and
edges with large intensity transition are retained. It is
generally given by an exponential function or an inverse
quadratic function, and determined by the gradient mag-
nitude with respect to a predetermined edge strength
threshold [Cha2010].

Thus the given image u is usually convolved with
a Gaussian kernel Gσ with a relatively small standard
deviation σ as a presmoothing step. Cottet and Ger-
main [Cot1993] and Weickert [Wei1996] devise a diffu-
sivity matrix of the form:

Dσ =
[
v1 v2 v3

]  λ1 0 0
0 λ2 0
0 0 λ3

 vT1
vT2
vT3

 (2)

where the vectors vi are the eigenvectors of the struc-
ture tensor and the parameters λi are functions of the
eigenvalues of the structure tensor. The images’s struc-
ture tensor is defined as [Wei1997]:

Jρ (∇uσ) = Gρ ∗
(
∇uσ · ∇uTσ

)
(3)

where Gρ is the Gaussian kernel with standard de-
viation ρ (integration scale), over which the orientation
information is averaged, and ∇uσ is the gradient of the
image u at scale σ. Principle axis transformation gives
the eigenvectors and eigenvalues of Jρ (∇uσ) [Men2009].
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Figure 1: Nonlinear anisotropic diffusion (Adapted from
[Li2005a])

Figure 1 shows a nonlinear anisotropic diffusion pro-
cess illustrated by ovals of different sizes and different
orientations. The ratio of two dimensions of the ovals
can be arbitrarily different. The orientations of the ovals
can also be random. This is the diffusion filter with
the ultimate freedom in terms of the changes of filter
strength location-wise or direction-wise [Li2005a].

Two specializations of nonlinear anisotropic diffu-
sion were introduced by Weickert, edge-enhancing dif-
fusion (EED) and coherence-enhancing diffusion (CED)
[Wei1998]. Both were initially defined in two dimen-
sions. EED was designed to smooth noise while enhanc-
ing edges and CED was designed to enhance line-like
textures. CED is essentially one dimensional diffusion
[Wei1999], since there is either diffusion in one direction
or almost not diffusion at all. In addition, Mirebeau et.
al. [Mir2014] proposed a conservative variant of both the
EED and CED method. These variants are called cEED
and cCED respectively.

3 DIFFUSION STOPPING CRI-
TERIA

Filtering process involves the solution of the anisotropic
diffusion equations as a time-marching problem, a pos-
sible approach is to halt the filtering when a certain set
of metrics falls below a predefined threshold [Joã2016].
In addition, the definition of the number of iterations
(diffusion time t) based on the metrics selected to stop
the diffusion process is crucial to obtain a good image
reconstruction [Baz2007]. For example, if t is too small,
the reconstructed signal is very noisy; if t is too large
it is smooth and discontinuities are lost. In conclusion,
automatically stopping the diffusion process is a chal-
lenging task. Normally, the stopping criterion depends
on the image characteristics and on the parameters of
the diffusion equation.

Several authors have addressed this issue in the past
in an attempt to devise an optimal stopping criterion
[Baz2007, Ily2010]. A brief review of previous works on
the stopping criteria is presented below.

• Sporring and Weickert [Spo1999]
This is focused on the maximal entropy change by
scaling to estimate the size of image structures.
They argued that the minimal change by scale in-
dicates especially stable scales with respect to evo-
lution time, and conjectured that these scales could
be good candidates for stopping times in nonlinear
diffusion processes. In addition, this is based on the
signal to noise ratio (SNR) and the relative vari-
ance at time t and the initial image [Ily2010]. The
authors pointed out that the monotonically de-
creasing ’relative variance’, 0 ≤ var(u)/var(u0) ≤
1, could be used to measure the distance of u from
the initial state u0 and, by prescribing an appropri-
ate value for the relative variance, it can constitute
a good criterion for stopping the nonlinear diffusion
[Baz2007].

• Capuzzo and Ferretti [Cap2001]
They determine the optimal time by finding the
minimum of a performance index which balances
the computing and stopping costs. This is then
applied to the regularized Perona-Malik equation.
Their method requires a constant that is found by
experimentation using a typical image with similar
details and discontinuities as the image to be pro-
cessed. This is a rather vague requirement and they
demonstrate that one only needs some approxima-
tion to the constant [Ily2010].

• Mrázek and Navara [Mra2003]
They choose the stopping criteria so that the cor-
relation of the signal u (T ) and noise u(0) − u(T )
in the filtered image is minimized. This method
is applicable to any images where the noise to be
removed is uncorrelated with the signal, under the
assumptions that the filter used is suitable for the
given type of data, and that neither the additive
noise nor the filtering procedure alter the average
gray value; no other knowledge (e.g. the noise
variance, training data etc.) is needed [Mra2003].
This method is applied to several nonlinear filters
both isotropic and anisotropic [Ily2010]. In addi-
tion, this requires no prior estimation of the noise
statistics [Tsi2013].
Proposed method is called decorrelation criterion.
This selects the time T as the time that minimizes
the correlation
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T ≡ arg min
t

cov (u (0)− u (t) , u (t))√
var (u (0)− u (t)) · var (u (t))

(4)

• Gilboa, Sochen and Zeevi [Gil2004]
Stopping criterion is based on obtaining of minimal
SNR, i.e. one stops the process when filtering more
signal than noise. This is done by estimating the
covariance of the image and the noise. This method
requires an estimate of the standard deviation of
the noise σn0 of the input noisy image u (0), which
is considered to be a priori known [Tsi2013]. They
also compare the advantages and disadvantages of
the approaches that use the covariance [Ily2010].
The condition for selecting the value of parameter
T is

T = arg min
t

∂t cov
(
N̄ , u (0)− u (t)

)
∂t var (u (0)− u (t))

(5)

The variance of noise N̄ of the original image is
considered a priori known.

• Bazán and Blomgren [Baz2007]
This stopping criterion is inspired by observation of
the behavior of the correlation between the noise-
free image and the filtered image, corr (f, u), and
the correlation between the noisy image and the
filtered image, corr (u0, u). Although the former
measure is only available in experimental settings
it helps validate the usefulness of the latter.
The nonlinear diffusion process starts from the ob-
served (noisy) image, u0(x), and creates a set of fil-
tered images, u (x, t), by gradually removing noise
and details from scale to scale until, as t→∞, the
image converges to a constant value. During this
process the correlation between the noise-free im-
age and the filtered image increases as the filtered
image moves closer to the noise-free image. This
behavior continues until it reaches a peak from
where the measure decreases as the filtered im-
age moves slowly towards a constant value. During
the same process the correlation between the noisy
image and the filtered image decreases gradually
from a value of 1.0 (perfect correlation), to a con-
stant value, as the filtered image becomes smoother
[Baz2009].
By comparing both measures, they observed that
as corr (f, u) reaches its maximum (the best
possible reconstructed image), the curvature of
corr (u0, u) changes sign. They suggested that
a good stopping point of the diffusion process is
where the second derivative of corr (u0, u) reaches
a maximum [Baz2009].

• Tsiotsios and Petrou [Tsi2013]

The method examines directly the quality of the
edges in every iteration. It evaluates, in every iter-
ation, the quality of a percentage of the true edges
of the image, taking into consideration the contrast
and the noise brightness fluctuations around them,
and leads to a judicious choice of the stopping time
T that corresponds to the maximum overall quality
of the edges [Tsi2013]. This method requires an es-
timate of the standard deviation of the noise σn0 of
the input noisy image u (0), which is considered to
be a priori known [Tsi2013]. The proposed method
has five steps that finally compute the stop time T
as

T = arg max
t

1

N

N∑
i=1

Qi (t) (6)

where N is the number of edges and Q (t) reflects
the quality of the edges within the image, in every
iteration.

• Joao, Gambaruto, Tiago and Sequeira [Joã2016]

The relative residual error of Mean Square Error
(MSE) measure is the metric chosen for this pur-
pose, specifically

|MSEt+1 −MSEt|
|MSEt+1|

< ε1 (7)

where ε1 = 10−2. The choice of ε1 is influenced by
the need for a small value to identify a convergence
of solution, and large enough to make the iterative
procedure less computationally demanding.

In addition, they propose to use Structural Similar-
ity Index Metric (SSIM) in combination with above
criterion, using a threshold value of SSIM < ε2
and ε2 = 0.7. The choice of ε2 is influenced by
the importance of allowing the image to evolve and
deviate from the original, and yet not to allow too
large a distortion that will make the image unrec-
ognizable compared to the original.

In conclusion, the optimal number of iterations is
obtained when |MSEt+1 −MSEt| / |MSEt+1| <
10−2 and SSIMβ (t+ 1) < 0.7.

This, depending on the size of each image and re-
spective data set, can be rather computationally
expensive; therefore, a parallel implementation was
used, which proved to be effective.
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4 STOPPING CRITERION
PROPOSED

Sporring and Weickert pointed out that the
monotonically decreasing ’relative variance’, 0 ≤
var(u)/var(u0) ≤ 1, could be used to measure the dis-
tance of u from the initial state u0 and, by prescribing
an appropriate value for the relative variance, it can
constitute a good criterion for stopping the nonlinear
diffusion.

The Contrast Improvement Ratio Revisited measure
(CIRR) [Bus2019] is an increasing function that reaches
its steady state when t → ∞. The residual error of the
CIRR measure is a decreasing function of values between
one and zero. Then, applying the same idea presented
by Sporring and Weickert, it can be indicated that the
residual error of the CIRR measure can be used as a
stopping criterion to halt diffusion processes.

The residual error of CIRR measure is computed as:

CIRR indext =
|CIRRt − CIRRt−1|

|CIRRt|
(8)

where t is the diffusion time. Diffusion process is
iterated while CIRR indext is greater that a specific
constant ε defined by the user. In general, the stopping
criteria is defined as:

|CIRRt − CIRRt−1|
|CIRRt|

> ε (9)

The choice of ε is influenced by the need for a small
value to identify a convergence of solution, and large
enough to make the iterative procedure less computa-
tionally demanding. According to João et. al. [Joã2016],
who defined a stopping criterion for anisotropic diffusion,
ε value can be 10−2.

5 EXPERIMENTAL RESULTS

Nonlinear anisotropic diffusion algorithms require several
parameters such as diffusion time, lambda, noise scale
and feature scale. Therefore, to select the most appro-
priate diffusion algorithm to preserve the edge informa-
tion is a complex task. For this reason, the experiments
were divided into two parts. The first part is related to
the automatic definition of the diffusion time for both
two-dimensional and three-dimensional images using the
stopping criterion presented by Joao et. al. [Joã2016]
and the proposed criterion. The second part is associ-
ated with the selection of the algorithm that generates
better results with respect to the image quality mea-
sures as Mean Square Error (MSE), Peak Signal-Noise

Ratio (PSNR), and Contrast Improvement Ratio Revis-
ited (CIRR). As a qualitative measure of smoothing, the
Canny edge detection filter is used [Can1986, Afr2017].
The filter is applied to the resulting images by using each
of the stopping criteria.

5.1 2D Case

In the first part, the stopping criterion proposed by Joao
et. al. [Joã2016] is based on the MSE quality measure,
this criterion is called JGTS. The proposed criterion is
based on the CIRR measure and it is called BF. These
two stopping criteria are evaluated.

5.1.1 Original Images

Five images were selected that are used traditionally in
image processing. The images are the baboon, barbara,
boat, cameraman and lena. Each of them has different
characteristics that allow evaluating the quality of the
smoothing obtained for each of them according to each
stopping criterion.

Initially smoothing is calculated using each of the se-
lected diffusion algorithms (Isotropic, CED, cCED, EED,
cEED). The number of iterations (diffusion time) applied
is initially set to 10. In each iteration the MSE, PSNR
and CIRR quality measures are calculated. The results
for the lena image are presented in Tables 1, 2 and 3
respectively.

As you can see in Tables 1, 2, and 3 respectively,
the values for the CED, cCED and EED algorithms are
quite similar for the MSE measure. In the case of PSNR,
the values are very similar in all cases. For the CIRR
measure, the values obtained by using CED, cCED and
cEED are similar. However, in the latter case, the cEED
algorithm is reduced compared to CED and cCED, as
the number of iterations increases.

Iter Isotropic CED cCED EED cEED

1 2,870 3,731 3,171 7,513 4,652

2 4,127 8,146 7,044 12,618 7,082

3 5,055 12,017 10,623 16,728 8,915

4 5,875 15,537 13,935 20,255 10,498

5 6,650 18,676 16,870 23,364 11,952

6 7,407 21,500 19,628 26,176 13,322

7 8,160 24,122 22,142 28,750 14,650

8 8,916 26,491 24,437 31,136 15,942

9 9,671 28,692 26,626 33,370 17,203

10 10,427 30,790 28,647 35,482 18,442

Table 1: MSE measure - lena.
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Iter Isotropic CED cCED EED cEED

1 43,205 42,065 42,771 39,025 41,107

2 41,627 38,674 39,305 36,774 39,282

3 40,747 36,986 37,521 35,549 38,282

4 40,093 35,870 36,342 34,718 37,572

5 39,555 35,070 35,512 34,098 37,009

6 39,087 34,459 34,855 33,604 36,538

7 38,666 33,959 34,331 33,197 36,125

8 38,282 33,552 33,903 32,851 35,758

9 37,929 33,206 33,530 32,550 35,427

10 37,602 32,899 33,213 32,283 35,125

Table 2: PSNR measure - lena.

Iter Isotropic CED cCED EED cEED

1 0,00016 0,00031 0,00026 0,00055 0,00030

2 0,00027 0,00072 0,00061 0,00106 0,00052

3 0,00036 0,00110 0,00096 0,00149 0,00070

4 0,00044 0,00145 0,00129 0,00186 0,00086

5 0,00051 0,00177 0,00158 0,00218 0,00101

6 0,00058 0,00205 0,00185 0,00246 0,00114

7 0,00065 0,00230 0,00210 0,00272 0,00127

8 0,00071 0,00253 0,00232 0,00296 0,00140

9 0,00078 0,00274 0,00253 0,00317 0,00153

10 0,00084 0,00294 0,00273 0,00337 0,00165

Table 3: CIRR measure - lena.

Figures 2, 3, and 4 show the behavior of the three
measures for each of the smoothing algorithms used. The
best results are obtained using the Isotropic and cEED
algorithms for all cases.

Figure 2: MSE measure - lena.

Table 4 shows the total number of iterations defined
by the stopping criteria JGTS and BF for the five refer-
ence images. As you can see, the results are quite similar,
they differ in one or two iterations. It can also be ob-
served that the isotropic and cEED methods require a

greater number of iterations. This is directly related to
the MSE, PSNR and CIRR quality measurements ob-
tained.

Figure 3: PSNR measure - lena.

Figure 4: CIRR measure - lena.

Image Index Iso CED cCED EED cEED

baboon
JGTS 10 6 6 5 8

BF 10 6 7 6 9

barbara
JGTS 10 6 7 6 9

BF 10 6 6 6 9

boat
JGTS 8 7 7 7 7

BF 10 7 8 7 9

cameraman
JGTS 8 7 7 6 7

BF 9 6 7 6 8

lena
JGTS 6 7 7 6 6

BF 7 7 7 6 7

Table 4: Number of iterations using JGTS and BF stop-
ping criteria.

In the particular case of lena image, Tables 5 and 6
show the values for the MSE and CIRR measurements re-
spectively. It can be indicated that the isotropic method
and cEED are those that present a variation. For these
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two cases, the number of iterations required by the pro-
posed method (BF) is greater than for the JGTS method.

Iter Isotropic CED cCED EED cEED

1 1,0000 1,0000 1,0000 1,0000 1,0000

2 0,3047 0,5420 0,5498 0,4046 0,3432

3 0,1835 0,3221 0,3369 0,2457 0,2057

4 0,1396 0,2266 0,2377 0,1741 0,1507

5 0,1165 0,1681 0,1740 0,1331 0,1217

6 0,1022 0,1314 0,1405 0,1074 0,1029

7 0,0923 0,1087 0,1136 0,0895 0,0907

8 0,0848 0,0894 0,0939 0,0767 0,0810

Table 5: MSE index - lena.

Iter Isotropic CED cCED EED cEED

1 1,0000 1,0000 1,0000 1,0000 1,0000

2 0,4206 0,5728 0,5798 0,4801 0,4308

3 0,2502 0,3440 0,3606 0,2880 0,2599

4 0,1793 0,2412 0,2541 0,1976 0,1854

5 0,1411 0,1765 0,1837 0,1465 0,1447

6 0,1172 0,1363 0,1474 0,1156 0,1194

7 0,1017 0,1115 0,1176 0,0946 0,1037

8 0,0913 0,0907 0,0961 0,0793 0,0915

Table 6: CIRR index - lena.

Figures 5 and 6 reveal a variation in the behavior
of the MSE index between iterations 2 and 3 for the
isotropic and cEED methods. This may be the reason
why the BF method is more uniform in the number of
iterations required to stop the diffusion process.

Figure 5: MSE index behaviour for lena image.

Figure 6: CIRR index behaviour for lena image.

Diff. JGTS BF

Isotr

CED

cCED

EED

cEED

Figure 7: Smoothed image of lena using JGTS and BF
stopping criteria.
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Table 7 shows the images obtained by applying the
selected smoothing methods (Isotropic, CED, cED, EED
and cED). Based on the results for the MSE and CIRR
measures, the results are the same or similar. Subjec-
tively, it is very difficult to notice the differences.

After exploring the lena image content, the eye re-
gion was identified to zoom in and see in a greater level
of detail the effect of the smoothing algorithms. Table
8 presents the original image and the images obtained
when applying the three algorithms that show a bet-
ter behaviour with respect to the selected quality mea-
sures. As can be seen, the original image differentiates
a semi-circular region in the centre of the eye. This re-
gion is maintained when applying isotropic smoothing
and cEED, however, when cCED smoothing is applied,
that region becomes blurred. The latter behaviour is
maintained when applying the CED and EED algorithms
(see Table 8).

Diff. JGTS BF

Orig

Isotr

cEED

cCED

Figure 8: Zoom in of eye region of smoothed image of
lena.

In addition, it is observed that the isotropic algorithm

presents a lower smoothing in some regions compared to
the cEED and cCED algorithms, for example, in the up-
per left region of the images, it is seen that the isotropic
algorithm presents a more stepped variation than the
results of the cEED and cCED algorithms.

To visually identify the impact of the smoothing algo-
rithms, row 266 of the lena image was selected. Figure 9
shows the behaviour of the original image and the images
obtained from applying each smoothing algorithms. As
can be seen, the isotropic diffusion algorithm generates
a profile very close to the original image and therefore
the image quality measures are better. The cEED algo-
rithm maintains the intensity in the areas where edges
are present and in regions with low-intensity variation it
makes good smoothing, for example, in the interval [386,
398]. The other smoothing algorithms generate a loss of
information at the edges and attenuate their intensity,
causing some of them to be eliminated, for example in
the intervals [260, 272] and [320, 335].

Based on the elements mentioned above, the initial
alternative to smooth the images by preserving the edge
information corresponds to the nonlinear anisotropic dif-
fusion algorithm cEED.

Figure 9: Profile behaviour of smoothing algorithms us-
ing lena image.

5.2 3D Case

For the tests with 3D images were selected ten CT im-
ages of head-neck. It is proceeded in a similar way to the
2D case, ie, the original images are used first to evaluate
the quality measures and to apply the smoothing algo-
rithms in order to identify which stopping criterion per-
forms better. Contrast-enhanced images are then used
to identify if there is any change in the behaviour of the
smoothing algorithms and in the stopping criteria.
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Img MSE and CIRR behaviour (3D images)

im1

im3

im5

im7

Table 7: MSE, PSNR and CIRR of 3D smoothed images.

Table 7 shows the behaviour of the MSE, PSNR and
CIRR quality measures for images 1, 3, 5 and 7. The al-
gorithms to be selected are those that generate the low-
est value for the MSE measure and a higher value for
PSNR and CIRR measures. However, it should be con-
sidered that as the image is smoothed the value of the
PSNR measure decreases, for that reason, the EED and
cEED algorithms present a lower value than the other
algorithms.

The number of iterations defined by each of the stop-
ping criteria for the ten test images is presented in Table
8. As can be seen, isotropic diffusion is similar using the
two stopping criteria except for image3 and image4. In
the case of the EED and cEED diffusion, the number
of iterations defined by BF criterion is half the num-
ber of iterations required by the JGTS criterion. JGTS
stopping criterion generates a greater number of itera-
tions required to stop the diffusion in all 3D images with
respect to BF criterion. In addition, the number of it-
erations defined by the BF criterion is the same for the
isotropic, EED and cEED diffusion algorithms.

Table 9 shows the images obtained from the smooth-
ing process using stopping criteria JGTS and BF respec-
tively. Visually the differences between the images are
not perceptible. To see the impact of the number of
iterations in the diffusion algorithms, the edges of the
image1 for the images generated by each of them were
calculated. The algorithm proposed by Canny was used

for this purpose. As the largest variation in the number
of iterations was presented in the EED and cEED diffu-
sion algorithms, it is expected that there is a significant
variation in the edges.

Img Index Isotr CED cCED EED cEED

im1
JGTS 5 10 10 8 8

BF 4 7 7 4 4

im2
JGTS 5 10 10 8 8

BF 4 7 7 4 4

im3
JGTS 10 10 10 9 9

BF 4 9 9 4 4

im4
JGTS 10 10 10 10 10

BF 4 9 9 4 4

im5
JGTS 5 10 10 8 8

BF 4 8 8 4 4

im6
JGTS 5 10 10 8 8

BF 4 8 8 4 4

im7
JGTS 5 10 10 9 9

BF 4 8 8 4 4

im8
JGTS 5 10 10 9 9

BF 4 8 8 4 4

im9
JGTS 6 10 10 9 9

BF 4 6 7 4 4

im10
JGTS 6 10 10 9 9

BF 4 6 7 4 4

Table 8: Number of iterations using JGTS and BF stop-
ping criteria.

The results of the obtained edges are presented in
Table 10. In the rows is found each of the diffusion al-
gorithms. In the second column the images obtained by
using the JGTS stopping criterion for each diffusion al-
gorithm. In the third column the images using the BF
criterion. As can be seen, there is no variation in the
edge detection in the images obtained using the EED
and cEED diffusion by applying the two stopping crite-
ria. In addition, isotropic diffusion presents results sim-
ilar to EED and cEED diffusion. On the other hand,
the diffusion CED and cCED allow detecting a greater
number of edges with respect to the other three algo-
rithms, independent of the stopping criterion used. This
is due to the fact that the CED and cCED algorithms
apply less smoothing in the internal regions of the image
structures.

In conclusion, the edges detected in the images ob-
tained using each one of the diffusion algorithms are
equal independent of the stopping criterion used. There-
fore, it is considered that the BF stopping criterion is
more efficient than the JGTS criterion because it allows
stopping the diffusion in a smaller number of iterations.
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Diff JGTS BF

Isotr

CED

cCED

EED

cEED

Table 9: 3D images smoothed using MSE and CIRR
stopping criteria.

6 CONCLUSIONS

The selected nonlinear diffusion algorithms allowed to
define that the edge information is preserved in a bet-
ter way using the cEED algorithm. Isotropic algorithm
also preserves the edges but in the internal regions of
the structures does not perform a good smoothing. The
CED and cCED algorithms do not properly preserve the
edges and generate edges continuity incorrectly.

The proposed BF stopping criterion requires a lower
number of iterations in 3D images. This is because the
CIRR measure has an asymptotic behavior, while the
MSE measure has a more linear behavior. This result
allows to increase in automatic way the efficiency of the
smoothing algorithms based on nonlinear anisotropic dif-

fusion.
The stopping criterion BF is independent of the

smoothing algorithm and it is not necessary to include
it in the partial differential equation (PDE).

Diff Edges - JGTS Edges - BF

Isotr

CED

cCED

EED

cEED

Table 10: Edges of 3D images smoothed.
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ABSTRACT
Typically, volumetric medical image data is examined by assessing each slice of an image stack individually.
However, this enables observers to assess in-plane spatial relationships between anatomical structures only and
requires them to keep track of relationships along the third anatomical plane mentally. Therefore, visualization
techniques are researched to support this task by depicting spatial information along the third plane, but they can
introduce a high degree of abstraction. To overcome this, we present a novel approach that transforms image
stacks with labeled anatomical structures into maps with a three-dimensional layout, namely floor maps. Since
this approach increases the visual complexity under certain conditions, some clinical application scenarios, e. g.
diagnosis and therapy planning, probably will not benefit. Thus, the approach is mainly aimed to support student
training and the generation of clinical reports. We also discuss how to enhance the slice-based exploration of
medical image stacks via floor maps and present the results of an informal evaluation with three trained anatomists.

Keywords
Floor Maps, Exploration Support for Medical Volume Data, Abstraction

1 INTRODUCTION & MOTIVATION
Over the last decades, much research was carried out to
improve medical image scanners, such as Computed To-
mography (CT) or Magnetic Resonance Imaging (MRI)
scanners, e. g. with respect to spatial resolution. Thus,
less anatomical information is compiled and mapped
into individual Volume Elements (voxels). On the one
hand, this improved the versatility and fidelity of the
image data. On the other hand, this results in more vi-
sual information that has to be assessed. Generally, this
is achieved by axial slicing, e. g. via computer mouse
scrolling. The main disadvantage is that users have to un-
derstand three-dimensional spatial relationships between
anatomical structures although only in-plane relation-
ships are depicted. Especially for medical students in
training this can become mentally exhausting, because
they are not yet accustomed to these tasks.

The main contribution of this work is a processing
pipeline that can transform labeled, medical image
stacks into interactively explorable floor maps. These
maps are a well-known concept to provide spatial in-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

formation in large, multi-story buildings, such as malls,
hospitals, or federal buildings [11]. These maps aim
to use the natural exploration-supporting properties of
maps while introducing only a moderate degree of ab-
straction. Many people are used to maps, e. g. from
various handheld devices. Additionally, maps support
our visuo-spatial working memory, which is a mental
resource that we require for orientation and navigation
tasks in spatial environments. Furthermore, since CT or
MRI scans are multiple, stacked images, their data lay-
out is three-dimensional and the visual layout of maps
can be three-dimensional, too. Finally, maps and medi-
cal image visualization techniques purposefully abstract
and simplify geometric details. This can be beneficial for
anatomical education and report generation, since, in the
beginning, understanding spatial relationships between
anatomical structures is more important than learning ge-
ometric details, and the generation of easy-to-understand
and interpret documentations of findings is an important
task in every clinical workflow. Therefore, we hypoth-
esize that floor maps are suitable to offer exploration
support for medical image data.

2 RELATED WORK
One downside of the slice-based exploration and assess-
ment of image stacks is that only the in-plane spatial re-
lationships between structures are depicted. Thus, physi-
cians have to keep track of spatial relationships along
the third anatomical plane mentally. To support this task,
2D and 3D visualization techniques were developed that,
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Figure 1: Floor map visualizations depicting three image data sets (cf. Tab. 1). Left (DS1): A standard floor map is
depicted. Middle (DS2): Various structures, such as the two cervical muscles (brown), the arteries (red), and veins
(blue), were re-merged. Right (DS3): The aorta and lateral ribs were re-merged while also preserving their shape.

in general, depict additional spatial information of the
explored and assessed image stack along the third plane.

Exploration Support. Tietjen et al. [17] presented a
2D technique called lift charts: While an image stack
is explored in a 2D view, the spatial extent of labeled
structures along the third plane is depicted in an addi-
tional 2D chart. The result is an adapted bar chart with
multiple vertical bars that can be interpreted as lifts that
make it possible to distinct vertical sections. Generally,

Figure 2: A lift chart to support the slice-based explo-
ration of medical volume data as introduced by Tietjen
et al. [17]. All labeled anatomical structures are repre-
sented via bars and their vertical positions and extents
are defined by the zmin and zmax coordinates of their re-
spective structure’s Axis-Aligned Bounding Box. The
respective data set is presented on the right.

lifts are defined along the z-axis, because tomographic
scans are acquired and assessed in axial slices. However,
lift charts can be applied for arbitrary projection planes.
Furthermore, a unique color-coding is assigned to each
structure type, such as bones and lymph nodes. The lift
chart in Figure 2 was generated using Data Set 1 (see
Tab. 1). The respective floor map can be seen in the
leftmost subfigure of Figure 1.

Later, Balabanian et al. [3] used lift charts for their hi-
erarchical graph network, which enabled them to use
lift charts for anatomical substructures, too. Thus, there
now exist multiple charts for one data set: Depending on
the currently observed hierarchy level, a chart presents
spatial relationships between structures and substruc-
tures at different scales. Diepenbrock et al. [7] extended
lift charts to present information from scans of different
modalities: Rather than using morphological scans only,
their lift charts also present information from functional
MRI (fMRI) scans like a graph plot.

Although lift charts are a straightforward visualization
technique to enhance the slice-based exploration of im-
age stacks, their overall degree of abstraction is very
high. Following the theory of Viola and Isenberg [19],
lift charts would rank high on the geometric and photo-
metric abstraction axes, because only two values and
one color are presented per structure. Estimations of
the individual degrees of abstraction for lift charts and
floor maps are depicted in Figure 3. When considering
real-world anatomy as the starting point and biochemi-
cal processes at the end point of the scale axis, lift charts
and floor maps are located at a very low point, because
they are used for high-level morphological information.
Moreover, since only one scan is used, there is no tem-
poral information; thus, both techniques introduce no
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temporal abstraction. Techniques with a low photomet-
ric abstraction use complex light propagation models,
whereas more photometrically abstract techniques use
simpler shading or stylizations, such as flat shading or
line drawings. When techniques introduce a low degree
of geometric abstraction, many shape details are pre-
served, whereas objects will get very simplified when
a high degree of geometric abstraction is used. The de-
grees of photometric and geometric abstraction are very
high for lift charts, since only their vertical extent is
preserved and presented in a simple color-coding. Thus,
we hypothesized that floor maps are more appropriate
to offer exploration support for medical volume data,
because they preserve more geometric details, such as
the axial shape of structures, and present them using
ambient and diffuse shading, which further emphasize
valleys between floors and rooms.
Mindek et al. [14] presented a different type of explo-
ration support by virtually altering the slicing speed
during 2D exploration via non-linear interaction. They
define representative slices if chosen structures undergo
large morphological changes between adjacent slices,
for example, if the cross-section areas of blood ves-
sels change or if they branch. During 2D exploration,
only these representative slices are presented to the user,
which results in a slower exploration in regions with
large changes, because there are more representative
slices. Similarly, in image regions with many morpho-
logical changes our method generates more floors and
rooms. Consequently, both methods generate only few
representative slices or large floors with few rooms in
image regions with only small or no changes.
Digital 3D Maps. Research for digital maps focuses on

• pathway planning in emergency situations [6],

• generation of 3D models from 2D drawings [20],

• level-of-detail techniques for indoor maps [13], or

• the ontological description of buildings [12].

Floor maps help users to familiarize with complex spa-
tial layouts, such as offices, high-rise buildings, and

Scale
Real-World
Anatomy

Biochemical
Processes

P

T
G

Lift

Chart

P

T
G

Floor

Map

Figure 3: Ranking the lift chart and floor map visualiza-
tion techniques using the theory of Viola and Isenberg
[19]. The radiant axes show the Photometric, Geometric,
and Temporal abstraction categories. Axes ticks show
the estimated degrees of abstraction in the respective
category. The T category is not applicable.

malls [11]. To exploit this potential and to prevent vi-
sual clutter, special care is necessary. For example, color
scales with only few colors that can be easily distin-
guished have to be defined and occlusion problems have
to be controlled, e. g. by generating good default views
on building models. Our approach enables users to inter-
actively adapt the color-coding and opacity of structures.

3 FLOOR MAP GENERATION
In this section the data sets and processing pipeline to
create interactive 3D floor map visualizations from med-
ical image volumes are described. Figure 4 depicts the
proposed pipeline to transform segmentation masks into
an interactively explorable floor map visualization. Af-
ter presenting the conceptual design, each step of the
pipeline is described in Section 3.3.

3.1 Image Data and Implementation
To develop the proposed method, three CT scans were
used (see Tab. 1). The processing pipeline, which trans-
forms label images into floors and rooms, was imple-
mented in MeVisLab 2.8.2 [15] (see Fig. and Sec. 4).
Subsequently, users can use a Graphical User Interface
(GUI) (see Fig. 9) to simultaneously explore the unal-
tered image stacks and floor maps.

3.2 Conceptual Design
When applying the floor map concept on medical vol-
ume data, we discussed how human anatomy can be
transformed into floors and rooms. Generally, larger
structures, such as organs, have a deformed, spherical
shape with soft edges. There are some exceptions, such
as extremity bones or intestines, which, while also hav-
ing a round, have a rather elongated shape. Smaller
structures, such as blood vessels, are tubular with circu-
lar or ellipsoid shaped cross-sections.

In contrast, buildings are man-made structures with con-
siderable regularity. For most buildings, the ground
plan is extruded vertically and divided horizontally into
equally high floors. Thus, they often have a cuboid sur-
face. However, especially for smaller buildings, such
as homes, the inner floor layout can be very individual
with varying room sizes, whereas for taller buildings,
the floor layout can be very repetitive. Additionally,
pathways, such as corridors, staircases and elevators, are
straight, horizontally or vertically oriented tubes.

In clinical practice, physicians typically assess image
stacks via axial slicing. Therefore, the proposed ap-
proach divides image stacks along the z-axis to create
floors, and to make them clearly visually distinguishable,
small gaps are inserted between adjacent floors. How-
ever, although the gap size is adjustable, each division
results in a geometric distortion. Therefore, the number
of divisions should be minimal.
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Figure 4: Pipeline to generate floor map visualizations from medical image stacks. LZ is a compiled list of unique
zmin and zmax coordinates of all segmentation masks. LCI is a list of cut intervals that are used to divide the
segmentation masks into floors.

To create building-like maps, rooms have to be created.
Anatomical structures can have complex spatial arrange-
ments, e. g. the heart is encompassed by the lungs, but
they are clearly separated. This feature is considered in
the processing pipeline by creating floors and rooms that
are free from overlaps (cf. Figures 6 and 7). However,
to enable an easy visual grouping of rooms that repre-
sent similar anatomical structures, they are color-coded
identically. For example, in Figure 4 the kidneys and
lungs are colored brown and pink, respectively.

3.3 Image Stack Processing
Z-Coordinate Extraction. In the first step of the pro-
cessing pipeline, the zmin and zmax coordinates of all
labeled structures’ axis-aligned bounding boxes are ex-
tracted and compiled into a list named LZ . Before the co-
ordinates are compiled, certain structures can be marked
as being too small for processing, if their spatial ex-
tent in z-direction (zmax− zmin) is below a user-defined
threshold. Thus, they will not be divided into floors and
their shape will be preserved. However, due to gaps
between floors, they have to be moved to their correct
vertical position for the final visualization. In Figure 5,
lymph nodes are depicted that were marked too small.
This protects very small structures from any geometric
abstraction and distortion, which would be larger for
them than for larger anatomical structures.

Cut Interval Computation. The compiled z-
coordinates are then used to compute cut intervals to
define floors. Similar to the approach of Mindek et
al. [14], floors are defined when the composition of

DS DS size (voxels) # S Site of Scan

DS 1 512 × 512 × 105 8 lower thorax to pelvis
DS 2 513 × 513 × 108 22 head and neck area
DS 3 512 × 512 × 99 9 lower thorax and upper abdomen

Table 1: Details of the used CT data sets (DS) with their
respective number of voxels, the labeled structure count
(# S), and the anatomical site of the scan (cf. Fig. 1).

segmentation masks between adjacent slices changes.
This results in unique floors and visually guides users to
regions with high anatomical variability. Therefore, first,
LZ is sorted in ascending order and double coordinates
are removed since the method only needs knowledge
about slices in which the composition changes, but not
about which segmentation masks are the reason. For
each remaining entry ek ∈ LZ only one of the following
statements (S1-S3) is correct:

S1 ek = zminSi
S2 ek = zmaxSi
S3 ek = zminSi

= zmaxS j

Figure 5: Lymph nodes that are flagged too small, which
protects them from geometric abstraction and distortion.
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For each ek ∈ LZ there exist structure segmentations S
that either start in slice ek (S1), end in ek (S2), or at least
one starts while at least another ends (S3). Subsequently,
all ek ∈ LZ have to be flagged accordingly. Using an
extended interval notation and LZ of Data Set 1, the
following line enables a quick understanding on how cut
intervals are defined using our approach:

[
0
... [

54
[

55
... [

69
[

70
... ]

77
]

78
... [

80
|

81
... |

91
... ]

104

For each entry ek, the color-coding and token show
which statement is true: A red left square bracket is
used for S1, a blue right square bracket is used for S2,
and a violet bar is used for S3.

Subsequently, all entries are processed pairwise. De-
pending on which statements are true for this and the
next entries ek, the respective cut interval will be defined
differently. There exist nine combinations, because, e. g.,
ek can fulfill S1 while ek+1 can fulfill S1, S2, or S3. For
example: For the slices 0 and 54 the composition of seg-
mentation masks does not change until slice 54. Thus,
the first floor will be defined from slice 0 to 53 and slice
54 will be processed in the next step. For 70 and 77,
slice 77 can be included in this processing step and has
to be skipped in the next step. Applying the method
shown in Algorithm 1 to Data Set 1, the resulting list of
cut intervals LCI will be:

LCI = {[0,53], [54,54], [55,68], [69,69],
[70,77], [78,78], [79,79], [80,80],
[81,81], [82,90], [91,91], [92,104]}

The algorithm produces the smallest number of floors
with no double slices in adjacent intervals. Thus, visual
distortion is minimal and the linking between original
images and floor map is unique for each slice, which
is important for the simultaneous exploration later. Fi-
nally, to create visual gaps between floors, empty slices
are created between LCI intervals before mesh creation.
We found that one or two slices are sufficient, because
larger gaps increase the need that users have to navigate
through the final visualization manually. This would
be unfavorable, because medical experts are not as well
used to 3D interactions as computer graphic experts.

Vertex Mesh Generation. To create meshes, the Neigh-
boring Cells Algorithm is used [2]. However, before
that, rooms have to be created inside the previously de-
fined floors: For each floor and all segmentation masks
therein, this is achieved via projection and extrusion (see
Fig. 6): First, all masks are projected along the z-axis.
Secondly, this shape is extruded along the floor’s height.
This results in rooms that are defined by the maximum
axial shape of their respective structures.

This approach preserves some geometric features of
the anatomical structures, which, in combination with

their vertical position, supports individual recognizabil-
ity. However, it also creates overlapping artifacts be-
tween rooms. This can be seen in Figure 6. Although
there exists no overlap between the segmentation masks
S1 and S2, extruding their maximum axial shape results
in the overlapping rooms R1 and R2.

Input : LZ

f o r a l l e ∈ LZ
i f LZ(e) == [
| i f LZ(e+1) − LZ(e) == 1
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e) , LZ(e) ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e) , LZ(e+1) ]
| | e n d i f
| e l s e
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e) , LZ(e+1)−1 ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e) , LZ(e+1) ]
| | e n d i f
| e n d i f
e n d i f

i f LZ(e) == |
| LCI(e) = [ LZ(e) , LZ(e) ]
| e = e+1
| i f LZ(e+1) − LZ(e) == 1
| | c o n t i nu e
| e l s e
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e)+1 , LZ(e+1)−1 ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e)+1 , LZ(e+1) ]
| | e n d i f
| e n d i f
e n d i f

i f LZ(e) == ]
| i f LZ(e+1) − LZ(e) == 1
| and LZ(e) != LCI(e−1) [ 1 ]
| | LCI(e) = [ LZ(e) , LZ(e) ]
| | c o n t i nu e
| e l i f LZ(e) − LZ(e−1) == 1
| and LZ(e+1) − LZ(e) > 1
| | LCI(e) = [ LZ(e) , LZ(e) ]
| | e = e+1
| e n d i f
| i f LZ(e+1) == [ or LZ(e+1) == |
| | LCI(e) = [ LZ(e)+1 , LZ(e+1)−1 ]
| e l i f LZ(e+1) == ]
| | LCI(e) = [ LZ(e)+1 , LZ(e+1) ]
| e n d i f
e n d i f
endfor

Output : LCI

Algorithm 1: Cut Interval Generation.
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This issue is resolved by performing pairwise overlap-
ping tests between all rooms. If overlaps exist, the over-
lapping volume is assigned to the smaller room. This
decision was taken, because, if rooms overlap, smaller
rooms are already at a higher risk to be overlooked. Thus,
their visibility is increased. In Figure 6, this would be
R2 and the red-colored mediastinum, respectively.

After overlapping artifacts are resolved, processed rooms
are very close to each other. Therefore, to increase vi-
sual separability of adjacent rooms, surface meshes are
smoothed, e. g. via Laplace smoothing. The result is de-
picted in Figure 7: After overlap removal, with respect
to the used color-coding, the mediastinum and lungs can
be clearly distinguished. However, the visual transition

S1 S2 R1 R2 R1 R2 Floor

Figure 6: Top: To create rooms, the maximum axial
shape of each segmentation mask Si is extruded along a
floor. This can result in overlap artifacts between rooms
Ri. This problem is addressed by assigning overlapping
volume to the smaller room. Bottom: The mediastinum
(red) and the lungs (rose) overlap laterally. The bound-
aries of the overlapping volumes are emphasized for
better visibility. Since the mediastinum is smaller than
both lungs, the overlapping volumes are assigned to it.

R1 R2 R1 R2

Figure 7: After extrusion and overlap removal, adjacent
rooms are contiguous. Therefore, Laplacian smoothing
is applied, which results in volume shrinkage. This cre-
ates gaps between adjacent meshes and valleys around
the top and bottom edges. In combination with diffuse
shading, rooms become more visually separated.

is abrupt, which can become a problem if rooms with
similar colors are too close to each other. Applying mesh
smoothing creates valleys between adjacent rooms and
in combination with diffuse shading, the visual separa-
bility is further increased.

Before mesh generation, users have two options to alter
the transformation of individual segmentation masks
into floors and rooms. First, the shape of structures can
be preserved. This means that while the cut intervals
in LCI are still used to create individual floors, not their
maximum axial shape but the unaltered segmentation
mask is used to create rooms. Secondly, masks can be
protected from being divided into floors. To do this, a
morphological dilatation operator in z-direction is used
to re-merge vertical gaps that are a result of empty slices
that are created between adjacent cut intervals. Both
options can be combined, which is depicted in Figure 8:
Here, the musculi sternocleidomastoideus are protected
from divisions and geometric abstraction into rooms.

Another option that was included is that all structures in
the lowest or highest floor can have their shape preserved.
This can be seen in Figure 1: In the leftmost subfigure,
the lowest and highest floors were processed normally.
Due to their large vertical extent, they introduce a large

Figure 8: Users can preserve the shape of segmented
structures and re-merge gaps. Here, both options were
combined for the musculi sternocleidomastoideus.
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Figure 9: The GUI of the combined 2D view and floor map visualization. A tumor (green), and the left glandula
submandibularis (white), carotis (red), and jugular vein (blue) are highlighted in 2D and 3D. The orange-colored
frame corresponds with the currently displayed slice. On the right, the names, colors, and opacities are shown for all
structures. Users can interactively adjust these options to change the floor map visualization.

geometric distortion. In contrast, for the middle subfig-
ure, the shapes of the upper skull and collarbones were
preserved, which can increase the recognizability of the
depicted anatomical site considerably.

Interactive Floor Map Visualization. Figure 9 depicts
the GUI that enables an interactive and simultaneous
exploration of the original images and floor map. In the
2D view on the left, users can slice up and down through
the original image stack, e. g. via mouse wheel scrolling.
In the floor map, an orange-colored frame moves up and
down accordingly that shows which floor the currently
displayed slice belongs to. Note that this frame has to
jump over gaps in the floor map, because the original
image stack does not have empty slices that are virtually
inserted to create individual floors. Moreover, users can
select room meshes and the boundaries of the respective
segmentation masks are highlighted in the 2D images. In
Figure 9, various structures, such as a tumor (green), ar-
teries (red), and veins (blue) were selected. Additionally,
a geometry-based contour shading is used to highlight
the 3D contours of selected rooms. To control occlusion

Data Set (# S/ # F)
Category DS 1 (9/ 15) DS 2 (22/ 28) DS 3 (9/ 15)

Z-Coordinate Extraction 0.94 2.51 1.52

Cut Interval Computation 0.01 0.05 0.01

Vertex Mesh Generation
Room Extrusion 12.66 32.94 10.93

Overlap Removal 21.68 47.64 14.34
Mesh Generation 29.65 64.01 30.92
Mesh Smoothing 2.43 3.08 4.41

Total Processing Time 67.37 150.23 62.13

Table 2: Computation times in seconds for each process-
ing step from Figure 4. For each data set, the number of
structures and the number of floors are given with # S
and # F. No structure was marked too small, no shape
was preserved, and no rooms were re-merged.

problems, the opacities of all rooms can be adjusted on
the right using order-independent transparencies [4].

4 RESULTS
The main result of this work is a pipeline that trans-
forms labeled, medical image stacks into interactively
explorable floor maps (see Fig. 4). Algorithm 1 is the
core of the proposed method and it produces the smallest
possible number of floors. Because double coordinates
are removed during cut interval computation, there exist
no ambiguities when the original images and the floor
map are explored. In Table 2, the computation times
of all processing steps are shown. They were acquired
using an i5-2500 processor with 3.30 GHz.

4.1 Evaluation
To evaluate the proposed approach, three trained
anatomists were interviewed informally and each of
them filled out a questionnaire. Two interviewees are
physicians (I1 and I2) and one is a biologist (I3). Similar
to Figure 9, they were given a software prototype to
simultaneously explore CT image stacks of three data
sets (cf. Tab. 1 and Fig. 9) with either lift charts or
floor maps. The interviewees were given a five-point
Likert scale (−−, −, o, +, ++) to answer questions.
Their answers are compiled in Table 3 and are presented
using a diverging red-white-blue color-scale. The
questionnaires were divided into three parts, which
will be explained in the following paragraphs and a
discussion will be provided in the next section.

In the first part, the interviewees were asked to provide
information about their clinical and technical experience.
Their answers are shown in the upper part of Table 3:

Q 1 How do you rate your anatomical knowledge?
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Q 2 How familiar are you with medical visualization
techniques in general?

Q 3 How familiar are you with exploration-assisting
visualization techniques for medical images?

Q 4 How do you rate your spatial thinking capabilities?

For the second part, the interviewees were given in-
structions on how to interact with the elements of the
software prototype. First, they were asked to explore the
CT data sets with lift charts (cf. Fig. 2). The currently
depicted slice was represented as a horizontal line in the
lift chart. Subsequently, the interviewees explored the
data sets with floor maps. After each exploration, they
were asked to rate the exploration-assisting capabilities
of each visualization technique (VT):

Q 5 How easy is it for you to get a first overview of the
data set using VT?

Q 6 How easy is it for you to assess spatial relationships
between anatomical structures using VT?

Q 7 How much does VT support you to find anatomical
abnormalities, e. g. a tumor?

Q 8 How easy is it for you to use VT for orientation?

Q 9 How fast do you recognize segmented structures
using VT?

Q 10 Overall: How much do you like using VT?

For the last part, they were asked how feasible they think
each VT is for various clinical application areas.

5 DISCUSSION
Method Discussion. The presented pipeline requires
labeled images and does not include segmentation al-
gorithms. Depending on the data set (cf. Tab. 1), the
available structure segmentations were obtained using
different segmentation algorithms. For example, the
liver in DS 3 was segmented using HepaVision2 from
Bourquain et al. [5], which uses a semi-automatic live-
wire approach. This results in a binary mask that can
immediately be processed with our method. In contrast,
the lymph nodes and blood vessels in DS 2 were seg-
mented using the model-based methods of Dornheim
et al. [8, 9] to support the treatment planning for neck
dissection surgeries. These methods produce polygonal
representations of segmented structures, which requires
a conversion into binary masks. This is not ideal, since
this conversion degrades the quality of segmentation
results to some extent. However, this is not an issue,
because the presented method was not developed with
this use case in mind.

Although healthy anatomical structures are clearly sep-
arated from each other, obtaining segmentation masks
involves some degree of uncertainty. This uncertainty

is usually increased around neoplasias, e. g. tumors or
metastases and, thus, segmentations can overlap. This
can be seen in Figure 9, where the tumor (green) and
glandula (gray) segmentations overlap. Our approach ad-
dresses these cases by assigning overlapping volume to
the smaller structure. However, there exist cases where
structures are embedded in each other, e. g. tumors or
metastases in organs. As long as the neoplastic structures
are smaller in volume than the surrounding organ tissue,
overlapping volume will be assigned to the neoplasm.
Thus, tumors and metastases will not become occult in
the final floor map. In this scenario, the overlapping and
neoplasm room volumes are identical. However, if the
embedded, cancerous tissue is larger than the remaining
healthy tissue, the overlapping volume would be wrong-
fully labeled healthy and, thus, the cancerous tissue will
be completely omitted. Such problematic cases could
be addressed by enabling users to label embedded struc-
tures favored. As a result, overlapping volume would
always be assigned to the favored structure, although it
has the larger volume. Moreover, the proposed approach
does not distinguish between elongated and spherical
structures. Therefore, blood vessels can be heavily dis-
torted if their shape is not preserved (cf. Figure 8).

Result Performance Discussion. The room extrusion,
overlap removal, and mesh generation steps require the
most processing time. The performance of each step
could be improved via parallel processing of structures.

Interviewees
I 1 I 2 I 3

Gender m m m
Age 26 27 43

Experience with Human Anatomy 2.5 3 12
Clinical Experience 4.5 0 0

Active Anatomy Teaching 0 3 12
Q 1
Q 2
Q 3
Q 4

Lift Chart Floor Map
I 1 I 2 I 3 I 1 I 2 I 3

Q 5
Q 6
Q 7
Q 8
Q 9

Q 10

Diagnosis
Therapy Planing

Physician-Patient Consultation
Interdisciplinary Communication

Student Training
Communication of Findings

Legend −− − o + ++

Table 3: Evaluation results of the informal interview
and questionnaires. The upper part shows how the inter-
viewees rate their anatomical and technical knowledge.
Numbers mean in years. The lower parts show their
assessments about the exploration-supporting capability
and clinical versatility of each visualization technique.
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In case of the overlap removal step, a well-elaborated
and implemented process and resource management
would be required, because, using the presented ap-
proach, extruded structures are processed pairwise. Re-
garding the mesh generation, the measured times include
the transformation of all structures into meshes. Thus,
for example, the average processing time per structure
for Data Set 2 was 2.91 seconds. To increase the per-
formance of this step, the cell extent of the Neighbor-
ing Cells Algorithm can be increased [2], which can
decrease the mesh quality considerably. However, the
processing into surface meshes that are used for the floor
map visualization has only to be done once.
Evaluation Results Discussion. The interviewees were
encouraged to think aloud while exploring the original
images with lift charts and floor maps. This revealed two
limitations of our approach: First, although Algorithm 1
produces the smallest possible number of floors, the in-
terviewees still reported that the final presentation would
include too much visual clutter (Quote: "There is too
much going on."). This is depicted in Figure 9 that shows
a heavily dissected mandible. From a cognition perspec-
tive, this can be explained with the work of Alvarez and
Cavanagh [1]: For orientation and navigation tasks, we
process and store visuo-spatial stimuli and construct a
so-called mental map and they are our mental represen-
tation of our spatial environment. However, the required
resource to do so, namely the Visuo-Spatial Working
Memory, is limited and heavily depends on the visual
complexity and number of displayed objects. Whereas
an anatomical structure is represented by one bar in a lift
chart, it can be represented by multiple rooms in a floor
map. Therefore, although the geometric appearance of
rooms can be considered simple, displaying them all
appears to be overwhelming. This limitation could be
addressed by including knowledge about the in-plane
anatomical variability so that adjacent rooms in regions
with a low variability get merged.
Secondly, Algorithm 1 divides image stacks into floors
when the composition of segmentation masks changes
between adjacent slices. This was done to guide the at-
tention of users towards regions with a large anatomical
variability. Although this approach is used in other visu-
alization domains [14], the interviewees remarked that
they are not used to this type of orientation and that the
floor map "requires a lot of reading". They use certain
anatomical landmarks for orientation, e. g. the vertebrae
for the upper body. In regard of the lift charts of Data Set
1 and 3, the interviewees noted that horizontal divisions
in the bar that represents the spine and textual descrip-
tions, namely C1-C7 for cervical, T1-T12 for thoracic,
and L1-L5 for lumbar vertebrae, would be beneficial
to further increase exploration support. This is related
to the method of Balabanian et al. [3], who extended
lift charts to be applicable for hierarchical relationships
between anatomical structures. Therefore, the proposed

floor division approach should also be reviewed with
respect to anatomical landmarks.

In addition, the evaluation showed the clinical feasibility
of the proposed approach (cf. Tab. 3). For diagnosis
and therapy planning, e. g. in cases of cancer or to se-
lect positions for multiple radiation sources for radiation
therapies, distances between anatomical structures are
an important decision criterion. Although our approach
introduces less geometric abstraction than other meth-
ods, by using the maximum axial shape of anatomical
structures to create rooms in-plane distances become
heavily distorted. For communication tasks, i. e. with
patients, students, and colleagues, our approach was
rated just as good as lift charts. However, when the
aforementioned limitations are addressed, the overall
feasibility of the presented approach should improve.

6 CONCLUSION & FUTURE WORK
In this paper, a novel visualization approach was pre-
sented that transforms labeled medical image stacks
into a three-dimensional map layout, namely floor maps.
Furthermore, it was discussed how the resulting visual-
izations can be combined with the conventional slice-
based exploration of CT image stacks. The proposed
approach was evaluated by interviewing three anatomy
experts, which revealed two shortcomings: First, the
main goal was to offer exploration support for medi-
cal image stacks via maps. However, although the pre-
sented method guarantees to minimize the number of
produced floors and rooms, it was reported that anatom-
ical structures are still represented by too many visual
entities [1]. This shortcoming could be addressed by
generating good default views and limiting the number
of presented rooms, for example, by pulling out corre-
sponding floors like drawers during a slice-based ex-
ploration [11, 18]. The exploration-supporting facilities
of floor maps should not be hindered, because humans
are still able to construct mental maps from piecewise,
sequentially presented maps for orientation and naviga-
tion tasks [21]. Secondly, a landmark-based approach
to construct floors and rooms appears to be beneficial.
However, using vertebrae as landmarks only works for
the upper body. Therefore, the method has to be adjusted
with respect to the anatomical area that was scanned.

Currently, the approach is limited to visualize one data
set at a time. A potentially useful extension is the inte-
gration of multiple data sets of different modalities. In-
spired by Ropinski et al. [16], a combination of CT and
Positron Emission Tomography (PET) scans could be
interesting: While morphological information from CT
scans would still be used to create floors and rooms that
give a spatial context, physiological information from
PET scans could be used to emulate certain functionali-
ties inside rooms, for example light sources. Rooms that
represent segmented structures with an increased PET
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activity, e. g. tumors or metastases, could be presented
in a lights on mode, while all other rooms are presented
normally in a lights out mode. We argue that this fea-
ture would strongly guide the attention of users towards
interesting (malignant) structures.

Finally, we think about applying varying degrees of ge-
ometric abstraction to different types of anatomy, i. e.
organs and vessel trees [19]. For organs, instead of ex-
truding their maximum axial shape, their axis or object-
aligned bounding boxes could be used in floor map lay-
outs. Methods, such as the Douglas-Peucker algorithm
[10], could be used to simplify vessel trees, since they
are geometrically similar to rivers and estuaries.
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Abstract
Many lighting methods used in computer graphics such as indirect illumination can have very high computational
costs and need to be approximated for real-time applications. These costs can be reduced by means of upsam-
pling techniques which tend to introduce artifacts and affect the visual quality of the rendered image. This paper
suggests a versatile approach for accelerating the rendering of screen space methods while maintaining the visual
quality. This is achieved by exploiting the low frequency nature of many of these illumination methods and the
geometrical continuity of the scene. First the screen space is dynamically divided into separate sub-images, then
the illumination is rendered for each sub-image in an adequate resolution and finally the sub-images are put toget-
her in order to compose the final image. Therefore we identify edges in the scene and generate masks precisely
specifying which part of the image is included in which sub-image. The masks therefore determine which part
of the image is rendered in which resolution. A step wise upsampling and merging process then allows optically
soft transitions between the different resolution levels. For this paper, the introduced multi-resolution rendering
method was implemented and tested on three commonly used lighting methods. These are screen space ambient
occlusion, soft shadow mapping and screen space global illumination.

Keywords
Real-Time Rendering, Multi-resolution

1 INTRODUCTION
As a subarea of computer science, real-time computer
graphics has developed continuously since the middle
of the last century and is of great importance today.
With a variety of applications, including medicine or
computer-aided design (CAD), real-time computer
graphics is nowadays indispensable in many areas of
life and is thus a relevant factor in research as well as
in business. To render a realistic image many optical
and physical phenomena such as camera lenses, light
transport, or micro-surface structure must be taken into
account. All of these phenomena need to be calculated
at pixel level but might rely on information of the
surrounding scene to create the effect. Therefore,
the number of pixels to be rendered, especially with
more complex illumination, is crucial to the necessary
computing power and thus to the performance of an
application. While the increase in computing power of
modern graphics hardware allows for more complica-
ted algorithms, the demand for photo-realistic global
illumination effects and high output resolutions in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

real-time graphics can not be met by current hardware
sufficiently.

In order to reduce the computational effort upsampling
is often used. This technique renders individual effects,
or sometimes the full image, in a lower resolution. Sub-
sequently, the generated images are scaled back up to
the full resolution by interpolation. Ultimately, fewer
pixels must be calculated and stored, which reduces
the computational effort and also the required storage
space. Upsampling is particularly common in soft, con-
tinuous post-processing effects such as bloom filters or
blur, in which quality losses are virtually invisible, de-
pending on the scaling factor. If, on the other hand,
you render effects with more concrete structures such
as shadows or reflections in a lower resolution and then
scale them up, hard edges are displayed washed out and
aliasing becomes visible. In addition, there is a risk
of under-sampling, which can cause visual artifacts af-
fecting the image quality, especially in animated scenes
or during camera movements. Rendering such effects
or the entire image by upsampling is therefore usually
not always useful, however, two interesting observati-
ons can be made: Although such effects may generally
have more concrete structures such as hard edges, these
high-frequency details are firstly not necessarily evenly
distributed in the image space, and secondly, they are
often only marginally present in relation to the total
area. For example, considering naive shadow mapping
with a single light source, depending on the complexity
of the scene, a rendered image may contain large areas
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that are either completely shaded or fully illuminated.
Nevertheless, the necessary operations to determine the
brightness of these areas are performed for each indi-
vidual pixel. For naive shadow mapping, this is cer-
tainly not important, but if one considers computatio-
nally more complex effects such as ambient occlusion
or indirect illumination, the performance could be dras-
tically increased by an intelligent subsampling of cer-
tain image areas.
The technique developed in this work exploits the often
existing optical continuity of a scene in order to rea-
lize computationally intensive lighting effects more ef-
ficiently. For this purpose, the image space is first di-
vided into multiple disjoint partial images, so that areas
which contain edges or are in their immediate vicinity
are separated from areas without edges or with a grea-
ter distance to them. Each partial image can be rendered
individually with the illumination effects to be realized
in suitable resolutions. In principle, a higher resolu-
tion is required to correctly create the effect in areas
with a higher detail density. However, areas that do not
include edges and thus have a lower density of detail
can be rendered in lower resolution. The partial images
are then reassembled to the original image. In the best
case, this image should not differ visually from a full-
resolution rendered image. Of particular importance for
visual quality and performance is the way in which the
individual steps of the technology work. For each diffe-
rent step approaches are presented and explained in this
paper.

2 RELATED WORK
In this section we present and explain the techniques
and approaches relevant to this work. They follow si-
milar conceptual principles and can be considered as a
starting point for the technique developed here. We also
highlight the differences to these approaches.

2.1 Upsampling
Upsampling is a technique commonly used in low-
frequency visual effects in real-time computer graphics.
Examples of effects that are often realized are Bloom or
Glare filters [1] and Depth of Field [2]. The blur for the
respective effect is not rendered in the full resolution of
the application, but in an often much lower resolution.
Subsequently, the result is scaled back to the full screen
size by means of bilinear interpolation. This can greatly
increase the performance at the same optical quality.

2.2 Adaptive Multi-Resolution
There are several approaches that split the computation
of illumination effects into multiple resolutions to se-
parate the rendering of low frequency and higher fre-
quency components of these effects. Examples are im-
plementations for indirect light transport [3] and Screen
Space Ambient Occlusion [4], which achieve better per-
formance with optically good results. In both approa-
ches, multiple mipmap stages of the G-buffer are used

to render the lighting effect to be realized in various re-
solutions. Subsequently, an upsampling is performed
by means of bilateral filters and the different levels are
combined. The multi-resolution rendering technique
developed in this work makes use of the fundamental
principle of separating high and low-frequency compo-
nents of the illumination, but divides the image into
several partial images on the basis of these different
proportions. An area of the image is not rendered in
all resolutions, but in the best case only in one. This
makes it possible to drastically reduce the calculations
for higher-frequency components in the image areas in
which ultimately no high-frequency components occur
exactly.

Nichols and Wyman [5] describe a real-time technique
for rendering indirect illumination using multi-
resolution splatting. They use min-max mipmaps
to find the discontinuities in the geometry. Using
these discontinuities, the image space is hierarchically
divided into smaller squares, so that areas with higher-
frequency components obtain a finer resolution. After
the image is completely split into such ‘splats’ of an
appropriate size, the indirect illumination is rendered
in all resolutions and the layers are then combined by
upsampling to produce the final image. Our technique
differs from the algorithm presented by Nichols and
Wyman among other things in the method used to
decide which resolution to render in. We can apply
more flexible filters depending on the situation, while
their approach using min-max mipmaps can only find
geometric discontinuities. We also use a different
approach to combine the final images that prevents
visible artifacts. Finally, our technique is not only
specialized for indirect illumination using Reflective
Shadow Maps, but can also be applied and optimized
for various lighting effects due to its high flexibility.

Iain Cantlay [6] describes a technique for rendering lo-
wer resolution particles offscreen and combining the re-
sult with high resolution renderings of other geometry.
In contrast to our approach, this technique can only be
applied, if distinct parts of the geometry (in this case
particles) are to be rendered in a fixed lower resolution
while our technique is more flexible working on pixels.

Guennebaud et al. [7] use variable resolutions for soft
shadow mapping in screen space. Again our approach
is more flexible and can be applied to a multitude of
screen space effects.

2.3 Variable Rate Shading
He et al. [8] propose an extension of the graphics
pipeline to natively support adaptive sampling techni-
ques. Nvidia’s Maxwell and Pascal architectures have
already implemented graphics hardware technologies
that could speed up the rendering of an image through
the use of different resolutions. Multi-Resolution
Shading [9] and Lens Matched Shading [10] can be
applied in virtual reality applications to adapt the
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resolution of individual image areas to the optical
properties of the physical lens that is part of the display.
For more general uses Variable Rate Shading [11]
(VRS) was introduced as part of the Nvidia Turing
architecture. With this technique, the image can be
divided into much finer regions, which can be rendered
independently in appropriate resolutions. The regions
are made up of squares with a edge length of sixteen
pixels. Possible applications include ‘Content Adaptive
Shading’ (as for example presented by Vaidyanathan et
al. [12]), ‘Motion Adaptive Shading’ (as for example
presented by Vaidyanathan et al. [13]), and ‘Foveated
Rendering’ (as presented by Guenter et al. [14]). In this
case, the sampling rate of the image areas is selected
adequately depending on the detail density, movement,
or focus of the viewer.
The multi-resolution rendering technique developed in
this work allows for an even finer and more flexible di-
vision of the image, since image areas do not neces-
sarily have to consist of square tiles, but can have any
desired shape. This means that a possibly even lower
part of the image must be rendered in full resolution,
and the performance can be further increased. Apart
from that, in contrast to VRS, our technique allows for
any number of levels and even lower sampling rates.
Our technique is also not dependent on current graphics
hardware and can be implemented for widely available
systems. In our implementation we focus on the den-
sity of details in a scene (Content Adaptive Shading) to
decide for the resolution to render in but we can extend
our technique by using different edge detection filters
or even masks that describe the geometry of lenses in
virtual reality.

2.4 Global Illumination Effects
For the exemplary implementation of our technique we
use three illumination effects commonly used in mo-
dern computer graphics.
Screen Space Ambient Occlusion (SSAO) is a real-time
approximation of the occlusion of ambient light by lo-
cal geometry. The technique was first presented by
Mittring [15] and further developed and improved (e.g.
by Bavoil et al. [16]).
Shadow Mapping is an algorithm presented by Willi-
ams [17] that allows for a fast calculation of shadow
rays using a depth buffer. Artifacts introduced by
the resolution of the depth buffer can be reduced by
percentage closer filtering, introduced by Reeves et
al. [18] that also softens the shadows edges. A plau-
sible penumbra can also be realized as described by
Fernando [19]. The shadow map is not only sampled at
a single position but at multiple neighboring locations.
Screen Space Global Illumination as, for example, des-
cribed by Ritschel et al. [20] generalizes SSAO to not
only dim ambient illumination but also add indirect illu-
mination from other surfaces visible on the screen. The
light transport between chosen samples close to a pixel
is calculated inducing information from the G-Buffer.

Figure 1: A possible edge image for the multi-
resolution rendering technique, the edges are colored
for better visualization: the red edges were determined
by the differentiation of the normals, the green ones by
the depth values and the blue ones by the shadows, nor-
mal edges and depth edges are often determined at the
same point in the image space (yellow edges).

3 MULTI-RESOLUTION RENDERING
Our presented multi-resolution rendering technique can
be subdivided into three basic steps. In the first step, we
create a mask in screen space, based on which the image
to be rendered is divided into disjoint or complementary
sub-images. In the second step, the lighting method to
be implemented is rendered for each sub-image in its
adequate resolution. Finally the sub-images are com-
bined to create the result image. The conceptual ap-
proaches of these steps will be described in more detail
below. A visual overview of the algorithms workflow
will be given in the supplementary material.

3.1 Mask Creation
The masks are used to divide an image into individual
sub-images. While masks can be acquired in multiple
ways and even combined using the minimum or maxi-
mum (depending on the application) an obvious choice
is to use them to separate the higher-frequency image
parts from the low-frequency ones. It is often suffi-
cient to use the geometry edges of the scene in screen
space to achieve this. These can be found through the
information available in the G-Buffer by numerically
differentiating depth values and normals for each pixel.
For the normal, the first derivative in each of the two
dimensions is sufficient, whereas for the depth values,
the second derivative gives more reliable results. The
discontinuities found reproduce the geometric edges of
the scene and can be used to split the image. For screen
space ambient occlusion and screen space global illu-
mination, the geometric edges are already sufficient but
depending on the illumination effect to be realized, ad-
ditional information may be required. In case of soft
shadow mapping for example, the shadow edges of the
scene are needed above all. To this purpose, when crea-
ting the mask using the previously created shadow map,
a fast shadow calculation (one sample per pixel) can be
implemented. We differentiate these values to find dis-
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i SSAO SSM SSGI
σ2

i wi σ2
i wi σ2

i wi

1 0.924 100 0.924 1000 0.924 1000
2 1.848 50 1.848 1000 – –
3 3.696 20 3.696 1000 0.924 100
4 0 1 0 1 0 1

Table 1: Variances (σ2
i ) and weights (wi) for each sub-

image (i) of all techniques we used. The variances are
used to blur the mask, while the weights are used to
combine the final image. For SSGI we did not use the
second sub-image at all.

continuities in the shading. To avoid artifacts at the ge-
ometry edges, we also take them into account for the
mask when rendering the soft shadows. Fig. 1 shows
an edge image of a scene in which normals, depths, and
shadows are differentiated. As an alternative to the edge
images we use, min-max mipmaps can also be used to
decompose the image as explained by Nichols and Wy-
man [5].

After we created the final high-resolution mask we do-
wnsample it to the resolutions we want our final sub-
images to be. We use blur filters with different varian-
ces (σ2) on the downsampled images to determine the
areas near the edges. The blurs variance gives the deve-
loper control over the size of the area around the edges
and determines which areas around the edges are ren-
dered in which resolution. The variances we use can be
found in Tab. 1.

Figure 2: Without accounting for overlap (left), „dead
pixels“ (black) occur at the edges of the sub-images
(red and blue), which are not contained in any of the
sub-images and thus are not rendered. When ensuring
an overlap (right), the intersection of the sub-images
(green) prevents this circumstance.

A simple way to separate the image into sub-images is
to divide them into complementary tiles. An advantage
of this method is the disjoint decomposition, whereby
no area of the image has to be rendered multiple ti-
mes. A drawback, however, is that the granularity of
the decomposition of the image is limited by the lo-
west resolution of a sub-image. When naively using

the granularity that is determined directly by the reso-
lution of each sub-image, we obtained undefined spa-
ces in the final image between two masked areas. To
avoid these we make sure areas of different resolutions
have an overlap as shown in Fig. 2. Therefore, we do
not separate the image into almost disjoint areas, but
always completely include the higher resolution levels
in the underlying ones. This means, in particular, that
the lowest resolution sub-image always renders the ef-
fect to be realized for the entire image. Losses in per-
formance due to the multiple rendering of some image
areas are extremely small, because the additional com-
putational effort arises mainly in the lower resolutions.
If the blur is optimally selected for the creation of the
masks, this approach lets us keep the areas of the higher
resolution levels extremely small, resulting in an overall
good performance. In addition, this decomposition ap-
proach later allows for a very simple re-composition of
the final image, because the masks together with fixed
weights can serve as an alpha channel for blending the
sub-images (see Section 3.3). Fig. 3 shows a possible
decomposition of an example scene in screen space.

Figure 3: Visualization of the decomposition of an
image into four sub-images by means of inclusive areas:
The sub-image of the full resolution contains all the red
areas, the sub-image of the half resolution all red and
green areas, the sub-image of the quarter resolution all
red, green and blue areas. The fourth sub-image renders
the entire image space at an eighth of the resolution.

3.2 Rendering the Sub-images
Throughout the rendering process we generate all sub-
images independently of each other in the chosen re-
solution. Shape and resolution of the sub-image are
defined by the masks determined in step one. Accor-
dingly, an image area of a sub-image is only rendered if
and only if the corresponding mask in this image area
permits it. Fig. 4 shows an example of rendering four
sub-images.

3.3 Blending the Sub-Images
As the final step of the technique we blend the indi-
vidually rendered sub-images in order to generate the
final image. All sub-images are upsampled to the full
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Figure 4: Screen space ambient occlusion rendered in
four sub-images, no lighting is calculated for the black
areas. The individual sub-images render SSAO in full
(top left), half (top right), quarter (bottom left) and eig-
hth resolution (bottom right).

resolution and combined. Using a simple bilinear in-
terpolation would lead to artifacts, as pixels containing
visual information can be interpolated with those that
contain no information.

A simple solution for this problem would be bilate-
ral interpolation as described by Tomasi and Mandu-
chi [21]. When using this, the sub-images are gradually
scaled and merged without scattering missing informa-
tion of a resolution level into the relevant pixels of the
image. To this purpose, a sub-image is always combi-
ned with the sub-images already blended in one step.
This upsampling technique is also used by Nichols and
Wyman [5].

In our case we can use the decomposition masks to cal-
culate the final blending weights. Each sub-image, star-
ting at the lowest resolution, is blended with the next
higher resolution sub-image based on the alpha value
of each mask. The softness of the transitions between
the resolution levels can be determined flexibly using
weights. These weights are multiplied with the alpha
mask and define the final alpha value for blending.

4 IMPLEMENTATION
In our implementation we applied our multi-resolution
rendering technique to three illumination effects com-
monly found in modern real-time computer graphics.
These effects are SSAO, soft shadow mapping (SSM)
and screen space global illumination (SSGI). In this
section, we describe the implementation of our techni-
que and specific adjustments for the illumination effects
used. Our implementation relies solely on the OpenGL
3.3 core profile and can as such run on widely availa-
ble hardware. According to our experiences during the
development stage, a decomposition in four sub-images
appears as the best compromise between image quality
and speed. The width of the sub-images is successi-
vely halved, starting at full resolution width, and are set
to full, half, quarter, and eighth. For SSGI we found
that not using the halved sub-image did not result in

worse image quality. This contributed to a further per-
formance enhancement.

4.1 Rendering of the Sub-Images
To render the sub-images, we use the previously gene-
rated masks to create a stencil buffer for each resolution
determining the areas. We check if the mask is greater
than zero and set the stencil value to one or zero ac-
cordingly. We thought about using different thresholds
for creating the stencil masks but for our purposes just
using zero provided the best results. For each resolu-
tion level used, we subsequently render each sub-image
using the stencil buffer to eliminate regions that we do
not want to render.

For SSAO, depending on the number of samples used,
we blur the resulting sub-images in order to reduce the
occurring variance of the effect, especially in the lower
resolutions. However, we needed to ensure not to trans-
port missing pixel information into the defined areas of
the respective sub-image. We achieved this, with a bi-
lateral blur filter.

4.2 Blending of the Sub-Images
Subsequently, the rendered sub-images are blended to
compose the final image. We use bilinear interpolation
to scale the sub-images to full size and then combine
them sequentially, starting at the lowest resolution le-
vel. We carry out the final blending between two sub-
images by using the values of our masks (ai) multiplied
by a weight (wi) as a linear interpolation parameter. The
weights of our example cases can be found in Tab. 1.
We calculate the following for each pixel of the final
image. We define ci as that pixels color value in the
i-th sub-image, where c1 is the full resolution image.
The composed image including the i-th sub-image as
its highest resolution is called c′i. The fourth sub-image
has the lowest resolution, covers the entire image space
and is defined for each pixel. We use its value as the
initial value c′4 = c4. All other c′i are calculated succes-
sively using the alpha values ai from the corresponding
masks and the weights wi by:

c′i = ci ·min(aiwi,1)+ c′i−1 ·
(
1−min(aiwi,1)

)
(1)

The last computed value c′1 describes the pixel value of
the final composite image.

5 EVALUATION
For a basic evaluation we applied our multi-resolution
rendering technique to the three illumination effects
mentioned (SSAO, SSM and SSGI). We used three test
scenes “Office” (20,189 triangles), “Hall” (183,333 tri-
angles), and “Breakfast Room” (a slightly modified ver-
sion of the one provided by Morgan McGuire [22] with
269,565 triangles) with eight camera configurations for

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

63



16/100/
24

32/144/
80

64/196/
288

128/256/
1088

256/324/
4224

0

50

100

150

200

Samples (SSAO/SSM/SSGI)

Sp
ee

du
p

[%
]

SSAO SSM SSGI

Figure 5: Average speedup in percent by using our
multi resolution technique in 4K (3840x2160 Pixels).
We show the speedup for our three tested techniques
using different numbers of samples for each of them.

speed and visual comparison. For Soft Shadow Map-
ping and Screen Space Global Illumination, a modified
version of the second scene with 255,432 triangles was
used, because it works better with the given directio-
nal light sources. For each perspective, the rendering
speed was measured using our technique and compa-
red to the speed measured for naive rendering in full
resolution. In addition, comparison images of the test
scenes are shown and their differences measured and vi-
sualized. All tests were performed on a Nvidia Geforce
GTX 1080.

5.1 Rendering Speed
For testing the speedup of our technique we used
3840× 2160 as a base resolution. We tested each
technique with a different number of samples. The
average results for 24 different configurations (scene
and camera) are listed in Fig. 5. Despite the additional
rendering steps needed, our technique outperforms
naive rendering in all cases. For a higher number of
samples our technique will perform better, since more
processing on the GPU can be skipped due to lower
resolution rendering.

We also tested our technique for lower resolutions. The
Results were not as good as the ones reported for 4K.
Nevertheless with the exception of SSM with 196 Sam-
ples we achieved clear positive speedups for all illumi-
nation techniques even in 720p. Starting from 1440p,
all illumination techniques provided positive speedups.
Our results for SSM can be explained by the fact that
the technique is relatively simple while the mask ge-
neration still produces observable overhead. Compared
to this overhead, the reduction in GPU computations is
relatively low. For lower resolutions the overhead of
generating the mask to divide the image and the cost
of the additional rendering passes for multiple resoluti-
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Figure 6: Average speedup in percent of our multi re-
solution technique at different resolutions. We used
fixed numbers of samples for all techniques: 64 sam-
ples for SSAO, 196 samples for SSM, and 228 samples
for SSGI.

ons dominate over the positive effect of our technique.
Fig. 6 shows these results.

5.2 Visual Comparison
While our technique tries to prevent producing images
that differ from renderings created with naive full re-
solution rendering, we could not prevent all visual arti-
facts. As can be seen in Fig. 7 to 9 these errors occur
at the borders of our masks and are mostly due to the
Gaussian blur we need to apply to the images to reduce
discontinuities at these edges. The blur kernel is very
narrow so it is hard to detect the errors when just com-

Figure 7: The “Hall” dataset using SSAO and 64 sam-
ples. The top image shows our multi resolution techni-
que while in the lower left corner the reference image
is shown. In the lower right corner is an enhanced dif-
ference image between those two.
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Figure 8: The “Breakfast Room” dataset using SSM
and 196 samples. The top image shows our multi reso-
lution technique while in the lower corner the reference
image is shown. In the lower right corner is an enhan-
ced difference image between those two.

paring the images directly but is visible in the difference
images provided.

Fig. 7 shows the results for SSAO using 64 samples. We
chose this number of samples as we think it is a reasona-
ble choice for real applications and a good compromise
between speed and image quality. As this image is very
bright the differences in the difference image are also
more prominent as with the other technique.

Fig. 8 shows the results for SSM using 196 samples.
For this lighting effect we can use masks that do not
depend directly on the screen space geometry for our
technique. The occurring errors are relatively low com-
pared to the other techniques due to the parts of the
scene in shadow that are lit with a constant ambient il-
lumination.

Results of the SSGI technique we implemented are
shown in Fig. 9. For a visually plausible global illu-
mination effect in screen space we needed a lot of sam-
ples so we chose to present the results for 4224 samples.
While our results are still convincing some small arti-
facts can be seen in the corners of the right rack. While
these present visible differences to the original image
the effects are very minor.

Besides the visual results we provide an overview over
all errors in the graphs in Fig. 10. These numbers do not
only include the presented images but include images
from all three scenes with eight camera configurations
each. These numbers support our claim that the errors
introduced by our technique are very low.

5.3 Discussion
We presented the performance and visual quality of our
method and have two general findings. As a general
rule, it was observed that illumination techniques that

Figure 9: The “Office” scene using SSGI and 4224
samples. The top image shows our multi resolution
technique while in the lower corner the reference image
is shown. In the lower right corner is an enhanced diffe-
rence image between those two. The image only shows
the SSGI effect without direct illumination to better
show the differences caused by our technique.

are more computationally demanding can benefit more
from our technique than less demanding ones. This is
because of a constant overhead due to mask generation
and multiple rendering passes. This overhead becomes
dominant for techniques that are less computationally
demanding. The second finding is the fact that our
technique excels especially in higher resolutions for the
same reason.
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Figure 10: The absolute root mean squared (RMS)
errors between result images of our multi resolution
technique and images naively rendered with high reso-
lution. We used 64 samples for the SSAO images, 196
samples for SSM and 288 samples for the SSGI ima-
ges. Values in the compared images ranged from 0 to 1
so the resulting errors can be considered low.
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A minor finding is that masks which are more compli-
cated to generate than by simply using the G-Buffer
also cause a greater overhead. This makes the use of
these masks only feasible for the highest resolutions or
techniques that are more computationally demanding
than the soft shadow mapping presented here.

6 CONCLUSION & FUTURE WORK
We presented a technique for multi resolution rendering
that can be implemented on widely available graphics
hardware. Our technique can improve the rendering
speed of screen space algorithms drastically (especially
for high resolutions) as we have shown for three ca-
ses. While the technique presented here is only used
for ‘Content Adaptive Shading’ we can trivially extend
it to ‘Foveated Rendering’ by modulating the mask we
use by an importance mask provided by eye trackers.
Including ‘Motion Adaptive Shading’ is also possible
by using information of pixel motion in the mask gene-
ration process.
To further improve our technique we think that the mask
generation process should be modified. For determi-
ning the geometry edges, we use normals and depth
values from the G-Buffer in screen space. In practice
however, non-smooth, modified normals are often used
to calculate the illumination. For smooth shading, pixel
normals are calculated by the linear interpolation of ver-
tex normals, but in real applications bumpmaps or nor-
mal maps are used to modify the normals. In this case,
the edge filter could potentially find many more edges,
which can result in dramatically increased computati-
onal effort and significantly lower efficiency. Possible
solutions to these problems would be the exclusive use
of unmodified normals or an alternative determination
of the edges using the pixel locations in world space.
Another problem may arise with certain effects, inclu-
ding, for example, reflections or caustics, since their ed-
ges can not be calculated with the information contai-
ned in the G-buffer. Also in this case, image areas with
higher-frequency components could be rendered in too
low a resolution. For such lighting effects, further deve-
lopment of the progressive decomposition of the image
would certainly be beneficial. To prevent sub-sampling
for some effects, sub-images could also be realized by
just using a lower number of samples in full resolution
instead of rendering the effect in a lower resolution.
Another interesting application for the multi resolution
rendering technique would be using ray tracing for phy-
sically correct illumination. In particular, diffuse in-
direct illumination can only be achieved by relatively
high computational effort and can barely be realized
in real-time on current graphics hardware. Using the
multi-resolution approach, the performance could be
increased drastically.
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ABSTRACT
This paper presents a light-weight process for 3D reconstruction and measurement of chronic wounds using a com-
monly available smartphone as an image capturing device. The first stage of our measurement pipeline comprises
the creation of a dense 3D point cloud using structure-from-motion (SfM). Furthermore, the wound area is seg-
mented from the surrounding skin using dynamic thresholding in CIELAB color space and a surface is estimated
to simulate the missing skin in the wound area. Together with a mesh reconstruction of the wound, the skin surface
and the segmented wound is used to calculate the wound dimensions, i.e., its length, surface area and volume. We
evaluate the presented pipeline using three wound phantoms, representing different stages in healing, and compare
the subsequently scanned and measured wound dimensions with manually measured ones.

Keywords
Scene Reconstruction, Wound Measurement, Structure-from-Motion, Object Segmentation.

1 INTRODUCTION
Chronic wounds are a major and growing health is-
sue worldwide. Besides increasing mortality and treat-
ment expenses, they cause substantial pain and distress
due to, e.g., significantly reduced mobility, lower self-
esteem and social isolation [1]. As 1-2% of the popula-
tion [1, 2] are affected by chronic wounds, they are also
considered a “silent epidemic”. Since chronic wounds
mainly affect elderly patients, the demographic shift
within Western societies causes their increasing dis-
semination [3].

The most common type of chronic wounds are venous
and arterial ulcers, which primarily affect elderly pa-
tients. Diabetic ulcers, one of the characteristics of the
diabetic foot syndrome and a frequent long-term result
of diabetes mellitus, are also very common. Immo-
bile or paralyzed patients often develop pressure ulcers,
which are caused by restricted blood flow due to pro-
longed pressure between repositioning intervals. The
tropical disease leishmaniasis, transmitted by the bite
of the female sandfly, is another major cause of cuta-
neous chronic wounds [4].

Evidently, 3D wound measurement approaches are ad-
vantageous as they offer much more insight into wound

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

healing, e.g. for deep ulcers, where much of the early
healing progress takes place at the bottom of the wound
bed [5]. Therefore, an affordable, light-weight 3D
wound capturing system has a lot of potential, espe-
cially against the background of a growing number of
elderly patients and the requirement to provide treat-
ment in underdeveloped and/or rural regions [4].

Wound healing is a highly complex process and the
treatment of chronic wounds requires close monitoring
over a long time period, sometimes years. Besides care-
ful qualitative observation and documentation by med-
ical staff, reliable quantitative measurements are very
important in order to monitor the wound’s healing, i.e.
its change in size and shape over time. Numerous dif-
ferent measurement techniques exist, ranging from very
simple ruler-based size estimates to advanced multi-
sensor 3D systems utilizing state of the art computer
vision algorithms. However, simple methods are un-
reliable, imprecise, and uncomfortable for the patient,
while advanced systems are often expensive, inefficient
to use, and no gold standard has yet been established
for wound measurement so far [6].

Current computer vision based approaches either use
stereo vision [7], also available in commercial sys-
tems like MAVIS II1 or Time-of-Flight (ToF) measure-
ments [8]. However, stereo imaging as well as ToF
range measurement requires specific camera devices
and neither stereo nor ToF can be considered ubiqui-
tous sensors, so far. Furthermore, compared to current
RGB cameras in mobile phones, ToF suffers from low

1 imaging.research.southwales.ac.uk/
projects/wm/mavis
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image resolution and from depth measurements errors
due to subsurface scattering [9].

In this paper, we present a light-weight wound mea-
surement system based on RGB images captured using
standard smartphone cameras, thus solving the wound
measurement problem within the emerging domain of
mobile health (mHealth) [10]. The integrated sensors
in smartphones deliver images of decent quality, allow-
ing for high quality photography at very low cost.

Our 3D wound reconstruction pipeline comprises
Structure-from-Motion (SfM) as monocular 3D-
reconstruction technique. The further processing of the
resulting sparse point clouds involves a segmentation
into skin and wound regions, the extraction of the
wound’s contour, and a mesh reconstruction of the
wound. Based on the resulting 3D reconstructions
of wound and a surface fitting of the skin in order
to estimate the healthy state, our approach performs
automatic length, area and volume measurements.
For evaluation, we produced a sequence of wound
phantoms for which we acquired several series of
images.

2 PRIOR WORK
Mukherjee et al. [11] give an overview on contact-free,
sensor-based techniques for wound measurement, dis-
cussing optical approaches as well as approaches that
involve more exhaustive sensors such as hyperspec-
tral, thermal and laser doppler imaging or confocal mi-
croscopy. While 2D wound measurement approaches
have been developed for more than two decades and
are still being researched [12, 13], this paper focuses on
optical approaches for 3D wound measurement.

The idea of using standard 2D RGB imagery for 3D
wound reconstruction and measurement dates back
more than one decade. These early approaches recon-
struct sparse 3D point clouds from stereo or multi-view
imagery taken from the wound. Albouy et al. [14]
use a Harris corner detector, cross-correlation, out-
lier removal and homography estimation in order
to compute a sparse 3D point cloud that is used for
estimating the wound’s volume. Treuillet et al. [5] use
stereophotogrammetry in order to reconstruct a sparse
3D point cloud. More recently, general approaches for
3D geometry reconstruction using 2D images acquired
with smartphones have been proposed [15, 16]. While
Kolev et al. [15] create a point-based 3D model by
integrating multiple stereo-based depth hypotheses into
a compact and consistent 3D model, Muratov et al.
[16] use an SfM like approach that involves additional
IMU data. Sirazitdinova and Deserno [7, 17] propose
to use similar approaches in 3D wound assessments.
They opt for motion stereo [18] in order to reconstruct
3D geometry from 2D RGB imagery acquired with
a smartphone. So far, there is no publicly available

documentation regarding the system’s implementation
or evaluation.

Gaur et al. [8] describe an alternative 3D wound mea-
surements system based on RGB-D imagery captured
with an Intel ToF camera. After registration of the RGB
and the depth images, the wound is segmented directly
in image space using standard filter and morphological
operators. Then, they identify the wound’s boundary
pixels and fit a plane to the boundary’s range data. Both,
the wound and the estimated healthy skin are modeled
as quadratic surfaces, in order to measure the wound’s
volume.

Summary. Current 3D wound measurement approaches
mainly rely on special-purpose hardware for wound ac-
quisition, such as stereo vision or time-of-flight cam-
eras. While early approaches, involving 2D RGB im-
ages, deliver only sparse 3D geometric information and
are therefore rather inaccurate, there are no reports on
successfully applying recent improvements in dense 3D
scene reconstruction from RGB images on mobiles to
3D wound measurement. In this paper we present an
SfM pipeline that can be successfully applied to 3D
wound reconstruction.

3 METHOD
In this section, we present our light-weight wound mea-
surement system. Our approach uses a sequence of
RGB images of a chronic wound that has been captured
using standard smartphone cameras. Fig. 1 depicts the
main components of our wound measurement system
that can be summarized as follows:

Acquisition: A sequence of images or a video is taken
from the considered chronic wound. Additionally,
a marker is located close to the wound in order to
solve for the scale ambiguity inherent to SfM surface
reconstruction.

Structure from Motion (SfM): Based on features ex-
tracted from the input images, image pairs with large
overlap are identified, camera poses are estimated
and a 3D point cloud is computed (see Sec. 3.1).

Point Cloud Preprocessing: Depending on the input
imagery, the resulting raw point cloud contains a sig-
nificant number of outliers that are removed in this
stage. Furthermore, the scale ambiguity is resolved
using the marker that has been placed in the scene
(see Sec. 3.2).

Wound Segmentation & Fitting: The clean point
cloud is segmented in wound and skin using a
color thresholding and clustering. Furthermore, the
contour of the wound is extracted and a surface
is fitted to the skin region, which represents the
condition of healthy skin (see Sec. 3.3).
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Figure 1: Overview of the proposed 3D wound reconstruction method.

Wound Measurement: In this stage the segmented
wound points are converted into a mesh. Based on
the meshed wound region, the wound’s size, area
and volume are deduced (see Sec. 3.4).

3.1 Structure from Motion (SfM)
Structure-from-Motion (SfM) is a well established
technique from scene reconstruction that uses monoc-
ular RGB image sequence as input. This section
briefly describes the main concept behind SfM based
on Schoenberger and Frahm [19]. The SfM process
consists of two main stages, correspondence finding
and incremental reconstruction.

Correspondence Finding. Given a set {Ii | i = 1 . . .NI}
of unordered images, feature sets Fi = {(x j, f j) | j =
1 . . .NFi} representing features f j at image locations x j
are extracted for each image Ii. Frequently, the scale-
invariant feature transform (SIFT) is used [20]. Based
on the feature sets Fi, image pairs with sufficient spa-
tial overlap, i.e. with sufficient common features are
identified using, e.g., the Lukas-Kanade tracker [21].
Afterwards, mismatching feature correspondences are
removed using RANSAC, and the pairwise image trans-
formations are established.

Incremental Reconstruction. The scene model is de-
scribed by a set of points X and a set of camera poses
P . SfM is initialized with a carefully selected image
pair and its reconstructed 3D points using triangulation.
Further images are registered using the feature corre-
spondences. As the incremental nature of this approach
and the inherent imprecision of point estimates causes
accumulation of errors and point drift, the reconstruc-
tion parameters, i.e., the camera poses P and the 3D
point locations X are regularly refined using bundle
adjustment [22]. This process minimizes the reprojec-
tion error applied to each 3D point Xcorr

j ∈ X corre-
sponding to the feature location xxx j in image Ii, i.e.

E =
NI

∑
i=1

NFi

∑
j=1

ρ
(
‖π(Pi,Xcorr

j )−x j‖2
2
)
, (1)

where π is the projection function defined by the cam-
era pose PPPi ∈P for image Ii and ρ is a loss function.
This results in a non-linear optimization process.

3.2 Point Cloud Preprocessing
As the SfM method is intrinsically scale ambiguous,
wound measurement requires proper rescaling of the
scene, i.e. of the point cloud reconstructed by SfM.
Therefore, we place a 30× 30 mm ArUco marker [23]
that is printed on a 45× 45 mm board close to the
wound. Due to the high contrast of the marker, the
marker’s points can be segmented easily using fixed
color thresholds. Afterwards, a plane is fitted to the
marker points using RANSAC and the scene is trans-
formed into the marker’s plane. Then, the marker di-
mensions are determined and the point cloud is rescaled
using the resulting isotropic scale factor. Finally, the
marker region is removed from the point cloud using a
simple spatial cropping.

Although SfM produces dense and comparably precise
point clouds, they frequently contain patches of out-
lier points that are caused by faulty correspondences
due to, for example, specular reflections in the input
images. Most outliers form small clusters or spurious
sheets disjunct from the main point cloud representing
the captured object. Therefore, we apply a clustering
based on the density-based algorithm proposed by Es-
ter et al. [24].

3.3 Wound Segmentation, Surface Fitting
& Meshing

In order to perform wound measurement, the wound
must be segmented from the surrounding skin. As the
wound’s boundary does not necessarily have distinct
geometric features, we opt for segmentation using color
features. Therefore, we transform the point colors into
the CIELAB color space since it emphasizes the color
difference between healthy skin and wound tissue [25]
(see Fig. 2a). The color disparity in the b∗-channel al-
lows for a clear distinction between wound and skin us-
ing a simple dynamic threshold applied to the histogram
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(a) Color mapped CIELAB b∗ channel (b) Histogram with threshold (c) Surface fitting & contour

Figure 2: Segmentation and surface fitting: The color mapped visualization of the CIELAB b∗ channel (2a), the
histogram with threshold for segmentation (2b), and the finally segmented wound points with the contour points
(green) and the fitted skin surface (2c).

of all colors in the point cloud using the triangle algo-
rithm [26] (see Fig. 2b).

Color segmentation may result in spurious points that
have been wrongly classified. This mainly happens in
the wound region in which points occasionally are clas-
sified as skin. In order to remove residual clusters or
falsely classified points in either region, we extract the
largest connected skin and wound region using the clus-
tering approach from Ester et al. [24].

After segmentation, we identify the points on the
wound’s contour. Therefore, we compute the 4-
neighborhood for each point and select the points as
contour, if two of their neighbors are classified as
skin and two as wound. The resulting set of contour
points is coarsened by subsampling. To this end, we
use a coarse 163 voxel grid and select in each cell the
contour point closest to the voxel center. Furthermore,
we apply a statistical contour smoothing approach by
analyzing the discrete curvature of each contour point
ccci defined as curv(ccci) =

‖ccci+1−2·ccci+ccci−1‖
ccci+1−ccci−1

. Calculating
the mean µ and standard deviation σ of the curvature
values, we remove all contour points above one sigma,
i.e. with curv(ccci)> µ +σ .

Next, we apply least square fitting to extract two sur-
faces, i.e. a planar surface to the contour points and a
quadratic surface to the points classified as skin. The
latter resembles the healthy state of the wound region.
Both surfaces are utilized in the subsequent wound
measurement (see Sec. 3.4 and Fig. 2c).

Lastly, the wound’s point cloud is transferred into a tri-
angular mesh using Poisson surface reconstruction [27].
This is necessary in order to perform a volume measure-
ment of the wound (see Sec. 3.4).

3.4 Wound Measurement
Based on the reconstructed mesh, the segmentation of
the points into subsets S for skin, C for contour and
W for wound, and the fitted planar surface (w.r.t. the
contour points) and quadratic surface (w.r.t. the skin
points), we extract the wound’s length, area and vol-
ume.

The length of the wound is simply the maximum dis-
tance between contour points, i.e. max{‖x−y‖ | x,y ∈
C}. The area is computed by projecting the contour
points C onto the planar surface resulting in C ′. Cal-
culating the center of gravity g, the area is computed by
summing up the area of all triangles4(c1,c2,g) formed
by any two adjacent contour points c1,c2 and the center
of gravity [28].

In principle, the wound’s volume is enclosed by the re-
constructed surface mesh including the wound and con-
tour points, and the triangulated quadratic surface that
estimate the healthy skin. However, both geometries
do not perfectly intersect at the wound’s contour line.
Creating a single, closed mesh is a non-trivial task, as
direct mesh intersection and hole filling may not lead
to a proper solution, e.g. to spurious volume fractions,
in case of non-planar contours. Instead, we use the
reference plane generated from the contour points and
compute the wound’s volume based on the height fields
s(xxx),w(xxx) of the skin and the wound surfaces parame-
terized above the reference plane, respectively. Using
the triangulated wound surface, the volume is calcu-
lated as

∑
4∈W

cos(φ) · area(4) · (s(ccc4)−w(ccc4)),

where ccc4 is the center of the triangle in the parameter
plane and φ is the angle between the triangle normal
and the normal of the reference plane. We make sure to
consider only wound regions that lie within the wound’s
contour in the reference plane.

4 IMPLEMENTATION
The pipeline presented in Sec. 3 has been implemented
as prototype on a PC/laptop environment in order to
verify its proper operation. We use the COLMAP ap-
proach that incorporates the SfM optimizations pre-
sented by Schoenberger and Frahm [19] and their multi-
view-stereo approach [29]. To enable a fast and flexi-
ble development of the further pipeline stages, the pro-
gramming language python together with the scipy [30]
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(a) Large pressure ulcer (b) 3D ulcer model (c) The final phantom

Figure 3: Creating the wound phantom: The reference photograph of a large pressure ulcer (a), the 3D model
sculpted in blender (b), and the final painted clay model created using a 3D printed mold (c).

software package was selected. The pyntcloud 2 li-
brary as well as the pandas data structure [31] was used
for most point cloud processing operations. For effec-
tive and efficient code development, the entire pipeline,
with the exception of the Poisson surface reconstruc-
tion, has been integrated into a jupyter notebook3. For
color CIELAB-based segmentation we used the skim-
age library [32] that provides the function for color
transformation and dynamic thresholding.

5 RESULTS
5.1 Phantom Creation & Manual Wound

Measures
Unfortunately, there are no publicly available ground
truth data sets for chronic wounds. Therefore, we fab-
ricated wound phantoms based on an available photo-
graph of a pressure ulcer4 that was sculpted using the
3D modeling software blender5. A negative of the dig-
ital model was 3D-printed and used as a mold to cre-
ate physical models with modeling clay. The clay was
subsequently painted to roughly resemble the wound
photograph and glued to a bent cardboard. Based on
the first model resembling the photograph, two further
wound models were created, simulating healing and
shrinking of the wound area and volume. Thus, we fi-
nally have three wound phantoms Large, Medium, and
Small. For scale disambiguation, a marker was placed
in the scene (see Sec. 3.2).

We manually determine reference values for the wound
measures. The length measurements were taken with
a household tape measure at one millimeter precision.
The area was determined by placing a sheet of mil-
limeter paper on the wound, tracing the contour with
a pen and manually reading the area. Both approaches
for manually estimating the length and the area of the
wound are frequently used in clinical practice. The

2 github.com/daavoo/pyntcloud
3 jupyter.org
4 www.medetec.co.uk/slide%20scans/
pressure-ulcer-images-a/target92.html

5 www.blender.org

wound volume was determined by filling the phantom
with water using a 0.1ml precision syringe. All three
manual reference measurements have been conducted
by a student with background in medical informatics
w/o any practical experience in wound measurement.

5.2 Image Acquisition
In order to assess the quality of the reconstruction
pipeline, we acquired three image sequences using a
OnePlus 3 (A3003) smartphone with a Sony IMX298
16 megapixel CMOS sensor paired with a F/2.0
aperture lens and phase detection focus. For each
wound phantom, we acquired two sets of images
(@4640×3480 resolution) and one video sequence
(@1920×1080 resolution). The Img_Fast image
sequence was captured within 30s, while the Img_Acc
image sequence focuses on the precise image acquisi-
tion. The video sequence Video is approximately 30s
long, captured at some 5 frames per second. Tab. 1
states the precise number of images in column #im).

5.3 Evaluation
3D Reconstruction Quality

Since the precise geometry of the clay wound phantom
is unknown and no alternative (or gold standard) 3D
reconstruction method was available, we directly eval-
uated the quality of the 3D reconstruction by compar-
ing the clean point cloud produced by our SfM method
to the original 3D wound model created with blender.
Thus, the resulting error also incorporates imprecision
introduced by the 3D printing and the molding pro-
cess. The differences between the reconstructed point
clouds and the original 3D models were calculated with
CloudCompare6. Tab. 1 depicts the resulting geome-
try error in column geom.err. We find a very good
agreement of the reconstruction with respect to the dig-
ital wound model of a standard deviation below 1 mm.
Note, that the mean error is close to zero, as the recon-
structed point clouds and the original 3D models are
co-registered for comparison.

6 www.cloudcompare.org
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Figure 4: 3D Reconstruction Quality. Color-coded geometric error of the reconstructed wound Medium for the
image sequence Img_Fast (left), Img_Acc (middle), and Video (right).

Wound/Sequ. #im #recon.points scale geom.err. [mm] segm.qual. [%] meas.comp. [%]
raw clean acc[%] mean std TPR TNR ACC l A V

Large/Img_Fast 13 232,213 208,149 86.5 0.06 0.58 99.6 82.4 94.9 6.3 -46.1 -45.6
Large/Img_Acc 50 768,990 581,003 98.0 0.04 0.61 99.8 89.8 96.7 -2.1 -10.9 -10.1
Large/Video 154 158,119 108,892 99.9 0.05 0.71 94.2 88.7 92.0 -1.4 -11.9 -14.3
Medium/Img_Fast 30 536,395 337,581 98.0 0.10 0.91 96.8 86.1 92.5 -1.1 -10.3 -9.8
Medium/Img_Acc 50 924,083 810,568 100.1 0.09 0.76 99.6 92.1 96.0 4.5 -12.9 -20.6
Medium/Video 150 250,629 207,327 93.4 0.10 0.93 95.5 89.8 92.5 3.8 -8.6 -16.4
Small/Img_Fast 50 401,751 322,663 93.1 0.04 0.44 99.0 91.3 95.6 11.4 - 3.6 2.2
Small/Img_Acc 50 986,796 486,801 99.3 0.15 0.80 99.4 90.5 95.4 4.4 -17.7 -20.2
Small/Video 143 286,819 224,004 97.3 0.12 0.12 93.5 93.6 93.6 3.3 -16.0 -18.0

Table 1: Qualitative results for all three wound phantoms and all three image sequences captured for each phantom.
The columns contain the number of images in the sequences (#im), the number of reconstructed points before and
after outlier removal and cropping (#recon.points), the accuracy of the geometric scale factor (scale acc), the
geometric error w.r.t. the digital wound model (geom.err.), the segmentation qualitative (segm.qual.), and the
wound measurement comparion w.r.t. the manually deduced wound measures (meas.comp.).

Furthermore, Fig. 4 shows the color-coded geometric
reconstruction error for geometric error of the recon-
structed wound Medium for all three image sequences.
As to be expected, our approach reconstructs more
points in case of the accurate image sequence. How-
ever, the video acquisition yields comparable results re-
garding the geometric error.

Ignoring the Large/Img_Fast experiment, which
will be discussed below, the scale factor has been
determined at least with 93% accuracy (see Tab. 1,
col. #scale acc). Furthermore, 50− 90% of the recon-
structed points have been finally segmented as part of
the skin or the wound, i.e. they have passed outlier
removal and the cropping of the marker (see Tab. 1,
col. #recon.points).

Segmentation Quality

Consulting the segmentation quality (column
segm.qual. in Tab. 1), we find that for all wound
phantoms and all image sequences our approach
achieves good to very good results. The true positive
rate (TPR) is 93.5 − 99.8%, the true negative rate
(TNR) is in the range of 82.4 − 93.6%, and the
accuracy is between 92% and 96.7%.

Wound Measurement Quality

Tab. 1, column meas.comp., depicts the wound mea-
surement comparison to the manually deduced wound

Figure 5: Segmentation result for the skin region of the
experiment Large/Img_Fast.

measures. First, we will discuss the results except for
Large/Img_Fast, for which we get significant larger er-
rors than for the other experiments. Compared to the
manual measurement, the wound’s length has been esti-
mated fairly accurate, only the Small/Img_Fast experi-
ment results in an error of 11%. In general, the length is
slightly over-estimated. Regarding the wound area, our
approach delivers clearly under-estimated values. At
first glance, this under-estimation seems to contradict
the over-estimation of the wound’s length. The manual
wound measurement approaches described in Sec. 5.1
are, however, fully independent, i.e. the manual mea-
surements for length and area do not necessarily corre-
late.
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Regarding volume measurement, we first have to con-
sider the fact that our volume measurement approach
described in Sec. 3.4 uses a bent quadratic surface as
estimate for the healthy skin, while the manual refer-
ence approach to volume measurement based on the
wound phantoms rather refer to a planar wound cap
(see Sec. 5.1). Therefore, we additionally estimate the
wound’s volume with respect to the planar surface fitted
to the wound’s contour (see Sec. 3.4) for comparison
with the manually estimated volume. Still, the compar-
ison is not very expressive, since the manual approach
using water filling results in over-estimated volumes as
the water’s surface can easily exceed the wound con-
tour level due to the water’s surface tension. From this
perspective, it is not extremely surprising, that our ap-
proach “underestimates” the wound’s volume if com-
pared to the manual reference.

Comparing the wound measurement for the individual
phantoms in Tab. 1, column meas.comp., we realize
that the Img_Acc and the Video sequences deliver quite
comparable results.

Having a closer look at the Large/Img_Fast experi-
ment, we find that the number of images acquired (13)
is significantly lower compared to the other image se-
quences. While the scale accuracy, the geometry error
and the segmentation quality indicate a successful seg-
mentation, our approach could not retrieve the wound’s
contour properly. This is due to the fact, that the clus-
tering result for the skin region failed to identify a sin-
gle region, as the number of skin points is very low.
Subsequently, the final skin region does not enclose the
wound completely and, consequently, the contour has
not been extracted properly (see Sec. 3.3 and Fig. 5).
Still, if a sufficient number of images is acquired, the
Img_Fast method also produces reasonable results, as
has been demonstrated by the Img_Fast wound ac-
quisitions for the Medium and the Small phantom.
Note that the calculation of the segmentation quality in
Tab. 1, column meas.comp., for the Large/Img_Fast
experiment accounts for all skin points, not only the
main cluster. This, however, does not have any signif-
icant impact on the segmentation quality, as the eval-
uation assumes a binary classifier w/o a miscellaneous
class.

Public Science
We will make all digital data, i.e., the digital models of
the wound phantoms, the photographs, and the wound
measurement prototype publicly available via GitLab
upon publication.

5.4 Conclusion & Limitations
In this paper we present a novel method for 3D
measurement of chronic wounds that solely relies on
standard RGB imagery. The approach incorporates

structure-from-motion as 3D reconstruction, CIELAB-
based color segmentation of the wound and skin region,
wound contour reconstruction, and surface fitting to
emulate the healthy skin state. Compared to prior
techniques presented in literature, our approach has
minimal requirements regarding image acquisition,
i.e. standard cameras in mobile devices such as smart-
phones are sufficient. The quantitative and qualitative
evaluation of our approach using realistic wound
phantoms and different image acquisition modes yields
very robust results, if the number of images acquired
is large enough. Ignoring cases of insufficient image
counts, all three image acquisition types, i.e. Img_Fast,
Img_Acc, and Video, yield good segmentation results
and wound measures. A higher number of input images
and larger image resolution for the Img_Acc method,
however, requires more time to capture and increases
computational cost.
The main limitation of our approach is that although
we have used statistical approaches to determine thresh-
olds and other parameters wherever possible, there are
still some parameters that need to be adjusted manu-
ally. This mainly refers to clustering approach [24] and
wound segmentation. Furthermore, we so far have not
been able to apply our approach to real wounds.
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Abstract
Our goal is to develop an assistance system for supporting road crossing among older pedestrians. In order to
accomplish this, we propose detecting the curb stone from the pedestrians’ point of view. Curb detection plays a
significant role in road detection and obstacle avoidance, etc. However, it also presents significant challenges such
as the small size of the target as well as, obstacles and different structures. To tackle these problems, we chose
to fuse two sensors, a Camera and a Leddar, and use an algorithm that applies an end-to-end learning approach.
The convolutional neural network was chosen to process the images acquired from the mono camera by filming
the curb and its surroundings. The artificial neural network was selected to process the point cloud data of the
Leddar acquired in the form of arrays from the 16 channels of the Leddar. A prototype was developed for data
collection and testing purposes. It consists of a structure carrying both sensors mounted on a walker. The data
from both sensors were collected with multiple factors taken into consideration, such as, weather, light conditions
and, approaching angles. For the training of algorithms, an end-to-end learning approach was selected where we
labelled the complete image or array rather than labelling the individual pixels or points in the data. The networks
were trained and, the features from the parallel networks were concatenated and given as the input to the fully
connected layers to train the complete network. The experimental results show an accuracy of more than 99% and
robustness of the end-to-end learning approach. Both sensors are relatively inexpensive and are in fusion together,
they are able to efficiently accomplish the task of detecting the curb stone from the pedestrians’ point of view.

Keywords
Deep learning, curb detection, pedestrian assistance system, end-to-end learning, Leddar, monocamera, multi
sensor data fusion, convolutional neural networks, artificial neural networks

1 INTRODUCTION
For people of all ages, out-of-home mobility is an in-
dispensable part of leading an independent and self-
determined life [Lim09a]. Mobility and participation
in the society is a crucial part in keeping functionality
and also to prevent the disability [mol04a]. This makes
mobility of older pedestrians an important topic. Since
the elderly demographic of the population (adults of 65
years and older) in the world is increasing, older pedes-
trians’ mobility in the traffic environment requires spe-
cial attention.

Older pedestrians were involved in 20% of all road-
traffic accidents in Germany in 2013 [Bun13a]. They
are involved in more accidents than middle-aged people
when walking distance is taken into account [Ryt06a].
Moreover, in comparison to other age groups, older
pedestrians require a longer recovery time after road-
traffic accidents and their fatality rate is four times
higher [Bun13a]. According to official police statistics
in Berlin (Germany), most of these accidents happen
at official crossings such as zebra crossings and traffic

lights, and the main cause is the lack of attention older
pedestrians pay to oncoming traffic [Bra15a].

These facts mean it is important to understand the
underlying problems older pedestrians face in traffic in
order to develop appropriate solutions to help prevent
these accidents. In order to increase safety and support
older pedestrians, in our project FANS (Fußgänger-
Assistenzsystem für ältere Nutzerinnen und Nutzer
im Straßenverkehr - Pedestrian Assistance System for
Older Road Users) we are currently developing an
assistance system. This work comprises a user-centred
approach which includes the future target group in the
design process of the prototype.

Our project initially involved investigating the reasons
behind older pedestrians’ lower attention to traffic. Two
reasons were established. Firstly, older people tend
to examine the terrain more frequently and attentively
than younger people, which demands visual attention.
This additional attention-demanding task impares their
ability to detect hazards in the street environment
[Wic16a]. Secondly, when approaching the road, most
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people watch out for cars while walking, which can be
viewed as multitasking behaviour. The act of walking
requires cognitive resources and thus decreases the
frequency at which visual targets such as passing cars
are detected [Pro17a]. Based on the findings mentioned
above and the analysis of official accident statistics
[Sta13a], we can outline the requirements for the
assistance system.

The purpose of the assistance system is to warn users
when they are approaching the road. The warning re-
minds them to stop whatever else they are doing (i.e.,
walking, scanning the ground) and direct all their at-
tention towards the traffic. This notification should be
given to the users at a predefined distance in order to
prevent them stepping onto the road without checking
for traffic first.

The most important requirement for the system is for
it to work as reliably as possible. That means reducing
the number of events where the system fails to detect
the curb stone (misses) to a minimum. However, the
frequency of false alarms (occurring when the user is
not close to a road) should also be kept fairly low. This
is because the experience of false alarms can lead to
the ignorance of warnings due to users’ distrust of the
system [Dix07a], [Mad06a], [Bli95a].

In order to generate appropriate warnings, the assis-
tance system must be able to effectively identify when
users are approaching a road. It was decided that this
should done by detecting the curb stone using a suitable
sensor solution. The sensors should not be too heavy to
avoid imposing excessive weight upon the users, as well
as not being too expensive for the older target group to
afford.

2 RELATED WORK
Curb stone detection is an important research aspect in
the field of mobile robotics and is especially impor-
tant in the field of autonomous vehicles. It is a cru-
cial component in ADAS (Advanced Driver Assistance
Systems) such as parking assistance, vehicle position-
ing, etc. However, this research focuses on curb de-
tection from the perspective of the driver (i.e., the car).
Research into curb detection from the point of view of
pedestrians is relatively rare. This is because curb de-
tection from a pedestrians’ perspective proposes a sep-
arate relevance and, in particular, a pedestrian’s angle
of view is entirely different. However, we can still ex-
tract some useful information regarding the sensors, as
well as theories proposed to solve this problem, from
recent research into mobile robotics and intelligent ve-
hicle systems.

For curb detection, methods vary with regard to types
of sensors and processing methods, which all have sev-
eral advantages and drawbacks. It can be categorized

based on the types of sensors used. For example, stan-
dard approaches using an inexpensive mono camera
exploit the methods based on appearance information
(i.e., image processing) [Pri16a]. Image-processing-
based techniques can allow detection from long dis-
tances, but they are susceptible to decreased accuracy
which can be caused by changes in the intensity of im-
ages such as shadows or changes in road surfaces, road
markings, etc.

However, most methods rely on the 3D information
extracted from LiDAR (Light Detection and Ranging)
or imaging sensors. As opposed to monocular cameras,
stereo vision cameras can exploit 3D geometry and
are therefore more suited to detecting curbs [Kel15a],
[Sod16a], [Fer14a], [Sei13a], [Enz13a], [Oni11a],
[Hu12a], [Sie10a]. Stereo vision can provide high-
resolution information which is not available in other
3D sensors. Since they provide a high resolution,
appearance and geometry features are used actively
to detect curbs using stereo vision. The geometry
features, such as the height step [Kel15a], curvature
[Sod16a], [Fer14a] and height variation [Kel14a],
[Sei13a], [Hu12a] are commonly used with stereo-
vision-based methods to detect curbs. These methods
are relatively efficient, however the sensors used in
these techniques are comparatively expensive and a
3-D sensor needs a 360◦ view which contradicts with
our requirements.

Several mapping methods are used for curb detection.
Digital Elevation Models (DEM) are the most widely
used [Oni08a], [Kel14a], [Sie11a], [Enz13b]. All
of these approaches can augment noisy sensor data
through local or temporal filtering. However, they suf-
fer the drawback that the cell sizes affect the accuracy
of road-curb features. Therefore, small cell sizes are
favoured, which tend to require higher computational
efforts, such as higher memory consumption, making
them difficult or even impossible to use in real time.

Considering the requirements of our assistance system,
we decided to carry out the sensor fusion using the deep
learning method. Therefore, we used a mono camera
and a range sensor, assuming that the fusion of these
two sensors could detect the curb more efficiently. In
our case, the use of an expensive multi-layer LiDAR,
which requires a 360-degree field of view, was not a fea-
sible option. Hence, we decided to use a Leddar sensor.
Leddar [Oli15a] is a propriety sensor from Leddartech
which works based on the principles of LiDAR tech-
nology. It can detect, locate and measure objects in its
field of view. These sensors are mounted on a walker
(see section 3.2) to avoid older people having to carry
the assistance system on their body.
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3 MULTI-SENSOR DATA FUSION US-
ING END-TO-END LEARNING

We started our work by implementing the detection
system with only one sensor. An end-to-end learning
approach using Convolutional Neural Network (CNN)
was chosen to detect the road and its surroundings
from the pedestrian’s point of view via a mono cam-
era. This work was inspired by the work of Bojarski
et. al. [Boj16a]. The authors implemented an end-to-
end learning approach using a CNN in the context of
autonomous driving. If a network is used in the context
of end-to-end learning, it learns the whole processing
pipeline without the need to label explicit parts of the
data. For example, in the case of the image dataset, it is
sufficient to label the whole image rather than labelling
the individual pixels in the image, which saves consid-
erable time during the annotation of the data (for fur-
ther details, see [Qur18a]). The camera which has been
used has the focal length of 4.0mm with the optical res-
olution of 1280×960 and has the maximum frame rate
of 30fps @ 640×480.
In order to further improve detection accuracy, we in-
tegrated the Leddar as the second sensor in the system.
The Leddar sensor is based on the optical time-of-flight
technology which sends short light pulses about 10,000
times per second to actively illuminate the desired area.
The sensors then capture the light that is scattered back
from objects and processes the signals to accurately de-
termine their location and other attributes, such as shape
and design. In our project, we are using the Leddar
M16, which is a 16-segment solid-state LiDAR sensor
module. The Leddar M16 sensor module uses 16 in-
dependent detection channels to deliver continuous and
precise detection combined with exceptional lateral dis-
crimination. It has a detection range of 146m and a data
acquisition rate of up to 100 Hz [Oli15a].
The Leddar has been mounted on a walker so that the
channels are facing the curb stone vertically with an
approximate angle of 45◦ in the predefined distance of
2m±1m. The schematics can be seen in Figure. 1.

Figure 1: Schematics of Leddar sensor

In Figure 1, "c" represents the channel of the Leddar. If
the Leddar is moved towards the curb stone and it ap-
proaches the predefined window, as there is a difference

in height between the pavement and the road, there will
be a change in value for one channel (channel 16) as the
lateral distance between the Leddar and the deflecting
surface increases. This means that, for channel number
16, at t = 0, the deflecting surface is the pavement and,
at t = 1, the deflecting surface is the road. Therefore,
a profile can be made where this channel indicates the
difference, which provides an array of data in the shape
(16,1). Similarly, a profile can be made for each chan-
nel.

3.1 Proposed Methodology
For the camera images, we used the input plane of
(227,227,3), that means RGB images were used to
train the CNN architecture in the first step. However,
it is impossible to use the same CNN network to fuse
both sensors because the dimensionality of the input
data differs. Therefore, we decided to use two different
algorithms to process the data of each sensor separately
and merge them later at the classification stage. For the
images, CNN was used as it provides the best results for
learning the hidden patterns in images. In order to cater
the effect of light in the RGB images, we decided to
use the grey-scale images to train the CNN. In this way
the algorithm neglects the effects of light (e.g. bright-
ness, shadowing, etc.), especially in sunny conditions
and this led to a better prediction. We also reduced the
pixel size of the images to decrease the training time of
the algorithm. This led to an input size of resolution
(225,225). However, Leddar information is comprised
of point cloud data acquired from the 16 channels, with
each channel representing one data point. Thus, the Ar-
tificial Neural Networks (ANN) were chosen because
ANNs do not reduce the dimensionality of the input
data, meaning no relevant information is lost. More-
over, ANNs are easy to fuse with CNNs and doesn’t
hinder the speed of the network.

To fuse the two sensors which have heterogeneous in-
put streams, we trained two networks in parallel, before
concatenating the features from both networks. These
concatenated features were used as an input for the
fully connected layers to establish the symmetry be-
tween both sensors. After this, the complete network
was trained to tune the hyper parameters. These fully
connected layers also serve the purpose of classifica-
tion, however, in end-to-end learning, it is hard to deter-
mine which layers perform the feature-extraction task
and which layers carry out the classification.

3.2 Data Collection
The data was collected using a prototype consisting of
the following modules:

• Walker (Invacare Banjo P452E/3)

• Leddar M16
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• USB Webcam HD C270 from Logitech

• Notebook (Lenovo Y720-15IKB)

Figure 2: Prototype used for data collection and testing

A customised structure was added to the walker to carry
the sensors, as shown in Figure 2. A housing for the
camera was fabricated using a 3D printer. The Leddar
housing was integrated with a rechargeable power sup-
ply. Both of the sensors were connected to the notebook
using the USB interface.

3.3 Camera dataset
In order to train our CNN network, a dataset was needed
to represent the task at hand (curb stone detection from
a pedestrian’s point of view). As there was no prior
dataset of this kind available, a new dataset had to be
constructed from scratch. This dataset took into ac-
count different light and weather conditions, as the ma-
jority of the relevant accidents occur in conditions with
reduced visibility [Sta13a], as well as different road en-
vironments.

Because the system is developed for use in the city
of Berlin, the dataset incorporates the different types
of pavements and curb stones found in the streets of
Berlin. In order to achieve this, it was necessary to
carry out an analysis of the existing pavement struc-
tures and how common they are. For further details,
see [Qur18a].

In order to train the network, the dataset was divided
into two classes labelled "positive" and "negative". Im-
ages labelled as "positive" show scenarios where users

walk towards the road, whereas "negative" images de-
pict scenarios where users are walking along the pave-
ment parallel to the road, as shown in Figures 3 and
Figure 4 respectively.

Figure 3: A few examples of the positive labelled im-
ages

Figure 4: A few examples of the negative labelled im-
ages

3.4 Leddar dataset
Since this problem was tackled as a binary classifica-
tion problem, two types of data were also collected for
the Leddar data, namely "positive" and "negative". The
"positive" class relates to situations where the Leddar is
facing the curb and the user intends to cross the road.
For the "negative" class, data was collected about situ-
ations the Leddar was not facing the curb and the per-
son had no intention of crossing the road. We used 16
channels of the Leddar which generate the point cloud
data. Data was collected from each channel and a pro-
file was made which gave us an array of size (16,1).
Each array represents one data sample. The data was
collected on the streets of Berlin with the help of the
walker mentioned in section 3.2. While collecting the
data, multiple aspects were considered (e.g. height of
curb stone, angle of approach, distance from curb stone,
parked cars, etc.).

3.5 Training Of Algorithm
3.5.1 Selection Of The Data

In order to train the network, it was important to select
the adequate data from both of the sensors. The data
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from the Leddar and the camera were collected sepa-
rately, which means there is no connection between the
data streams of the Leddar and the camera. We chose
40,000 frames from each sensor. The data from each
sensor was divided into positive and negative databases
at a 50:50 ratio. The dataset was then further divided
into two parts: training and validation, at 70% and
30% respectively. The data from the camera was aug-
mented using data augmentation techniques by adding
rotations, artificial shifts, zooming and sheer effect, etc.
to overcome the overfitting problems and also to teach
the network the various conditions which present them-
selves in real-life situations (e.g. insufficient illumina-
tion, motion blur, etc.). However, the data from the
Leddar was not augmented as each channel gives a
number and adding artificial noise entirely changed the
outcome.

3.5.2 Network Architecture
After the selection of data, experiments were conducted
to find the best suitable network architecture. The train-
ing was started with the simplest case and the difficulty
was increased gradually to monitor the performance
of the network. In the beginning, only datasets with-
out obstacles and objects were introduced as a positive
category. Afterwards, the difficulty was increased by
adding different factors such as leaves, obstacles and
various weather conditions. Similarly, for the "nega-
tive" class, the difficulty level was increased by adding
a range of different pavements and angles.
After extensive experimentation with the aim of achiev-
ing maximum accuracy, the network consisted of the
following configuration. The final CNN architecture
contained 5 layers with strided convolutions in all the
convolution layers with a size of 2×2 and with a kernel
size of 3×3. The ANN architecture had 4 layers with a
varying number of neurons. Three fully connected lay-
ers are used after concatenating the features from CNN
and ANN networks. These layers were then trained on
the combined features from both networks (i.e. CNN
and ANN). The complete network architecture can be
seen in Figure 5.

4 RESULTS
The efficacy of the model was determined through the
accuracy and loss of training and validation. These val-
ues indicated the system’s ability to learn the under-
lying features of the data. A validation accuracy of
99.04% and a validation loss of 0.043 were observed.
The epoch by epoch analysis is shown in Figure 6.
Another way to observe the efficacy of the model is
the through confusion matrix. This confusion matrix
demonstrates how many times the algorithm was not
able to predict the correct label. The confusion matrix
was plotted with 10,000 test samples and can be seen in
Figure 7.

Figure 5: Network architecture

The Lenovo Y720-15IK notebook, which has NVIDIA
GTX 1050 GPU, was used for real-time testing. The
system runs at 22 Frames Per Second (FPS). In order to
assess the performance of the system, we adopted the
F1 score as an evaluation criterion for curb detection,
which is calculated using precision and recall. The re-
sults are listed in Table 1.

Labels Precision Recall F1 score
Positive 1.00 0.99 0.99
Negative 0.99 1.00 0.99

Table 1: Precision, recall and F1 score of the system

5 CONCLUSION
Based on the analysis of the target group, we deduced
that the sensors chosen to detect the curb stone should
be lightweight and inexpensive. In order to train the
networks, the datasets were constructed from scratch,
taking into account various factors such as light,
weather and structural combinations. These datasets
will be extended in future in order to account for a
wider range of scenarios. Both of these datasets can
be used as independent entities in other applications
and systems and are therefore valuable irrespective of
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Figure 6: Simulation results for the network
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Figure 7: Confusion matrix for 10,000 test images

the algorithm. Additionally, a novel approach for the
multi-sensor data fusion using the end-to-end learning
technique is presented where two algorithms, CNN and
ANN, were used to efficiently detect the curb stone
in various scenarios. The fusion network was trained
on a small amount of data, which in turn requires less
training time. However, despite the minimal amount
of data, the network was able to generalise well and
detected the curb stone with an efficiency of more
than 99%. The system worked reliably in different
conditions, with very little time required for prediction.
We believe that end-to-end learning can be effective
for multi-sensor data fusion. This technique proved
to be very fast and reliable as there was no need
for hand-crafted rules or labels for the data, saving
a tremendous amount of time. By fusing CNN and
ANN using end-to-end learning algorithm, we proved
that end-to-end learning is also capable of handling
multiple algorithms at once. In future we will train the
different algorithms to compare the accuracy and also
observe whether end-to-end learning is able to handle

more complex architectures. Finally, a field study will
be conducted with the target group to evaluate the
performance of the systems. We will also investigate
the performance of the users in the detection of hazards
as well as their acceptance and trust of the system.
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